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GEOMETRY OF MANIFOLDS WITH
STRUCTURAL GROUP #(n) x 0(s)

D. E. BLAIR

K. Yano [12], [13] has introduced the notion of an f-structure on a C* mani-
fold M***¢, i.e., a tensor field f of type (1, 1) and rank 2# satisfying f* + f =0,
the existence of which is equivalent to a reduction of the structural group of
the tangent bundle to #(n) X O(s). Almost complex (s = 0) and almost contact
(s = 1) structures are well-known examples of f-structures. An f-structure with
s = 2 has arisen in the study of hypersurfaces in almost contact spaces [3];
this structure has been studied further by S. I. Goldberg and K. Yano [4].

The purpose of the present paper is to introduce for manifolds with an f-
structure the analogue of the Kaehler structure in the almost complex case and
of the quasi-Sasakian structure [2] in the almost contact case, and to begin the
study of the geometry of manifolds with such a structure. In § 1 we introduce
the Kaehler anologue and its geometry and in §2 we study f-sectional curva-
ture. §3 discusses principal toroidal bundles and §4 generalizes the Hopf-
fibration to give a canonical example of a manifold with an f-structure playing
the role of complex projective space in Kaehler geometry and the odd-dimen-
sional sphere in Sasakian geometry.

1. Let M**s be a manifold with an f-structure of rank 2n. If there exists

on M**s vector fields &,,x = 1, - - -, s such that if 5, are dual 1-forms, then
7:(&,) = 04y >
(*) f6. =0, 9,0f=0,

fz = -1 + Z§x®7]z 5
we say that the f-structure has complemented frames. 1f M*"*$ has an f-structure

with complemented frames, then there exists on M***¢ a Riemannian metric g
such that

8X,Y) = g(f X, fY) + X 7.(X)n,(Y) ,

where X, Y are vector fields on M?**¢ [13], and we say M***¢ has a metric f-
structure. Define the fundamental 2-form F by

F(X,Y) = gX,fY) .
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Further we say an f-structure is normal if it has complemented frames and

where [f, f] is the Nijenhuis torsion of f [9]. Finally a metric f-structure which
is normal and has closed fundamental 2-form will be called a o -structure and
M*+s a A "-manifold,

It should be noted that since p A -+ Ay AF" % 0, a X -manifold is
orientable.

Two cases will be of special interest.

1) Let M***¢ be a Riemannian manifold with global linearly independent
1-forms #,, - - -, 5, such that dp, = ... = dy, and

m/A s A A (dyy)" # 0.

Let (m) = {X e M2+, me M*™**|9,(X) =0,x =1, ..., s}; then & deter-
mines a distribution which together with its complement reduces the structural
group to 0(2n) X O(s). Now if &, .., & are vector fields dual to 5, - - -, 7,
and X, - - -, X,, linearly independent vector fields in £, then

(771 VANKIERWAN s AN (dﬂz)n)(gla R 53, X17 tt XZn)
= (dvx)n(Xl’ ] in) #+0
giving % a symplectic structure. Thus the structural group can be reduced to
%(n) X 0(s) and M*** has a metric f-structure with complemented frames 7,

.-, 7, and fundamental 2-form F = dy,. If this structure is a ¢ -structure,
we will call it an &-structure.

2) Let M*** be a manifold with a X -structure with »,, - - -, », denoting
the complemented frames. If dy, = 0,x = 1, - - -, s, we call it a @-structure.
Theorem 1.1. On a A -manifold the vector fields &,, - - -, &, are Killing.

Proof. Denoting Lie differentiation by % we

(& (X, Y) =§6FX,Y) — F(&, X1,Y) — F(X, [, Y]
= (Z. 09X, 1Y),

where we have used the fact that &, f = 0 (see [9]). But £, F = di. F +
i, dF = 0 since (i, F)X = F(§,, X) = 0. On the other hand,

(2,0, 7,(Y)E,) = &,(Y)n, (X)) — 9,(¥)n,([£2, XD)
— ,(NgX, [&,, §,D) — £:(9,(¥))n,(X)
= 9,(Y)&,(X) — 1,(Y)n,([§2, X])
—9,(Y)eX, [¢,,6,D) =0,
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since £, n, = 0 and &, &, = O (see [9]). Therefore

but f + 3] &, ® 7, is non-singular, hence ¥, g = 0.

Lemma 1.2. On a X -manifold dyn (X, Y)= —2( vy, )(X) where I denotes
covariant differentiation with respect to the Riemannian connexion. In the case
of an S-structure

Vyé, = —3fY,
and in the case of a €-structure
Vysx - O .

