
J . DIFFERENTIAL GEOMETRY
10 (1975) 181-200

THE FRENET FRAME OF AN IMMERSION

M. ROCHOWSKI

Introduction

It is a known theorem of Jacobi that the indicatrix of the principal normal
of a curve in a Euclidean three-space Ez divides the unit sphere S2 into two
pieces of equal area. In this paper a generalization of this theorem is given in
the sense that the curve is replaced by a two-sphere S2 imbedded in a Euclidean
4-sρace E4.

To define a principal normal of an immersion x: Mn —> En+N of a manifold
Mn into a Euclidean space En+N we proceed as follows. If we take the bound-
ary of a small tubular neighborhood of a curve in the three-space and examine
the maximal value of the Gaussian curvature along a fiber over a fixed point of
the curve, then the point of the boundary of the tubular neighborhood, at which
the Gaussian curvature attains its maximal value, together with the fixed point
of the curve defines the principal normal of the curve. This construction can
be generalized to a manifold Mn immersed in En+N by replacing the tubular
neighborhood by the normal bundle Bv of the immersion and the Gauss curva-
ture by the Killing-Lipschitz curvature as defined in [2], and the invariant local
cross sections in Bv thus obtained are called the Frenet frame of the immer-
sion x. These cross sections enable us to define in an obvious way also local
invariant cross sections in the tangent bundle Bτ. However we shall not need
them in this paper, and therefore their construction will be omitted. For n = 2,
N = 2 the construction of a Frenet frame in our sense was given by T. Otsuki
in [5].

The construction of a Frenet frame leads to the definition of new invariants
of the immersed manifold x(Mn) called mixed curvatures, by means of which
we can generalize to closed even-dimensional manifolds the K. Borsuk's theo-
rem [1] concerning the total curvature of a closed curve in a Euclidean n-space,
n > 3 .

Furthermore, we give another proof of a result of D. Ferus [4] concerning the
total curvature of a knotted sphere of codimension two imbedded in a Euclidean
space.

In this paper all manifods and mappings are supposed to be of class C°°.
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1. Preliminaries

Let

(1.1) x:Mn->En+N

be an immersion of a difϊerentiable manifold Mn in En+N. By F(Mn) we denote
the family of orthonormal frames x(p)e1 enen+1 en+N, such that ei9

1 < / < n, are tangent to the manifold x(Mn) at x(p) € x(Mn), p e Mn. In the
sequel we use the following convention concerning indices

1 < i, /, k < n , n + 1 <r,s,t < n + N , 1 < A, B, C < n + N .

In F(Mn) the connection forms ω^, ωAB are defined such that

(1.2)

(1.3)

(1.4)

For details

<*,

see [2].

ωr

V I Λ

k

k — Σ ωij Λ
3

. = 0 ?

A A

- Σ ωu Λ ωίfc .

2. The Killing-Lipschitz curvature

Let e denote a unit vector of the Euclidean space En+N, which in the fol-
lowing is regarded also as a point on the unit sphere Sn+N~λ C En+N. By Bv ->
Mn we denote the normal bundle of the immersion (1.1) with the base space
Mn and the bundle space

Bv = {(p, e)\e-dx(p) = 0, p € Mn, e € sn+N~1} .

The manifold Bv can be endowed with the Riemannian metric

ds2 = ω\ + - - + ω\ + ωl+lf7l+N + + ω2

n+N_un+N ,

so that

(2.1) dVn+N_1 = dVnAdσN_1

is the measure density of this metric, where

(2.2) dVn = ωx A Λ ωn ,

(2.3) dσN_λ = (—l)N~ιωn+ι>n+N A Λ ωn+N_un+N .
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The form (2.2) is the measure density of Mn induced by the immersion (1.1),
and the form (2.3) is the measure density of the fiber SN~\p) described by
en+N. Let v: Bv —• Sn+N~1 be the mapping (p, e) -> e, (p, e) e Bv. The measure
density dσn+N_ι of Sn+N~1 induced by this mapping has the form

i>*dan+N_x = (-l)n+N~ιωun+N Λ Λ ωn+N_ltn+N ,

where the forms ωίt7l+N are defined by (1.3), and Sn+N~ι is described by e n + i V .
Thus using (2.1) we have

(2.4) v*dσn+N-ι = (-1)72 det (A^^dVn^., .

The function L(p, en + i V) = (— I)7* det (An+Ntίj) is the Killing-Lipschitz curva-
ture of Bv at (p, en+N) e J5P; for this see Chern-Lashof [2],

With the aid of the concept of the Killing-Lipschitz curvature we shall con-
struct a Frenet frame of an immersion, namely, by en+N(p) we denote such a
vector en+N for which and a fixed p € Mn, L(p, en+N) takes the maximal value.
If the vectors en+N, en+N_ι, , er(p), n + 2<r<n + N, are defined, then
^r-i(p) denotes such a vector en+N for which L(p,en+N) attains its maximal
value, where en+N(p) varies on the sphere Sr~n~\p) c SN~\p) and is orthogo-
nal to the vectors en+N, , er. The uniqueness of this construction depends
on the immersion (1.1) and will be assumed throughout this paper.

