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THE STRUCTURE OF 6-PINCHED MANIFOLDS WITH
THE FUNDAMENTAL GROUP ,(M) = Z,

KATSUHIRO SHIOHAMA

The present paper is a continuation of the differentiable pinching theorems
for the sphere (see [7]), and the real (see [3] and [4]) and the complex (see
[5]) projective spaces. The diffeotopy theorem plays an essential role for ob-
taining the dimension independency in the proof of the sphere pinching theorem.
In order to make a fibre preserving diffeotopy between the Hopf fibration
Sr+l g2t/ Q1 — P(C)" and the free S' action on S$***! which is caused by a
Riemannian manifold N with certain conditions (see [5]), we made heavy use
of the strong diffeotopy theorem to get the diffeomorphism between the complex
projective space and such an N. In the real projective pinching theorem, a fibre
preserving diffeotopy between the antipodal map on S™ and the involutive dif-
feomorphism on S™ obtained from a §-pinched M with =,(M) = Z, is con-
structed easily by the diffeotopy theorem, and in this case we again obtain the
dimension independency. The reason why we need not use the strong dif-
feotopy theorem in the real projective pinching is based on the following two
facts. First, for each point p on a é-pinched M with z,(M) = Z,, the cut
locus C(p) of p is a compact hypersurface of M without boundary. Second,
the deck transformation on the universal covering Riemannian manifold M of
M leaves the inverse image =~ (C(p)) of C(p) invariant, where z: M — M is
the covering projection.

However, if the order of x,(M) is greater than 2, it will not be easy to in-
vestigate the structure of cut locus C(x) of a point x on M. This is because
C(x) has nonempty boundary, and furthermore each element of the deck
transformation group does not leave z~'(C(x)) invariant. For instance, let
L+ (r, - --,r,; k) = S™*!/G be a general lens space of constant curvature 1
of the type (r,, - - -, rn; k), i.e., G has the generator g such that it is expressed
in terms of the orthonormal basis (e, - - -, €,,,,) of R**? as follows:

[R(rl k) ]

| R(r,/ k)

8§ = , R(o:)::[

cos 2z sin Zﬂa]

- — sin 2za cos 2na
R(ry/k)
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Then for each point p* € L***!(r,, - - -, r,; k) the cut locus C(p*) is a compact
hypersurface with nonempty boundary, and z~'(8C(p*)) is isometiric to the
great (2n — 1)-sphere of §*"*!, where n: S™*' — L™*(r, ..., r,; k) is the
covering projection. Moreover each element of the deck transformation group
leaves 7z~ }(dC(p*)) invariant but not =~'(C(p*)).

In this paper we shall deal with the case where 7,(M) = Z, and dim M must
be odd. Our main result can be stated as follows.

Main theorem. There exists a monotone increasing sequence {6;}, 0, € (%, 1)
in such a way that for any connected, complete and §-pinched Riemannian
manifold M with its fundamental group n,(M) = Z,,6 > 3, implies that M is
diffeomorphic to the lens space L***(1, ---,1; 3).

We shall give in § 1 definitions, notation and the known results to be used
in this paper, and shall investigate in § 2 the structure of the cut locus C(p) of
a suitably chosen point p on M. Then we see that C(p) is a compact hyper-
surface of M with nonempty boundary. We shall study in § 3 the structure of
the boundary 3C(p). On the universal covering Riemannian manifold M of M,
each element of the deck transformation group leaves the submanifold z=*(8C(p))
invariant, and hence we get the Z, action on z~(dC(p)) via the deck transforma-
tion group. Clearly #~'(8C(p))/Z; can be identified with dC(p). In § 4, the
strong diffeotopy theorem is employed to construct the fibre preserving dif-
feotopy between the Z, action on n~'(@C(p)) and the standard Z, action on
S§*n-1 where dim M = 2n + 1 and by definition the standard Z, action has
the generator g € Z, such that

R(1/3) )
R(1/3)

R(1/3)

and its quotient space is L*7'(1, ---,1; 3) =: L*»"!(1; 3). Finally we shall
prove the main theorem as well as the homeomorphism theorem.

1. Preliminaries

Throughout this paper let M be a complete and connected Riemannian
manifold whose sectional curvature K and fundamental group =,(M) satisfy,
respectively,

(1.1 I1<i<K<L1 for any plane section,
(1.2) (M) = Z, .

As is well known, an even dimensional complete Riemannian manifold of



THE STRUCTURE OF 9-PINCHED MANIFOLDS 419

positive sectional curvature either is simply connected or has its fundamental
group = Z,. Therefore from (1.1) and (1.2), dimension of M must be odd and
we set

(1.3) dmM=2n+1.

