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THE FRENET FRAME OF AN IMMERSION

M. ROCHOWSKI

Introduction

It is a known theorem of Jacobi that the indicatrix of the principal normal
of a curve in a Euclidean three-space E*® divides the unit sphere S into two
pieces of equal area. In this paper a generalization of this theorem is given in
the sense that the curve is replaced by a two-sphere S* imbedded in a Euclidean
4-space E*.

To define a principal normal of an immersion x: M* — E™*¥ of a manifold
M™ into a Euclidean space E**¥ we proceed as follows. If we take the bound-
ary of a small tubular neighborhood of a curve in the three-space and examine
the maximal value of the Gaussian curvature along a fiber over a fixed point of
the curve, then the point of the boundary of the tubular neighborhood, at which
the Gaussian curvature attains its maximal value, together with the fixed point
of the curve defines the principal normal of the curve. This construction can
be generalized to a manifold M® immersed in E**¥ by replacing the tubular
neighborhood by the normal bundle B, of the immersion and the Gauss curva-
ture by the Killing-Lipschitz curvature as defined in [2], and the invariant local
cross sections in B, thus obtained are called the Frenet frame of the immer-
sion x. These cross sections enable us to define in an obvious way also local
invariant cross sections in the tangent bundle B,. However we shall not need
them in this paper, and therefore their construction will be omitted. For n = 2,
N = 2 the construction of a Frenet frame in our sense was given by T. Otsuki
in [5].

The construction of a Frenet frame leads to the definition of new invariants
of the immersed manifold x(M™) called mixed curvatures, by means of which
we can generalize to closed even-dimensional manifolds the K. Borsuk’s theo-
rem [1] concerning the total curvature of a closed curve in a Euclidean n-space,
n>3.

Furthermore, we give another proof of a result of D. Ferus [4] concerning the
total curvature of a knotted sphere of codimension two imbedded in a Euclidean
space.

In this paper all manifods and mappings are supposed to be of class C*.

Received June 2, 1972, and, in revised form, September 16, 1973.



182 M. ROCHOWSKI
1. Preliminaries
Let
(1.1 x: M" — E**¥

be an immersion of a differentiable manifold M™ in E**¥. By F(M™) we denote
the family of orthonormal frames x(p)e, - - - e €., - - - €,,5, such that e,
1 <i < n, are tangent to the manifold x(M") at x(p) € x(M"), p e M™. In the
sequel we use the following convention concerning indices

1<ijk<n, n+1<rs,t<n+N, 1<A4,B,C<n+N.
In F(M™) the connection forms w,, w,5 are defined such that
(12) @, = 0 )

(1.3) Wiy = Z A,i50; , Ay = Arji s
J

dwiz Zwk/\wm,
(1.4) -
dw;;, = Z w;; N\ w0 + Zz: Wi N\ gy -
J
For details see [2].

2. The Killing-Lipschitz curvature

Let e denote a unit vector of the Euclidean space E**¥, which in the fol-
lowing is regarded also as a point on the unit sphere S**¥~!C E**¥. By B, —
M"™ we denote the normal bundle of the immersion (1.1) with the base space
M™ and the bundle space

Bv = {(p, e)|edX(p) = 0,1) € Mn,e e Sn+N—1} .
The manifold B, can be endowed with the Riemannian metric

2 2 2 2 2
ds* = (O + ct + @y, + Wyi1,m+ N + cet + Wy N-1,n+N >

so that

2.1 AVy.yoa =dV, N doy_,
is the measure density of this metric, where

2.2) dVeo=o, N\ -+ N\ o, ,

(23) do'N—l = (‘—I)N_lwn+1,n+N VANERERVAN WDy N-1,nN *
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The form (2.2) is the measure density of M™ induced by the immersion (1.1),
and the form (2.3) is the measure density of the fiber S¥~!(p) described by
en.n. Let v: B,— S**¥-! be the mapping (p, €) — e, (p, ) € B,. The measure
density do, , y_, of S"*¥~! induced by this mapping has the form

* _ +N-1
v d0'n+N-1 = (—1)" Wy, n 4N VANEICRRVAN Wp i N-1,n+N >

where the forms w;, .,y are defined by (1.3), and S**¥~! is described by e,, y.
Thus using (2.1) we have

2.4 Vi¥dog, vy = (=D det (An,n )8V an-1 -

The function L(p, e,,y) = (—1)" det (A,,y,:;) is the Killing-Lipschitz curva-
ture of B, at (p, e,,y) € B,; for this see Chern-Lashof [2].

With the aid of the concept of the Killing-Lipschitz curvature we shall con-
struct a Frenet frame of an immersion, namely, by &,,5(p) we denote such a
vector e, y for which and a fixed p e M"*, L(p, e, y) takes the maximal value.
If the vectors €,,y, € n-1> > € (P),n+ 2 <r < n+ N, are defined, then
&,_.(p) denotes such a vector e,y for which L(p,e,, ) attains its maximal
value, where e,, y(p) varies on the sphere S7~*"!(p) C S¥~(p) and is orthogo-
nal to the vectors &, y, « - -, €,. The uniqueness of this construction depends
on the immersion (1.1) and will be assumed throughout this paper.