3. The Frenet frame of an immersion

Suppose n > 2. By

(3.1) en+1(p),en+2(p), -,en+N(p) , p β U C Mn ,

we denote mutually orthonormal local cross sections in Bv —• Mn, where U
denotes a neighborhood of p in Mn. Then

(3.2) e r = Σ arSes ,

where | | α r s | | is an orthogonal matrix. Thus

(3.3) ωir = Σ arSώis ,
s

where ώ ί r = dei-er = —ei der. Substituting (3.3) in (2.4) we get

<*>l,n+N Λ O)2,n + N Λ * * * Λ ω W ) W + iNΓ

(3.4) = Σ <\N%n+l ' ' * <%N,n + N Σ A " Ά
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•ώ .̂n+1 Λ Λ ώikvn+1 Λ ώίki+1>n+2 Λ Λ ώ^i+jfc2iTO+2

Λ A ώira,n+iv >

where 1 < ik < n, n + 1 < st < n + N, kP > 0, 1 < p < N, and (z1? , in)
denotes a permutation of (1, , ή). We suppose that kp = 0 implies ak

n

p+N,n+P

= 1 and ^ w + i v ,n + , = 0.
With the aid of (1.3) the expression (3.4) can be written in the form

Up, en+N)dVn = ( - \Y Σ <\N,«+I ' <IN,U+N
kι+ ••• + ktf=n

1 1 Λ, Λ.

• Σ -r-r * * * 7-7 s i g n 0'i» »in) det U^i,^,-, , An+lti j9

where L(p,en+N) denotes the Killing-Lipschitz curvature, and dFTO is defined
by (2.2).

Remark 1. The functions AriJ depends on p € Mn and on parameters un-
defined by et = Σιjaίj£j> where e1? -,en denote fixed orthonormal cross
sections in the tangent bundle Bτ of Mn.

Definition 1. The function

Ckl...kN = ( - l)n Σ -^T 7^7 sign (/15 , ϊn) det (An+ltilj9
(3.5) «»,»-,<»)*!! kN\

is called the mixed curvature of the type (k19 , Z:^). The mixed curvature of
the type (0, , 0, kp, 0, . , 0), kp = n, 1 < p < N, is the Killing-Lipschitz
curvature of Bv —* Mn.

Remark 2. The mixed curvature is a function defined in the principal
bundle Bf of Bv, i.e., the bundle over Mn, whose fiber over p e Mn consists of
all orthonormal frames x(p)en+ι en+N of the space EN(p) normal to x(Mn)
at x(p) determined by the fiber SN~\p) of Bv.

Let us denote

(3.6) ®BV = BV® . . . ®BV ,

ΪV

where 0 on the right of (3.6) is the Whitney sum of bundles. The fiber of
over p € Mn is denoted by ®SN~1(p). We have the inclusion map

Bf -* φ £ υ .

The function Ckl...kN(p, en+1, , ̂ n + i v ) has a prolongation on 0Z?V defined as
f o l l o w s : f o r fixed en+1, , er_19 er+19 , en+N, n+l<r<n + N, Ckl...kir(p9
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en+ι, , er_λ, er, er+1, , en+N) is given by (3.5) for every er e SN~\p).
This prolongation is denoted by the same symbol Ckl...kN(p, en+1, , en+N).

We define a function on Mn by

(3.7) f Ckl...kir(p, en+19 , en+N)(dσN_JN ,

where (dσN_ύN = dσn

Nt\ A Λ dσTΛ, and

^ - i = (—lV^ωn+i.n+r Λ Λ ω w + r _ 1 ) W + r

A <Ww + r + i,n + r A * Λ ^ π + iV'.π + r

From (2.3) it follows έ/σjΐί = ^ - i
The function (3.7) is called the mixed curvature of Mn of the type (kx, , kN)

induced by the immersion (1.1).
Let us take the polynomial

(3 θ) P = a

with coefficients Ckl...kjr = Ckl...kN(p, en+19 , en + i V) evaluated for the cross
sections (3.1).

To find necessary conditions for the polynomial (3.8) to attain its maximal
value at the point

(3.9) an + N,n+i = = Gn + N,n+N-l = 0 , an + N,n + N == 1

under the additional assumption

Q = β n + i V , n + i + * * * + flw+iV,rz + iV — 1 = 0 ,

by equating to zero the partial derivatives of P + λQ, where λ is a real num-
ber, with respect to an+NtTl+p, 1 < p < N, at the point (3.9) we obtain

(3.10*) Co...oM...on-i = 0 , kp = l , 1<P<N-1.