Let M be the universal Riemannian covering of M, and z: M — M the cover-
ing projection. For a point x e M (¥ € M) we denote by M, or T,M (M, or
T,M) the tangent space of M (M) at the point. Denote by d: M X M — R
the distance function on M with respect to the Riemannian metric, and also
by d the distance function on M. z,(M) can be identified with the deck trans-
formation group. Let g ¢ =,(M) be a generator. For each point x ¢ M we denote
by %, %, %, € M all the elements of z~'(x) (depending on the choice of both g
and %,;) such that

1.4 gF) =%, i=0,1,2.

For a smooth curve c: [0, 1] — M, ¢/(¢) is by definition its velocity vector at
¢(?) and its length denoted by L(c) is given by

L(©) = j 0 W, ¢S dt .

The cut locus at x € M is denoted by C(x).

We shall now state the known results to be used in this paper. For each
point on a complete and simply connected Riemannian manifold N satisfying
condition (1.1), the cut locus theorem due to Klingenberg states (see [2])

(1.5) dx,C(x)) > = .

In other words, let U,(x) C N, be the open ball in N, with the radius = and
center at the origin, and let B.(x) C N be the open metric ball with the same
radius and the center at x. Then exp,| U,(x) — B,(x) is a diffeomorphism.

Let S™(k) be the standard m-sphere with the constant curvature k, and let
7:[0,81 = N, 7;: [0, 81 — S™(), 7,: [0, 8] — S™(1) be normal geodesics (i.e.,
parametrized to the arc length), where N is complete, dim N = m and N
satisfies (1.1). Let Y, Y, and Y, be the Jacobi fields along 7, 7, and 7, respec-
tively such that Y(0) = Y,(0) = Y,(0) =0, |[Y’(0)|| = || Y;(0)| = | Y1(0)]
Then from Rauch’s comparison theorem (see [2]) it follows that

(1.6) 1Y, (0] < Y@| < |Y,®||  for any € [0, ] .

If these initial conditions are replaced by | Y(0)| = || Y,(0)| = || Y,(0)| and
Y’(0) = Y;(0) = Y;(0) = 0, then from Berger’s comparison theorem we have

(see [1])
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L7 YOI IYOI<IY,0)  forany re[0,x/2].

A geodesic triangle 4 on N is by definition a triple of minimizing nontrivial
geodesic segments, every one of whose extremals are on the others. Denote by
L(4) the circumference of 4, and by a, 8, y € [0, ] its angles. For a geodesic
triangle 4 on N, let 4, and 4, be the corresponding geodesic triangles on S%(5)
and S%(1) respectively, where by definition 4, and 4, have the same side lengths
as 4. From Toponogov’s theorem (see [2]), each angle of 4 is not less than
the corresponding angle of 4, i.e.,

(1.8) ol a, ﬂag,@, 7.

As a direct consequence of both theorems of Rauch and Klingenberg, we see
that if a geodesic triangle 4 on a simply connected N satisfying (1.1) has cir-
cumference L(4) < 2z, then the corresponding 4, with angles «,, f,, 7, exists
on S%(1) such that

(1.9 a<la, BB, r<n.

If N satisfying (1.1) is not simply connected, its diameter d(IN) has an upper
bound

(1.10) dN) < }=/vd

where the diameter is defined by d(N) : = Max {d(x, y); x,y € N}.
Finally we shall state the diffeotopy and the strong diffeotopy theorems.
Diffeotory theorem (see [7]). Let f be a diffeomorphism on S™(1) C R™*!,
where R™*! is by definition a Euclidean (im + 1)-space, and assume that

(1.11) B:= Max {{ (u, f(w); ue S™(1)} < 3 ,
(1.12)  e:= Max { (4,dfA); A e TS™(1)} < cos™ {— cos B+ sin B/f} .

Then f is diffeotopic to the identity map via the following homotopy of diff-
eomorphisms : For each point u € S™(1), let 1,,: [0, 1] — S™(1) be the shortest
great circular arc parametrized proportionally to the arc length, and let
F,: S™(1) — S™(1) be given by F,(u) = y,(t). Then F, is a diffeomorphism for
any t ¢ [0, 1].

Strong diffeotopy theorem (see [5]). Let f satisfy (1.1) and (1.2) and let
L > 0 be a constant such that

(1.13) L7 <|dfA| < L for any A e TS™(1), ||A]=1.
Then for any t ¢ [0, 1] and any unit vector A e TS™(1) we have

(1.14) L<|dFA| < H,
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1.15) I (A4,dF,A) <&e+ 8,
where L, H and ¢ are the constants defined by
L* =L %cos’e — (L* + 1 — L% cos?¢) sin 2« ,
H* = (L* + 1 — L™ %cos?*¢)(1 + sin2a) ,

cose = (cosa — sina)L™' cos e/ (L* + 1 — L2 cos?¢)(1 + sin 2a) ,

cosaw = L 'cose/+/L* + 1 — L ?cos’c .