3. The Frenet frame of an immersion
Suppose n > 2. By

(31) én+1(p), én-;-z(p)’ ° 'aén+N(p) ’ pe Uucm 3

we denote mutually orthonormal local cross sections in B, — M", where U
denotes a neighborhood of p in M™. Then

(32) e, = Z arsés 5

where ||a,,]|| is an orthogonal matrix. Thus

(33) Wip = Z arsWis
$
where @&;, = de;-&, = —e;-dé,. Substituting (3.3) in (2.4) we get
Opnany N\ Oy I\ 2o N Opnyy
1 1 . . .
(3.4) = Z azﬂrzv,nn e GZ’XN,M Z - ' o s1gn (11’ T ln)
Erteerthy=n (in, i) Ky ! ky!
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'CDil,n+1 VANERIRIVAN Cbikl,nn A\ Cbikl+1,7b+2 VANEERIVAN d)ik1+k,-n+2

ANRER: /\(DinﬂuN >

where 1 < i, <nn+1<s;,<n+N,k,>0,1<p<N,and (G, ---,1i,)
denotes a permutation of (1, - .-, n). We suppose that k, = O implies a2 y ..,
=1and a,,y,n,, = 0.

With the aid of (1.3) the expression (3.4) can be written in the form

L(p,en, y)dV, = (—1)" 2 aZiN,nH s amzv,mzv

kit thy=n

1 1 . . . . o
* - " Slgn (lla M) ln) det (An+1,z'1j; Tty An+1,ik1j’
(i1, i) Ky ! ky!

An+2,ik1+11’ B A”+2vik1+k21’ T A"+N""k1+~-~+k1v_1+1j’ Tt An+1V,inJ')an ’
where L(p, e,,y) denotes the Killing-Lipschitz curvature, and dV, is defined
by (2.2).

Remark 1. The functions A4,;; depends on p e M™ and on parameters «;;
defined by e; = }}; a;;€;, where &, - --, &, denote fixed orthonormal cross

sections in the tangent bundle B, of M™".
Definition 1. The function

Copt = (=1 3 L.
(3.5) (inyerin) Ky !

An+1,z’;¢lj> An+2,ik1+1j9 ) An+2,ik1+k2j’ T A‘n+N,'ik1+...+kN_1+lj’ Tt

. _1— Sign (iu Tty Z'n) det (An+1,ilj’ Tty
ky!

Anin,ind)

is called the mixed curvature of the type (k;, - - -, ky). The mixed curvature of
the type (0, -+ -,0,k%,,0,.--,0), k, = n, 1 < p < N, is the Killing-Lipschitz
curvature of B, — M".

Remark 2. The mixed curvature is a function defined in the principal
bundle B* of B,, i.e., the bundle over M, whose fiber over p € M" consists of
all orthonormal frames x(p)e,,, - - - e,, 5 of the space E¥(p) normal to x(M™")
at x(p) determined by the fiber S¥~*(p) of B,.

Let us denote

(3.6) @®B,=B,®---®DB,,
N

where @ on the right of (3.6) is the Whitney sum of bundles. The fiber of ®B,
over p € M™ is denoted by @S¥~'(p). We have the inclusion map

B} — @B, .

The function Cy,...;, (P, €., « - -, €, ) has a prolongation on @B, defined as
follows: for fixed é,,,,- -+, €,_,&,,1, , En,x- B+ 1<r<n+ N, Cy,...;x(D,
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Enity " 5 €p 1y €y €,pyy, 0, €., y) is given by (3.5) for every e, e SV (p).
This prolongation is denoted by the same symbol Cy,...;, (D, €x.15 * * 5 €4, x)-
We define a function on M* by

(37) j Ckl...k,v(p, en+1, M) en+N)(dGN_1)N b
DSN-1(p)
where (doy_)Y = do3y N\ -+ A do%™y, and
do';v-x = (—1)N_lwn+1,n+r VANERRIVAN Dpyr_1,n4r
N Onsritanr N 200 N Onyyngr -

From (2.3) it follows do%*Y = doy_,.

The function (3.7) is called the mixed curvature of M™ of the type (k,, - - -, ky)
induced by the immersion (1.1).

Let us take the polynomial
(3.8 P = 2 Crytn @i nnsr **° BN nsn

kit eect+ky=n

with coefficients ékl...kN = Crptiy(Dy €nyys -+ -5 €4, y) evaluated for the cross
sections (3.1).

