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PROLONGATIONS AND COMPLETIONS OF
RIEMANNIAN MANIFOLDS

STEPHANIE ALEXANDER & RICHARD L. BISHOP

A Riemannian prolongation of a connected Riemannian manifold M is a
connected Riemannian manifold N of the same dimension, along with a proper
isometric imbedding of M in N. If N is complete, the prolongation is called a
Riemannian completion.

In the first section, we give some examples and formulate some obstructions
to prolongation at a point of the Cauchy boundary of M. The examples show
that there may not exist maximal subsets of the Cauchy boundary on which M
can be prolonged, and that M may admit a prolongation on its whole Cauchy
boundary whithout admitting a Riemannian completion. The main theorem of
§ 2 states that for any Riemannian manifold there is a nonprolongable metric
with the same Cauchy sequences in the class of conformally equivalent metrics.
In § 3, a theorem for conformally equivalent complete metrics is proved, which
gives a sufficient condition for the existence of Riemannian completions.

1. Prolongations

A Riemannian prolongation determines a metric prolongation of the under-
lying metric space, and a Riemannian completion determines, by the Hopf-
Rinow theorem, a metric completion. Specifically, by a metric prolongation
of a metric space M we mean a metric space N and a proper distance-nonin-
creasing injection of M in N, with N complete giving a metric completion. For
example, the Cauchy completion CM consists of equivalence classes under
asymptotism of Cauchy sequences in M, with the obvious metric and embedd-
ing. We denote by M the Cauchy boundary CM-M. A metric prolongation of
M to N is said to prolong on a subset S of M if the Cauchy sequences which
determine S converge in N. Note that we do not require the corresponding map
of § into N to be injective; indeed, for Riemannian prolongations the geome-
try of M may force identifications on M (see Example 1). S will be called a
prolongation set; the prolongation set of the prolongation will be the largest
such S.

From now on, prolongation will mean Riemannian prolongation. We can
make several simple observations. For a Riemannian manifold, CM need not
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be a topological manifold with boundary, even if M admits a prolongation at
each point of M (Examples 2, 3). However, it follows from the definition (by
arclength) of distance in M that any open d,-ball centered at a point of M
intersects M in a connected set, where d, denotes distance in CM. Since the
closure of a connected set is connected, this shows that CM is locally connect-
ed. As in the examples, M does not have to be locally connected. The prolon-
gation set of a prolongation of M is open in M. This is because if N prolongs
M at pe M, then N contains a compact dy-ball of some radius ¢ > 0 about
the image of p; points of M having CM-distance less than ¢ from p are
represented by d,-Cauchy sequences which fall in B and hence converge in N.

We mention some related papers. It has been observed by Bochner [1] and
Dubois [2] that the relation “N is a prolongation of M” is an inductive partial
ordering, and consequently there are maximal prolongations. A complete
Riemannian manifold is nonprolongable but the converse is not true, according
to examples due to Bochner. In the real analytic case, prolongations have been
studied under the name continuations. Specifically, Rinow [6] and Myers [4]
showed that a simply connected complete continuation is unique.

Some useful examples can be constructed from the Euclidean plane P with
the usual metric:

Example 1. Let M be the simply connected covering of the space obtained
by removing from P a closed segment of length 1. M is a chain of countably
many copies of the removed segment joined end to end, and M with the in-
duced metric is isometric to R. We choose an isometry ¢: R — M for which
the joining points of the chain are integers. If M is prolonged on ¢(I) for some
interval I, then I cannot contain more than one integer. For example, suppose
Oel. If xel and [x|< 1, then M is prolonged at ¢(—x) as well as at ¢(x) and
the two are identified, since in the prolonging space they both lie on the same
geodesic ray 7 starting at ¢(0). The prolongation cannot extend to either ¢(1)
or ¢(—1) because then it would extend to both, and y would have two distinct
geodesic extensions on different sheets above P. Thus the prolongation set of
any prolongation of M has the form: an open subset of R for which each com-
ponent includes at most one integer and for which any component including an
integer is symmetric about it. Conversely, M can be prolonged on any set of
this form. In particular, in this example the union of nested prolongation sets
is a prolongation set, so prolongation sets lie in maximal ones. However, we
see that even in the analytic case, the union of prolongation sets need not be
one again.

