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SMOOTHNESS OF HOROCYCLE FOLIATIONS

MORRIS W. HIRSCH & CHARLES C. PUGH

1. Introduction

Let SM denote the unit tangent bundle of a compact C°° Riemannian mani-
fold M. Suppose that M has everywhere negative sectional curvature. In [1]
Anosov proved that the geodesic flow ψ on SM is of a certain type, called
"Anosov" by later writers, and defined below.

Associated with any Anosov flow φ is a foliation by "strong stable manifolds";
this is called the horocycle foliation in the special case where φ is the geodesic
flow on SM and M has negative curvature. The strong unstable manifolds
provide another isomorphic horocycle foliation.

The leaves of these foliations are as smooth as the Anosov flow φ9 but
Anosov showed that the foliations are not in general of class C1, even when ψ
is real analytic.1 However, when M has dimension two or the curvature is \-
pinched, we shall prove that the horocycle foliations (and even their tangent
plane fields) are of class C1. In the course of the proof, the fact that "negative
curvature => Anosov geodesic flow" falls out naturally. Our methods in §§ 5, 6
resemble those of Anosov and Sinai [2].

This smoothness result was suggested to us by an analogous situation we
encountered in [8] there, we showed that the strong stable manifold foliation
of an Anosov diffeomorphism / is of class C1 provided that either the strong
stable manifolds have codimension one in M or the spectrum of Tf is "bunched".
These cases are analogous to (i), (ii) below.

Thanks are due to Pat Eberlein, Rob Gardiner, Leon Green, and Joe Wolf
for helpful conversations.

2. The smoothness theorem

Let M be a C°° compact boundaryless manifold with a C°° Riemann structure
0t. The geodesies of 0ί give rise to the geodesic flow φ on the tangent bundle
TMoίM:

Received February 22, 1974. The work of the first author was partially supported
by NSF grant #GP-29073, and that of the second author by NSF grant #GP-14519.

1It is amusing that, to mean "generic", Russian mathematicians, such as Anosov, use
a word translated from Russian to English as "rough". Here is an example where
roughness is likely to be generic.
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if v € TM and / —> γv(t) is the unique ^-geodesic with

ΐM = v, then φt(v) = γv(t) e TW)M .

φ is tangent to a vector field X, called the geodesic spray. Geodesies have con-
stant speed, so φ preserves the unit sphere bundle SM of TM.

The geodesic flow φ on SM is Λnosov if there is a continuous splitting T(SM)
= Eu®Eψ® Es, invariant under the tangent flow Tφ on T(SM), such that E*
is the subbundle spanned by the geodesic spray X, Tφ exponentially expands
Eu, and Tφ exponentially contracts Es. This means that for some (hence any)
Riemann structure or Finsler on T(SM), there are constants C, c > 0, λ > 1
such that

\Tφt(x)\ > cλι \x\ if x e Eu and t > 0 ,

\Tφt(x)\ < Cλι \x\ iίxzE* and t > 0 .

The subbundle Eu, Es are known to be uniquely integrable. They are tangent
to the horocycle foliations. Thus, to prove the horocycle foliations are of
class C1, it suffices to prove Eu, Es are of class C1.

The sectional curvature of St at a 2-plane Π C TPM is KP(Π) = the Gaus-
sian curvature of expp (Π) at p relative to the inclusion-induced Riemann
structure. If KP(Π) < 0 for all p e M and all 2-planes Π C T^M, then ^ is
said to have negative curvature.

Definition. The curvature of & is absolutely a-pίnched iff

a<mi\Kv(II)IKp,{II')\ .

The inf is taken over all p,pf <= M and all 2-planes Z?, 77; in TPM, TV,M. The
curvature of ^ is relatively a-pinched iff

The inf is taken over all p e M and all 2-ρlanes Π, Π' in TPM.
Smoothness Theorem. Let & be a Riemann structure on TM. If either
(i) the curvature of 2% is negative and M has dimension two or
(ii) the curvature of 0t is negative and absolutely \-pinched, then the

Λnosov splitting T(SM) = EU®EΨ®ES for the geodesic flow is of class C\
In particular, the horocycle foliations are of class O. Under natural uniformity
assumptions on the curvature, compactness of M can be relaxed to com-
pleteness.

