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THE STRUCTURE OF δ-PINCHED MANIFOLDS WITH
THE FUNDAMENTAL GROUP πλ(M)=Z3

KATSUHIRO SHIOHAMA

The present paper is a continuation of the difϊerentiable pinching theorems
for the sphere (see [7]), and the real (see [3] and [4]) and the complex (see
[5]) projective spaces. The difϊeotopy theorem plays an essential role for ob-
taining the dimension independency in the proof of the sphere pinching theorem.

In order to make a fibre preserving difϊeotopy between the Hopf fibration

S2n+i _+ 52n + γ S i = p(Cy a n d t h e f r e e gι a c t i o n o n 5271+1 w h i c h i s c a u s e ( ϊ by a

Riemannian manifold N with certain conditions (see [5]), we made heavy use
of the strong diffeotopy theorem to get the diffeomorphism between the complex
projective space and such an N. In the real projective pinching theorem, a fibre
preserving diffeotopy between the antipodal map on Sm and the involutive dif-
feomorphism on Sm obtained from a ^-pinched M with π^M) — Z2 is con-
structed easily by the diffeotopy theorem, and in this case we again obtain the
dimension independency. The reason why we need not use the strong dif-
feotopy theorem in the real projective pinching is based on the following two
facts. First, for each point p on a 5-ρinched M with πλ{M) = Z2, the cut
locus C(p) of p is a compact hypersurface of M without boundary. Second,
the deck transformation on the universal covering Riemannian manifold M of
M leaves the inverse image π~\C(p)) of C(p) invariant, where π: M —> M is
the covering projection.

However, if the order of π^M) is greater than 2, it will not be easy to in-
vestigate the structure of cut locus C(x) of a point x on M. This is because
C(x) has nonempty boundary, and furthermore each element of the deck
transformation group does not leave π~\C(x)) invariant. For instance, let
L2n+1(rι, , rn k) = S2n+1/G be a general lens space of constant curvature 1
of the type (r15 , rn k), i.e., G has the generator g such that it is expressed
in terms of the orthonormal basis (e19 , e2n+2) of R2n+2 as follows:

8 =

'Rirjk)

R(r2/k) . cos 2πa sin 2πά\
R(a):= I

sin 2πa cos 2πa
[ c

— si
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Then for each point p* e L2n + 1(r1, - , rn k) the cut locus CQ?*) is a compact
hypersurface with nonempty boundary, and π~ι(dC(p*)) is isometiric to the
great (In - l)-sphere of S2n+\ where π: S2n+ι -> L2 n + 1(r1 ? - ,rn; k) is the
covering projection. Moreover each element of the deck transformation group
leaves π~\dC(p*)) invariant but not π~\C(p*)).

In this paper we shall deal with the case where π^M) = Z 3 and dim M must
be odd. Our main result can be stated as follows.

Main theorem. There exists a monotone increasing sequence {δk}, δk € (^, 1)
in such a way that for any connected, complete and δ-pinched Riemannian
manifold M with its fundamental group πλ(M) = Z3, δ > δn implies that M is
diffeomorphic to the lens space L2n+1(l, , 1 3).

We shall give in § 1 definitions, notation and the known results to be used
in this paper, and shall investigate in § 2 the structure of the cut locus C(ρ) of
a suitably chosen point p on M. Then we see that C(p) is a compact hyper-
surface of M with nonempty boundary. We shall study in § 3 the structure of
the boundary dC(p). On the universal covering Riemannian manifold M of M,
each element of the deck transformation group leaves the submanifold π~\dC(p))
invariant, and hence we get the Z 3 action on π~ι(dC(p)) via the deck transforma-
tion group. Clearly π~\dC(p))/Z3 can be identified with dC(p). In § 4, the
strong diffeotopy theorem is employed to construct the fibre preserving dif-
feotopy between the Z3 action on π~ ι(dC(p)) and the standard Z3 action on
S2n~\ where dim M — 2n + 1 and by definition the standard Z3 action has
the generator g e Z 3 such that

g =

and its quotient space is L2n~\l, , 1 3) = : L2n-\1 3). Finally we shall
prove the main theorem as well as the homeomorphism theorem.

1. Preliminaries

Throughout this paper let M be a complete and connected Riemannian
manifold whose sectional curvature K and fundamental group πλ(M) satisfy,
respectively,

(1.1) \ < δ < K < 1 for any plane section,

(1.2) πi(M) = Z3.

As is well known, an even dimensional complete Riemannian manifold of
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positive sectional curvature either is simply connected or has its fundamental
group = Z2. Therefore from (1.1) and (1.2), dimension of M must be odd and
we set

(1.3) dim M = 2π + 1 .