Example 2. Let [, for any nonzero integer k, be the closed segment in P
joining the origin to g(k) = (cos z/(2k), sin =/(2k)), and let [, be the closed
segment joining the origin to (1, 0). Choose a sequence {p;}(i = 1,2, ---)in P
converging to the origin, and such that p; lies in the open wedge bounded by
I; and [;,,. About each p; choose an open ball with closure in that open wedge.
Construct M from P by removing [/, and all the [, k = +1, +£2,-.-, and
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altering the metric within the small balls so that the curvatures at the p; di-
verge to oo. The latter can be done by a conformal change of metric which
decreases distances, but never by more than a factor of 1/2, as in Theorem 1
below.

If M’ denotes M with the point g corresponding to (1, 0) removed, then M
is a chain of double copies of the I, and is homeomorphic to R. M itself is
connected, but not locally connected at g, and is not compact.

Let S = M’—{q(i)|i > 0}. We claim that the prolongation sets which include
S are just the sets obtained from M’ by deleting any infinite subsequence
{q(i(n))}. To construct a prolongation of M on such a set, one must glue back
together the two copies of [; for each k not in {i(n)}. Then borders, disjoint
from M and each other, can be added to the wedges bounded by /;,, and
l;(n+1- On the other hand, if only finitely many g(i) are excluded, the reidenti-
fication of the two copies of the I; makes {p;} into a convergent sequence, which
is impossible. As a consequence, S is not contained in any maximal prolonga-
tion set.

Example 3. The same construction as in Example 2, except that {p,} is
chosen to converge to (c¢,0),0 < c¢ < 1, instead of to the origin. Then the
description of M remains unchanged. However, now M may be prolonged on
M, in particular by replacing [, and I, — {(c,0)}. M does not admit a
Riemannian completion, since a completion would replace the /; and all of /..

We can spell out some obstructions to prolonging M at a point p e M by
negating standard properties of the supposed prolongation N and stating these
properties in terms of M. In the routine examples which we are familiar with,
every point on which there is no prolongation possesses one of these obstruc-
tions. We think there are other obstructions independent of these. Moreover,
we would like to have obstructions to prolongation on a larger subset S C M.
(Note that Examples 1, 2 are prolongable on every point of M.)

Curvature obstructions. These are based on the fact that the sectional cur-
vature is a continuous function on the bundle of plane sections over N. Thus
we need a way way of deciding when a sequence of sections on M should con-
verge in N. However, the bundle of plane sections is provided with a natural
Riemannian metric for which the projection onto M is a Riemannian submer-
sion and the fibers are isometric to the Grassmannian symmetric space. The
horizontal lifts of curves in M with respect to the submersion structure are
simply the parallel translates of plane sections along the curves. By using this
parallel translation along a curve converging to a point of M the Cauchy com-
pletion of the bundle becomes a bundle over CM. With these remarks the fol-
lowing becomes sensible and obvious.

Proposition 1. (a) Let {n;} be a Cauchy sequence of plane sections of M
with base sequence convergent to p e M. If lim K(z;) does not exist, then there
is no prolongation on p.

(b) If there is any sequence of plane sections {x;} with base sequence
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convergent to p e M and K(z;) unbounded, then there is no prolongation on p.
Convexity obstructions. A prolongation N contains convex spherical neigh-
borhoods centered at p. This immediately gives us the following.
Proposition 2. If in every spherical neighborhood in CM with center p e M
there are pairs of points in M which are connected by more than one geodesic

segment in that neighborhood, then there is no prolongation on p.

Solid angle obstructions. A small sphere in N centered at p has a
Riemannian volume which approximates the volume of a sphere of the same
radius in Euclidean space. Let S,(p) = {g € M| there is a geodesic segment of
length r from g to p}. For sufficiently small r this must be a subset of the sphere
of radius r and center p in N. Let d = dimension M, and 2,_, = the (d — 1)-
dimensional measure of a unit sphere in E¢.

Proposition 3. Under either of the following conditions there is no prolong-
ation on pe M.

(@) For sufficiently small r, S,(p) has (d — 1)-dimensional measure p(S,(p))
which satisfies

lim (S, 0D /1™ > Qs
(b) For sufficiently small r, S,(p) is diffeomorphic to a (d — 1)-sphere and
tim (S,(p) /1™ < Q4

Examples. A cone, for which M consists of only the vertex, exhibits the
convexity obstruction and the solid angle obstruction (b). Any proper covering
space of the punctured plane has a single boundary point which illustrates the
solid angle obstruction (a). The metric x(dx? + dy*) on the half-plane x > 0
has all three kinds of obstructions at its single boundary point.