Denote

(3.11) Gkl...kN = Ckί...kΛdVn,

where dVn is the form (2.2). Then with the use of (3.4) and (3.5), (3.10*) can
be written in the following form:

= (— l)n Σ -, Γ T V s i S n 0Ί» » i n ) o ) i l ι n + P

(*!,—,<») (Λ — 1 ) !
(3.10*) Λ ώ M + , Λ . . . Aώ
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= ( - 1Y Σ ώi.»+i»r Λ Λ ώ», B + , Λ Λ ώn,n+N = 0 ,
k=l

1 < p < N - 1 .

If in (3.10^) or (3.10^) we delete the wave line, which is significant for the
fixed cross sections (3.1), we get the sought for equations, which are satisfied
if the Killing-Lipschitz curvature L(p, en+N) attains its maximal value at en+N

= en+N for fixed p e Mn.

Applying succesively the above process, which leads to the vector en+N de-
fined by (3.10^), and the definition of the Frenet frame formulated at the end
end of § 2 we get the system of equations

(3.10^_,) Σa>i,n+N-a Λ Λ ωk>n+p A Λ ωn>n+N_σ = 0 ,

0 < σ < N — 2, 1 < p < N — σ — 1, for determining the vector en+N_σ if
en+N> ' '9 en+N-σ+ι> I < σ < N — 2, have already been chosen. The vector
en+1 is defined as a unit vector orthogonal to the vectors

such that Fxm = x(p)er - -enen+ι en+N is coherently oriented with En+N.

4. The sphere-image of an imbedded manifold

Let

(4.1) x:Mn-+En+2

be an imbedding of a closed manifold, and suppose that there exists a mani-
fold (M n + 1 , 3Mn+1) with boundary 6Mn+1 = Mn, and the imbedding (4.1) is a
restriction of an immersion x: Mn+1^>En+2. Then the principal bundle, associ-
ated with the normal bundle Bv of the imbedding (4.1), and the normal bundle
itself are trivial. Therefore the Frenet frame, i.e., the vectors en+1 and en+2

can be defined on the whole of Mn. In the following we consider only such
imbeddings (4.1) for which the vector en+2(p), p e Mn of the Frenet frame is
uniquely determined on the whole of Mn.

Definition 2. The mapping

(4.2) en+2: Mn — Sn+1

is called a sphere-mapping of the imbedding (4.1), and the set en+2(Mn) the
sphere-image of Mn.

In the following we suppose that (4.2) is also an imbedding. Thus Sn+1 is
divided into two regions Dn+1 and D'n+1 with the common boundary en+2(Mn).
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The system (3.10^_σ) for N = 2 and σ = 1 takes the form

(4.3) (-l^Gx.n.x = Σ ω l t n + 2 Λ Λ ω* f n + 1 Λ Λ ω n , n + 2 = 0
* = 1

and is satisfied for

ώi, w + 2 = deven+2 , ώi>n+1 = dei-en+l ,

where en+1(p), en+2(p) are the Frenet cross sections. Thus we have

{-\ydGι>n_λ

= Σ ( — l ) * ω l f n + 2 Λ Λ ωk>n+2 Λ o ) i f c Λ Λ ω f c > 7 l + 1
ίίfefc

Λ Λ ωnt7l+2

+ Σ (~l)V f n+2 Λ Λ ωn+un+2 Λ ω ί > w + 1 Λ Λ ωk>n+1

iΦk

Λ Λ ω^n+g

+ Σ (—l) f c ω l f n + 2 Λ Λ ωJtn+1 A ωkJ A Λ ωn>n+2

J,Jc

+ Σ ( — l ) * ω l f n + 2 Λ Λ ωw +2,n +i Λ ωk,n+2 Λ Λ ω n , w + 2

= (— ϊ)nnωun+2 A ω2>n+2 Λ Λ ω n > w + 2 Λ ωn+un+2

— 2 Σ ω n + l f n + 2 Λ ωun+2 A Λ ω ί fW+i Λ Λ ωΛ, n + 1

Λ Λ ωn>n+2 .

With the use of the definition of the measure density of Sn+1 and Definition 1
of the mixed curvatures the above formula can be rewritten in the form

(4.4) (-l) n + 1 dGi.»-i = nv*dσn+ι + 2G2>n_2 A dσλ ,

where dσx = ωn+un+2.
Let the manifold Mn be the sphere Sn. Then the integral formula

0») ί ndσn+ι + 2 ί G2f7l_2 A dσι = 0 , Λ > 2 ,

is valid, where Dn+1 (Z Sn+1 is bounded by en+2(Mn).

Proof of (in). Let e19 e2, . , en+ι denote mutually orthogonal cross sections

in the tangent bundle of the sphere Sn+1 over Dn+1. Then from Stokes' theorem

and (4.4) it follows

(4.5) ( _ l ) » + i f G1>n_λ = ί ndσn+1 + 2 f G 2 , w _ 2 Λ ^ ,

where the bar over the forms in (4.5) means that they are evaluated for the
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fixed cross sections. The cross sections can be defined, e.g., by a stereographic
projection of the orthogonal net of a Euclidean space En+1 onto the sphere Sn+1

from a point q' e D'n+1 (Z Sn+1 such that its antipodal q belongs to
D^\en+2(Mn).