Let M be the universal Riemannian covering of M, and π: M —> M the cover-
ing projection. For a point x e M (x <= M) we denote by Mx or TXM (M£ or
T£M) the tangent space of M (M) at the point. Denote by d: M x M -^R
the distance function on M with respect to the Riemannian metric, and also
by d the distance function on M. π^M) can be identified with the deck trans-
formation group. Let g e πλ(M) be a generator. For each point * e M we denote
by x0, x19 x2e M all the elements of π~\x) (depending on the choice of both g
and jc0) such that

(1.4) g ί ( x 0 ) = x ι , i = 0 , l , 2 .

For a smooth curve c: [0,1] —• M, d(t) is by definition its velocity vector at
c(t) and its length denoted by L(c) is given by

L(c)=

The cut locus at x € M is denoted by C(x).
We shall now state the known results to be used in this paper. For each

point on a complete and simply connected Riemannian manifold N satisfying
condition (1.1), the cut locus theorem due to Klingenberg states (see [2])

(1.5) d(x,C(x))>π .

In other words, let Uπ(x) c Nx be the open ball in Nx with the radius π and
center at the origin, and let Bπ(x) C i V b e the open metric ball with the same
radius and the center at x. Then exρx | Uπ{x) —* Bπ(x) is a difϊeomorphism.

Let Sm(k) be the standard m-sphere with the constant curvature k, and let
7: [0, β] ~+N,γδ: [0, β] -> Sm(δ), Tι: [0, β] — Sm(l) be normal geodesies (i.e.,
parametrized to the arc length), where N is complete, dim N = m and N
satisfies (1.1). Let Y, Yδ and Yx be the Jacobi fields along γ, γδ and γx respec-
tively such that Y(0) - Yδ(0) = Y^O) = 0, | | F ( 0 ) | | = || Yί(0)|| = || Yί(0)||.
Then from Rauch's comparison theorem (see [2]) it follows that

(1.6) 117,(011 < ||Y(/)|| < ||Ya(/)|| for any tε [0, π] .

If these initial conditions are replaced by ||Y(0)|| = ||Ya(0)|| = 11^(0)11 and
Y'(0) = Y'δ(0) = Yi(0) = 0, then from Berger's comparison theorem we have
(see [1])
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(1.7) 11̂ (011 < ||y(0II < ll^ωil for any t e [0,*/2] .

A geodesic triangle Δ on N is by definition a triple of minimizing nontrivial
geodesic segments, every one of whose extremals are on the others. Denote by
L(Δ) the circumference of Δ, and by a, β,γ € [0, π] its angles. For a geodesic
triangle Δ on N, let Δδ and 4 be the corresponding geodesic triangles on S2(δ)
and S\l) respectively, where by definition Δδ and Δx have the same side lengths
as Δ. From Toponogov's theorem (see [2]), each angle of Δ is not less than
the corresponding angle of Δδ, i.e.,

(1.8) a δ < a , β δ < β , γ δ < γ .

As a direct consequence of both theorems of Rauch and Klingenberg, we see
that if a geodesic triangle Δ on a simply connected N satisfying (1.1) has cir-
cumference L(Δ) < 2π, then the corresponding Δ1 with angles a19 βl9 γλ exists
on 5"2(1) such that

(1.9) a < a l 9 β < β , , r < Ti-

lt N satisfying (1.1) is not simply connected, its diameter d(N) has an upper

bound

(1.10) d(N)< J π / V T ,

where the diameter is defined by d(N): = Max {d(x, y)\ x,y eiV}.
Finally we shall state the diffeotopy and the strong diffeotopy theorems.
Diffeotory theorem (see [7]). Let f be a diβeomorphism on Sm(Y) c Rm+1,

where Rm+ι is by definition a Euclidean (m + 1)-space, and assume that

(1.11) β:= Max{^C («,/(iι)); u 6 Sw(l)} < \π ,

(1.12) ε := Max {̂ f (A,dfA);A eTSm(l)} < c o s " 1 ^ cos β

/ w diffeotopic to the identity map via the following homotopy of diff-
eomorphisms: For eαc/z pomί w e 5m(l), /̂ ί ^M : [0, 1] -> 5m(l) fo^ the shortest
great circular arc parametrized proportionally to the arc length, and let
Ft: 5m(l) -» 5m(l) fee given by Ft(u) = γu(t). Then Ft is a diffeomorphism for
any tz [0, 1].

Strong diffeotopy theorem (see [5]). Let f satisfy (1.1) and (1.2) and let
L > 0 be a constant such that

(1.13) L~ι <\\dfA\\<L for any A<εTSm(l), \\A\\ = 1 .

TTzen for any t e [0,1] and any unit vector A € TSm(\) we have

(1.14) Z
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(1.15) ^(A,dFtA)<ε + β,

where L, H and έ are the constants defined by

U = L~2 cos2 ε - (L2 + 1 - L"2 cos2 ε) sin 2a ,

H2 = (L2 + 1 - L~2 cos2 ε)(l + sin 2a) ,

cos ε = (cos a — sin a)L~ι cos ε/V(L2 + 1 — L~2 cos2 ε)(l + sin 2a) ,

cos a = L~ι cos ε/VL2 + 1 — L"2 cos2 ε .