Under assumption (i), E. Hopf [10] proved this theorem. Under assumption
(ii) Leon Green [4] announced the result, but later [3] found an error in its
proof.

Question. Is this theorem true for relative ^-pinching? If it is, then it in-
cludes (i) and (ii) as special cases. For negative curvature on a 2-manifold is
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always relatively αr-pinched for all a < 1. Originally we were sure this would
"follow easily" from the Cr section theorem (see below), but now we doubt it.
Also we conjecture that there are many cases when the horocycle foliation is
not of class C1. Even if the curvature is ^-pinched, we expect the horocycle
foliations are hardly ever of class C2. Such results might follow from methods
of R. Mane who proved a converse to the Cr section theorem [13]. Anosov
said the horocycle foliation is "obviously not smooth in general" [1, p. 12].

3. Background

In [9] we proved, with Mike Shub, a general theorem giving sufficient con-
ditions for an invariant section of a bundle to be smooth. Let E be a Cr finite
dimensional vector bundle over the compact Cr manifold M. Assume E has a
Finsler (== continuous family of norms on fibres). Let D be a disc subbundle
of E.

Definition. The minimum norm (also called the conorm) of an operator A

Definition. An r-fiber contraction is a C r fiber map F: D —> D covering a
Cr diffeomorphism f: M-+M such that for some Finslers on E and TM

sup kva~j < 1 , 0 < / < r ,
€M

where kp is the Lipschitz constant of F\DP, Dp is the D-fiber at p € M, and
ap = m(Tpf).

kp is the fiber contraction rate ap is the base contraction rate. The assumption
sup kpa~j < 1 implies F uniformly contracts the D-fibers (let / = 0 ) and contracts
Dp more sharply than / contracts the base at p (let / = 1).

Cr section theorem. / / F is an r-fiber contraction of D, r > 0 then there
is a unique F-invariant section σ: M —• D. Besides, σ is of class Cr.

This is a central result of [9].
A second concept we use from [8], [9] is that of the "graph-transform" F#.

If F: D —> D is a fiber map as above, then F induces a natural map
F # : Sec (D) ̂ > on the sections of D defined by F^(x) = F o σ o f~\x). This can
be re-expressed as

image (F%σ) = F (image σ) .

Finally, we use the uniqueness of the hyperbolic splitting of a hyperbolic
bundle automorphism. This result is part of [9, 2.9].

4. Proof of (i)

Let X be the geodesic spray generating the geodesic flow φ. Then Tφ pre-
serves the subbundle of T(SM) orthogonal to X and, since the Anosov split-
ting is unique,
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E = Eu

v Θ E% = X{v)L , veSM .

Since E is a smooth bundle, we can approximate Eu, Es by smooth subbundles
Eu, Es of E. Let & be the smooth bundle over SM whose fiber at v is

Put the "max Finsler" on T(SM) so that

\z\ = max(\x\Λ9\w\Λ9\y\Λ) ,

where z ^ x θ w θ y e E ^ θ span XOy) 0 Es

v, and | |Λ is length respecting ^ .
This is a Finsler on the base-space of ^ .

Since Tφt preserves EU®ES = Eu® Es, the T^-graph transform (Γ^)* is
a fiber map ^ —> & covering ^1 ? the time-one map of the geodesic flow.
(Tφi)^ is defined by

(Γ^xXgraph G) = g r a p h K T ^ G ) , G e ^ ,

where graph G = {x + G(x) eE%® Es

v}. Let Tuφ = Tφ\Eu, Tsφ = Tφ\Es. The
fiber &v is contracted at a rate == IIT^H m C J ^ ) " 1 , and the base is contracted
at the rate = m{Ts

υψ^. (To say this about the base-map we need the max Finsler.)
The hypothesis of the Cr section theorem (r = 1) is that (fiber contraction) x
(base contraction)"1 < 1, and we have shown this product to be =

since Es is one-dimensional. Hence the unique (T^^^-invariant section of ^ is
of class C1. The section whose graphs give Eu is clearly invariant, since Eu is
T^Γinvariant. Hence Eu eθ. Symmetrically, Es zC1.

