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GEOMETRY OF MANIFOLDS WITH
STRUCTURAL GROUP #(π) x 0(J)

D. E. BLAIR

K. Yano [12], [13] has introduced the notion of an /-structure on a C°° mani-
fold M2n+S, i.e., a tensor field / of type (1, 1) and rank 2n satisfying f + f — 0,
the existence of which is equivalent to a reduction of the structural group of
the tangent bundle to °U{n) x Θ(s). Almost complex (s = 0) and almost contact
(vS = 1) structures are well-known examples of /-structures. An /-structure with
s — 2 has arisen in the study of hypersurfaces in almost contact spaces [3]
this structure has been studied further by S. I. Goldberg and K. Yano [4].

The purpose of the present paper is to introduce for manifolds with an /-
structure the analogue of the Kaehler structure in the almost complex case and
of the quasi-Sasakian structure [2] in the almost contact case, and to begin the
study of the geometry of manifolds with such a structure. In § 1 we introduce
the Kaehler anologue and its geometry and in § 2 we study /-sectional curva-
ture. § 3 discusses principal toroidal bundles and § 4 generalizes the Hopf-
fibration to give a canonical example of a manifold with an /-structure playing
the role of complex projective space in Kaehler geometry and the odd-dimen-
sional sphere in Sasakian geometry.

1. Let M2n+S be a manifold with an /-structure of rank In. If there exists
on M2n+S vector fields ξx, x = 1, , s such that if ηx are dual 1-forms, then

( * ) fξx = 0 , ηxof = 0 ,

f = - / + Σ£*®9*>

we say that the /-structure has complemented frames. If M2n+S has an /-structure
with complemented frames, then there exists on M2n+S a Riemannian metric g
such that

g(X, Y) = g(fX,fY) + Σ ηΛX)ηx(Y) ,

where X, Y are vector fields on M2n+S [13], and we say M2n+S has a metric f-
structure. Define the fundamental 2-form F by
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Further we say an /-structure is normal if it has complemented frames and

where [/, /] is the Nijenhuis torsion of / [9]. Finally a metric /-structure which
is normal and has closed fundamental 2-form will be called a 3f-structure and
M2n+S a X-manifold,

It should be noted that since ^A - - AηsAFn Φ 0, a Jf-manifold is
orient able.

Two cases will be of special interest.
1) Let M2n+S be a Riemannian manifold with global linearly independent

1-forms ηl9 , ηs such that dηι = = dηs and

Vi Λ Λ 7]s A (dηx)
n Φ 0 .

Let J&?(m) = {X e M%+s, m e M2n+S \ ηx(X) = 0, x = 1, . ,s] then jSf deter-
mines a distribution which together with its complement reduces the structural
group to Θ{2ή) x Θ(s). Now if ξ 19 , ξs are vector fields dual to η19 , ηs

and X19 , X2n linearly independent vector fields in Jδf, then

(Vι Λ Λ ηs A (dηx)
n)(ξ19 ..-9ξs,Xl9..., X2n)

= (dVx)»(X19 .9X2n)φ0

giving ££ a symplectic structure. Thus the structural group can be reduced to
<%(ri) x Θ(s) and M2n+S has a metric /-structure with complemented frames ηl9

- , ηs and fundamental 2-form F = dηx. If this structure is a JΓ-structure,
we will call it an <?-structure.

2) Let M2n+S be a manifold with a JΓ-structure with ηl9 , ηs denoting
the complemented frames. If dηx = 0, x = 1, , s, we call it a %?-structure.

Theorem 1.1. Oft α Jf-manifold the vector fields ξ19 - - -, ξs are Killing.
Proof. Denoting Lie differentiation by J£? we

, Y) = ξxF(X, Y) - F([ξx,X], Y) - F(X, [ξx, Y])

= ξxg(X, fY) - g([ξx, X], fY) - g(X, [ξx, fY])

where we have used the fact that se(j = 0 (see [9]). But S£iχF = diiχF +
i(χdF = 0 since (iξχF)X = F(ξx, X) = 0. On the other hand,

y) = ξx(Vy(Y)Vv(X)) - ηv{Y)ηv{[ξx,X])

- Vy(Y)g(χ, [?„£,]) - fβ(

= Vy(Y)ξxVy(X) - ηy(Y)ηy([ξx,X])