In the above theorem we see 51im0a =0, plimos = 0 and ﬁlimOL = ﬂlim()H =1.
10 15 15 o

We may actually assume that 8, ¢ and L are taken so close to 0 and 1 respec-

tively that these constants make sense. Indeed in this paper we find upper bounds

B(d), £(6) and L(3) of B, ¢ and L respectively so that 13i_1}11 B = 1;911 e(d) =0

and ]}{111 L) = 1 hold.

2. The structure of cut locus

Let M satisfy conditions (1.1) and (1.2). Then for any point x ¢ M we have
(see [4])

@.1 In < d(x, C(x) < $x/V73 .

Since the function x — d(x, C(x)) is continuous on M and M is compact, the
function takes a minimum value. Let p € M be the point at which the minimum
value, say [, is attained. From (2.1) there exists a simply closed geodesic y of
length 2[ such that

2.2) 7: 00,21 -M, YO0 =7Q2), $n<I<3iavd .

The lifted geodesic is denoted by 7, and from (2.1) anc} (1.2) it is of length 6l.
Take a point p, € z7'(p) and parametrize 7: [0, 6]] — M such that 7(0) = p,.
Then we can choose g € z,(M) such that p; = g(p,) = 7(2il). Setting

(2.3) Fii={XxeM; d(Pi,1, ¥) = d(Pi,», H} (mod3),

F, is a compact subset of M, and p; ¢ 4, g{(F,) = F, (i =0,1,2).
Proposition 2.1. Assume that

(2.4) 5>9/16 .

Then & ; is a compact hypersurface of M diffeomorphic to S*.
Proof. We first show that
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2.5) 1 <dx, p;) <21 for any X e &, .

In fact, from the choice of p the first inequality in (2.5) is trivial. Suppose there
exists a point j € & ; such that $+p; and d(, p;,,) = d(J, pi..) > d(Pi> Pis)-
Note that d(p;, p;,,) = 2l > 2x/3 >1irn/+/ é follows from (2.2) and (2.4).
Apply Toponogov’s theorem (1.8) to the geodesic triangle with vertices p;, P;.;
and 7 (or p;, P;,, and J) to derive a contradiction. Thus the function
X —d(%, p;..), X e & ; attains its maximum value 2/ exactly at the point 5,. Since
21 < 2rx/+/ 6 <z and (1.5) holds for each point on M,F;C B.(p;.) N
B.(p;.,). The function 2;: M — R defined by

(2.6) 1) = d(Pyy, D) — d(Pii ), e M

is continuous on M and differentiable on (B,( Dic) — {Piap) N B(Pii) —
{P:,2}). In particular, grad A]; # 0 holds for any X ¢ #;. Hence &, is a
compact hypersurface without boundary.

Finally we shall prove %, to be diffeomorphic to $?*. Let &: [0, ] — M be
a normal geodesic such that &0) = p;,,. Clearly 2;(¢(0)) = —2I < 0 and
A:(&(x)) > 0, so that ¢ intersects & ; at some point &(¢,). Obviously the inter-
section is unique, and &(t,) is never tangent to T, ; in Ts,,M. Thus the
map &(0) — &(t,) from the unit hypersphere S,,, (1) in T,,,, M, centered at
the origin, onto & ; is a diffeomorphism. Hence the proof is completed.

We note = '(C(p)) C #, U &#, U &,, and each point X on =~'(C(p)) has
one of the following properties :

Q.7 d(pi,X) = d(Pi 1, %) < d(Piys X) for some i =0,1,2,

2.3 d(Pi, X) = d(Pi41, X) = d(Pi2, %)

In order to investigate the structure of z~'(C(p)), we shall define the function :
2.9 p:M—>R, & =dEp) + dE Py — 243 P, FeM .

4 is continuous on M and differentiable on (B.(p,) — {Pph N B.(p) —
{B.h N (B.(p,) — {Py). Let & be defined by

(2.10) & ={xeM;dQ p) = dE p) = dF, p)} .

From definition follows

Q1) 6=F NF NF,=F,NF, =F NF,=%,NF,

(as point sets). Here we essentially use assumption (1.2). Clearly each element

of the deck transformation group leaves & invariant. y;| % ;: #; — R is con-
tinuous on & ; and differentiable on #; N B.(7((2i + 3)I). From (2.11) and
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F; C B.(P;s,) N B.(p;,,) we see
(212) & C B,,(i’o) N Bx(ﬁl) N Bn(ﬁZ) .

Proposition 2.2. Under assumption (2.4), & is a compact 2n — 1)-dimen-
sional submanifold without boundary and is diffeomorphic to S .