Remarks. If for any other reason bo\{Ts

υψ^m{T^ψ^~ι < 1, then we get
Eu e C1. By bol ( ) we mean the "bolicity" which measures how nonconformal
an isomorphism is:

T)ΛIL= supbθHT) sup
m(T) \χ\=i=w\ \Ty\

5. Second order linear differential equations

To prove (ii) we need good norm-estimates on Tuφt, Tsφt the next lemma
will provide them. By t?{Rn) = Sf we mean symmetric linear endomorphisms
of Rn, i.e., self adjoint operators. By 9?±(Rn) we mean the convex cone of
positive or negative definite ones.

Lemma 1. Suppose t>-+Pt is a continuous map R—><y+(Rn), and a,β
are positive constants with
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a<mίm(Pt) , sup\\Pt\\<β .

Let Φ be the flow on R x Rn x Rn generated by the artificially autonomous
differential equation

τ = 1, x = y, y = Pτx τ e R, x,y e Rn .

Then there exists a unique Φ-invariant splitting E? Θ E*τ = τ X R2n such that
E?9 E

s

τ are graphs of uniformly bounded linear maps Rn —> Rn. Besides

Eu

τ = graph G% Gu

τ e S?+(Rn) , am < (G^x, x) < βι/2 ,

Es

τ = graph Gs

τ, Gs

τ e ^~{Rn) , a"2 < < - G ? J C , X) < βί/2

for all xeRn with \x\ = 1. This splitting EU®ES of the product bundle
R X R2n exhibits the hyperbolicity of Φ. Norms on Eu, Es can be chosen, which
are uniformly equivalent to the induced norms and make

eta112 < m(Φf) < \\Φf\\ < e^112 , e~^ι% < m(Φs

t) < \\Φs

t\\ < e~ta112

for all t > 0. // Pτ has period ω, then so do Eu and Es.
Remark. A special case of this lemma is enlightening. Consider the

autonomous constant coefficient linear differential equation:

x = y , y = px , p> 0

arising from the second order equation 3c = px. This vector field on R2 generates
the linear flow

cosh

Yp sinh (pt) cosh (pt).

which has the constant invariant splitting

Eu =. {(x, px): x € R} , Es = {(x, -px): x e R} .

It is a delightful coincidence that the hyperbolic trigonometric functions occur
in a hyperbolic flow, and that this flow represents the tangent flow on the
standard Poincare hyperbolic plane (when p = 1).

Proof of Lemma 1. The flow Φ on R X Rn X Rn naturally induces a
(local) flow Φ# on 2? x GL (rc) as follows. Fix τ e R. For each 5 € GL (ή) put
φ # ί ( τ , S1) = (r + t, St). Here St is the unique linear map Rn -> i?^ such that

(τ + 0 X graph (St) = Φ^r X graph 5) .
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When S = So is fixed and / is small, St is well defined.

Fix τ and consider the solution Wt = \ ι ι of

W0 = I .

Thus Φt\τ X Rn X Rn = Wt. lί t > 0 is small, then

The tangent to the curve St is

S t = (C + DSQ)(A + BSQ)'1

— (C + DS0)(A + BS^iA + BSQ)(A + BSQ)-1 .

At t = 0 this reduces to Pτ — S2 since

YA[ Bl = Γ C D ] L40 5O1 = Γ/ 0]

Vc b\ VPA PB\ ' Lc0 D0J Lo /J '
Thus the flow Φ# is tangent to the vector field (on R X GL(n)) given by (τ, S)
*-+ (l,Pτ — S2). (Note that its integral curves are solutions to the Ricatti
equation S = P — S2.) Since this vector field is tangent to R X <?(Rn) by in-
spection, the flow Φ# leaves R X έ?(Rn) invariant.