To find necessary conditions for the polynomial (3.8) to attain its maximal
value at the point

(3.9 ApiNmnsr = *°° = AuiNneN-1 = 0, AniNn+N = 1
under the additional assumption
Q = a?z+N,7L+1 + -+ ai+N,n+N —1=0,

by equating to zero the partial derivatives of P + 10, where 1is a real num-
ber, with respect to a,,5,»,,, 1 < p < N, at the point (3.9) we obtain

(3-10N) éo---Ok,,O---On—l =0 ) kp =1, 1L 1Y <N-1.
Denote
(311) Gk1---k1v = CklkNan ’

where dV, is the form (2.2). Then with the use of (3.4) and (3.5), (3.10,) can
be written in the following form:

~

GO-nOpr'--On—l = Co--~0k,,o---0n-1an

1 ,
—(—1)" —————81g0 (I}, - -+, ) Dy, s
(=D <z‘1,~Z~;,z‘n> (n—1! en Wunss

(3.10%) N @ignsny N oo N Dipnin
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=(_1)nkZ_:1CD1,n+N/\ /\(Dk,n+p/\ tee /\(Dn,n+N=0’
1<p<N-1.

If in (3.10y) or (3.10%) we delete the wave line, which is significant for the
fixed cross sections (3.1), we get the sought for equations, which are satisfied
if the Killing-Lipschitz curvature L(p, e,, y) attains its maximal value at e,, y
= &,y for fixed p e M".

Applying succesively the above process, which leads to the vector €,, 5 de-
fined by (3.10%), and the definition of the Frenet frame formulated at the end
end of § 2 we get the system of equations

(3.103-,) kz_zlwl,nJrN—u VASEERIVAN D, n4p N s N Opiy-, =0,

0<o6<N—-2,1<p<N—o0— 1, for determining the vector &,,y_, if
€ninsr€nin_os 1 <0 < N — 2, have already been chosen. The vector
é,.,, 1s defined as a unit vector orthogonal to the vectors

€1y 0y €, €ni2 "5 €nuN

such that F,,, = x(p)e,- - -€,€,,,- - -€,,y is coherently oriented with E**¥.

4. The sphere-image of an imbedded manifold
Let

4.1) x:M" — En*?

be an imbedding of a closed manifold, and suppose that there exists a mani-
fold (M"*',aM"*') with boundary oM™*! = M", and the imbedding (4.1) is a
restriction of an immersion x: M**!— E**2. Then the principal bundle, associ-
ated with the normal bundle B, of the imbedding (4.1), and the normal bundle
itself are trivial. Therefore the Frenet frame, i.e., the vectors &€,,, and &,_,
can be defined on the whole of M”. In the following we consider only such
imbeddings (4.1) for which the vector &,,,(p), p € M" of the Frenet frame is
uniquely determined on the whole of M™.
Definition 2. The mapping

4.2) 8nyp: M s SPH

is called a sphere-mapping of the imbedding (4.1), and the set &,,,(M") the
sphere-image of M™.

In the following we suppose that (4.2) is also an imbedding. Thus S$**! is
divided into two regions D**! and D’**! with the common boundary &, ,,(M").
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The system (3.10%,_,) for N = 2 and ¢ = 1 takes the form
(43) (_1)nG1,n—1 = kZ—lwl’THZ VANERERVAN WDp,n 41 VANERVAN Wp,np2 = 0

and is satisfied for
@i nyy = d€;-&nyy Diynyy = de;- 8y, ,

where é,,,(p), €,,,(p) are the Frenet cross sections. Thus we have

(— l)ndGl,'n—l
= gk(_l)iwlmw N wee N Ogngs N\ @i N\ o0 N WDg,n 11
A oo A Onnss
t éc(_l)iwl,n+z VANEIIIVAN @ni1,m42 A @i, n 41 VANEERIVAN Dk, n 41
A oo A Onnss

-+ Z (——l)kwl,n+2 VANEEIRVAN [OF R VAN Wy j VANEIERVAN Wn,n 2
7k
+ Z (_‘1)kw1,7z+2 VANKRERVAN Dy y2,m 41 AN DE,n 42 VANIEIEERWAN Wy ony2

= (—=D"nw,n,, N\ Dynia N\ 0 N\ Onnys /\ Oppryngs
-2 Z<: Oniinsz N\ Ounga N\ 20 N Opngr N\ 200 N Opyngy
i<k
A oo A Onmsz -

With the use of the definition of the measure density of S**' and Definition 1
of the mixed curvatures the above formula can be rewritten in the form

4.4 ("1)"+1dG1,n_1 = nV*dann + 2G2.n_2 VAN d0'1 5

where do, = @100
Let the manifold M™ be the sphere S". Then the integral formula

(i) I ndo'm-l + 2\[ Gz,n—z Nds =0, n>2,
pr+1 pr+1

is valid, where D"*' C S**! is bounded by &, ,,(M™).
Proof of (i,). Let e, ée,, - - -, &,,, denote mutually orthogonal cross sections
in the tangent bundle of the sphere S**! over D**!. Then from Stokes’ theorem

and (4.4) it follows

4.5 (—1)n+lj G, = I ndo, ., + 2 Gy N 4Gy,
Eny2(M™) Dn+1

Dn+1

where the bar over the forms in (4.5) means that they are evaluated for the
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fixed cross sections. The cross sections can be defined, e.g., by a stereographic
projection of the orthogonal net of a Euclidean space E**! onto the sphere $**!
from a point g e D'"*' C §**! such that its antipodal g belongs to
Dn“\én”(M").