Proof. We may restrict our discussion to the case where 7((3 + 2i)l) does
not belong to the closure B,(5;) of the open ball. In fact, #((3 + 2i)]) € B.(p;)
implies ! = 4z, and hence M is isometric to $?»*!(1) (see [4]). Therefore M
is isometric to L*™*!(1,3). Consider the gradient field of y; restricted to
F,; N B(p;). We claim that on &#; N B,(p;), there exists no critical point of
; other than p,. Recall that (X — d(%, p;,,), X € &) takes its maximum value
exactly of the point p;, and hence p, is a critical point of ;. For any point %
on%; N B.(p), X # ps, letd;,,, d;,,: [0, m] — M and &, : [0, =] — M be the
minimizing geodesics such that d;(0) = p;, j =0,1,2, 4,,,(m) = a,,,(m) =
a;(m) = X. Then we have
2.13) grad (g;|#; N B,(P))|; = the tangential component of

’ &,,(m) + &,(m) — 28(0h) to T, F; .

~

Since d},,(m) is symmetric to dj ,(m) with respect to T,%,,d...(m) +
a;,,(m) e T,% ;, and clearly m < 2I. From Toponogov’s theorem (1.8) follows

cos { (&;(m)’ &i(m)) < COos 21’\/5 — Cgm\/a CgS ﬁl'\/y
sin my/ 6 sin /6
< cos 21/ 8 (1 — cos v/ d)

sinmy/ & sin#y/ &

b

j # i. But from (2.4) we have 2Iv/§ > iz, since < (&(m),d(m)) > i,
j # i. Therefore the angle between @ ,(m) + d;,,(m) and the tangential com-
ponent of — 2d(m) to T,%; is less than {zx. Thus we have proved

grad (p;|F; N B.(P))|z # 0 for X + p; .

Hence we observe that & ; N B.(7;) is diffeomorphic to a 2n-disk, and each
level surface u;'({constant}) especially x;'({0}) = & is diffeomorphic to S*~*.
We shall define the sets

Fr={FeF; (X >0},

. . i=0,1,2.
F;={FeF;; u(x) <0},

Then & ; has clearly no intersection with z=(C(p)), so that

(2.14) ' CPp))=F;, UFT UF; U¢E (disjoint union),
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(2.15) gFN=F;, g =¢, i=012

(2.15) allows us to consider the free Z, action (&, ¢*, Z;) on & by the deck
transformation group. In fact, for any point X e &, let

(2.16) *(ehX):=¢'(X), geZ;=mM).

Clearly the quotient space &/ Z, is diffeomorphic to the boundary 9C(p) = =(&).

For any % ¢ & let X € T;6 and 4;: [0, m] — M be the unique shortest con-
nection joining p; to X. From (2.8), we see <( (X, dy(m)) = < (X, aj(m)) =
I (X, dym)) #+ 0. Hence with the aid of (2.12), the projection p,: & —
S,(1) € M,, defined by

(2.17) p-(%) : = a;(0)

is a diffeomorphism, where S,(1) is the unit hypersphere in M, centered at
the origin. We shall denote by E the image

(2.18) E = p,(&) c §,(1) .

Obviously E is a hypersurface of §,(1) and diffeomorphic to the standard
sphere. Therefore we have the Z, action (E, ¢, Z;) such that

(2.19) o(gt, u) = p,-¢*(g%, p;'(w) , ueE, geZ.

Clearly we have the following
Lemma 2.3. The quotient space E|Z, is diffeomorphic to aC(p) = =(&).
Proof. Since p, is the fibre-preserving diffeomorphism, (&, ¢*, Z,) is equi-
valent to (E, ¢, Z;). The conclusion is now trivial from &/ Z, being diffeomorphic
to #(&).

3. The Z, action on &

Lemma 3.1. Assume that
3.1 6> 25/36 .
Then for any X ¢ & and any i = 0, 1,2, we have
(3.2) dr < d% p) < dn/V .

Proof. Letd,: [0, m] — M be the minimizing geodesic such that 4;(0) = p,,
a;(m) = %, m = d(p;, ¥). From =(%) e C(p) and (1.10), follows d(%, p;) =
d(x, p) < d(M) < ir/+/ 6 . (3.1) ensures that the circumference of the geodesic
triangle with the sides &;, 7|[2il,2(G + 1)I] and 4,,, is less than 2z since
m< ir/+/6 and 21 <2x/(3v/6). Thus &.,,(?) e B,(p;) holds for any
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t e [0,m], and without loss of generality we may assume that < (&@(0),
7 (2il)) > ix. From (1.9) we get m > 4.