We claim that all points of the boundary d(R X £faβ) are strict ingress points
for Φ# where

&aβ = {S € ¥: a1'2 < (Sx, x} < βι/2 for all x e R», \x\ = 1} .

A boundary point /? of a region U is a s/πc/ ingress point for a local flow ψ if
^ίP e Int (£/) for all small ί > 0. This is an idea due to Wazewski.

For x € Rn and S € <9* we have

St — Γt + τΛt ?

and compute

d

dt

( 1 )

= [<(Pr - S2)x + S(Sx),x}
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For small t, x H+ xt defines an embedding of the unit sphere S71'1 of Rn into
Rn which is near the inclusion. Thus the mapping Sn~~ι ̂ 3

is near the identity; therefore it is surjective. This implies that

( 2 ) inf <Stx, x} = inf (StXt> x*>

\\i \\i ζxxy

for small t.

Choose a19a29βι, β2 such that

a < ax < a2 < inf m(Pτ) , sup | |P Γ | | < β2 < βλ < β ,

αx - or < a2 - a, , β - βι < βι - β2 •

Since PΓ is symmetric, <P rx,x) > a2\xf.
Suppose S e daβ and consider the sets

Z /Q\ fv /- CW-1 Λ/l/2 ^ ^ / C v v \ <^ Λ,1/2Ί

Y (<\λ — ire V71-1 - R1/2 < /<\γ γ\ <^ R^2\ΛβW) — |Λ 6 O . px \ \OΛ, X/ S- p •

For each x e Xa(S) we have from (1)

U \ptXt, Xty /π \ j ^ /Cv Cv\ O/Cv v\2
S. L τΛ>, Λy' ~J~ v, IJΛJ J Λ y ~~ L\. J Λ ) Λ/

It follows from (2) that if x e Xa(S), then

( 3 ) (Stx, x) > a1/2 for all small t > 0 .

But if x € S"-1 - Xa(S) and ί is small, then

by continuity. Thus (3) holds for all x e Sn~\ that is,

inf ^ J C , x} > a}'2 for all small t > 0 .

The same reasoning proves that also

sup <Sίjc, x) < β1/2 for all small t > 0 .
Ul=i

This shows that τ X 5 is a strict ingress point of d(2? X ^ α i 3 ) for the local flow
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The set y?

aβ is a compact convex subset of the (finite dimensional) linear
space 6f. All the points of its boundary were shown to be strict ingress points.
Since d(R X 6^aβ) is not a retract of ^aβ, Wazewski's Principle [6, p. 279] says
there must be a trajectory of Φ# remaining in R X £f for all time. Let r ^ r
X G? be such a trajectory, and set Eu

τ = graph G?, τ e R. Clearly Gf is in-
terior to 5%, and Φ t(£?) = E?+τ.

Let ^:β = {Seόf: a1'2 < < - S * , X) < βί/2 for all x e 2Γ, |JC| = 1}. Then
all points of d(R X y~β) are strict egress points. This can be seen by some
reasoning similar to the above. Again by Wazewski's Principle, there is a Φ Γ

trajectory remaining in £f~β for all time. This gives Gs

τ, E
s

τ as claimed and com-
pletes the existence part of Lemma 1.

Uniqueness of Eu, Es follows from hyperbolicity of Φ and Hirsch-Pugh-Shub
[9, 2.9]. To prove hyperbolicity and the asserted estimates on its strength, we
introduce the new inner product in Rn x Rn by setting

<z\ z2>* = <x\ x2}, zj = (x>, yi)eRnxRn; / = 1, 2 .