Proof. dp,(X,Y) = 7xn)(Y) — (Fyp)X) = —2(Fy7,)(X) since 7, is
Killing. In the case of an #-structure we have F = dy, and hence g(X, fY) =
—2g(X,Vy€,), whereas in the case of a %-structure 0 = dy,(X,Y) =

We now discuss the meaning of V' F for 2 -structures.

Proposition 1.3. On a 2 "-manifold

V)Y, Z) = § 3 (0(Y)dn,(1Z, X) + 1,(Z)dn,(X,fY)) .

The proof is a very lengthy computation but similar to that given by Sasaki
and Hatakeyama [10] for a Sasakian manifold.
Proposition 1.4. On an &-manifold

WxF)Y,Z) =} Y (7.(N8X, Z) — .(2)g(X,Y))
— 1 3 9, X)), (Z) — 0(Z)p,(Y)) .

Proof. In thiscase F = dy,,x =1, - - -, s, hence Proposition 1.3 becomes

V)Y, Z) = § 3 (0.(Y)e(Z, fX) — 9,(2)8(f X, {Y))
7 2 0 (NeX, Z) — 9,(Y) T 7,(X)7,(2))

— 32 (D)X, Y) — 7,(2) %} 7,(X),(Y)) ,

which except for arrangement of terms is the desired formula.

Theorem 1.5. A A -structure is a €-structure if and only if 'F = 0.

Proof. FF = 0 implies [f, f{] = 0 and hence by normality ), dy, (X, Y)&,
=0, but &, ---, &, arelinearly independent therefore dp, = 0,x =1, ---,s
giving us a ¥-structure. Conversely if dy, = 0,x = 1, - - -, 5, then by Proposi-
tion 1.3 it is clear that V'F = 0.

Let .# denote the distribution determined by —f* and .# the complement
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distribution; .# is determined by f* + I and spanned by &, ---,§,. Let p =
2f* 4 I be the difference of the projection maps f* + I and —f.

Theorem 1.6. A %-manifold M***¢ is a locally decomposable Riemannian
manifold which is locally the product of a Kaehler manifold M and an Abelian
Lie group M.

Proof. Vyf = 0 implies V' yf* = 0 and hence Vyp = 0 which is the con-
dition for M**+5 to be locally decomposable [14, p. 221] and in turn locally the
product of Riemannian manifolds M?* and M;. Now restricting f, g to M}" and
again denoting them by f, g we have f2 = —I and g(fX, fY) = g(X, Y). Further
since V yf = 0 we have [f, f] =0, and from dF =0 on M**** we have on Mi",
dF = 0, F* #+ 0 where F also denotes the fundamental 2-form on M:3*. Thus
M;3* is Kaehlerian.

To show that Mj; is an Abelian Lie group we show that M*"*¢ is locally the
product of M3}* and s 1-dimensional manifolds. The integrability condition for
such a structure is # = 0 [11] where in our case

h =133 (& Q9)E R, & Q9.1 — #fIF F1.
Since [f?, /] = 0, from F 4f* = O we have

MX,Y) =% 3 0.00.(X, YDE, + [9.(X)&,, n(Y)E,]
— 0:([9(X)&E,, YDE, — 7.([X, 9. (Y)E,DEDE, .

Now if X, Y ¢ #, then [X, Y] e Z since the distribution .# determined by — f?
is integrable, and it is easy to see that A(X,Y) = 0. If X, Y e .# it suffices to
take X = §,,Y = &, since &, ---, &, can be taken as part of a basis, but
[§,,&.]1 = 0 and A(§,, &,) = O follow easily. Finally if X = &, and Y e &, we
have

but from the coboundary formula dy, (X, Y) = X7,(Y) — Yy, (X) — »([X, Y])
we have 7,([¢,, Y]) = 0; hence A(§,,Y) = 0.

Theorems 1.5,1.6 should be compared with the corresponding results for
for cosymplectic manifolds (s = 1) [2].

We close this section with some results on the curvature of .#-manifolds.

Theorem 1.7. In both the &-structure and %-structure cases the distri-
bution A is flat, i.e., all sectional curvatures K(X,Y) for sections spanned by
X,Y e A vanish. In the &-structure case sectional curvatures K(X,Y) with
XeZ,Y =§&, have value 1/4. In the ¥-structure case sectional curvatures
with X e Z,Y e A vanish.