In the above theorem we see lim a = 0, lim ε = Oand lim L = lim H = 1.
£,e-*0 β,ε->0 β,ε~*O β,ε-> 0
I,—1 £—1 £—1 Z,—1

We may actually assume that β, ε and L are taken so close to 0 and 1 respec-

tively that these constants make sense. Indeed in this paper we find upper bounds

β(δ), ε(δ) and L(δ) of β, ε and L respectively so that lim β(δ) = lim ε(δ) — 0

and lim L(δ) = 1 hold.

2. The structure of cut locus

Let M satisfy conditions (1.1) and (1.2). Then for any point x € M we have
(see [4])

(2.1) ±π < d(x, C(JC)) < iπ/ V T .

Since the function x —> d(x, C(x)) is continuous on M and M is compact, the
function takes a minimum value. Let p € M be the point at which the minimum
value, say /, is attained. From (2.1) there exists a simply closed geodesic γ of
length 2/ such that

(2.2) γ: [0, 21] -+ M , r '(0) = /(2/) , ^ < / < * W T .

The lifted geodesic is denoted by f, and from (2.1) and (1.2) it is of length 6/.
Take a point p0 € π " 1 ^ ) and parametrize f: [0, 6/] —> M such that f (0) = j?0.
Then we can choose g e πx(M) such that pt = g^^o) = ?(2//). Setting

(2.3) ^ : - { x e M ; d(pi+ί9 x) = d(pί+2, x)} (mod 3) ,

&t is a compact subset of M, and pt € ^ , g*(^0) = ^"t 0" = 0 , 1 , 2).
Proposition 2.1. Assume that

(2.4) a > 9/16 .

^i w fl compact hyper surf ace of M diffeomorphic to S2n.
Proof. We first show that
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(2.5) / < d(x,pi+1) < 2/ for any x e ^ .

In fact, from the choice of p the first inequality in (2.5) is trivial. Suppose there

exists a point y e J ^ such that yΦpt and d(y9pi+1) = d(y,pi+2) > d(pi9pi+1).

Note that d(pi9pi+1) = 2/ > 2τr/3 >$π/VΊΓ follows from (2.2) and (2.4).

Apply Toponogov's theorem (1.8) to the geodesic triangle with vertices pi9pi+i

and y (or Pi,pi+2 and y) to derive a contradiction. Thus the function

x —• d(x, j? ί+1), x e ^i attains its maximum value 2/ exactly at the pointy . Since

2/ < iπ/VT < π and (1.5) holds for each point on M , ^ c Bπ(pί+1) Π

Bπ(pί+2). The function λt: M —> i? defined by

(2.6) ^ ( x ) = d ( p i + 1 9 x) - d ( p ί + 2 , x) , x ε M

is continuous on M and diίϊerentiable on (Bπ(pi+1) — {pί+1}) Π (Bπ(pί+2) —
{A+2}) In particular, grad ^ |~ ^ 0 holds for any xz^i. Hence J ^ is a
compact hypersurface without boundary.

Finally we shall prove 3F\ to be diίϊeomorphic to S2n. Let c: [0, π] —» M be
a normal geodesic such that c(0) = pί+1. Clearly λi(c(O)) = — 2Z < 0 and
^i(^(τr)) > 0, so that c intersects 2P\ at some point c(t0). Obviously the inter-
section is unique, and c'(Q is never tangent to T^t^i m TeUo)M. Thus the
map ^(0) —• c(t0) from the unit hypersphere SPi+1(l) in TPi+1 M, centered at
the origin, onto SFi is a diffeomorphism. Hence the proof is completed.

We note π~\C(p)) C J% U ̂ Ί U ̂ 2 , and each point jc on Tr'^Cip)) has
one of the following properties:

(2.7) d(pt9 x) = d(pί+1, x) < d(pi+2, x) for some / = 0,1, 2 ,

(2.8) d(pi9x) = d(pi+19x) = d(pi+2,x) .

In order to investigate the structure of π~\C(p)), we shall define the function:

(2.9) μt:M — R , ^(x) = d(x, A+i) + d(X, A+ 2) - 2d(x9pd , x e M .

jM* is continuous on M and diίϊerentiable on (Bπ(p0) — {j?0}) Π (Bπ(pϊ) —

(Bπ(P2) - {A) Let i be defined by

(2.10) £ = {xeM; d(x,p0) = d(x,ft) -

From definition follows

(as point sets). Here we essentially use assumption (1.2). Clearly each element
of the deck transformation group leaves S invariant. μt \ 3F%: &\ —> R is con-
tinuous on ^i and diίϊerentiable on ̂ i Π Bπ(f((2i + 3)1). From (2.11) and



THE STRUCTURE OF ̂ -PINCHED MANIFOLDS 423

.F, C Bπ(pί+1) Π Bπ(Pi+2) we see

(2.12) g c Bπ(p0) Π BXPJ Π Bπ(p2) .