2. Nonprolongable metrics

The following lemmas examine the effect of certain conformal changes in a
metric. The results are local, so we must understand them as applying only to
a sufficiently small neighborhood of p,.

Lemma 1. Let M be a Riemannian manifold with metric {, >, p,e M,
r: M — R the distance from p,. Let ¢: R — R be a positive C* function. Then
the geodesics through p, are also pregeodesics for the metric o(r)< , >.

Proof. Except for tangent vectors at p,, we can decompose a tangent vector
into its components in the direction of the geodesic from p,, the radial compo-
nent, and the orthogonal complement, the normal component. Since the new
metric is conformal to the old, this decomposition is the same with respect to
either (always using the geodesics of the old metric). We shall show that radial
geodesics have the length-minimizing property for the new metric.

If y is a curve from p, to p, then the old length of the radial component 7,
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of ¢’ is simply the rate of change of r along y. Thus for the new length of y we
have (parametrizingon 0 < ¢t < 1)

f (o PGONG @, 7O dt > f (PG, 7.0 dr

= [ oGy

7(p)
dr(zi’ft))‘dt > \of ga(rz)‘/zdr .

But the last integral is the new length of the radial geodesic.

Corollary. Under the same hypothesis the spheres about p, are the same for
either metric. If P is a plane tangent at p,, then the circle of radius r tangent
to P is the curve with parameter 6: exp r(x cos 6 + y sin 0), where (x,y) is an
orthonormal basis of P. These circles are the same with respect to either metric
(although their radii will be different).

Lemma 2. Besides the hypothesis of Lemma 1 we assume that

P =1 — ct + o(®) .

If K(p) is the sectional curvature of the plane section P at p, with respect to
the old metric, then the sectional curvature of P with respect to the new metric
is K(P) + 4c.

Proof. We use the fact that the circle of radius r tangent to P has circum-
ference

L(r) = 2z(r — K(P)r*/6 + o(r*)) .

Let s: M — R be the new distance from p,. Then
s = f o) dt = f (= ¢t + o()dt = r — cr*]3 + o(F) .
0 0

Hence
r=s+4cr*/3 + o) =5 + ¢s*/3 + o(s’) .

Let 'L(s) be the new length of the circle of new radius s tangent to P. Since
the multiplier ¢(r*) is constant along this circle, the circumferences are related

by

'L(s) = o(r)"*L(r) = (1 — cr* + o(r")2z(r — K(P)r*|6 + o(r*))
= 2zn(r — [K(P) + 6clr*/6 + o(r')
= 2a(s + cs*/3 — [K(P) + 6¢]s*/6 + o(s*)
= 2z(s — [K(P) + 4cls’/6 + o(s)) .
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Corollary. Given a Riemannian manifold M, pye M, ¢ > 0, ¢ > 0, then
there is a conformally equivalent metric such that

(a) the new metric coincides with the old one outside of an e-ball about p,,

(b) the sectional curvatures at p, are increased by 4c, and

(c) new distances are no greater than old ones and at least one-half as great
as old ones.

Proof. Take ¢ above so that 1/4 < ¢(f) < 1 and ¢() = 1 when ¢ > &%

Nomizu and Ozeki [5] have proved that for every metric on a noncompact
manifold there is a conformally equivalent complete (hence nonprolongable)
metric and also there is a conformally equivalent bounded metric. We show
that nonprolongability can be obtained without changing CM ; part (b) of the
theorem then follows from part (a) and the latter result of Nomizu and Ozeki.

Theorem 1. Let M be a noncompact Riemannian manifold with metric g.

(@) There is a conformally equivalent nonprolongable metric such that
Cauchy sequences are the same for both metrics.

(b) There is a bounded conformally equivalent nonprolongable metric.

Proof. By using the fact that M has a countable dense subset and can be
represented as a countable union of compact subsets, it is possible to construct
a sequence {p(n)} such that

(1) there are no convergent subsequences and

(2) given a divergent Cauchy sequence {g,} there is a subsequence {p(k(n))}
which is asymptotic to {g,}.