Proof. In the &-structure case using Lemma 1.2 and % ¢, = 0 we have
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R .x&y =Viepxi6y + ViV 6y — Ve V5§,
= —3fl&,, X1 + 7, X
X, Xe?,

12y _
= X = 0,Xed,
from which the results for this case follow. For the #-structure case, Vy£,=0
for every Y gives R, x§, = 0 immediately.

Corollary 1.8. A @-manifold M**5, s > 2, of constant curvature is locally
flat.

Corollary 1.9. There are no #-manifolds M*"*¢, s > 2 of constant curva-
ture of strictly positive curvature.

These results should be compared with those in the cases of s = 0,5 = 1
(see e.g. [1],[2], [5]).

2. A plane section is called an f-section if it is determined by a vector
X e £(m), me M*** such that {X, fX} is an orthonormal pair spanning the
section. The sectional curvature K(X,fX), denoted H(X), is called an f-
sectional curvature.

Define a tensor P of type (0, 4) as follows (cf. [8]):

— F(Y,2)g(X, W) + F(Y,W)(X,Z) .

The following properties of P follow directly from the definition.

Lemma 2.1. a) PX,Y;Z, W)= —P(Z,W;X,Y). b) Let {X,Y}, X,
Y ¢ &, be an orthonormal pair, and set g(X,fY) = cosd, 0 < § < n. Then
P(X,Y; X,fY) = —sin®4.

Lemma 2.2. On an &-manifold M***3,

ha) 8RyxyZ, fW) + 8RxyfZ, W) = (s/DP(X,Y; Z, W) + Q(X, Y, Z, W),
where

QX,Y; Z, W) = 18(W,Y)(s 23 7.(X)n(Z) — g 7:(Z)n, (X))
— 18, fX)(s 30 7.(Y)n.(2) - ny 7:(Z)1,(Y))
— $8(Z, fY)(s 20 7o(X)n(W) — g 7:(W)n, (X))
+ 18(Z, 1X)(s 33 7.(Y)n.(W) — wa 7.(W)p,(Y)) .

Also if X, Y, Z We %, then Q(X,Y; Z,W) = 0 and
b) g(RfoYfZ7 W) = gRyvyZ, W),
c) g(RXfXY9 fY) = g(Ryv X, Y) + g(RXfYnyY) + (5/2)P(X, Y; X, fY),
d) g(RjXYfXa Y) = g(RXfYXa fY).
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Proof. A direct computation shows that
VixpiF + ViV xF —ViVyF)XZ, W) = —gRxyZ, fW) — gRxyfZ, W) .

On the other hand using Proposition 1.4 and Lemma 1.2 to compute this we
obtain a). Using a) twice and equations () we obtain b). Writing g(Ry;5Y,fY)
= —g(RxyfY,X) — g(Ry;vX,Y) ¢ follows from a) and Lemma 2.1. Finally
applying a) twice and the definition of P we get d).

Lemma 2.3. On a ¢-manifold a) g(RyvZ, fW) + g(RyvfZ, W) = 0. Also
ifX,Y,Z,WeZ%, then b) 8RsxvIZ, W) = gRxvZ, W), c) 8Rx;xY,fY)
=8Rxy X, Y)+8(Ry ;v X, fY), d) 8R;xvfX,Y)=8(Ryx;vX, fY).

Proof. The proof is similar to that of Lemma 2.2 but in the case of a) is

much easier due to Theorem 1.5
Lemma 2.4. LetB(X,Y)=gRyyX,Y) and for X ¢ ¥, D(X) = B(X, fX).
On an &-manifold for X,Y ¢ ¥ we have

B(X,Y) = 3_12[30()( + 1Y) +3D(X — fY) — DX + Y) — DX — Y)
_ 4D(X) — 4D(Y) — 6sP(X, Y; X, {X)] .

On a €-manifold for X,Y ¢ ¥ we have

B(X,Y) = %[30(}( 1Y) +3D(X —fY) —D(X + Y) — D(X — Y)
— 4D(X) — 4D(Y)] .