Now by the triangle arguments stated in (1.8) and (1.9) together with the
cosine rule in spherical trigonometry, we get

Lemme 3.2. Under the assumption (3.1) we have, for any X e & and
i=0,1,2,

Max {71' — (OH(B), (()L(a)} S { (a:(o) s

(3.3) . .
7(2iD) < Min {0z0), 7 — 0, )} ,

(3.4 0.(0) < <L (@,1(m), &, 5(m)) < 64(9) ,

where we set

cos n: — cos? il
35 2V

3.5 6,0 = 2V 5.6) = cos ,
3 sin? il
2/6
w;(0) = cos™! (tan% cot m; 9 ) ,
(3.6)
5) = cos“‘(tan T_ cot ”_> .
@x(%) 376 2o

The proof is left to the reader. 5
For any X, eé&, let X,% edé& be such that g«(%) = %;, and d;, b;, &;:
[0, m] — M be the shortest geodesics such that
30) = b(0) = &(0) = p;, @&m) =%, bim) =%,

3.7 . . .
ci(m) = X5, 1= Oa 1’ 2a m = d(ﬁza xj) .

Clearly we see

goai = bi+1 ] g2 a = g b 512-)-2 )
(3‘8) gobi = Ei+1 ’ gz b = go E - &1.4.2 ’
goEi = &’i+1 5 gz E = go & = bi+2 .

Define the projection map p,: E — Si(1) C S’o(l) with respect to the point
7(0) by

(3.9) p,(w) =u—u,70)70), uekE,

where S¢(1) is by definition the equator hypersphere with the north pole 7(0).
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Proposition 3.3. There exists & € [25/36, 1) such that
(3.10) o>9d

implies that p, is a diffeomorphism.

Proof. Foranyue Eandany A e T,E, ||A| = 1, letg: I — E be a smooth
curve fitting 4 so that ¢/(0) = 4 and 0 e I is an interval. Let 4,: [0, m] — M
be the minimizing geodesic such that 4,(0) = p,, d,(m) ¢ &, and a@,(0) = u.
Define a 1-parameter geodesic variation V' : [0, m] x I — M along 4, by

(3.11) V(t,s) = expy, mt , telO,m], sel.
m

We denote by Y(7) the Jacobi field along d, associated with ¥, and by Y, () its
normal component of &y (). Obviously Y ,(?) is again a Jacobi field. From
construction

(3.12) YO0) =0, Y, 0 =A¢eM,,

where A is identified with the vector obtained by the parallel displacement of
AeT,EC T,85,1)in M 5 Let P be the unit parallel field along &, such that
P(0) = A = Y’ (0). From an approximation theorem of Jacobi fields (see [7])
we have an upper bound O(5) for the angle

(3.13) L (Y (m), P(m)) < 6@), Lm6EE©) =0.

Apply Berger’s theorem (1.7) to the curve c: [0, m] — M, c():= exp 1zP(9)
to get

T v
(3.14) L) < NE3 cos 5

From (2.8) and Lemma 3.2, follows

15 sin~! JZT sin QTL) < I (Y(m),aym)) = L (Y(m), ay(m))
= X (Y(m),aym)) < mx — sin™! (1/2? sin %) .
(3.15) implies < (Y(m), Y, (m)) < % — sin“<~/2_3_ sin 0z ), and hence we

get an upper bound &(5) for the angle
(3.16) L Xm),Pem) < 6(),  1m6E) =0.
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Thus we have a bound d(0) for the distance

) - ) _ . T Y(m)
(3.17) d(q, exp _2_A> <), md® =0, fi=expl L.

On the other hand, (3.15) implies

o~ . 2 .0
A, ) > 1< _L>
(g, p) > sin NS sin 2

together with Rauch’s theorem (1.6), and therefore we obtain a lower bound
for the distance

d(exp %A,ﬁ) > sin™! («/27

To the geodesic triangle with vertices p,, §, and exp ixA4, we apply (1.8) to
get a lower bound for the angle

0.\
sin 7) d@) .

cos v/ & < (7(0), A)

cos J?(sin“‘( 2 sin E—L—> — d(5)> — COoS Al cos 22v'5
(3.18) < V3 2 2 3
) = . ave . 2x/é
sin > sin 3

=:cosvd D,0) .

Analogously we have an upper bound @,(5) for the angle <{ (7(0), A) such
that

3.19) 0,6) < X (0, 4) < 0x(),  1im6,() =1limd,G) = }r .
If ¢’ is chosen so close to 1 that
(3.20) 0,0 >0, 0,0 <«

are satisfied, then d(p,),4 #+ O holds for any u € E and any 4 ¢ T,E. Since
D, is 1 — 1 and onto, the proof is complete.
Let w: E — R be the function defined by

(3.21) o(u) = < (u, p,(w)) , uek .