Let c, be a sequence of positive numbers which diverges to o, and choose
a sequence of C~ functions ¢,: R — (1/4, 1] so that

(3) if all sectional curvatures at p(n) are < —2c,, then ¢, = 1;

(4) if some sectional curvature at p(n) is > —2c,, then ¢, ()" =
1 —c,t + o(®) and ¢,(f) = 1 for t > ¢}, where ¢, is a radius of a normal ball
about p(n) which does not meet the ¢,-ball about p(k) for k < n. Let r, =

distance from p(n). Then ¢ = ﬁ @,(r2) is a C> function: M — (1/4, 1].
n=1

The metric ¢g satisfies (a): because (1/4)g < pg < g, they have the same
Cauchy sequences; any divergent Cauchy sequence satisfies Proposition 1 (b)
for the metric ¢g.

3. Riemannian completions

A subset C of a Riemannian manifold M will be called extrinsically complete
if the extrinsic distance function d,|C X C is complete, that is, if all dy-
Cauchy sequences in C converge in C. Thus extrinsically complete implies
closed, and is equivalent to closed if M is complete. A subset is compact if and
only if it is extrinsically complete and bounded.

An arcwise connected subset C of M also has an intrinsic distance function
d¢, where dg(p, g) is the infimum of lengths of curves in C joining p and gq.
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Since the extrinsic distance function nowhere exceeds the intrinsic one, extrin-
sic completeness implies intrinsic completeness.

Morrow [3] has generalized the Nomizu-Ozeki completeness theorem by
showing that the conformal alterations may be restricted to the complement of
any compact subset C. We show they may be restricted to the complement of
any extrinsically complete C. Of course, C intrinsically complete would not do
here. For example, on a flat torus take C to be a dense geodesic and obtain M
by removing one point not on C; then the only metric on M which agrees with
the original on C is the original, which is not complete.

Theorem 2. If C is extrinsically complete in M, then M admits a confor-
mally equivalent complete metric agreeing with the original on C.

Proof. Let B(p,a) denote the closed ball of radius a at p. If the metric g
on M is not already complete, M carries the positive continuous function
r given by r(p) = sup{a|B(p,a) is compact}. Then the subset K =

Cul U B(g,ir(@)], whose interior contains C, is itself extrinsically com-
q€BdryC

plete. In fact, suppose there is a Cauchy sequence {p;} in K but not converging
there. Since {p;} can have no subsequence in C, each p, may be assumed to lie
in some B(g;, 1r(g;)). Then we have r(p;) > 1r(g;) and r(p;) — 0, hence also
r(g;) — 0. This makes {p;} asymptotic to {g;} which lies in C, and gives a con-
tradiction.

Now we may take f > 1 to be a smooth function on M — C such that fg is
complete on each component of M — C. Let K’ be a closed subset such that
C C interior K’ and K’ C interior K. Then there is a smooth partition of unity
{h,, h,} subordinate to the covering of M by {interior K, M — K’}. Let d be the
distance function for the metric g on M and ’d the distance function for the
metric (A, + h,f)’g.

A ’d-Cauchy sequence is also a d-Cauchy sequence, since s, + h,f > 1. Thus
any ’d-sequence having infinitely many points in K converges in K. If a
‘d-sequence {p;} in M — K does not eventually lie in a single component of
M — K, then we may assume that p; and p,,, always lie in different components
(by passing to a subsequence). Any curve from p, to p;,, passes through K, so
taking a curve which is shorter than 2’d(p;, p;,,) gives a point g, in K such
that 'd(p;, q;) <2'd(p;, p;,,). Then {g;} is a sequence 'd-asymptotic to {p,} and
both converge.

Now suppose {p;} lies in a single component M, of M — K which in turn is
contained in a component M, of M — C. Note that A, = 0 on M,, so that on
M,, (h,+ h,f)*g coincides with the metric fig. If the ‘d(p;, p;,,) can be approx-
imated by lengths of curves which lie in M,, then {p;} converges by the com-
pleteness of f’g on M,. Otherwise curves whose lengths approximate ‘d(p;, p;,,)
must run out of M, into K and we get an asymptotic sequence in K as above.

Call an extrinsic prolongation of M a prolongation of M to N for which all
dy-Cauchy sequences in M converge in N. This is in particular a prolongation
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on M. Since for an extrinsic prolongation the closure of M in N is extrinsically
complete in N, we immediately have:

Corollary. If a Riemannian manifold has an extrinsic prolongation, it has
a Riemannian completion.
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