Proposition 2.2. Under assumption (2.4), # w 0 compact (2n — ^-dimen-
sional submanifold without boundary and is diffeomorphic to S2n'λ.

Proof. We may restrict our discussion to the case where f((3 + 2ϊ)ΐ) does
not belong to the closure Bπ{pi) of the open ball. In fact, f((3 + 2ΐ)ΐ) € Bπ(pi)
implies / = \π, and hence M is isometric to S2n+ι(l) (see [4]). Therefore M
is isometric to L 2 w + 1 ( l ,3). Consider the gradient field of μt restricted to
JFi Π Bπ(pi). We claim that on ̂ i Π B^pi), there exists no critical point of
μι other than /?*. Recall that (x -> d(x, Λ+i)> * e ̂ f ) takes its maximum value
exactly of the point ^ i ? and hence pt is a critical point of μt. For any point x
on ^ Π BXpi), x Φ pi, let άi+19 άi+2: [0, m]-*M and a€: [0, m] —> M be the
minimizing geodesies such that fl/0) = pj, j = 0 , 1 , 2, άί+1(m) = άί+2(m) =

— jc. Then we have

grad (μil^i Π ^( j?))^ = the tangential component of

3 { ( ) + 3 { ( ) lά'fy) to

Since a'i+1(m) is symmetric to ^ + 2 (m) with respect to T^u ά'i+1(m) +
) £ TsS^i, and clearly m < 21. From Toponogov's theorem (1.8) follows

X 3{(m)) < cos 2/VT - cos mVT cos m
sinmVd sinmV^

/ cos 2/V^(l — cos m VT)

cos

\ —= —= ,
sin my ^ sin mV δ

j φ ί. But from (2.4) we have 2WΊΓ > JTΓ, since <£ (5y(m), fl (m)) > J^,
/ ^ 2. Therefore the angle between ά'i+1(m) + ά'ί+2(m) and the tangential com-
ponent of — 2af

i(πί) to Ύ^i is less than \π. Thus we have proved

grad (μt | ^ 4 Π B , ( A ) ) I J ^ 0 for x Φ pt .

Hence we observe that ^ Π Bπ(pi) is diffeomorphic to a 2n-disk, and each
level surface μr^{constant}) especially μϊ\{0}) — g is diffeomorphic to S2""1.

We shall define the sets

}, . = 0 1 2

J^t- = {x € ̂  ^ ( i ) < 0} ,

Then !Fχ has clearly no intersection with π~\C{p)), so that

(2.14) π~\C{p)) = 3F* U ̂ Γ U ̂ Γ U <T (disjoint union),
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(2.15) s*GF-) = j r Γ ? 5 i W = g 9 / = 0,1, 2.

(2.15) allows us to consider the free Z3 action (<?, ^* 5Z 3) on ̂  by the deck
transformation group. In fact, for any point x e δ, let

(2.16) φ*(g\ x): = g%x) , g« <= Z 3 = πx(M) .

Clearly the quotient space δ/Z3is diffeomorphic to the boundary dC(p) = π(δ).
For any x e £ let X e T££ and 3<: [0, m] —> M be the unique shortest con-

nection joining /?* to jc. From (2.8), we see ^ (X,ά'0(m)) = <Z£ (X, ά[(m)) =
Ĉ (Z,aj(m)) ^ 0. Hence with the aid of (2.12), the projection pr: δ->

50(l) C MPo defined by

(2.17) Pr(*):= 2ί(0)

is a diffeomorphism, where ι§0(l) is the unit hypersphere in M ί o centered at
the origin. We shall denote by E the image

(2.18) £ = p r ( / ) c S , ( l ) .

Obviously £ is a hypersurface of ιS0(l) and diffeomorphic to the standard
sphere. Therefore we have the Z3 action (E, φ, Z3) such that

(2.19) φ ( g \ u ) = p r . φ * ( g \ p - K u ) ) , u e E , g * * Z z .

Clearly we have the following
Lemma 2.3. The quotient space E/Z3 is diffeomorphic to dC(p) = π(δ).
Proof. Since pr is the fibre-preserving diffeomorphism, (δ, φ*, Z3) is equi-

valent to (E, φ, Z3). The conclusion is now trivial from ^/Z 3 being diffeomorphic
to π(δ).

3. The Z3 action on δ

Lemma 3.1. Assume that

(3.1) <5> 25/36 .