Proof. A direct expansion gives

315[3D(X + 1Y) + 3D(X — fY) — DX + Y) — D(X — Y)
— 4D(X) — 4D(Y) — 6sP(X,Y; X, fY)]
- T12[6g(Rnx, Y) + 68(R,x 1fX, fY) + 88(Ry;x Y, fY)
+ 128((RyyfX, fY) — 28(Ry 1 X, fY) — 28(R,5vX, Y)
+ 4g(Ry4fX, ¥) — 65P(X, Y5 X, [Y)] .
Applying Lemma 2.2 this becomes
31—2[6g(Rnx, Y) + 68(RxrX, Y) + 8g(Ryr X, Y) + 88(Ry v X, fY)

+ 4sP(X, Y ; X, fY) + 12g(R4x+X,Y) + 3sP(X,Y; X, 1Y)
— 2g(RXfYX,fY) — Zg(RXfYXafY) — 4g(RXfYXs fY)
+ sP(X,fY; X,Y) — 6sP(X,Y; X, fY)]

=gRyyX,Y) .
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The proof in the case of a ¥-manifold is similar by using Lemma 2.3.

If now {X, Y} is an orthonormal pair in ¥ and g(X, fY) =co0s0,0< 6 < x,
then K(X, Y) = B(X, Y) and, by straightforward computation, D(X) =
H(X), D(Y) = HY), D(X + fY) = 4(1 + cos )*'H(X + fY),D(X — fY) =
4(1 —cos O)*H(X — 1Y), D(X+Y) =4HX +Y),D(X—-Y) = 4H(X —Y).
Using Lemma 2.1, Lemma 2.4 now becomes

Proposition 2.5. On an &-manifold for an orthonormal pair {X,Y} in &
we have

KX,Y) = %[3(1 + cos ’H(X + fY) + 3(1 — cos §)*H(X — fY)

_H(X + Y) — HX — Y) — H(X) — H(Y) + % sin? 0] .

In the case of a €-manifold the formula is the same except that the last term is
not present.

Theorem 2.6. The f-sectional curvatures determine the curvature of an &-
manifold or a ¥-manifold completely.

Proof. 1In addition to Theorem 1.7 some other curvature formulas are
needed. It follows easily from Theorem 1.7 that in both cases R, . X = O for
all X. In the #-manifold case, if X ¢ % is a unit vector then g(Ry, X, &,) =
g(R; x&,,X) = 1/4 andhence Ry, X = (1/4) 2, &, + Y, Y e Z; but

gRy.. X,Y) = —g(RyyfX, £,)
= g(RyyfX, f&,) — %P(X, Y; (X, &)

so that Ry, X = (1/4) 3] &,. In the ¥-manifold case Ry, X is easily checked.

Now let {X, Y} be orthonormal pair, and write X = aZ + Y] 5,(X)&,
Y = bW + 3 .(Y)§, where a* + 3 9,(X)*=1,b" + 3 5, (Y)) =1 and
Z, W are unit vectors in %. Then after using the above curvature formulas
the lengthy expansion of K(X,Y) = g(RxyX, Y) yields

K(X,Y) = ’fT(z 707, (0) + —‘Hz 2:7,(Y))

T,y
+ %(z m(X)ayy(Y)) (X 7.07.(Y)
+ (@b — (5 9l X (Y)IK(Z, W)
in the #-manifold case and

KX, Y) = (ab® — (1 9:(X)9.(Y))KZ, W)
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in the %-manifold case. K(Z, W) is known however by Proposition 2.5, and
the proof is complete.

The above development should be compared to that in the Kaehler case [1]
and the Sasakian case [8].

We now give a number of geometric results which are consequences of
Proposition 2.5.

Theorem 2.7. The sectional curvatures K(X,Y),X,Y ¢ &, on an f-mani-
fold of constant f-sectional curvature ¢ < s|4 satisfy

1( 3s>
<KX, V)< —|c+ —/—
c < K( ) 1 + 1

with the lower limit attained for an f-section. If ¢ > s/4,

1 ( 3s )
— )< KX, Y)<c
4 + 4 ) (
with the upper limit attained for an f-section. If ¢ = s[4, K(X,Y) = c.
Proof. Proposition 2.5 gives

1

K(X.Y) = <c(1 + 3costd) + % sin’ 0)

((c + —345) + 3(c - %)coszz?).

One need only find the maximum and minimum of this with respect to # and
note that for an f-section # = r to obtain the result.

Corollary 2.8. A Sasakian manifold (s = 1) with constant f-sectional curva-
ture equal to 1/4 has constant curvature.

Proof. By the theorem s =1,c=1/4 gives K(X,Y)=1/4 for X,Y e &Z.
Now for any orthonormal pair {X, Y} the proof of Theorem 2.6 yields

NN

K(X,Y) = %m(X)z + %r;m? + (1 — (X — (VIKEZ, W),

Z,We, and hence K(X,Y) = 1/4 since K(Z, W) = 1/4,

Theorem 2.9. The sectional curvatures K(X,Y),X,Y ¢ &, on a €-mani-
fold of constant f-sectional curvature c are (1/4)-pinched thatis c[4 < K(X, Y)
<cforc>0and c < K(X,Y) < c/4 for ¢ <O0. For ¢ = 0, the manifold is
locally flat (cf. Corollary 1.8).