In En+1 we introduce the spherical coordinates with the pole at the image of
q. By means of the stereographic projection this coordinate system defines an
orthogonal coordinate system in Sn+1\{q'} with the exeptional point q. We de-
note the unit vectors tangent to the new coordinat curves in Sn+1\{q'} again by

(4.6) el9 1 < λ < n + 1 ,

an orthonormal base of the tangent space ΓJ, p eMn, of the surface en+2(Mn)
c Sn+ί by

(4.7) έ l 9 ' - , e n ,

and the unit normal at p e Mn to the surface en+2(Mn) c Sn+1 by en+1.
We prove that the left-hand member of (4.5) vanishes if Mn is the sphere

Sn (n > 2). Since (4.2) is supposed to be an inbedding, we have

d e t ( i n + 2 f < i ) ΦO

for every p ς. Mn, or equivalently

(4.8) ώn+2>1 A - Λ ώn+2,n Φ 0 .

From

and (4.8) it follows that Tn

v spanned by the vectors (4.7) is transversal to en+1

for every p ζ.Mn. Thus the vectors en+1, en+ι are in the same half-space of
the tangent space Tn

v

+ι of Sn+1 at en+2(p) defined by TJ, so that we can sup-
pose that the plane spanned by en,en+1 coincides with that spanned by en,
en+1. Then the formula

(4.9) < + 1 = en sin at + en+ι cos at , 0 < t < 1 ,

where a = arc cos (£ n + 1 e n + 1 ), defines a homotopy which joins en+1 with en+ί

such that eι

n+ι remains transversal to Tn

v for every t, 0 < t < 1.
Since

+ <W*n + 1 , 1 < λ, γ < n + 1 ,

it follows

(4.10) ώ ί f n + 1 = —audan+Uλ + auan+1§rώir ,
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(4.11) o)if7l+2 = aίλώλtn+2 .

By the use of (4.10) and (4.11) we get

{—l)nGlfn_λ = 2 ώun+2 Λ Λ ώkι7t+1 Λ Λ ώn>n+2

k = l

n

(4.12) = Σ ώun+2 Λ Λ akλdan+lfλ Λ Λ ώn>n+2

k = l

n

+ Σ <*>l,n + 2 Λ * Λ ώk,n + i Λ * * * Λ ά)n>n+2 .

Let k, 1 < /: < n, be a fixed integer, and suppose that the mutually orthogonal
cross sections (4.7) define a spherical coordinate net on Mn = Sn such that the
equations

( 4 . 1 3 ) ώlt7l + 2 = * * = &>fc_i,fc + 2 — ώk + i,n + 2 — ' ' ' — ώ W ) T O + 2 = 0

defines a family of circles. Let us take a fixed circle S1 denned by (4.13). On
S1 we consider the linear form akλ(s)dan+hλ(s), where s denotes the parameter
on S1. In the coordinate system e19 , en, en+ι we have

ek(s) = (akl(s), , ak,n+1(s)) ,

en + i = (fln + i.iW* * ' fln + i.n + iC*)) , ?n + i(-S) = (0, , 0, 1) ,

so that

akλ{s)dan+ltλ(s) = —dakλ(s)an+lti(s) .

Since by (4.9) and the transversality of £ n + 1 to T^ the mappings

have the same degree, we obtain, with the use of (4.14),

I akλ(s)dan+hλ(s) = -\ dakλ(s)an+lti(s)
(A -tc\ Je r a + 2(5i) J e n + 2(Si)

= - I dak>n+1(s) = 0 ,
Je r a + 2(5i)

and therefore

<Wi,n+2 Λ Λ akλdan+l)λ Λ Λ ώn,n+2

(4.16) = ± \ώ1>n+2 Λ Λ ώk_ι>n+2 Λ ώ f e + 1 ) W + 2 Λ Λ ώ π , w + 2

akλdan+uλ =. 0 .
Je r a + 2(Si)
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By repeating the cconstruction for k = 1, 2, , n, from (4.3), (4.12) and

(4.16) we have

(4.17) ί ι n . ί = 0 for Mn = S n .