Then for any x e δ and any i = 0,1, 2, we have

(3.2) ^<d(x,pd<

Proof. Let at: [0, m]->Mbe the minimizing geodesic such that at(0) = pi9

at(m) = x, m = d(pux). From π(x) eC(p) and (1.10), follows d(x,pi) =

d(jc, p) < d(M) < ^π/Vδ . (3.1) ensures that the circumference of the geodesic

triangle with the sides άi9 f\[2il,2(i + 1)1] and άί+1 is less than 2π since

m < iπ/VT and 2/ < 2π/(3V~δ~). Thus S<+1(0 e Bπ(Pi) holds for any
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ί e [ 0 , m], and without loss of generality we may assume that <£ (<^(0),

f (2/0) > i*r F r o m (1-9) w e β e t m > i^
Now by the triangle arguments stated in (1.8) and (1.9) together with the

cosine rule in spherical trigonometry, we get
Lemme 3.2. Under the assumption (3.1) we have, for any x € £* and

Max {π - ωH(δ), ωL(δ)}

f (2/0) < Min {ωH(δ), π - ωL(cϊ)} ,

(3.4) ΘM < < (2ί

where we set

(3.5) ίL(3) = 2 π t δ , θH(δ) = cos"

ωi(3) = cos"1 (tan JL cot J ^ _ L \ ,

(3.6)

COS
2π

3VΎ

s in 2 -

— COS2

π

π

The proof is left to the reader.
For any xoe^, let xιyx2^i be such that gKxo) = xί9 and auΐ)uCi\

[0, m] —> M be the shortest geodesies such that

2i(0) - ΐ)M = 2t(0) = A ,

di(m) = x2 , / = 0,1, 2, m =

Clearly we see

goS < =z bi + ι , g 2 o ^ = gofe i + 1 = C< + 2 ,

(3.8) goέi = ci+1 , g2obi = gocί+ι = a<+2 ,

Define the projection map pr: E —> 5^-(l) C 50(l) with respect to the point

f (0) by

(3.9) pr{u) = M - <iι, f (0)>f (0) , u e £ ,

where 5^(1) is by definition the equator hypersphere with the north pole f(ϋ).
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Proposition 3.3. There exists δ' e [25/36,1) such that

(3.10) δ>δ'

implies that pr is a diffeomorphism.
Proof. For any u e E and any A e TUE, \\A\\ = 1, let σ: I —» E be a smooth

curve fitting A so that </(0) == ̂ 4 and 0 e / is an interval. Let ά0: [0, m] —> M
be the minimizing geodesic such that 50(0) = p0, aQ(m) e S, and 5J(0) = w.
Define a 1-parameter geodesic variation V: [0, m] x / —* Λf along α0 by

(3.11) F ( / , J ) =
m

We denote by Y(t) the Jacobi field along ά0 associated with V, and by YJjt) its
normal component of 5J(i). Obviously Y±(0 is again a Jacobi field. From
construction

(3.12) Y(0) = 0 , Y'±(0) = ^ € M ί 0 ,

where 4̂ is identified with the vector obtained by the parallel displacement of
A e TUE c TUSQ{\) in M ί o. Let P be the unit parallel field along ά0 such that
P(0) = A = Y^(0). From an approximation theorem of Jacobi fields (see [7])
we have an upper bound Θ(δ) for the angle

(3.13) <£ (Y±(m), P(m)) < Θ(δ) , lim θ(δ) = 0 .

Apply Berger's theorem (1.7) to the curve c: [0, m] —> M, c{t): = exp \πP(t)
to get

(3.14) L(c) < — ^ = - c o s
2Vβ

From (2.8) and Lemma 3.2, follows

VΛ/T 2
(3.15)

sin ^ < < (X(m), a'0(m)) = < (y(m), φ
2 /

sin

(3.15) implies <£ (Y(m), Y±(m)) < — - siirM-f^ sin ^ - ) , and hence we
2 \ v 3 2

get an upper bound θ(δ) for the angle

(3.16) < (Y(m), P(m)) < θ(5) , lim θ(δ) = 0 .
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Thus we have a bound d(δ) for the distance

(3.17)

On the other hand, (3.15) implies

together with Rauch's theorem (1.6), and therefore we obtain a lower bound
for the distance

d(exp — A,p) > sin"1 ( - ^ s i n l ί ) - d(δ) .
\ 2 / \v 3 2/

To the geodesic triangle with vertices p0, pλ and exp^πA, we apply (1.8) to
get a lower bound for the angle

πV δ 2π\l δ
cos V δ I sin"11 ,— sm —r- I — (̂<5) I — cos — — — c o sin-~-j — d(δ)j —

2 3
(3.18) < ^ ^ = =

7ΓV δ

sm — - — sm

= : cos V δ ΦL(δ) .

Analogously we have an upper bound ΦH(δ) for the angle <£ (f (0),^4) such
that

(3.19) ΦL(δ) < < (f (0), ̂ ) < Φ^ίί) , lim φL(3) = lim φH(3) = \π .
O—•! 0—»1

If <f is chosen so close to 1 that

(3.20) ΦL(δf) > 0 , ΦHφ) < π

are satisfied, then d(pr)uA Φ 0 holds for any u € E and any A e TUE. Since
pr is 1 — 1 and onto, the proof is complete.

Let ω: E —» i? be the function defined by

(3.21) ω(κ) = <(w?jpr(w)) , uzE .