Proof. By Proposition 2.5, K(X,Y) = (c/4)(1 + 3 cos’d) from which
the result follows.

3. In this section we start with M***s as the bundle space of a principal
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toroidal bundle over a Kaehler manifold N**; in the case s = 1 these are
principal circle bundles (see e.g. [2], [7]).

Theorem 3.1. Let M**** be the bundle space of a principal toroidal bundle
over a Kaehler manifold N** and let y = (y,, - - -, 5,) be a Lie algebra valued
connexion form on M*"*¢ such that dyp, = n*Q,x =1, .. -, s, where x is the
projection map and {2 the fundamental 2-form on N**. Then M***® is an -
manifold.

Proof. Let J be the almost complex structure tensor and G the Hermitian
metric on N**. Then define f and g on M*"*¢ by

me = ﬁJﬂ*Xm s
gX,Y) = Gz, X, m,.Y) + 2 9.(X)n.(Y),

Il

where # denotes the horizontal lift. Let &, - - -, & be vector fields dual to z,,
ey 16, (X)) = g(X, &,). Then 9,(§,) = 0,, f, = 0, 9,0f = 0 are im-
mediate. Now

X = #ln,gln, X = #lPr, X = —X + 3 9,(X)&, ,
from which f* + f = 0 and we see that M**** has an f-structure with comple-
mented frames. Further

gUX, 1Y) = GUr, X, Jr,Y) + 3 9, GIn, X))y (7Ir,Y)
= G(m, X, 7, Y) = g(X,Y) — 3] 7.(X)n,(Y) .
Now F(X,Y) = gX, fY) = Gz, X, Jr,Y) = Qx, X, 7, Y), ie.,, F =a*0 =
dy, from which we see that the fundamental 2-form F is closed and that
m/A - Aqgg A (dy,)" # 0. Finally
L AX,Y) + X dp.(X, V)6, = FPIX, Y] + [fX, Y] — flfX, Y]
= #ln J[X, Y] + [#Ir, X, #r, Y] — #lrn,[7ln, X, Y]
— 7l X, #Ir, Y] + 3 dy (X, Y)E,
= #ln, X, 7, Y] + #lUr, X, Iz, Y] + 3 9. (77, X, 7z, Y]E,
— #llUr X, 7, Y] — #llr, X, Jr, Y] 4+ 30 dp (X, Y)E,

= 2 (—QUr,X,Jz,Y) + Az, X, 7, Y)E, =0,

since [J,J] = 0 and £ is of bidegree (1, 1).
Now let U be a neighborhood on N** and suppose that G is given by ds* =

Y (64), where the 64’s,4 =1, ---,2n are 1-forms on U. Suppose that the

Riemannian connexion is given by 1-forms #4 on U so that the structural
equations become
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et = —6A N 6F
dot = —0AN 05 + Of,

where 04 = 1S,4z¢00° A 67 and S, 5¢p is the curvature tensor on N?”.

On U write the fundamental 2-form Q2 = 10,564 A %; then we have dy, =
o*(30 4564 N\ 67). Set ¢ = 5, and p4 = z*44; then g is given by do*= J, (¢*)%,
a=1,---,2n + s. Using the techniques of Kobayashi [6] we can find the
Riemannian connexion on M?*+s,

Proposition 3.2. ¢? = 0,94 = —¢% = —1Q,30" and

903 = %05 — %‘ 2 ‘QAB§0x

define the Riemannian connexion of g on M**s,

Proof. Let V be an overlapping neighborhood on which ds* = 3 (64)".
Then 64 = e0®, ef ¢ %(n). A bar above other forms will denote their com-
ponents defined with respect to V. Now

04 = Y, etf%el — 3 (ded)el .
C,D c
Let f2 = f* = 0, # x,f% = 1, f4 = e4; then computing we have

Zﬁ FFoifi — 2 Wiff = 0 = g7,

2oy — L UIOff = —— Y e5Qpc0° = —— 3. e5Qpce83”
7.3 T 2 BC 2 B.G,D
15 _ _
= 1D a0 — gt
) 409 4
1