In E*** we introduce the spherical coordinates with the pole at the image of
g. By means of the stereographic projection this coordinate system defines an
orthogonal coordinate system in $***\{q’} with the exeptional point g. We de-
note the unit vectors tangent to the new coordinat curves in $*'\{g’} again by

(4.6) & 1<2<n+1,

an orthonormal base of the tangent space 1%, p € M", of the surface é,,,(M™)
C S+t by

(47) éla D) én )

and the unit normal at p e M” to the surface €, ,,(M"*) C $**! by é,,,.
We prove that the left-hand member of (4.5) vanishes if M™" is the sphere
S (n > 2). Since (4.2) is supposed to be an inbedding, we have

det (4,,,:;) # 0
for every p e M, or equivalently
4.8) gz A\ 20 N Bpyan 0.
From
d8p,, = @ni2,i€i + Gnigni1€ni

and (4.8) it follows that T7 spanned by the vectors (4.7) is transversal to &, ,,
for every p e M*. Thus the vectors é,,,, €,,, are in the same half-space of
the tangent space T7*" of $**! at &, ,,(p) defined by T%, so that we can sup-
pose that the plane spanned by é,, é,,, coincides with that spanned by é,,
€,,,- Then the formula

4.9) e, = é,sinat + é,,,cosat , 01,

where « = arc cos (é,,,-€,,,), defines a homotopy which joins é,,, with &,,,
such that e, remains transversal to T% for every ¢, 0 < ¢t < 1.
~ Since '

él = 0;:¢; + Uin11€ny1 s 1 S 27 7 S n + 1 H
it follows

(4.10) Diney = —a3day ., ; + Ai;Qn o1, Dy
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4.11)

. .
Winyr = Ai;:W0,n 40 -

By the use of (4.10) and (4.11) we get

I
M=

A
(_‘l)nGl,n-1 Wy, n 42 FANERERVAN Wg,m 41 VANKIEERVAN [OF %)
1

=
Il

3

4.12)

Dynge A\ 200 N Ay, N\ 2o N Dnnys
1

=
[

+
el
S

_

1,7 +2 /\ ctt /\ (bk,n-)-l /\ M /\ d’n,n+2 .

Let k, 1 < k < n, be a fixed integer, and suppose that the mutually orthogonal
cross sections (4.7) define a spherical coordinate net on M™ = S” such that the
equations

(4.13) By = * 00 = Qp_a2 = Diyrnez = 00 = Dyynyy = 0

defines a family of circles. Let us take a fixed circle $* defined by (4.13). On
S' we consider the linear form ay,(s)da,,, ,(s), where s denotes the parameter
on §'. In the coordinate system e, - - -, e,, €,,, we have

éx(8) = (@u(9), - - -, A, 0 1(5))

4.14) o
€rp1 = (an+1,1(s)a t an+1,n+1(s)) 5 en+1(s) - (Oa i ”05 1) )

so that
A (8)day .1,,(8) = —dag(s)ay,.,,(s) -
Since by (4.9) and the transversality of &,,, to T}, the mappings
bp i St —> S, Ep: ' St

have the same degree, we obtain, with the use of (4.14),

L CTNVORE j o 480,90, 1,9
(415) n+2(S1 n+2(St

- j s \(5) = 0,
&n+2(S1)

and therefore
I TR AN AN PR /¢ IO AN AN S,
nra(M™)
(4-16) = —tjd)l,nn VANRERIVAN d)k—l,n-l-Z A é’k+1.n+z ZANERIIVAN d’n,n+z

. I agda,,,,=0.
&n+2(S1)
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By repeating the cconstruction for k = 1,2, .-+, n, from (4.3), (4.12) and
(4.16) we have

4.17) I Giui1=0 for M» = S* .
Ensa(M™)

Let us set

¢, = b,e 1<ay<n+1,

arr o
where &, are the vectors (4.6). As in the previous case (see (4.10), (4.11) and
(4.12)) we get

(=G, 0y
(4.18)

3

= y d)l,n+2 VANEIIVAN bixdbn+1,1 VANEIIVAN d’n,n+2 + (—1)nal,n—1 .