- ηy{Y)g{X, [ξx, ξ,]) = 0 ,
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since &ξχηv = 0 and &ξJy = 0 (see [9]). Therefore

but / + Σζy® Vv i s non-singular, hence &ξχg = 0.
Lemma 1.2. On a Jf-manifold dηx(X, Y)——2{Vγηx)(X) where V denotes

covariant differentiation with respect to the Rίemannian connexion. In the case
of an Sf "-structure

Vγξx = -\fY ,

and in the case of a ̂ -structure

Fyξ* = 0

Proof. dVx(X, Y) = (FxVx)(Y) - (FrVx)(X) = -2(FγVJ(X) since ηx is
Killing. In the case of an ̂ -structure we have F = dηx and hence g(X, fY) =
— 2g(X,Frξx), whereas in the case of a 'f'-structure 0 = dηx{X, Y) =
-2g{X,Vγξx).

We now discuss the meaning of VXF for Jf-structures.
Proposition 1.3. On a ^-manifold

(FχF)(Y,Z) = i Σ {ηx(Y)dη.x(jZ,X) + Vx(Z)dVx(X,fY)) .

The proof is a very lengthy computation but similar to that given by Sasaki
and Hatakeyama [10] for a Sasakian manifold.

Proposition 1.4. On an ^-manifold

(VXF)(Y,Z) = i Σ (ηx(X)8(X,Z) - Vx(Z)g(X, Y))

- i Σ

Proof. In this case F = d^, j ; = 1, , J, hence Proposition 1.3 becomes

{VXF){Y,Z) = 1 Σ (η*(.Y)8(fZ,fX) - Vx(Z)g(fX,fY))

= i Σ (9,(iO«(^,z) - j?*(r) Σ

which except for arrangement of terms is the desired formula.
Theorem 1.5. A ^-structure is a ^-structure if and only if VF = 0.
Proof. VF = 0 implies [f, f] = 0 and hence by normality Σ dηx(X, Y)ξx

— 0, but ξ19 - - - ,ξs are linearly independent therefore dηx = 0, x = 1, , s
giving us a ^-structure. Conversely if dηx — 0, x = 1, , s, then by Proposi-
tion 1.3 it is clear that VF = 0.

Let if denote the distribution determined by — f and Jί the complement
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distribution; Jί is determined by f + I and spanned by ξl9 ••-,£,. Let p =

If + / be the difference of the projection maps f + I and —f.

Theorem 1.6. y4 %?-manifold M2n+S is a locally decomposable Riemannian
manifold which is locally the product of a Kaehler manifold M\n and an Λbelian
Lie group Ms

2.
Proof. Vxf = 0 implies V xf = 0 and hence Vxp = 0 which is the con-

dition for M2n+S to be locally decomposable [14, p. 221] and in turn locally the
product of Riemannian manifolds M\n and M|. Now restricting /, g to M\n and
again denoting them by /, g we have f = — / and g(fX, fY) = g(X, Y). Further
since Vxf = 0 we have [/, /] = 0, and from dF = 0 on M2n+S we have on M\n,
dF — 0, Fn Φ 0 where F also denotes the fundamental 2-form on M\n. Thus
M\n is Kaehlerian.

To show that Ms

2 is an Abelian Lie group we show that M2n+S is locally the
product oίM\n and s 1-dimensional manifolds. The integrability condition for
such a structure is h = 0 [11] where in our case

h = I Σ (

Since [f, f ] = 0, from Vxf = 0 we have

, 10 = i Σ ^

Now if X, Y e ££, then [X, Y]e£> since the distribution S£ determined by — f
is integrable, and it is easy to see that h(X, Y) — 0. If X, Y e Jί it suffices to
take X — ξy, Y = ξz since ξ 1? , ξs can be taken as part of a basis, but
ίξy, ξzl = 0 and h(ξV9 ξ2) = 0 follow easily. Finally if X = ξy and Y e if, we
have

Kξy, Y) = ΪΣ (vΛξy, YJ)ξx - ηx{rjx{ξy)Vξx, Y])ξx) ,
X

but from the coboundary formula dηx(X, Y) = Xηx(Y) - Yηx(X) - η([X, Y])
we have ηx([ξv, Y]) = 0; hence h(ξy, Y) = 0.

Theorems 1.5,1.6 should be compared with the corresponding results for
for cosymplectic manifolds (s = 1) [2].

We close this section with some results on the curvature of Jf-manifolds.
Theorem 1.7. In both the ^-structure and Ή-structure cases the distri-

bution Jί is flat, i.e., all sectional curvatures K(X, Y) for sections spanned by
X,Y ζJC vanish. In the £f-structure case sectional curvatures K(X, Y) with
X € ££, Y = ξx have value 1/4. In the %?-structure case sectional curvatures
with Z e ^ J e J vanish.