S ftoiff — T @i = o 3 eddhel —
7 r -
— a* ) (deg)ed
4]
1

2

= n*05 —

2 Q4sp" = 75 .

Hence the ¢ define a connexion on M****. To see that it is the Riemannian
connexion we compute its torsion.

dgo”” + gof/\SDT — n*(%QABﬁA/\ﬁB>+ %QAB‘PB/\SDA =0,

dgﬂA + g0;’4/\€Dr — ﬂ*dﬁA _ _%_ Z 'QABSDB/\@I _|_ (7!'*0; o % Z ‘QAB@:”)/\SDB
z,B x

= a*(df* + GAN65) =0 .
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The curvature form @ of this connexion is given by the second structural
equation, dpj = —¢7 A ¢} + @5. Computing @4 we have

3 = dog + o2 N\ 05
— 0N GS + 108 — % 3 (749 A o

1
- 5 Z ‘QABdSDI - %QACQBDSDC A\ SDD

2z
+ 3 (708 = 5 T Qucy) A (505 — 1 T Qug)

c 2 x 2 Y
— n*@ﬁ — % Z (TL’*duQAB) /\ng + %.QAB.QCD§DD /\SDC

— ‘Z“QAB‘QBDQDC/\ o? + %xz'::n'*(QAoﬁg + Q0509 N ¢°

1
+ — 2 Q402c50" N @Y
4 9.0

= 7*04 — %(QABQCD + 24625)0° N P

1
+ y ZCQACQUBSD” A o?,

Z5,Ys
since dQ,5 — 02,4005 — Q2.505 = 0, i.e., N** is Kaehlerian.

Now write @5 = {R,,,¢" /\ ¢’; then

1
%RABraSDT N’ = (ESABCD - %('QAB'QCD + ‘QAC‘QBD)) RN

+ 1 2 R4c8080% N\ ¥ .

z,y,C
Skew-symmetrizing gives
RABCD - SABCD - %‘(Z‘QAB'QCD + 'QAC‘QBD - ‘QAD‘QBC) .
Suppose now that N** has constant holomorphic sectional curvature X, i.e.,

SABCD = %(GADGBC - GACGBD + ‘QAD‘QBC - ‘QAC'QBD - 2“QAB‘QCD) .

Let {X, X} span an f-section on M**** with X a unit vector; then the sectional
curvature of this section is given by
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“ Ry X (XY X (XY = —R,450pXA(FX)EXO(fX)?
- —{f—(GADGBC — GucGrp)XA(fX)PXC(fX)P

(2 = 2) Qurac — ucan — 22152 XUX)PXO(GX)?

Hence we have the following theorem.

Theorem 3.3. Let M**° be a principal toroidal bundle over a Kaehler
manifold N** as in Theorem 3.1. If N** has constant holomorphic sectional
curvature K, then the &-manifold M*** has constant f-sectional curvature
equal to K — 3s/4.

Inequalities for the sectional curvature of other horizontal sections may be
derived from Theorem 2.7.

4. It is well-known that the canonical example of a Sasakian manifold,
the odd-dimensional sphere $?"*, is a circle bundle over complex projective
space PC™ by the Hopf-fibration. Let z’: $***' — PC" denote the Hopf-fibration ;
then using the diagonal map 4 we define a principal toroidal bundle over PC*
by the following diagram

H2n+s _AA) S2n+1 X -+ X S2n+l

i lﬂ’X...Xf;’

4
PC*" — PC* X ... X PC"

that is, H**** = {(p,, - -+, p) € """ X -+ - X S| 7'(p) = --- = 7' (pY)}.
_ Now let 7;, be the contact form on S7**' and define 5, on H*** by y, =
A* |Sin+1 7]; = jjﬂ; Then

where 2 is the fundamental 2-form on PC? and £ that on PC". Further y =
(p» - -+, 1) 1s equivariant and fibre preserving, hence by Theorem 3.1 the space
H**s is an % -manifold.

Recall that PC™ has constant holomorphic sectional curvature K=1 (Fubini-
Study metric) and that $?**! (as a Sasakian manifold with the constant curvature
metric) has constant curvature 1/4. From Theorem 3.3 we obtain the follow-
ing result.

Theorem 4.1. H™*® has constant f-sectional curvature 1 — 3s/4.

Analogous to PC™ being (1/4)-pinched (1/4 < K(X, Y) < 1) and $*"*! having
constant curvature 1/4, from Theorems 2.7 and 4.1 we have

Theorem 4.2, Let X,Y ¢ ¥ on H"*5,5s > 2. Then
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1-3 ckx,v)< L.
4 4
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