By restriction we get new inner products on each E?9 Es

τ (τ e R). This makes
x *-+ (x, Gux), x ^ (x, Gsx) isometries of Rn onto Eu

τ, Es

τ.
Denote Φ£t, z) by (τ + t, zt) and put zt = (xt, yt) z Rn X Rn. Then

and so

by invariance of E™. Since G^ € <9%, this last quantity lies between 2aι/2 and
2β1/2. Hence (zt,zty* satisfies the differential inequality

2a"2 < A < Z ί , Z ί > < 2 / 3 1 / 2 , ί > 0 ,
at

while

<*o,*o>* = 1̂ 1* , OφzzE? .

From Hartman [6, p. 24] we conclude that

for all t > 0. Taking square roots gives the growth estimate on Φf in Lemma
1. Similarly, if z e Es

τ then
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^ < z ί , z ί > * 2<* t,G?+ ί(x i)>,
at

which lies between — 2am and —2βι/2 since Gs

τ e £P~β. This gives the growth
estimate on Φ\ in Lemma 1.

As remarked before, hyperbolicity of Φ implies the uniqueness of EU,ES.
Suppose Pτ has period ω. Set Fu

τ = E?+ω, Fs

τ = Es

τ+ω. Then Fu 0 Fs is a Φ-
invariant splitting of R x R2n since Φt(τ + ω,z) = Φt(τ,z) + (ω, 0). Clearly
fuφfs a l s o exhibits the hyperbolicity of Φ so by [9, 2.9] E w = Fu, Es = Fs,
and ω-periodicity of Eu, Es is proved. This completes the proof of Lemma 1.

Remark. An alternative proof that Eu, Es exist can be devised by show-
ing that the flow Φ# contracts ^ β , instead of using Wazewski's principle.
Contractiveness of Φ# on 6^^β follows from considering the first variation
equation of S = P — S\ along a Φ-trajectory St, namely, V = —(VSt + StV).
While St is in £faβ, it is a positive operator so the above V is "negative", show-
ing that Φu contracts infinitesimally, t > 0. Contractiveness of Φu in the large
follows by the mean value theorem since <faβ is convex. The details of this
argument involve use of the inner product

<A,B> = trace (A'B)

on L(Rn,Rn) and its corresponding norm. This is not the operator norm on
L(Rn,Rn), and it does not have an analogue for an infinite dimensional real
Hubert space E. The estimates in the proof of Lemma 1 remain valid for E,
but Wazewski's Principle fails because d^aβ probably is a retract of ^aβ\
compare Klee [11]. Thus the generalization of Lemma 1 to Hubert space
remains unproved by us.

6. Fermi coordinates

The next lemma concerns a special coordinate system along a geodesic,
called a "Fermi chart". For the geodesic flow, the bundle-chart over a Fermi
chart serves the same purpose as a flowbox does for a flow. Let 0t be a smooth
Riemann structure on TM, and let v € SPM be given, p eM. Let X be the
geodesic spray of St. Let eλ, , em be an orthonormal basis for TPM with v
= e19 and let γ be the geodesic initially tangent to v. Parallel translation down
γ gives smooth orthonormal vector fields eλ(t), , em{f) on γ such that ex(t)
= γ{t). Since exp is tangent to the identity,

fv(Σ aiei) = eXPr(αi) ( Σ
\i>2

defines an immersion fΌ, called the Fermi chart associated with 0t and v e SPM.
The domain of /„ includes
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2V = [τv + vf e TPM: v' J_v,\v'\ < c, τ e R} ,

where c is some positive constant. fυ sends span (v) isometrically onto γ. Since
fΌ is an immersion, 0t pulls back to a Riemann structure j*0t on T@V = @Ό

X TPM. Thus ί*St is St expressed in the /,-chart. Let gab, Γ
σ

aβ and Rljl be
the components of j*St9 its Christoffel symbols and its Riemannian curvature
tensor in the /^-chart.