Clearly o is a differentiable function on E as far as (3.10) is satisfied, and
from (3.3) follows

(3.22) 0 < w(u) < Max {37 — 0,(6), 0x(3) — 3a} .
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Each u e E can be expressed as u = cos w(u) - p, (1) + sin w(u)-7(0). Put

D) = cos {(1 — 7)-w(W}p,(u) + sin {(1 — 7)-0@)}-7(0) ,

(3.23)
ueck, rel0,1].

Then p; is an imbedding of E into S,(1) for each r ¢ [0, 1] as far as (3.10)
is;satisfied. Therefore we have a 1-parameter family of Z, action (p3(E), ¢., Z,),
z € [0, 1], defined by

(3.24) o(8%v) = p;-o(gt, (P)'(w) , vep(E), geZ.

Obviously the quotient space p,(E)/Z, is diffeomorphic to &/Z, = n(E) =
9(C(p) for each = ¢ [0, 1].

4. Fibre-preserving diffeotopy between ¢, and the standard Z; action

A differentiable deformation of the Z, action ¢, on §¢(1) is a 1-parameter
family ¢,, t € [0, 1], of Z, actions on S&(1) such that the map (g, u, 1)—¢,(g, u)
is differentiable. For a diffeotopy F, ¢ € [0, 1], on Si(1) such that F, = identity,
we have a deformation of ¢, in the following way : For each ¢ ¢ [0, 1] let ¢, be
defined by

4.1 08" u) = Frop(g', F'W) ,  i=0,1,2.

In this section we shall construct a deformation ¥, of ¢, such that ¥, = ¢,
and ¥, = the standard Z, actions on S(1). If such a deformation exists, then
the quotient space Si(1) | Z; of S, ¢1, Z,) is diffeomorphic to L(1; 3) and
so is 7(&) = oC(p).

Theorem 4.1. We have a monotone increasing sequence {3;}, d;, € [25/36, 1),
such that

4.2) 5> o

ensures the existence of a deformation ¥, of Z, action such that ¥, = ¢,, and
U, is the standard Z; action on St(1), where N depends on dim M.

To prove the theorem, we shall prepare Lemmas 4.2—4.4 and Propositions
4.5-4.6 below. The first step of constructing the deformation in the theorem
is to choose an orthonormal basis (e,, - - -, €,,,,) for M 5, in such a way that
7(0) = e,,,, and the standard action is roughly speaking near to ¢, and is ex-
pressed in terms of (e, - - -, e,,) as follows:

(R ) ()
R@) |

R tzn

2n

2n
, uzzlujej, ru;=1.
=

Jj=1

4.3) Vigw =
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To do this we define an isometry h* M, — M, by
(4.4 W(X) =s-c-dg; X, XeM,,

where g e 7,(M) is the fixed element of the deck transformation group in §2,
o M, — Mﬁo is the parallel displacement along 7|[0, 2/], and s: M — M,
is the reflection with respect to the hyperplane normal to 7#(0). Obviously h*
is a linear isometry, and #*(7(0)) = — #(0).

Lemma 4.2. There exist functions «;(6) and «ay(8) such that for any
ueSF1)

4.5) a (0) < <L (U, h*w) < axg(d) ,
4.6) lim o, (8) = lim a(8) = %
Proof. For any ue SL(1) let % = expmp; (u) e &, me [in, ir/v/ ).

From (2.1), Lemma 3.2 and (1.7) we obtain the following inequalities by the
same method as in the proof of Proposition 3.3:

2r 5 T T 2r
4.7 =2 —d@ <d<e Zh*(u),e —u>§T
4.7 3 0 < P > ()Xp2 3V5+
where d(3) is an upper bound for the distance d(%,, exp izh*(u)) such that
5 2n s 2 _ w8
d@® ~_ COS ~_ COS ‘{cos2
@ = 36 2 T V8

de) .

(4.8) + sin? =X~ m/ 8 cos 9(5)}

006):= Max {ir — wr, 0y — 37} .

Applying (1.8) and (1.9) to the geodesic triangle with vertices p,, exp izu,
and exp irh*(u), we obtain the conclusions.
Therefore, if 6 is chosen so that «,(6) > 0 and ayz(0) < 7, then we can

choose the orthonormal basis (e,, - - -, e,,,,) for M 5 such that A#* is expressed
as follows:

R(“l) ) ’vl W

R(az)
() = g ,

4.9) R(a,)

L —_lJ \vzn‘)'l;

2n+1 2n+1

V= D vie;, 2L Vi=1, eu,,=70).
i=1

i=1
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Lemma 4.2 implies a;(0) < a; < ay(6) for any k = 1, - . -, n. Thus we can
restrict 2* to S£(1), and denote it by

(4.10) h = | SEQ) .