Clearly ω is a differentiate function on E as far as (3.10) is satisfied, and
from (3.3) follows

(3.22) 0 < ω(u) < Max {\π - ωL(δ), ωH(δ) - \π] .
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Each u ε E can be expressed as u = cos ω(u) pr(u) + sin ω{u) f'(()). Put

pτ

r(u) = cos{(l - τ)-ω(u)}pr(u) + sin {(1 - τ)-ω(u)}'f (0) ,
(3.23)

K € E, r e [0,1] .

Then /?; is an imbedding of £ into 50(l) for each τ e [0,1] as far as (3.10)
is^satisfied. Therefore we have a 1-parameter family of Z3 action (pτ

r(E), φτ, Z3),
τ € [0, 1], defined by

(3.24) Ψτ(g\ v) = # •?>(*', fo)"1^)) , v 6 Λ(£) , g'zZ,.

Obviously the quotient space pr(E)/Z3 is diίϊeomorphic to δ\Zz = π(E) =
d(C(p) for each τ e [0,1].

4. Fibre-preserving diffeotopy between φ1 and the standard Z3 action

A differentiate deformation of the Z 3 action ψx on *Ŝ -(1) is a 1-parameter
family p ί ? ί e [0,1], of Z3 actions on §£(1) such that the map (g, u, t)^φt(g, u)
is differentiable. For a diffeotopy Ft, t e [0,1], on S$-(l) such that Fo — identity,
we have a deformation of φλ in the following way: For each t e [0,1] let φt be
defined by

(4.1) φt(g\ u) - Ftoψι(g\ F;\u)) , i = 0, 1, 2 .

In this section we shall construct a deformation ϊ ^ of ^ such that Ψ1 — ψγ

and Ψo = the standard Z 3 actions on JS^-(1). If such a deformation exists, then
the quotient space S^-(l)/Z3 of (S^(l), £>i> ̂ 3) is diffeomorphic to L(l 3) and
so is π{S) = 3C(p).

Theorem 4.1. P^^ /zfifv̂  « monotone increasing sequence {<%}, ^ e [25/36, 1),

(4.2) d > ύN

ensures the existence of a deformation Ψt of Z3 action such that Ψλ — φ]

Ψo is the standard Z3 action on §1(1), where N depends on dimM.
To prove the theorem, we shall prepare Lemmas 4.2-4.4 and Propositions

4.5-4.6 below. The first step of constructing the deformation in the theorem
is to choose an orthonormal basis (e19 , e2n+ι) for MPo in such a way that
^(0) = e2n+1 and the standard action is roughly speaking near to ψγ and is ex-
pressed in terms of (e19 , e2n) as follows:

(4.3) Ψ0(g,u) = u =
3=1

2n

> Σ u)-
i l
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To do this we define an isometry Λ* MPo —• MPo by

where g e πλ(M) is the fixed element of the deck transformation group in § 2,

τ: MP
is the parallel displacement along f | [0, 2/], and s: Af

βois the reflection with respect to the hyperplane normal to f (0). Obviously Λ*
is a linear isometry, and A*(f (0)) = — f (0).

Lemma 4.2. TTzere exist functions aL(δ) and aH(δ) such that for any
u S

(4.5)

(4.6) - Hm aH(δ) = |τr .

Proof. For any u e S^-(l) let x0 = exp mp~\ύ) e S, m e [}π, Jπ/ V <5 ).
From (2.1), Lemma 3.2 and (1.7) we obtain the following inequalities by the
same method as in the proof of Proposition 3.3:

(4.7) — - d(δ) < dfexp —h*(u), exp ~u\ < 2* + d(δ) .

where d(δ) is an upper bound for the distance d(xx, exp \πh*(u)) such that

d{δ) = l π cos π^
3γ δ 2

(4.8)

* cos"

sin' cos

: = Max {|-7Γ — ωL, ωH — ^π} .

Applying (1.8) and (1.9) to the geodesic triangle with vertices p0, exp \πu,
and exp \πh*(u), we obtain the conclusions.

Therefore, if δ is chosen so that aL(δ) > 0 and aH(δ) < π, then we can
choose the orthonormal basis (e19 , e2n+ι) for MPo such that h* is expressed
as follows:

h*(v) =
(4.9)

- 1

«ϊ = 1 , eM + 1 = f (0) .
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Lemma 4.2 implies aL(δ) < ak < aH(δ) for any k = 1, , n. Thus we can
restrict /ι* to SJ-(l), and denote it by

(4.10) h = h*\Si(\) .

Below we fix the orthonormal basis which allows the expression (4.9). Clearly
h can be joined to Ψ0(g) | *SJ(1) in the orthogonal group as follows: For each
t € [0,1], let ht be

(4.11)
+ - 0)

0)J
Then K = Wo(g, ) | 5 j ( l ) a n d Λ 1 = A.