Proof. In the ^-structure case using Lemma 1.2 and i f ξ J = 0 we have
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from which the results for this case follow. For the ̂ -structure case, Fγξx — O
for every Y gives Rζχχξy = 0 immediately.

Corollary 1.8. A %?-manifold M2n+S, s > 2, of constant curvature is locally
flat.

Corollary 1.9. There are no ^-manifolds M2n+S, s > 2 of constant curva-
ture of strictly positive curvature.

These results should be compared with those in the cases of s = 0, s = 1
(see e.g. [1], [2], [5]).

2. A plane section is called an f-section if it is determined by a vector
X € J£?(ra), m eM2n+s such that {X, fX) is an orthonormal pair spanning the
section. The sectional curvature K(X, fX), denoted H(X), is called an f-
sectional curvature.

Define a tensor P of type (0, 4) as follows (cf. [8]):

P(ΛΓ, Y Z, W) = F(X, Z)g(Y, W) - F(X, W)g(Y, Z)

- F(Y, Z)g(X, W) + F(Y, W)g(X, Z) .

The following properties of P follow directly from the definition.
Lemma 2.1. a) P(X, Y;Z,W)= - P(Z, W\ X, Y). b) Let {X, Y}9 X,

Y € if, be an orthonormal pair, and set g(X, fY) = cos θ, 0 < θ < π. Then
P(X,Y;X,fY) = -sin 20.

Lemma 2.2. On an &>-manifold M2n+S,
a) g(RxγZ, fW) + g(RxγfZ, W) = (s/4)P(X, Y;Z,W) + Q(X, Y Z, W),

where

Q(X, Y;Z,W) = \g{W,jY){s Σ η£X)ηx{Z) - Σ

- \g{W,jX){s Σ

+ kg(Z,fX)(s Σ

Also if X, Y,Z,W e if, then Q{X, Y Z, W) = 0 and
b) g{R,XίγfZ, fW) = g{RxγZ, W),
c) g{RxfXY, fY) = g(RxrX, Y) + g(Rx/yX, fY) + (s/2)P(X, Y; X, fY),
d) g(R/χγfX, Y) = g{RXJΐX, fY).
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Proof. A direct computation shows that

(F [ X,F ]F + VYVXF - FXFYF)(Z, W) = -g(RχγZ,fW) - g(RxγfZ, W) .

On the other hand using Proposition 1.4 and Lemma 1.2 to compute this we
obtain a). Using a) twice and equations (*) we obtain b). Writing g(RxfXY,fY)
= -g(RxγfY, X) - g(RXfYX, Y) c) follows from a) and Lemma 2.1. Finally
applying a) twice and the definition of P we get d).

Lemma 2.3. On a ^-manifold a) g(RxγZ, fW) + g(RxγfZ, W) = 0. Also
if X, Y,Z,We if, then b) g(RfXfYfZ, fW) = g(RxγZ, W), c) g(RXfXY, fY)
=g(RxγX, Y) + g(RXfγX,fY), d) g(RfXYfX, Y) = g(RXfYX,fY).

Proof. The proof is similar to that of Lemma 2.2 but in the case of a) is
much easier due to Theorem 1.5

Lemma 2.4. Let B(X, Y) = g(RxγX, Y) and forXe^, D(X) = B(X, fX).
On an ^-manifold for X,Y e if we have

B(X, Y) = J_[3D(AΓ + fY) + 3D(X - fY) - D(X + Y) - D(X - Y)

- 4D(X) - AD(Y) - 6sP(X, Y; X,fX)] .

On a ^-manifold for X,Y e if we have

B(X, Y) = —[3D(X + fY) + 3D(X - fY) - D(X + Y) - D(X - Y)

- 4D(X) - 4D(Y)] .

Proof. A direct expansion gives

—[3D(X + fY) + 3D(X - fY) - D(X + Y) - D(X - Y)
D ZJ

- AD{X) - 4D(Y) - 6sP(X, Y; X,fY)]

= ~[6g(.RxγX,Y) + 6g{RfX,ίYiX,fY) + 8g(RχfχY,m

+ 12g((RxrfX,fY) - 2g(RXfrX,fY) - 2g(RfXYfX, Y)

+ Ag{RXfYjX, Y) - 6sP(X, Y XJY)] .