Below we fix the orthonormal basis which allows the expression (4.9). Clearly
h can be joined to ¥,(g)|Si(1) in the orthogonal group as follows: For each
te [0, 1], let A, be

R(ayt + (1 — 1)
4.11) h, = .
R(an, + 31 — )

Then hy = ¥y(g, )|SY1) and h, = h.

In the following we want to construct a diffeotopy between / and ¢,(g, ).
For simplicity we write f,(1) = ¢,(g, u), u e S)(1), t € [0, 1]. As a direct con-
sequence of Lemma 4.2 we obtain

Lemma 4.3. For any u e St(1) we have

(4.12) L (), hw) < d@G) + 20) = : p6) .

On the other hand, from (1.6) we obtain
Lemma 4.4. For any A e TS:(1), |4] = 1, we have

(4.13) L™'@) < |ldfi 4|l < L) ,
where

. _Max {sin §,(9), sin Dz(®)} ( < . T -1
@14 LO:= {sin @,(3), sin §,(3)} (” STV ) '

We note that 16151 B =0 and 191_’1111 L) = 1.

Proposition 4.5. There exists ¢(6) such that for any u e S+(1) and any
A e TS (1), we have

(4.15) I (dfi4,dhA) < £0) ,
(4.16) lime() =0 .

Proof. For any u e .§'_5L(1) and any A4 ¢ T,S:(1), from Proposition 3.3 we
have the nonzero vector 4:= d(p,)"'4 € T, _, ,E. Then

I (@dfA,dhA) < 3 (dhA, dfyd) + X (df, 4, dh*A) + X (dh* 4, dhA) .
Because of (3.19), (3.21) and (3.22), the first and the last terms on the right hand
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side of the above inequality tend to zero as § — 1. Let %, = exp,, (7,p,) (),
andlet Y, Z be the Jacobi fields along &,, b respectively such that Y is associated
with the geodesic variation (3.11) and Z(#) = dg;,, Y (¢). From the construction,

Y0 =20)=0, [Ym)|=[Zm)],

4.17) -
A4=Y,0), dgd=2\ (0,

where Y and Z are the normal components of Y and Z respectively. Further-
more we get the 1-parameter geodesic variation ¥ : [0, m] X I — M along b,
such that V(m, s) = g(V(m s)), V(©,s) = p,foranysel. Let Y be the Jacobi
field associated with ¥, and ¥, its normal component to b,. Then we see

(4.18) Y0 =df,d, Y@m) =2zZm).

Since

A (@h*A4,d(r0g)A) = 2{3n — <L (F(0), A)}
< 2Max {iz — 9,(8), D,(5) — ix}

and lim (dh*A,d(rog)A) =0 from (3.19), we have only to verify
161113 I (d(zog)A, df,A) = 0. This is equivalent to show

4.19) lim d(exp;, dnd(zog) A, exp,, 3ndf,4/|df,A|) =0 .

Combining the approximation theorem for Jacobi fields with (1.7), (4.18),
(3.19) gives

lim d(exps, 3ndf,A /| df, A, expy, dndgd) =0 .
The approximation theorem for Jacobi fields implies
1im d(exp,, 4rd(cog) 4, exp,, ndgd) =0 .

From these relations we obtain (4.19), and thus the proof of the proposition
is complete.
Corollary. There exists 8" independent of dim M such that

(4.20) 5> 0"

implies that both f, and f: are diffeotopic to h and h* respectively.
Proof. By the same arguments as in Lemma 4.3 and Proposition 4.5, we
can verify

(4.21) Max { (i), W) ; u e SH(D} < 280) ,
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(4.22) Max {< (d(fPA,d(h)A); A € TS} < 24() -

Hence we can find §” independent of dim M such that (4.20) ensures the dif-
feotopy conditions (1.11) and (1.12) for both f,- A" and f;-~~*. Thus the proof

is complete.
Proof of Theorem 4.1. Let § satisfy (4.20), and F,, H,, t € [0, 1] be the

diffeotopies such that

F,=H,=id.|§+1), F, = f,(h| S+,
4.23 o
“29) H, = fi-(h,| S#+(1)2,

where we have employed (4.11).

We now fix a point u, € S#(1), and set U, to be the domain of S(1) such
that u, € U, and U, N £,(Uy) N A(U,) = @, U, N £,(U,) # 0, where U, is the
closure of U,. Let V, C U, be the open ball contered at u, with the radius
r, in such a way that for any v ¢ U, the distance between v and ¥V, is greater
than 28(6). If 4 is chosen so close to 1, we can find nonempty V. So we may
consider ¥V, # @. Let W, be the open ball centered at u, with the radius r,,
where r, is fixed in (r, r, + 28'(6)). We define the functions r: U, — R and
»:[0,r] — [0, 1] as follows:

r) = L (W,v), vel,,
4.24) 9 =0 fortel0,r], 7@ >0 forte(r,r), 5r)=1,
7®(r) = ®(r) =0 fork =1,2,.-. .