In the following we want to construct a diffeotopy between h and φλ{g, ).
For simplicity we write ft(ύ) — φt(g, u), u e SQ(1), t € [0,1]. As a direct con-
sequence of Lemma 4.2 we obtain

Lemma 4.3. For any u € §1(1) we have

(4.12) \ h(u)) < d(δ) + Ω(δ) = :

On the other hand, from (1.6) we obtain
Lemma 4.4. For any A <= ΓS^Cl), \\A \\ = 1, we have

(4.13)

where

< L(.δ) ,

(4 14) L(δ) • - Max{sinΦ£(3),sinΦg(cί)} / - _(4.14) Uδ). - M . n { s . n φ ^ s j n φ ( δ ) } ^V δ
π

sin - w τ

We note that lim ff{S) = 0 and lim L(δ) = 1.

Proposition 4.5. There exists ε'(<5) such that for any u e S^(\) and any
A <= TSO(1), we have

(4.15) <£ W M , d/L4) < ^(5) ,

(4.16) lim ε'(<5) = 0 .
δ—*l

Proof. For any u e S^(ί) and any A e TW5^-(1), from Proposition 3.3 we
have the nonzero vector Ά:= d(pr)~ιA <= TPr_luE. Then

< (dfλA,dhA) < < {df,A,dUA) + Ĉ idUA,dh*A) + <£ (dh*A,dhA) .

Because of (3.19), (3.21) and (3.22), the first and the last terms on the right hand
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side of the above inequality tend to zero^as δ -> 1. Let x0 = expPo (prpr)~ι(u),
and let Y, Z be the Jacobi fields along ά0, bγ respectively such that Y is associated
with the geodesic variation (3.11) and Z{f) = dgάoU) Y(t). From the construction,

Y(0) = Z(0) = 0 ,

A = Yί(0) , dgΆ = Zl(0) ,

where Y and Z are the normal components of Y and Z respectively. Further-
more we get the 1-parameter geodesic variation V : [0, m] x / —•> M along έ0

such that V(m9 s) — g(V(m, s)), F(0,5) = ,Po f° r a nY s e I. Let Y be the Jacobi
field associated with V, and Ϋ± its normal component to b0. Then we see

(4.18) ? i (0) = d/ 0 I , Ϋ{m) = Z(m) .

Since

Ĉ (dAM, * o g ) ί ) = 2{\π - < (f (0), ^)}

< 2 Max { I Γ - ΦL(δ), ΦH(δ) - i r}

and ljm<Z£(dh*A,d(τog)A) = 0 from (3.19), we have only to verify

lim <£ (d(τog)A, df0A) = 0. This is equivalent to show
δ—»i

(4.19) lim d(exp,0 Jπd(τog)I, exp ίo frdf0A/\\df0A\\) = 0 .lim

Combining the approximation theorem for Jacobi fields with (1.7), (4.18),
(3.19) gives

lim d(expPo $πdf0A/\\df0A\\, expβl \πdgΆ) = 0 .

The approximation theorem for Jacobi fields implies

Mm d(expPo \πd{τ°g)A, expp~x \πdgA) = 0 .

From these relations we obtain (4.19), and thus the proof of the proposition
is complete.

Corollary. There exists δ" independent of dim M such that

(4.20) δ > δ"

implies that both fx and ]\ are diffeotopic to h and h2 respectively.
Proof. By the same arguments as in Lemma 4.3 and Proposition 4.5, we

can verify

(4.21) Max {<£ (fl(u), h\ύ)) u e ^ ( 1 ) } < 2p{δ) ,
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(4.22) Max {< (d(ft)A,d(h2)A) A e TS^(l)} < 2εf(δ) .

Hence we can find δ" independent of dim M such that (4.20) ensures the dif-
feotopy conditions (1.11) and (1.12) for both fλ h~ι and f\ h~\ Thus the proof
is complete.

Proof of Theorem 4.1. Let δ satisfy (4.20), and Ft,Ht, t e [0,1] be the
diffeotopies such that

FQ = HQ = id. I S H Ό , £

where we have employed (4.11).
We now fix a point u0 e S^-(l), and set t/0 to be the domain of §1(1) such

that u0 <= Uo and t/0 Π / ^ o ) Π fl(U0) = 0, C70 Π f ^ ) =£ 0, where C70 is the
closure of £/0. Let F o C £/0 be the open ball contered at u0 with the radius
rQ in such a way that for any v edU1 the distance between v and F o is greater
than 2β'(δ). If δ is chosen so close to 1, we can find nonempty Vo. So we may
consider Vo Φ 0. Let ϊ^0 be the open ball centered at u0 with the radius r19

where rγ is fixed in (r0, r0 + 2β'(δ)). We define the functions r: Uo-> R and
57: [O,rJ -^[0,1] as follows:

'•(v) = < (w0, v) , v € Uo ,

(4.24) 9 (0 = 0 for ί e [0, r0] , rf(f) > 0 for ί e (r0, rx) , ^(rx) = 1 ,

,(*)(Γo) = ?(*)(Γl) = 0 f o r Λ = l , 2 , . . . .