Applying Lemma 2.2 this becomes

J-[6g(RxrX, Y) + 6g(RxrX, Y) + 8g(RxrX, Y) + 8g(RXfYX,fY)

+ 4sP(X, Y XJY) + 12g(RxγX, Y) + 3sP(X, Y; X,fY)

- 2g(RXfYX,fY) - 2g(Rx/γX,fY) - 4g(RXfYX,fY)

+ sP(X, fY; X, Y) - 6sP(X, Y; X, fY)]

= g(RχγX, Y) .
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The proof in the case of a ^-manifold is similar by using Lemma 2.3.
If now {X, Y) is an orthonormal pair in S£ and g(X, fY) = cos#, 0 < θ < π,

then K(X, Y) = B(X, Y) and, by straightforward computation, D(X) =
H(X), D{Y) = H(Y), D(X + fY) = 4(1 + cos Θ)2H(X + fY), D(X - fY) =
4(1 - cos Θ)2H{X - fY), D(X +Y) = 4H(X + Y), D{X - Y) = 4H(X - Y).
Using Lemma 2.1, Lemma 2.4 now becomes

Proposition 2.5. On an ^-manifold for an orthonormal pair {X, Y) in ££
we have

K(X, Y) = i - h ί l + cosθ)2H(X + fY) + 3(1 - cosβ)2H(X - fY)
8 L

- H(X + Y) - H(X - Y) - H{X) - H(Y) + _?i sin2 θ\ .

In the case of a ^-manifold the formula is the same except that the last term is
not present.

Theorem 2.6. The f-sectional curvatures determine the curvature of an <Z-
manifold or a %'-manifold completely.

Proof. In addition to Theorem 1.7 some other curvature formulas are
needed. It follows easily from Theorem 1.7 that in both cases RξχξyX = Ofor
all X. In the ^-manifold case, if X e «£? is a unit vector then g(RXξχX, ξy) =
g(RξχXξy, X) = 1/4 and hence RZξχX = (1/4) Σ f, + Y, Y e J^ but

g(RZξχX9Y)= -g{RxγfX,ξx)

YfX, fξx) - jP(X, Y; fX, ξx)

so that RχξχX = (1/4) Σ f β I n t n e ^-manifold case RXξχX is easily checked.
Now let {X, Y) be orthonormal pair, and write X = aZ + Σ ηχ(X)ζχi

Y = bW +Σ VxOOSx w h e r e β 2 + Σ 9*W2 = ! ^ 2 + Σ ?*(Y)2 = 1 and
Z, PF are unit vectors in if. Then after using the above curvature formulas
the lengthy expansion of K(X, Y) = g{RxγX, Y) yields

in the y-manifold case and

K(X, Y) = (aV - ( Σ ηx{X)ηx{Y)f)KZ, W)
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in the ^-manifold case. K(Z, W) is known however by Proposition 2.5, and
the proof is complete.

The above development should be compared to that in the Kaehler case [1]
and the Sasakian case [8].

We now give a number of geometric results which are consequences of
Proposition 2.5.

Theorem 2.7. The sectional curvatures K(X, Y),X,Y e if, on an ^-mani-
fold of constant f-sectional curvature c < s/A satisfy

c < K(X, Y)<—ίc+ 3s

A \ 4

with the lower limit attained for an f-section. If c > si A,

\ [c + ̂ f] < K(X, Y) < c
4 \ 4 /

with the upper limit attained for an f-section. If c = s/A, K(X, Y) — c.
Proof. Proposition 2.5 gives

K(X, Y) = — (c(l + 3 cos2 θ) + — sin2 <
4 \ 4

One need only find the maximum and minimum of this with respect to θ and
note that for an /-section θ = π to obtain the result.

Corollary 2.8. A Sasakian manifold (s = 1) with constant f-sectional curva-
ture equal to 1/4 has constant curvature.

Proof. By the theorem s = 1, c = 1/4 gives K(X, Y) = 1/4 for X, Y e j£f\
Now for any orthonormal pair {X, Y} the proof of Theorem 2.6 yields

K(X, Y) = —ηλ(X)2 + — ηx(Y)2 + (1 -
4 4

Z, W € JS?, and hence K(X, Y) = 1/4 since K(Z, JF) = 1/4,
Theorem 2.9. The sectional curvatures K(X, Y),X,Y € if, o n α tf-mani-

fold of constant f-sectional curvature c are (1 / A)-pinched that is c/A < K(X, Y)
<c for c> 0 and c < K(X, Y) < c/A for c < 0. For c = 0, ί/ze manifold is
locally flat (cf. Corollary 1.8).