Let us set

έλ = bλχeγ , 1 < λ, γ < n + 1 ,

where eλ are the vectors (4.6). As in the previous case (see (4.10), (4.11) and
(4.12)) we get

(-Όn<2i.»-i
(4.18)

= Σ <n+2 Λ Λ biλdbn+ltλ Λ Λ ώn>n+2 + {-lYG^^ .
i = l

The vector field en+ι defined on en+2(Mn) and the vector field en+ι restricted
to en+2(Mn) are homotopic. Indeed, if we project Sn+1 from q' e D/n+1 by a
stereographic projection s on E n + 1 , then soen+2(Mn) C En+1 is a topological
sphere such that s(Dn+1) contains the origin s(q) of En+1, s^en+ι is a normal
vector field of the surface s o en+2(Mn), and ^^e^+i is a vector field, whose vec-
tors lie on straight lines passing through the origin of En+1. Thus in both cases
the degrees of the mappings

sjn+ι :Mn-+Sn , s*en+1: M» -> Sn , M« = 5W ,

are equal to ± 1. This implies that s^en+1 and s^.,. ! are homotopic, and there-
fore en+ι, en+ι are homotopic. In particular, έn+19 en+ι are homotopic on every
circle S1 C Mn = Sn, and therefore as in the case (4.15) we get

bjcλdbn+Uλ = 0 ,

which implies (see (4.16))

n r

(4.19) Σ <n+2 Λ Λ budbn+ltλ Λ Λ ώnt7l+2 = 0 .

From (4.17), (4.18) and (4.19) we have

(4.20) ί Gλ „_! = 0 for Mn = Sn .

Let 5J C s(Dw + 1) denote a sphere with the center s(q) = 0 and small radius
ε. The spherical coordinate system introduced in Dn+1\K^+1, where K^+1 is the
inverse image of the ball contained in En+1 and bounded by SJ, is regular.
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Since q is an exceptional point of the spherical coordinate net in formula (4.5),
the left-hand member must be replaced by

(4.21) f Gun^ - f Gltn^ .

By (4.20) the proof of (ι'n) is finished if we show that the second member of
(4.21) tends to zero with ε tending to zero. For this purpose, in Sn+1 we de-
fine spherical coordinates by the formulas

xx = cos <pι ,

xλ = sin ψx sin φλ_λ cos φλ , 2 < λ < n + 1 ,

xn+2 = sin ψx sin φn sin φn+1 .

Suppose that 0 as a point of En+2 has coordinates (1,0, , 0). Then ψλ = con-
st is the equation of 3K^+1 = Sn(φί). Since en+2 = (x19 , xn+2), where ^ are
defined by the spherical coordinates, and

dψn-ί + 2

where

d = 2 < λ < n + 1 ,

we have

*i = (0, , — sin^ n + 1 , cos^w + 1) ,

^ = ( 0 , * , — S i n <pn_λ + 2, COS ψn-χ + 2 COS ψn_λ + z,

• . , COS ψn-χ + 2 Sin ^ n - ^ + 3 Sin φn + 1) .

From

^fc.w+i = dek>en+1 , ω ί > T O + 2 = dei en+2 ,

it follows that

Σ 6> lfW+2 Λ Λ ω f c , w + 1 Λ Λ ωn>n+2
k = l

— ( _ l)in(w + » n C Q S ^ sinw-l ^ . . . s i n ̂ w ^ 2 /\ . . . /\

and therefore that
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r -

= ±n cos ψλ sin71"1 ψx sin71"1 φ2 sin φndφ2 A Λ dφn+1 .
J Sn(ψί)

If ε —> 0, then φγ —> 0, and we get

lim ί G l i W_! = 0 ,

which completes the proof of (in).
Remark 3. In the case n = 1, i.e., for closed curves x(C) in E\ (4.3) is

reduced to

ω13 = 0 .

Thus we have dω13 = ω12 Λ ω23, and the formula (4.5) for n — 1 takes the form

(4.22) ί ω13 = ί ω12 Λ ω23 = | D | ,
J e2(C) JD

where e2 is the principal normal, \D\ is the area of the region D c S2 bounded
by e2{C) C S2, and the differential forms are evaluated in the spherical coordi-
nate system (-9, φ) defined by

xλ = cos & , x, = sin -9 cos φ , JC3 = sin # sin ^

with the pole belonging to the interior of D. As in the case n > 2 the left-hand
member of (4.22) vanishes. On the circle -9 = const we have ω13 = deι-e3 =
— cos-9dφ, where

gx = (0, —sin φ, cos 0 , ^3 = ( — sin -9, cos ^ cos φ, cos ^ sin 9?) .

This together with (4.22) implies the known theorem of Jacobi: | D | = 2π.
As in Remark 3 a similar geometric interpretation of the formula (i2) is pos-

sible, namely, for n = 2 we have

(i2) I o)u A (o24 A o)3i + I o)l3 A o)23 A o)A3 = 0 .
J Z) 3 J Z?3

The form ω14 Λ ω24 Λ ω34 is the measure density of S\ while ωu A ω23 A ω43

gives an interpretation if e4 varies in D\ and the bar over the forms indicates
that they are evaluated in the spherical coordinate system of S3 with the pole
q. Let

be the change of coordinates in the second member of (i2). If e4 varies in D3,
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then e3 varies in H3\G3, where H3 is the half-sphere of S3 with the line of sym-
metry qq', and G3 is the domain of S3 bounded by £3(M2), where M2 = S2.
Hence

ω13 Λ ω23 Λ ω43 = ωu Λ ω24 Λ ω34
J 2)3 J Z/3\G3

is the measure of H3\G3, yielding our promised generalized theorem of Jacobi.
Theorem 1. Ifx:S2-^Ei is an imbedding such that e4: S2 —> S3 is also an

imbedding, then the algebraic sum of the volumes of the domains on S3

bounded by e3(S2) and e4 (S2) is equal to the measure of the half-sphere:

+ |D 3 | + |G 3 | = π2 ,

the signes being chosen independently for each member.