We observe that both of the mappings Fv.rhQ \U0: Uo-^ S£(l) and Hη.rohl \ Uo:
Uo -> §£(1) defined by v -+ Fη{r{v))oh,(v), v 6 Uo and 1; -^ Hv(rmoh2

0(v), v e Uo

respectively are imbeddings. In fact, Fvroh0 is locally regular and Fvroh0\U0

is 1 — 1. Thus there exists f0 6 (ro,^] such that FηrohQ\r~1(f0) is imbedding.
Suppose F9r°Ao|'1~ι(^o) ^s n o t 1 — l Then we can find vl9v2 such that
K^i) = r(v2) = r2 and Fη{r{Vl)Jφ)d = F^rM)h,{v2). However this is a con-
tradiction since FηΫQohQ is a diffeomorphism on S^-(l). With these notations we
can define a deformation Ψ\ of fΊ such that Ψ\ coinsides with ψλ on the open

„ 2 2

set Sy-(l) — U/ί(^o) a n ( i coinsides with the standard action on \Jf\(VQ).
i=Q i=l

Indeed, for each t e [0,1] let ξ\: 50

1(l) -> 1§0

1(l) be the diffeomorphism

(v, for v ^ f.iWo) U /Ϊ(»FO) ,

(4.25) ξ](v) = \Ftη(r(h,1(υ)))(v), for v <= Λ(Ψ0) ,

lflr^(r(Λo-2(V)))(^)? for v e fl(WQ) .

Then ξl is the identity, we see
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(4.26) Ψ](g\ u):=ξ] ψι(g\ (ξ]r\u))

is the desired deformation. We shall call uQ the center of the deformation.
From the strong difϊeotopy theorem we see that the new action Ψ\ is able to
play the same role as φγ if δ is taken sufficiently close to 1 and independent of
dimM. Thus we can find the sequence δk of pinching numbers such that
δ > δk can be carried out k times of deformations mentioned above, where
the centers can be arbitrarily chosen. Let us take the finite open cover
Uo, Ul9 -,UN of Sjf-(l), where each Ut is the ball with the radius rQ and
center uu and WQ, W19 , WN are the open balls each of which has the radius rλ

with the same center ut. If δ > δN, we can define N deformation Ψ], Ψ2

t, , Ψ*
such that

u) = ξloΨ{-\g\ (ξr1)'1^)) , Ψ\: - Ψι .

Then clearly Ψ± = Ψx. Thus the proof is completed.
It should be remarked that the number N depends on dimM since the

boundary 3U0 has so large diameter (indeed close to π) that N increases rapidly
with dim M.

As a direct consequence of Theorem 4.1 we have the
Corollary to Theorem 4.1. Under the same assumption as in Theorem 4.1,

M is homeomorphic to L2n+1 (1 3).
Proof of the Main Theorem. Since E C *SO(1) is diffeomorphic to S2n,

S0(l) — E consists of the components each bounded by E. Let D+ s f(0) and
D_ 3 — f'(0) be the components. By means of the deck transformation g, we
have the diffeomorphism /* : D_ -> D+ defined by

f*(y) = (expPQ\Uπ(Po))~lo80 (exppQmv) ,
m

exp i o mv € #Ί~ , I < m < JπV δ .

Clearly we get /*(— f (0)) = f (0). From the construction for any A eTE and
any At e TD_ such that lim At = A we see

(4.28) dfA0 = lim df*Ai .

Making use of pr: E—•S^-(l) (defined in (3.23)), we can construct a homotopy
pr W, 1] X S0(l) —• S0(l) of diffeomorphism satisfying the following condi-
tions : (1) If pτ

r{v): = pr(τ, v) for each τ € [0,1], then pτ

r is a diffeomorphism
on S0(l) (and p°r = id. | S0(l)) (2) For each point v e S0(l), pr([0,1], v) lies
on the great circular arc joining v to ̂ (0) when v e D+ (or joining v to — f'(0)
when v € D_). (3) For each τ e [0,1], pτ

r(± f (0)) = ± f (0). (4) p ^ E = £ r .
Clearly / : = ftl f*-(p)-)'1 is a diffeomorphism from the southern hemisphere
S_ onto the northern hemisphere S+, where the north pole is f (0). Then
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/ ( - f(0)) = f (0), andlim dfAt = df,A holds for any A <= TSH

such that lim Ai = A.

The final step of the proof is to verify that / is difϊeotopic to ho\S_. By

means of Lemmas 3.2 and 4.4, there exists a constant L(δ) such that

< \\d}A || < L(δ) for any A <ε TS_ , ||Λ || = 1 , lim L(3) = 1 .

Therefore we can find β"(δ) such that Max {<£ (A0(M), /(«)) ; « ^ _ } < /3"(<5)

and lim /3"(<5) = 0.

On the other hand, by the same method as in Proposition 3.3 there exists

ε"(δ) such that

Max {̂ C (dhQA, dfA) A e TS_} < ε"(δ) , lim ε"(δ) = 0 .

Thus we can find δn > δ'N such that δ > δn ensures that f is diffeotopic to

ho\S_, and the proof of the main theorem is complete.
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