Proof. By Proposition 2.5, K(X,Y) = (c/4)(l + 3cos 2^) from which
the result follows.

3. In this section we start with M2n+S as the bundle space of a principal
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toroidal bundle over a Kaehler manifold N2n in the case s = 1 these are
principal circle bundles (see e.g. [2], [7]).

Theorem 3.1. Let M2n+S be the bundle space of a principal toroidal bundle
over a Kaehler manifold N2n and let γ = (ηl9 , ηs) be a Lie algebra valued
connexion form on M2n+S such that dηx = π*Ω, x = 1, , s, where π is the
projection map and Ω the fundamental 2-form on N2n. Then M2n+S is an £f-
manifold.

Proof. Let J be the almost complex structure tensor and G the Hermitian
metric on N2n. Then define / and g on M2n+S by

fXm =

g[X, Y) =

where π denotes the horizontal lift. Let ξ19 , ξs be vector fields dual to ηλ,
>-,η8, i.e., ηx(X) = g(X, ξx). Then ηx(ξy) = δxy9 fξx = 0, ηxof = 0 are im-
mediate. Now

fX = πJπ^πJπ^X = πPπ*X = -X + Σ

from which f + / = 0 and we see that M2n+S has an /-structure with comple-
mented frames. Further

g(fX,fY) = GiJπ+XtJπ+Y) + Σ ηx(πJπ*X)ηx{πJπ*Y)

= G(π*X, π*Y) - g(X, Y) - Σ

Now F(X, Y) = g(X, fY) = G(π*X, Jπ*Y) = Ω(π*X, π*Y\ i.e., F = π*Ω =
dηx from which we see that the fundamental 2-form F is closed and that
Vi Λ Λ τ]s A (dηx)

n Φ 0. Finally

[/, f](X, Y) + Σ dVx(X, Y)ξx = f[X, Y] + \fX, fY] - f\fX, Y]

-f[X,fY]+ Zdηx(X

= πPπ*[X, Y] + [πJπ^X, πJπ^Y] - πJπ^πJπ^X, Y]

x{X, Y)ξx

*Y] + Σ yΆπJπ^

,Jπ*Y] + Σ dηx(X, Y)ξx

Σ η * * + Σ dηx{X, Y)ξx

= Σ (-Ω(Jπ*X,Jπ*Y) + Ω(π*X,π*Y))ξx = 0 ,

since [J, /] = 0 and Ω is of bidegree (1,1).
Now let U be a neighborhood on N2n and suppose that G is given by ds2 =

Σ (ΘΛ)\ where the θA's, A = 1, , 2n are 1-forms on U. Suppose that the
Riemannian connexion is given by 1-forms θi on U so that the structural
equations become
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dθA = -θiΛΘB ,

dθi= -ΘA

CAΘC

B + ΘA,

where θi = jSABCDθc A ΘD and SABCD is the curvature tensor on N2n.
On U write the fundamental 2-form Ω — \ΩAΈβA A ΘB then we have dηx =

π*{\ΩABθ
A A ΘB). Set p* = ^ and ̂ ^ = π*θA then g is given by dσ2 = Σ (pα)2>

a = I, - ,2n + s. Using the techniques of Kobayashi [6] we can find the
Riemannian connexion on M2n+S.

Proposition 3.2. ψx

y = 0, φA = — ̂ 5 = — | β ^ s ^

'. the Riemannian connexion of g on M2n+S.
Proof. Let V be an overlapping neighborhood on which ds2 = Σ (βA)2.

Then ΘA = eiθB, ei e %{ή). A bar above other forms will denote their com-
ponents defined with respect to V. Now

QA __ y gAβC gB yπ (deA)eB

C,D c

Let fx — f% — 0, a Φ x, f% = 1, fB = ei; then computing we have

Σ fxφin - Σ (φfy = o = φ;,

Σ fMfϊ - Σ (dff)ff = - \ Σ eA

BQBCψ
c = - \ Σ <

1

Σ 4A UB y (AiA\iB — 7r* V pAβc PB

Jγψδh Z_l \aiγ)lγ π 2_J eC^DCD
X,C,D

-π*Σ
G

= π*θi - 1 Σ

Hence the ̂ ?̂  define a connexion on M 2 w + S . To see that it is the Riemannian

connexion we compute its torsion.

dφ* + φx A ψ = π* [^-ΩABΘ
A A θή + i - β ^ 5 ^ 5 Λ ^ = 0 ,

= π*dθA - — Σ ΩABφ
BAψx + π * ^ - -^ Σ

2 57,-B \ 2 a?