i=1

Il

The vector field é,,, defined on é,,,(M™) and the vector field e,,, restricted
to €,.,(M™) are homotopic. Indeed, if we project S**! from g’ € D'"*! by a
stereographic projection s on E"*!, then soé&,,,(M") C E"*! is a topological
sphere such that s(D"*?) contains the origin s(q) of E"*!, 5,é,,, is a normal
vector field of the surface so é,,,(M"), and s.&,,, is a vector field, whose vec-
tors lie on straight lines passing through the origin of E”*!. Thus in both cases
the degrees of the mappings

Sebp i M*— S*, s, M*—S", M'=S§",

are equal to =+ 1. This implies that sé,,, and s,&,,, are homotopic, and there-
fore é,,,, €,,, are homotopic. In particular, é,,,, €,,, are homotopic on every
circle §* C M™ = S*, and therefore as in the case (4.15) we get

_[ bludbnn,x =0 ’

&n+2(S1)

which implies (see (4.16))

(4-19) Z d)l,’n-}-Z VANERENVAN bizdbn+1,x VANERRIVAN CA')n,n+z =0.

1=1J E&n+2(M™)

From (4.17), (4.18) and (4.19) we have
(4.20) j Gin.=0  for M» =5 .
Ena(m)

Let S* C s(D"*') denote a sphere with the center s(q) = 0 and small radius
e. The spherical coordinate system introduced in D"*!\ K»+!, where K»*! is the
inverse image of the ball contained in E**' and bounded by S7, is regular.
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Since g is an exceptional point of the spherical coordinate net in formula (4.5),
the left-hand member must be replaced by

4.21) f oy — f Grnes -
En+2(M™) aKp+1

By (4.20) the proof of (i,) is finished if we show that the second member of
(4.21) tends to zero with e tending to zero. For this purpose, in S**' we de-
fine spherical coordinates by the formulas

X, = COS ¢, ,
X, =sing, -+ - sing,_; cos g, , 2<2<n+1,
Xnyp = SiDg, «++ SN @, SN @y, .
Suppose that 0 as a point of E*** has coordinates (1,0, - - -, 0). Then ¢, = con-

st is the equation of aK?*!' = §"(¢,). Since e,,, = (x, - - -, X,,,), Where x, are
defined by the spherical coordinates, and

_ oOe,,, 1
€, = )
aSDn_x+2 d
where
e
d = _an_+2 2<i<n+1,
a¢n—x+z
we have
e, =(,...,—sin Pn 415 COS SDn+1) )
e, =(0,---,—sin ©Pn_142> COS Q3,2 COS Qp_;.35
© 05 COS Qp 428 Qp_jy,3 -+ - SID SDn+1) .
From
Byny = A8y 8pnyy Bypyy = d8; €, ,

it follows that

kz—:lal‘n+2 AR AN T ANV AN O
= (=D Pucos g, sin* ' g, - - - sin@do, A+ N\ don,,

and therefore that
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Gl,'ﬂ—l
_[aK?+1

= +ncos ¢ sin"“golf sin® g, -+ singudo, A\ -+ A dpg,, -

S7(¢p,)

If ¢ — 0, then ¢, — 0, and we get

lim Gini=0,

2170 ) s (p))

which completes the proof of (i,).
Remark 3. In the case n = 1, i.e., for closed curves x(C) in E3, (4.3) is
reduced to

w3 =0.

Thus we have dw,; = w,, /\ w,;, and the formula (4.5) for n = 1 takes the form
(4.22) f Wy = .[ Dyy N\ By = |D| s
&2(0) D

where &, is the principal normal, |D| is the area of the region D C S§? bounded
by &,(C) C §?, and the differential forms are evaluated in the spherical coordi-
nate system (9, ¢) defined by

X, =cos 9, X, =sindcosgp, x; = sin 9sin ¢

with the pole belonging to the interior of D. As in the case n > 2 the left-hand
member of (4.22) vanishes. On the circle 9 = const we have @, = dé,-&, =
—cos ddop, where

é, = (0, —sin ¢, cos ¢) , e; = (—sin 9, cos -9 cos ¢, cos I sin @) .

This together with (4.22) implies the known theorem of Jacobi: |D| = 2=.
As in Remark 3 a similar geometric interpretation of the formula (i,) is pos-
sible, namely, for n = 2 we have

(iz) J;:‘M N @y N\ @y + fﬂszS N oy N\ wy=0.

The form w;, N w, N s, is the measure density of $°, while @3 A\ @y A\ @5
gives an interpretation if e, varies in D? and the bar over the forms indicates
that they are evaluated in the spherical coordinate system of S* with the pole
q. Let

e,—e, e,—e, e—e, 6— —g

be the change of coordinates in the second member of (i,). If e, varies in D?,
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then &, varies in H*\G®, where H* is the half-sphere of $* with the line of sym-
metry qq’, and G® is the domain of S* bounded by &,(M?), where M? = S
Hence

I By /\ @3 N\ By = J Dy /\ By /\ @y
D3 H3\G3

is the measure of H?*\G?®, yielding our promised generalized theorem of Jacobi.
Theorem 1. If x: §* — E* is an imbedding such that &,: S* — S® is also an

imbedding, then the algebraic sum of the volumes of the domains on S°

bounded by €,(S*) and é, (S%) is equal to the measure of the half-sphere :

=D’ £ |G| = =",

the signes being chosen independently for each member.