We observe that both of the mappings F,.,A,|U,: U, — St(1) and H, ohi|U,:
U, — S#+(1) defined by v — F (00 1(0), v € Uy and v — H, 0y, 0h3(v), v € U,
respectively are imbeddings. In fact, F,,oh, is locally regular and F,,oh,|U,
is 1 — 1. Thus there exists 7, e (r,, ;] such that F,,oh,|r'(,) is imbedding.
Suppose F,,oh|r"'(f) is not 1 — 1. Then we can find v,,v, such that
r(w) = r@,) = F, and F,(,,,)h(V)) = F, 0, h(v,). However this is a con-
tradiction since F,; ok, is a diffecomorphism on S;-(1). With these notations we
can define a deformation ¥} of ¥, such that ¥} coinsides with ¢, on the open
set SE(1) — Qoﬁ(WO) and coinsides with the standard action on C} fiv,).
iz i=1

Indeed, for each ¢ ¢ [0, 1] let &': §3(1) — S&(1) be the diffeomorphism

v, forwv¢fi(Wy) U AW,
(4.25) E®) = {Firinz 1 @), for v e f(W,) ,
H,, rns 2000 (V)5 forve fi(W,) .

Then & is the identity, we see
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(4.26) et w) = & pu(g*, (§)7' W)

is the desired deformation. We shall call u, the center of the deformation.
From the strong diffeotopy theorem we see that the new action ¥? is able to
play the same role as ¢, if § is taken sufficiently close to 1 and independent of
dim M. Thus we can find the sequence §; of pinching numbers such that
8 > d; can be carried out k times of deformations mentioned above, where
the centers can be arbitrarily chosen. Let us take the finite open cover
U, U, ---,Uy of St(1), where each U, is the ball with the radius r, and

center u;, and W, W, - - ., W, are the open balls each of which has the radius r,
with the same center u;. If 6 > §,, we can define N deformation ¥, ¥2, ... ¥V
such that

Ti(ghu) = gloU{ (g, )W), V=g .

Then clearly Y = . Thus the proof is completed.

It should be remarked that the number N depends on dim M since the
boundary aU, has so large diameter (indeed close to z) that N increases rapidly
with dim M.

As a direct consequence of Theorem 4.1 we have the

Corollary to Theorem 4.1. Under the same assumption as in Theorem 4.1,
M is homeomorphic to L***! (1; 3).

Proof of the Main Theorem. Since E C S‘o(l) is diffeomorphic to $**,
S,(1) — E consists of the components each bounded by E. Let D, > 7(0) and
D_> — #(0) be the components. By means of the deck transformation g, we
have the diffeomorphism f*: D_ — D, defined by

f*(v) = % (expy, | U,(50) "ogo (expy, mv) |
exp,mveF;, I<m<in/d .

Clearly we get f*(— 7(0)) = #(0). From the construction for any 4 ¢ TE and
any A; e TD_ such that lim 4, = A we see

(4.28) dfA4, = lim df*4, .

Making use of p,: E— Si(1) (defined in (3.23)), we can construct a homotopy
p,: [0,1] x S’o(l) — S’o(l) of diffeomorphism satisfying the following condi-
tions: (1) If pz(v): = p,(z, v) for each z ¢ [0, 1], then p is a diffeomorphism
on $,(1) (and p° = id.|S,(1)). (2) For each point v € §,(1), p,([0, 1], v) lies
on the great circular arc joining v to #(0) when v € D, (or joining v to — 7(0)
when v € D_). (3) For each 7 ¢ [0, 1], pi(+ 7(0)) = =7(0). (4) pi|E = p,.
Clearly f:= pL.f*.(p})"! is a diffeomorphism from the southern hemisphere
S_ onto the northern hemisphere S +» where the north pole is 7(0). Then
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}(— 7(0)) = #(0), and lim dfA4; = df,A holds forany 4 ¢ TS (1)and 4, e TS_
such that lim 4; = A4.

The final step of the proof is to verify that f is diffeotopic to hy|S_. By
means of Lemmas 3.2 and 4.4, there exists a constant £(5) such that

Loy < |di4| < L@) foranyAeTS_, [A|=1, lmL@E) =1.

Therefore we can find 5”(§) such that Max {<{ (A(w), fw);ueS 1< B0
and ]}5111 ') = 0.

On the other hand, by the same method as in Proposition 3.3 there exists
¢’/(9) such that

Max { (dhA,dfA); A e TS } < ’(3), lime’() =0.

Thu~s we can find 8, > §), such that § > §, ensures that § is diffeotopic to
hy| S_, and the proof of the main theorem is complete.
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