Lemma 2. The Fermi chart fv has the following properties at all points of
span (y):

(O-th order)

(1st order)

(2nd order)

Sab

pσ
1 aβ

R1

= δab

= 0 ,

1 d2gn _ dΓί

2 dxkdxι dxι

Proof. The O-th and 1st order assertions are proved in Gromoll-
Klingenberg-Mayer [5]. In any chart

Γlβ = ~ Σ gσr(daβrβ + dβgra - drgaβ) ,
1 r

where (gσr) is the matrix inverse to (gab). By da etc. we mean d/dxa where x\
• , xm are the coordinates in the chart. Juggling indices and summing as in
Weatherburn [15] we get

dσgaβ = 0 , 1 < a, β, σ < m

at any point of a chart where Γ = 0 and (gab) = (δab). This means the map

x i > (gab(x)) e {real m X m matrices}

has zero derivative at all points of span (v) in the Fermi chart. By the chain
rule the same is true of

Thus all first partials of gab and gσr vanish along span (v). From this constancy
we conclude d^ig^ = d1dιgσr = 0 along span(/y) = ^-axis.

In any chart the components R\n are related to the Γσ

aβ by

R\n = djΓU - dtΠj + Σ (WjΓlt - ΓUΓr

kJ)
r

(see Hicks [7]), so in the Fermi chart along span (v)
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= i Σ Ugλr){dk8n + dιgrk - 3rgkl)
r

+ i Σ glrθi3*ίrl + 3i3lίr* - 3l9r
r

- i Σ 3ιfelΓ)(3*ίπ + 3iίr* -
r

- \ Σ Slr@ι3*£ri + 3i3i^r* -
r

2 dxιdxk

For along span (v): 5i(^lr) vanishes, dxdkgrι etc. vanish, 5λ(^ lr) vanishes, and
gir _ ^ir p o r foQ s a m e reasons

Σ 3ife*r)(3ig« + Sift, - 3rAi)
r

along span (v). This completes the proof of Lemma 2.

7. Proof of (ii)

Let 3t be the given Riemann structure on TM. Let v e SPM, p e M, and
choose an orthonormal basis of TPM, e19 , em with ^ = v. Let /„ be the
Fermi chart determined by eί9 , em, and let Fv be the bundle chart of TM
tangent to fΌ:

3V X TPM J ^ > TM

(x,f) i >TJv(ξ)€TfυXM .

^ v is the domain of / .̂ The geodesic spray X is represented in any TM-bundle-
chart for TM as the first order ordinary differential equation

where Γ(x): TPM X TPM —> TPM is the symmetric bilinear map such that

Γ(x)(et, ej) = Σ Γk

i3{x)ek , xz2)v.
kk

The Γij are the Christoffel symbols of 0t expressed in the /^-chart.
The geodesic flow φ of 31, represented in the Fv-chart, is the solution of (1).

The assertion of the smoothness theorem concerns the tangent flow Tψ on
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T{TM). When represented in the ΓF^-chart, Tφ is the solution of the first
variation equation of (1):

( 2 ) W = D(F*X)WtW , W{0) = I

for wt = F'1 o^oFυ(w), w € @Ό X TPM. By F*X we mean the vector field
XoTF-1 on 9υ X TPM. At F~\φtv) = (tv, eλ) we calculate

ξ 0 /

( ,ξ,ζ) -2Γ{x){ ,

0 /

= I 1 d2gn(x)

2 dxιdx"
0

dx

0 /

\-R\u(tv) 0

by Lemma 2 since

(The Λ^j are the components of the curvature tensor in the /^-chart.) Thus,
along F-\φtv), (2) becomes

( 3 )
o

In general, Rι

kjl is skew-symmetric in jl and Rί

ijl — 0, so we see that

0 . . . 0"

R\n , 2 < k, I < m .

.0

These extra zeros indicate that Tφ preserves X (as does any tangent flow)
and that Tφ preserves XL (as does any tangent geodesic flow). Let E =
X± Π T(SM). Then Tφ preserves E and Φt = Tvφt\E, expressed in the Fv-
chart, solves

where

Φ is a linear flow on sρan(t>) x Hv X Vυ « Λ x Λ"1"1 x Λ™"1 where fl,, =
{(*, 0) e ΓPM X TPM, x J_ v}, F o = {(0, f) e TPM x T^M: 5 _|_ v}.