5. A theorem of D. Ferus

In this section a generalization of Borsuk’s theorem [1] concerning the total
curvature of a closed curve in the Euclidean n-space, n > 3, is proved. Further-
more we give another proof of a result of D. Ferus [4] concerning the total
curvature of knotted spheres.

It is known that

(5.1 degree of v = y(M™) ,

where y(M™) denotes the Euler number of M", and v is defined in § 2; for the
proof of (5.1) see for instance [4]. The formula (5.1) together with the inter-
pretation of the Killing-Lipschitz curvature L(p, e), p € M", e € S**¥~!, as the
Jacobien determinant of the mapping » yields

(5.2) BL(p’ e)dV . xy_1 = Coyyf (M) ,
and (see [3])
|L(p, €)| an+N-1 2 Cn+N—1 Z bk ’
By k=0

where ¢, , y_, denotes the volume of the unit sphere S**¥~*, and b, is the k-th
Betti number of M.

The invariant L(p, &,) of the surface x(M"), where &, is the r-th vector of
the Frenet frame, is called the r-th curvature of x(M"). Our next purpose is
the calculation of the integral



194 M. ROCHOWSKI

I L(P, én+N)an .
Mn
Let us set e,, 5 = t,€,. Then using (2.4) we get

~ N
v¥doy, y_, = (—1)*det (t,4,;)dV, N\ Z_:I(“‘l)"_ltn+adtn+1 A v
A dtn+a—1 A dtn+a+1 VANEERIVAN dtn+N .
From the definition of the mixed curvatures it follows

L(p, en+N) = (_ l)n det (trgrij)

— k1 . kv O
- Z LRI tn+NCk1-..kN s
ki+eetky=n

(5.3)

where 0 < k, <n,1 < p < N. InSY! we introduce the spherical coordinates

tnyy = COSbnyy 5
ty,, =S8N0y, - sinly,, €080, , 2<p<N-1,

lyyny = sin Onsy * - sin Onin-ts

where 0 < 6,,, <wfor1 <p<N—2,and 0 < 0,,5_, < 27. We have

N
Z 177?4-1 te tfﬂzv Z_:l(—l)“"lt,,+adtn+1 VANEIRVAN dtﬂ+a—l

ki+e--+kn=n

AN dtn+a+1 VANRREIVAN dtn+N

(5.4 = > coskt@,,, sinftotEkN g, sinV=% 4, cost2 g,
kit ky=n

-sin®stotEv g sinV 3, ,, - - - cosPA1G, v SINFY O,y

'd0n+1 VANERRVAN d0n+N—1 .

The integration of the function L(p, e, y) with respect to 0,,,, 1 <p <N — 1,
is reduced by (5.3) and (5.4) to the integrals

(5.5) [lcost 0y, sinterrsknin-rg, do,,, . 1<p<N-2,

21
(5.6) ja COSH¥=1 0, , 3y SINY O vy s -

Thus we get the formula

@2n)~¥K for N even ,

5.7 IB,L(p’ nyn)AVy N doy_, = {2(N+1>/2;7;(N—1)/2K, for N odd ,

where
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k=D (ky — DHJ =
5.8 K = ( 1 N
©-9 k‘+'Z+kN=" n4+N-=—2!! Mnckl"'kNan P
ky, -+ -, ky are even integers or zero, k!! =1.3..... k for k odd, k!! =
2:4 ... k for k even, and (—1)!! = 1.
If in the sequence k,, - - -, ky at least one number is an odd integer, then at

least one of the integrals (5.5), (5.6) vanishes. Since k, 4+ - .- 4+ ky = n, the
integral (5.7) can be different from zero only for » even.

From (5.2) and (5.7) with the use of (5.8) we hence obtain a generalization
of Borsuk’s theorem.

Theorem 2. If the immersion x: M™ — E™"*¥ of an orientable even-dimen-
sional closed manifold is such that C kr-ky(P) < 0 for every p e M™ and ky + n,
then

j L(p, &y, )V, > coy(M?) .
Mn

Remark 4. If M~ C E**' C E**¥, then C;,....,(p) = O for every p e M*
and ky # n. In the next section we prove the converse statement.

Let M* = S*, and let x:S™— E**? be an imbedding such that x(S") C E***
is a knotted sphere. Then we have

Theorem 3 (D. Ferus). If x(S*) C E™** is a knotted sphere, then

(5.9) j L, &)|dV, A da, > dcn,, .