5. A theorem of D. Ferus

In this section a generalization of Borsuk's theorem [1] concerning the total
curvature of a closed curve in the Euclidean n-space, n > 3, is proved. Further-
more we give another proof of a result of D. Ferus [4] concerning the total
curvature of knotted spheres.

It is known that

(5.1) degree of v = χ(Mn) ,

where χ(Mn) denotes the Euler number of Mn, and v is defined in § 2; for the
proof of (5.1) see for instance [4]. The formula (5.1) together with the inter-
pretation of the Killing-Lipschitz curvature L(p, e), p € Mn, e e Sn+N~1, as the
Jacobien determinant of the mapping v yields

(5.2) j ^ L{p, e)dVn+N_1 = cn+N_λχ(Mn) ,

and (see [3])

r n

\L(p, e)\ dVn+N_λ > cn+N_x J] bk ,
JBv fc=0

where cn+N_ι denotes the volume of the unit sphere Sn+N~\ and bk is the k-ih
Betti number of Mn.

The invariant L(p, er) of the surface x(Mn), where er is the r-th vector of
the Frenet frame, is called the r-th curvature of x(Mn). Our next purpose is
the calculation of the integral
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ί L(p,en+N)dVn .
J Mn

Let us set en+N = trer. Then using (2.4) we get

v*dσn+N_λ = ( - 1 ) " det (trArίj)dVn A h{-l)a-X+adtn+l Λ •

Λ Λn+β_i Λ Λn+«+i Λ Λ dtn+N .

From the definition of the mixed curvatures it follows

Up, en+N) = ( - \)n det (trΛriJ)

(5 3) y **i . . . / ^ Γ*
— ΔJ ln+l Ln+N%^k1...kN J

where 0 < kp < n, 1 < p < N. In S^"1 we introduce the spherical coordinates

tn+1 = cos θn+1 ,

tn+p = sin 0n + 1 sin ^ + p _ ! cos θn+p , 2 < ^ < N - 1 ,

tn+N = s in ί n + 1 s i n ^ + ^ . i ,

where 0 < θn+p < π ίoτ 1 < p < N — 2, and 0 < Θn+N^ < 2π. We have

Σ <ii « ί ^ Σ ( - D '^n+αΛn+i Λ - Λ Λ , , . . !
+ λ;iv=w α = l

Λ Λn + < r + 1 Λ Λ dtn+N

(5.4)

• ^ Λ + 1 Λ ••• Λ ^ w + i v - i

The integration of the function L(p, en+N) with respect to θn+p,l < p < N — 1,
is reduced by (5.3) and (5.4) to the integrals

(5.5) Γcos* ' θn+p s)nk>+*+'~ + *"+N->-1θn+βdθn+, , 1 < ^ < iV - 2 ,
J 0

(5.6) Γcos**- 1 θn+x., s in^ Θn+N_λdΘn+N-ι
Jo

Thus we get the formula

for N even ,

for N odd ,

where

(5.7) L(p,en+N)dVn A dσN λ = I
JBV

 + \2(N+ί)/2π(N-l)/2K
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κ= Σ

 ( * i - 1 ) | / ; ( ^ - 1 ) !

( V ) !

k19 , kN are even integers or zero, k!! = 1 3 A; for A; odd, k! ! =
2-4 kίoτk even, and ( - 1 ) ! ! = 1.

If in the sequence k19 , kN at least one number is an odd integer, then at
least one of the integrals (5.5), (5.6) vanishes. Since kx + + kN = n, the
integral (5.7) can be different from zero only for n even.

From (5.2) and (5.7) with the use of (5.8) we hence obtain a generalization
of Borsuk's theorem.

Theorem 2. // the immersion x: Mn —> En+N of an orientable even-dimen-
sional closed manifold is such that Ckl...kN(p) < 0 for every p e Mn and kN Φ n,
then

f
J M

L(p,en+N)dVn>cnχ(Mn).

Remark 4. If Mn c En+ί c En+N, then Ckl...kir(p) = 0 for every p € Mn

and kN Φ n. In the next section we prove the converse statement.
Let Mn = Sn, and let x: Sn^En+2 be an imbedding such that x(Sn) d En+Z

is a knotted sphere. Then we have
Theorem 3 (D. Ferus). If x{Sn) C En+2 is a knotted sphere, then

(5.9) f \L(p,e)\dVnΛdσι>4cn+1.

From (5.9) we see that the degree of the mapping v: Bv —> Sn+1 is at least
four for almost every p <ε Sn. Hence Theorem 3 follows from the following
lemma.