Φ = I ° 7 l φ ,
Vpt o J
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In any chart at a point where the coordinates are orthonormal, the sectional
curvature of a pair of vectors 7 , Z ζ TPM is

κp(Y, z) = <Λ(y, z)z, γ> , Y = Σ

= Σ R'kjiyiyjZkZi, z = Σ
j l

and thus finally using the negative curvature hypothesis we have

( 4 ) <P,Z, Z> = - Σ R\iΛZt = -K(e19 Z) > 0 ,
kl

where R\u = R\n(tv).
Choose constants K > /: > 0 such that every sectional curvature lies strictly

between — K2 and — k2. By (4), in applying Lemma 1 we can take a = k,
β = K.

By Lemma 1, Φ is hyperbolic and the strength of its hyperbolicity can be
estimated. Using the /vchart we get a well defined Γ^-invariant splitting
EU@ES of E over the ^?-orbit of v. (If t^»φtv is periodic in ί, then P£ is
periodic and, by Lemma 1, so is the Φ-invariant-splitting. Hence EU®ES is
well defined.) Choose one v on each ^-orbit and make the preceding construc-
tion. This gives a well defined Γ^-invariant splitting of E over all SM.

Since the Finsler on span (v) X Hv X Vv adapted to Φ is uniformly equiva-
lent to the standard Finsler, and since fv is a Fermi-chart, we see that the esti-
mates

etk < m(Φ») < ||Φril < etκ , e~tκ < m(Φs

t) <

which are valid for all t > 0—when the adapted Finsler is used—imply

( 5 ) e» < m{Tiφt) < \\Tu

vψt\\ < etκ , e~tκ < m{T%ψt) < \\T%φt\\ < e~tk

respecting the ,^-norms for all large t. By T%φt9 T
s

υφt we mean Tφt \ E%, Tψt \ E%.
Thus, respecting the fixed ^-norms, Tφ \ E is a linear uniformly hyperbolic
flow and so, by [9, (2.9)], Eu and Es are automatically continuous and inde-
pendent of which v was chosen on each ^-orbit. Hence ψ is Anosov.

By (5) we get

bol (Tu

υψt) < e"κ~k) ,

bol ( ! » < * " * - * > , \\Ts

υφt\\ < e~tk

for all large t. Now return to the proof of (ii). Since E is a smooth bundle we

can approximate Eu, Es by smooth subbundles Eu, Es of E. Then we can con-

sider, for a large fixed t, the ^-map (Tφt\: &->& where &Ό = {G e L(EU

V,

Esυ) | |G | | < 1}. As in the proof of (i), (Tφt)# is a fiber contraction with

(fiber contraction) (base contraction)"1
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= bol(Ts

υφt)/m(Tuφt) < e"
κ-k)/etk = euκ~2k) .

Since the curvature is ^-pinched, we have K — 2k < 0 and the hypothesis of

the C r section theorem is satisfied therefore the unique (T^^-invariant section

of ^ is of class C1. Since Eu gives such a section, Eu is of class C1. Working

with the reverse flow and ^ ; = { G e L(£°υ, £%): | |G | | < 1}, (5) gives the same

result for Es. This completes the proof of (ii).

Remarks on the smoothness of 01. For simplicity, we assumed the Riemann

structure 0t was C°°. However, the above constructions work equally naturally

when 0t is C4, the smoothness theorem holds when 01 is C3, and φ is Anosov

when 0ί is C2 with negative curvature. This can be seen by C2-approximating

01 by a C°° Riemann structure <% and using the uniformities in the hyperbolicity

estimates. Alternatively, the Fermi chart could be smoothed as were flow boxes

in Pugh-Robinson [14].

Standard question. If the geodesic flow φ of 0t is Anosov, then does M

admit a Riemann structure 0tf with negative curvature? Wilhelm Klingenberg

showed in [12], [16] that all known topological properties of M which are im-

plied by negative curvature are equally implied by φ being Anosov.
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