From (5.9) we see that the degree of the mapping v: B, — S**! is at least
four for almost every p € S”. Hence Theorem 3 follows from the following
lemma.

Lemma. Let x:S" — E™"*%, n > 2, be an imbedding with the property:
there exists a neighborhood U C S™*! such that for every e ¢ U the function
e-x(p), p € S*, has exactly two nondegenerate critical points. Then the imbed-
ding x is topologicaly equivalent to the standard inclusion S* C E*** C E"*2,

By a critical point of e-x(p) we mean a point p € S for which e-dx(p) =0,
and hence (p, e) € B,. A critical point is nondegenerate if e-d?x(p) is a non-
degenerate quadratic form or, equivalently,

L(p,e) #0 .

The formula (5.9) follows from the lemma by the remark that the number
of nondegenerate critical points for a sphere can change only by an even num-
ber.

Proof of the lemma. For the proof it suffices to construct an isotopy

08" —E™,  0<c<l1,
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such that ¢,(S") = x(S"), ¢,(S®) C E**'. Indeed, for an isotopy ¢, there exists
a diffeotopy (see [4])

¢ :En"'z_.) En+2
such that
oy =¢., 0<7<1, ¢ = identity on E***.

The construction of ¢.. Let p;, p, € S* denote the only nondegenerate crit-
ical points of e-x(p) for a fixed e € U. We assume that e = e,,,, x(p,) = (0,
-++,0,1) and therefore e-x(p,) = 1. Moreover we can assume that x(p,) =
©,---,0,—1) = —e,,,. Indeed, if x(p,) + —e,,,, then the vector

—(en,r + x(p))e =", 0<c<1,

defines a displacement 7', of the hyperplane x,,, = —c such that 7, leads x(p,)
into —e,,,, and all the T,, 0 < ¢ < 1, define in an obvious way a diffeotopy
of the imbedding x such that x remains unchanged for x,,,, > 0.

On S* the vector field grad e- x(p) is a nonzero field except at the points p,,
D,. Indeed, assume that for some p, ¢ S* different from p, and p, we have
grad e-x(p;) = 0. Then p, would be a critical point of e-x(p). But by Sard’s
theorem we can first suppose that e-x(p) has only nondegenerate critical points.
Then e-x(p) would have at least three nondegenerate critical points, contrary
to the assumption of the lemma.

It follows that the height function e-x(p) = e,,,-x(p) is monotonic on every
integral line of grad e-x(p), and therefore every hyperplane x,., =c, —1 <
¢ < 1, intersects x(S™) in a set which is diffeomorphic to the sphere S*~!. Sup-
pose that the tangent space of x(S”) at x(p,) is defined by the equations x,
=0, x,,, = 1. Then there exists a neighborhood V' C $" of p, such that the
imbedding x(p) = (x,(p), « - -5 Xn1(D), Xn (D)), p € S*, can be represented by
the functions

Xnp1 = g(xu v ‘,xn) s Xnypz = f(xn . ',xn) )

where (x,, - - -, x,) € V,, and ¥, denotes an open subset of the image of the
mapping p — (x,(p), - - -, X,(p)) for p e V, which contains (x,(p,), - - -, X,(P,)).
In particular, the projection of x(¥) into the subspace defined by x,,, = 0 is
a diffeomorphism at least for an open subset contained in V' and containing p,,
which we suppose to coincide with V. We deform the imbedding x by a dif-
feotopy which acts only on the coordinate x,,,(p) for p e VV in the following
manner. Let us assume that

a<x,,,p) <1 forpeV ,0<a<1,



FRENET FRAME OF AN IMMERSION 197

and define y» = (1 — a). Let &(z) be a real C* function such that

1 for —0 <z<1,
e(2) =
0 forl +9p<z< o,

and is decreasing for 1 < z < 1 + 7. Define
e(2) = e((1 — )z + oz + 29) , 0<z<1.

The formulas

p— (xl(p)9 ) Ef(xn+z(p))xn+1(p), -xn+2(p)) fOI' pe V

and p — x(p) for p e S*\V define a diffeotopy with the properties :
a) x,(p) = x(p) for every p € S,
b) x(p) for 1 — 5 < x,,, < 1 can be represented in the form

(5-10) xn+2 = f(xn ° "xn) ) xn+1 = 0 ’ f(O) = 1 ) fz(o) = 0 ’

where f;(0) denotes the i-th derivative of f evaluated at the origin. We suppose
also that the second derivatives f;; vanish at the origin for i #j,1 < i,j < n.
Thus we can assume that the imbedding x: S® — E"*? already allows a repre-
sentation (5.10) in a neighborhood of p,.

Since an integral curve

(xl(t)y ] x'n+1(t)9 -xn+2(t))

of the gradient field is such that x,,,(¢) is a monotone function, we can repre-
sent the curve in the form

(x1(xn+z); cy J_Cn+1(xn+2)s xn+2) .