= π*(dθA + θ£.AΘB) = 0 .
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The curvature form Φa

β of this connexion is given by the second structural
equation, dψa

β = — ψa

γ A ψr

β + Φa

β. Computing Φi we have

ΦB = dφi + φi A ψa

B

- 1 Σ (fl*dΩΛB) A φx

2 x

- 4" Σ ΩΛBdφ* ~ ^rΩΛCΩBDφc A φD

λ x 4

+ Σ [π*0$ - 4" Σ ΩACΨ") Λ (π*θ% -~Σ ®CB<P1

C \ Z x i \ 2 y

= π*θi - 1 Σ (π*dΩAB)Aψx + -?-ΩABΩCDφD A φc

2 x 4

4*λuAu>?> Λ ^ B + 1 Σ π*(ΩACθ
o

s + ΩCBΘ
C

A) A
4 2 a?,G

J Σ ΩΛCΩCBΨ' Λ ?)»
4 a?,y,σ

θ ^ - A ( β ^ β β C ί ) + ΩACΩBD)φc A φD

+ λ Σ ΩACΩCBφ* A ψv ,
4 ar,y,C

since ί/β^ s - ΩACΘ
G

B - flσBfl2 = 0, i.e., N2 r ι is Kaehlerian.
Now write φ£ = JΛβ i 8 r ί9

r Λ φδ then

Λ ^ Λ ( W ^ ( β β + ΩACΩBDήφc AφD

1 Σ ΩJLCΩCBΨX Λ ^ .
4 a?,y,<7

Skew-symmetrizing gives

R-ABCD — SABCD — —\2ΏABΩCD + ΩACUBD ΩADΩBC) .

Suppose now that N 2 w has constant holomorphic sectional curvature K, i.e.,

—Γ~\GADGBC — GACGBD + ΩADΩBc ΩACΩBD — 2ΩABΩcD) .
4

Let {X, fX] span an /-section on M2n+S with Z a unit vector; then the sectional
curvature of this section is given by
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-RaβrδX"(fxyχr(fxy = -

= —^(GADGBC - GACGBD)XA(fX)BXc(fX)D

4

2ΩABΩCD)XA(fX)BXc(fX)D

4 4 4 4

Hence we have the following theorem.
Theorem 3.3. Let M2n+S be a principal toroidal bundle over a Kaehler

manifold N2n as in Theorem 3.1. // N2n has constant holomorphic sectional
curvature K, then the ^-manifold M2n+S has constant f-sectional curvature
equal to K — 3s/4.

Inequalities for the sectional curvature of other horizontal sections may be
derived from Theorem 2.7.

4. It is well-known that the canonical example of a Sasakian manifold,
the odd-dimensional sphere S2n+\ is a circle bundle over complex projective
space PC71 by the Hopf-fibration. Let πf: S2n+ί -> PC71 denote the Hopf-fibration
then using the diagonal map Δ we define a principal toroidal bundle over PC71

by the following diagram

ipn + s _A+ S2n+1 X X S2n + l

U ' X XTΓ'

PC71 • PC71 x x PC71

that is, H2n+S = {(pl9 , p,) € S2n+ι X ... χS2n+ι\ π\Pι) = . . . = π\ps)}.

Now let η'x be the contact form on S2

x

n+1 and define ηx on H2n+S by 57̂  =
A Then

^ Λ = d3*η'x =

where Ωx is the fundamental 2-form on PCn

x and β that on PC71. Further γ —
0?i> * * 5 Vs) is equivariant and fibre preserving, hence by Theorem 3.1 the space
H2n+S is an ^-manifold.

Recall that PC71 has constant holomorphic sectional curvature K= 1 (Fubini-
Study metric) and that S2ΐl+ί (as a Sasakian manifold with the constant curvature
metric) has constant curvature 1/4. From Theorem 3.3 we obtain the follow-
ing result.

Theorem 4.1. H2n+S has constant f-sectional curvature 1 — 3s/4.
Analogous to PC71 being (1 /4)-pinched (1 /4 < K(X, Y) < 1) and 52w+1 having

constant curvature 1/4, from Theorems 2.7 and 4.1 we have
Theorem 4.2. Lei Z J e ^ o n H2n+S, s>2. Then
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1 _ lL < K(X, Y) < 1 .
4 4
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