Lemma. Let x: Sn —» En+2, n > 2, be an imbedding with the property:
there exists a neighborhood U C Sn+1 such that for every e e U the function
e-x(p), p € Sn, has exactly two nondegenerate critical points. Then the imbed-
ding x is topologicaly equivalent to the standard inclusion Sn C En+ι C En+2.

By a critical point of e x(p) we mean a point p e Sn for which e-dx(p) = 0,
and hence (/?, e) € Bv. A critical point is nondegenerate if e-d2x(p) is a non-
degenerate quadratic form or, equivalently,

Up, e) Φ 0 .

The formula (5.9) follows from the lemma by the remark that the number
of nondegenerate critical points for a sphere can change only by an even num-
ber.

Proof of the lemma. For the proof it suffices to construct an isotopy

<pτ:S
n^En+2, 0 < τ < 1 ,
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such that <pQ(Sn) = x(Sn), φ^S71) C En+ι. Indeed, for an isotopy ψτ there exists
a diffeotopy (see [4])

φτ: En+2-> En+2

such that

φτ o <pQ = ψτ , 0 < τ < 1 , φo = identity on En+2 .

The construction of ψτ. Let p19 p2e Sn denote the only nondegenerate crit-
ical points of e-x(p) for a fixed e € U. We assume that e = en+2, x(p2) = (0,
• ,0 , 1) and therefore e x(p2) = 1. Moreover we can assume that xfa) —
(0, , 0 , — 1) = — en+2. Indeed, if x(pj ψ —en+2, then the vector

— (̂ n + 2 + ^(Pi))^~C~2 > 0 < C < 1 ,

defines a displacement Γc of the hyperplane xn+2 = —c such that Tx leads ^(Pi)
into — en+2, and all the Tc, 0 < c < 1, define in an obvious way a diffeotopy
of the imbedding x such that x remains unchanged for xn+2 > 0.

On Sn the vector field grad e x(p) is a nonzero field except at the points p19

p2. Indeed, assume that for some p3 e Sn different from pλ and p2 we have
grad e-x(p3) = 0. Then p3 would be a critical point of e-x(p). But by Sard's
theorem we can first suppose that e-x(p) has only nondegenerate critical points.
Then e-x(p) would have at least three nondegenerate critical points, contrary
to the assumption of the lemma.

It follows that the height function e x(p) = en+2 x(p) is monotonic on every
integral line of grade-x(p), and therefore every hyperplane xn+2 = c, — 1 <
c < 1, intersects x(Sn) in a set which is diffeomorphic to the sphere S71'1. Sup-
pose that the tangent space of x(Sn) at x(p2) is defined by the equations xn+ι

= 0, xn+2 = 1. Then there exists a neighborhood V C Sn of p2 such that the
imbedding x(p) = (x,(p), , xn+ι(p), XnUP))> P e $n> c a n b e represented by
the functions

where (x19 , xn) e V19 and Vλ denotes an open subset of the image of the
mapping p —> (xλ(p), , xn(p)) for p € V, which contains (Xxfe), , XnipJ)-
In particular, the projection of x(V) into the subspace defined by xn+ι = 0 is
a diffeomorphism at least for an open subset contained in V and containing p2,
which we suppose to coincide with V. We deform the imbedding x by a dif-
feotopy which acts only on the coordinate xn+ι(p) for p e V in the following
manner. Let us assume that

forp<εV,0<a<l
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and define η — \(\ — a). Let e(z) be a real C°° function such that

ίl for - oo < z < 1 ,

~ |0 for 1 + η < z < oo ,

and is decreasing for 1 < z < 1 + η. Define

er(z) = e((l - τ)z + τ(z + 2φ) , 0 < τ < 1 .

The formulas

P -+ blip), , εT(xn+2(p))xn+1(j))9 xn+2(p)) for p e F

and /? —> x(p) for p e Sn\V define a difϊeotopy with the properties:
a) xo(p) = x(p) for every p € Sn,
b) Xi(p) for 1 — Ύ] < xn+2 < 1 can be represented in the form

(5.10) xn+2 = f(x19 .>.,xn), xn+ι = 0 , /(0) - 1 , /,(0) = 0 ,

where /̂ (O) denotes the z-th derivative of / evaluated at the origin. We suppose
also that the second derivatives j t i vanish at the origin for i Φ j , 1 < i, j < n.
Thus we can assume that the imbedding x: Sn —> En+2 already allows a repre-
sentation (5.10) in a neighborhood of p2.

Since an integral curve

(x^t), -• ,xn+1(t),xn+2(t))

of the gradient field is such that xn+2(t) is a monotone function, we can repre-
sent the curve in the form

For a fixed point p e Sn of the integral curve regarded as a curve on Sn we
define the isotopy <pτ by the formulas

ΛP, Γ) = J l ~A+

f

2iP\
1 - [χn+2(p, O(5.11)

1 < ^ < « + l , 0 < τ < l ,

(5.12) xn + 2(p, r) = xn + a(p) , 0 < τ < 1 ,

where

xn+2(p, r) = (1 — τ)xn+2(p) + τ , — 1 < * n + 2 (p) < 1 ,
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For xn+2 = ± 1 we set respectively

x(p»τ) = (0, - . ,0 , 1) , 0 < τ < 1 ,

*(ft,τ) = (0, , 0 , - l ) , 0 < τ < 1 .