For a fixed point p € S* of the integral curve regarded as a curve on S™ we
define the isotopy ¢, by the formulas

1 — x3..(p)

.11 x.(p,7) = mfca(n ),
I<a<n +1,0<<1,
(5.12) Xno(Ps7) = Xn@), 0L 1,
where
Fnsap, 1) = (1 — D)x00(P) + 7, —1 < x,,.(p) <1,

xa(P, 7) = xa()‘zn.yz(p, 7)), xa(xn«rz(p)) = xa(P) , 1<a<n+41.
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For x,,, = +1 we set respectively

x(p2>f):(03“'a0’1), 0£‘L‘<1,

(5.13)
x(pl,r)=(0,---,0,—1), OSTSI.

If1 — 9 <#%,,, <1, then the isotopy (5.11), (5.12) takes the form

i (G rov Y gy 1§ s P
(5.14) f( 1=, T, 1—x x")

n+2
= (1 - T)xn+2 + T,

where f denotes the function (5.10), and (x,, - - -, x,,) belongs to the image of
the mapping p — (x,(p), - - -, x,(p)), p € V,. We complete the formula (5.14)
for =1 by

(5.15) G ) =1,

n+2

where f;; denotes the second derivative of f with respect to x; evaluated at the
origin. Then the formula (5.13) is also valid for z = 1.

Since (5.15) is the equation of an ellipsoid, it follows that ¢,(p) = x(p, 1) is
an ellipsoid of E**! spanned by the vectors e, - - -, €,, €,,,. This proves the
lemma.

6. A property of the mixed curvatures

Let us suppose that
(6.1) Co..ot,0--0tm—1py (D) = O forpe U C M,

1<k<n1<p<o,1<e<N—1,andthatforsomer,n+p+1<r<n+N
the quadratic form

(6.2) A, (ptit; forpe U

is positive (or negative) definite. Then every matrix || A, niilh 1< p<Lo, isa
Zero matrix.
If moreover

(6.3) @,5(p) = dé.(p)-&(p) =0, peU,
wheren + 1 <r<n4+o,n+1<s<n-+ N, then
(6.4) x(U) C Er*N-c C E**V |

We prove that ||4,,, ;|| is a zero matrix. The proof for the remaining
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matrices is the same up to notation. We assume that in (6.2) r = n + N.
From (6.1) it follows

(6.5) CrooP) = L(p, 8,,) =0 forpeU,
so that we can assume that the row
(66) Jn+1,11a A} Jn+1,1n

of L(p, &,,,) depends on the remaining rows. We can suppose that (6.6) repre-
sents a zero vector. Indeed, if not, then by a suitable change of coordinates in
the tangent space of x(U) at p € U, defined by

e; = aufy
where | ;]| is an orthogonal matrix, we get, in consequence of (1.3),
02, =aTA,ab

where 2, denotes the one-column matrix ||f,-dé,|, 4, = || 4,:,|, and @ is the
one-column matrix | f,-dx||. Since « is arbitrary and A4, is symmetric, we can
achieve that a”4,,,« will be a diagonal matrix, and therefore by (6.5) we can
suppose that the numbers (6.6) are all zeroes.

From (6.1) it follows

(67) C~’n_m...ol(p) =0 for D€ U.

The left-hand side of (6.7) is the sum of »n determinants; and the k-th deter-
minant of the sum arises from L(p, é,,,) if we replace its k-th row by the same
row of L(p, &,, y). Thus from the assumption that (6.6) is a zero vector it fol-
lows that (6.7) is the determinant L(p, €,,,) whose first row (6.6) is replaced
by

~ ~

(68) An+N,11a R} An+N,1n .
Since the assumption that (6.2) is positive definite implies that
(6.9) Auvnss %0,

the row (6.8) cannot depend on the remaining n — 1 rows of L(p, €,,,). Thus
by (6.7) we can assume that in the determinant L(p, é,.,) the first two rows
represent zero vectors.

The left-hand side of the equation

(6'10) én_zo...og(p) =0 for De U

is the sum of (;) determinants such that the determinant with the indices (j, k)
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arises from L(p, é,,,) if we replace its j-th and k-th rows by the same rows of
L(p, é,, ) with the same indices. Since the first two rows of L(p, é,,,) are zero
vectors, except the determinant with the indices (1,2) each determinant of
(6.10) contains a row which represents a zero vector. As above, from (6.9)
and (6.10) it then follows that L(p, €,,,) contains three rows which represent
zero vectors. This process terminates if from

(6.11) Cina(p) =0 forpelU

we obtain inductively that the last row of L(p, €,,,) represents a zero vector.
This shows that A4, ., is a zero matrix. Hence we have proved (see (1.3))

(6.12) @5,y =0 fornt+1<r<n+o.

From (6.12) together with (6.3) we get €,(p) =constfor pe U, n+ 1 <r <
n 4+ o, and hence (6.4) follows.
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