If 1 — Ύ] < xw+2 < 1, then the isotopy (5.11), (5.12) takes the form

(5.14)
l - [(1 - r)xn+2 +^ . ^ l - [ ( l - τ K + 2 + g \

i - 4 + 2

 v i - 4 + 2 /
= (1 - τ)xn+2 + τ ,

where / denotes the function (5.10), and (xλ, , xn) belongs to the image of
the mapping p—> (x^p), -,xn(p)), P € Vτ. We complete the formula (5.14)
for τ = 1 by

(5.15) - l (fnxl + + jnnxl) = 1 ,
i - 4 + 2

where fu denotes the second derivative of / with respect to xt evaluated at the
origin. Then the formula (5.13) is also valid for τ — 1.

Since (5.15) is the equation of an ellipsoid, it follows that φγ(p) = x(p, 1) is
an ellipsoid of En+1 spanned by the vectors e19 , en, en+2. This proves the
lemma.

6. A property of the mixed curvatures

Let us suppose that

(6.1) <?O...OM...O(»-*,)(P) = 0 for p € U C Λί» ,

1 < k < n, 1 <^ < σ, l<σ<N — 1, and that for some r, n + p+ l<r<n + N
the quadratic form

(6.2) Λrίj{p)tίtj for p e U

is positive (or negative) definite. Then every matrix | |y?n + i 0 > o | |, 1 < p < σ, is a
zero matrix.

If moreover

(6.3) ώ r s ( p ) = d e r ( p ) . e s ( p ) = 0 , p e t / ,

where n + l < r < n + σ, n + l < . s < n + N, then

(6.4) Jc(C7) C En+N~σ C £ w + i V .

We prove that Mn+i^ll is a zero matrix. The proof for the remaining
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matrices is the same up to notation. We assume that in (6.2) r = n + N.
From (6.1) it follows

(6.5) Cno...o(p) = Up, en+ι) = 0 for p e U ,

so that we can assume that the row

yfi.Ό) An + ltU, * * * J An + lfln

of L(p, en+ί) depends on the remaining rows. We can suppose that (6.6) repre-
sents a zero vector. Indeed, if not, then by a suitable change of coordinates in
the tangent space of x(U) at p e U, defined by

eι = oίi kfk ,

where \\aik\\ is an orthogonal matrix, we get, in consequence of (1.3),

Ωr = aτΛraθ ,

where Ωr denotes the one-column matrix \\fk'der\\, Ar = | |-4 r ί^||, and θ is the
one-column matrix ||/Λ dΛ||. Since a is arbitrary and Ar is symmetric, we can
achieve that aτAn+1a will be a diagonal matrix, and therefore by (6.5) we can
suppose that the numbers (6.6) are all zeroes.

From (6.1) it follows

(6.7) Cn_1Q...01(p) = 0 for p e ϋ .

The left-hand side of (6.7) is the sum of n determinants; and the &-th deter-
minant of the sum arises from L(p, en+1) if we replace its A:-th row by the same
row of L(p, en+N). Thus from the assumption that (6.6) is a zero vector it fol-
lows that (6.7) is the determinant L(p, en+1) whose first row (6.6) is replaced
by

(6.o) An+Nfίl, , An+N>ιn .

Since the assumption that (6.2) is positive definite implies that

(6.9) An+NΛί φ 0 ,

the row (6.8) cannot depend on the remaining n — 1 rows of L(p, en+1). Thus
by (6.7) we can assume that in the determinant L(p, en+1) the first two rows
represent zero vectors.

The left-hand side of the equation

(6.10) Cn_20...M(p) = 0 for peϋ

is the sum of (Tj determinants such that the determinant with the indices (/, k)
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arises from L(p, en+1) if we replace its j-th and / -th rows by the same rows of
L(p, en+N) with the same indices. Since the first two rows of L(p, en+1) are zero
vectors, except the determinant with the indices (1,2) each determinant of
(6.10) contains a row which represents a zero vector. As above, from (6.9)
and (6.10) it then follows that L(p, en+1) contains three rows which represent
zero vectors. This process terminates if from

(6.11) CIO...O.-I(P) = 0 ίorpeU

we obtain inductively that the last row of L(p, en+1) represents a zero vector.
This shows that An+1 is a zero matrix. Hence we have proved (see (1.3))

(6.12) ώίr = 0 for n + 1 < r < n + σ .

From (6.12) together with (6.3) we get er(p)'= const for p e U, n + 1 < r <
n + σ, and hence (6.4) follows.
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