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CONTACT RIEMANNIAN SUBMANIFOLDS

MASAFUMI OKUMURA

Introduction

In a previous paper [3] the author studied a submanifold of codimension 2,
which inherits a contact Riemannian structure from the enveloping contact
Riemannian manifold.

In the present paper, the author generalizes the results obtained in [3] to
submanifolds of codimension greater than 2. In § 1 we recall first of all the
definition of contact Riemannian manifolds and some identities which hold in
such manifolds, and in § 2 we give some formulas which hold for submanifolds
in a Riemannian manifold. After these preliminaries, § 3 contains some identi-
ties which hold for submanifolds in a contact Riemannian manifold. In § 4 we
define the notion of contact Riemannian submanifolds in the same way as
given in [3]. In § 5 we define an F-invariant submanifold and study the rela-
tions between contact Riemannian submanifolds and F-invariant submanifolds.

§ 6 is devoted to a condition for a submanifold to be a contact Riemannian
manifold. In the last section, § 7, we introduce the notion of normal contact
submanifolds in a normal contact manifold, and obtain a condition for a con-
tact Riemannian manifold to be a normal contact manifold.

1. Contact Riemannian manifolds

A (2n + l)-dimensional differentiate manifold M is said to have a contact
structure and called a contact manifold if there exists a 1-form η, to be called
the contact form, on M such that

(1.1) f) A(dή)n φθ

everywhere on M, where dη is the exterior derivative of η, and the symbol Λ
denotes the exterior multiplication.

In terms of local coordinate {yκ} of M the contact form ή is expressed as

(1.2) fj = η,dy.

Since, according to (1.1), the 2-form dη is of rank 2n everywhere on M,
we can find a unique vector field ξκ on M satisfying
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(1.3) ηλξ
λ = 1 , (dη)λκξ

κ = 0 .

It is well known that there exists a positive definite Riemannian metric gλμ

such that the (1, l)-tensor Fλ

κ, defined by

(1.4) 2gλκF; = (dfj)μλ ,

satisfies the conditions

(1.5) Fλ

κFμ

λ = -δ; + ημt ,

(1.6) fyFf = 0 ,

(1.7) g^l" = ^ ,

(1.8) gJFΪF; = gvμ-i)Aμ

(S. Sasaki [4], Y. Hatakeyama [1]). The set (Fλ

κ, ξ% ηλ, gj satisfying (1.1),
(1.3), (1.5) and (1.7) is called a contact Riemannian (or metric) structure, and
the manifold with such a structure is called a contact Riemannian (or metric)
manifold.

If in a contact Riemannian manifold the tensor, defined by

9 )

λ* - dλF;) - F/(dvF; - dμF;)

where dv — d/dyv vanishes everywhere on M, then the structure is said to be
normal, and the manifold is called a normal contact manifold or a Sasakian
manifold. In a normal contact manifold we have

(1.10) Vμηλ^Fμl,

where V denotes the covariant differentiation with respect to the Riemannian
metric g. Conversely, if (1.11) holds, the manifold is a normal contact mani-
fold (Y. Hatakeyama, Y. Ogawa, and S. Tanno [2]).

2. Submanifolds in a Riemannian manifold

Let M be an m-dimensional oriented differentiable manifold and c be an
immersion of M into an (m + /:)-dimensional oriented Riemannian manifold M.
In terms of local coordinates (JC1, , xm) of M and (y1, , ym+k) of M the
immersion c is locally expressed by yκ = yκ(x\ * -,xm),κ = 1, ,m + k.
If we put Bi — diyκ, dt = d/dx\ then Bf are m local vector fields in M spann-
ing the tangent space at each point of M. A Riemannian metric g on M is
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naturally induced from the Riemannian metric g on M by the immersion in
such a way that

(2.D gjί = gλκB/B^

Since M and M are both orientable, in each coordinate neighborhood U of
p e M, we can choose k fields of mutually orthogonal unit normal vectors
NA

K (A = 1, , k) of M at each point of U in such a way that (Λ *̂, ,
Nk

κ, Bf) is positively oriented in M, provided that the frame (Bt% ί=l, , m)
is so in M.

Let H ^ (A — 1, , k) be the second fundamental tensors, and L^ β ί the
third fundamental tensors of the immersion c. Then we have the following
Gauss and Weingarten equations:

(2.2) Vfl{ = ΣHAjiNA« ,

k
(r\ o\ Γ7 AT K U ίΌ K I V T AT K

(2.3) VjN/ = —HAj

ιBi

κ + Σ LABjNB

κ ,
B = l

where Fj is the so-called van der Waerden-Bortolotti covariant differentiation,
where VόBt

κ and FjNA

κ are defined respectively by

FήNA* = djNA< + * \BSNJ (A = 1, , k) ,

Λ I and I ^ being the ChristoffeΓs symbols of M and M respectively.

3. Submaniiolds in a contact Riemannian manifold

Let M be a (2n + l)-dimensional contact Riemannian manifold with a con-
tact Riemannian structure (F/, f % ^ , g^) and M a (2m + l)-dimensional sub-
manifold in M. The transform Fx

KBt

x of the tangent vector field Bf by F / can
be represented as a sum of its tangential part and its normal part, that is,

(3.1) FW = U»Bh< +
A

In the same way, we can put

(3.2) FfN/ = WBt + Σ hABNB' , A = 1, , 2(n - m) .

From these two equations we have
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(3.3) ht = -/« ,
A A

(3.4) hAB = -hBA .

On the other hand, f« being tangent to M is expressed as a linear combina-
tion of Bt' and N/. Hence we can put

(3-5) ξ = u*Bh' + Σ "ANA ,
A

which implies

(3.6) ut = Ijβc ,

(3.7) uA = ηκNA< .

Transforming both members of (3.1) by Ff and making use of (1.5), (3.1),
(3.2), (3.3) and (3.5), we find

-Bf + upiBf + Σ UiUBNB" = (Sιhh' + Σ fiP)B/
B A A A

+ Σ (ίihh + Σ UhABWj ,
B B A A

which implies

(3.8) UhhJ= -δi + u^ + Σftfj ,
A A A

(3.9) ffU = uAut - Σ UKA .
A B B

Transforming again both members of (3.2) by Fx' and taking account of (1.5),
(3.1), (3.2), (3.3) and (3.5), we obtain

+ Σ(-fΊι+ Σ hAChCB)NB" ,
B A B C

which implies

(3.10) /*/*'= - Σ U J - w y ,
A B B

(3.11) f /4 = δAB - uAuB + Σ hAChCB .
A B C

On the other hand, conditions (1.6) and (1.3) can be rewritten respectively as

Fλψ = FAu'Bϊ + Σ uANA

λ) = 0 ,
A

ηλξ> = (κ'Bfa + Σ uANAXu>Bf + Σ UBNB) = 1 ,
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from which we easily have

(3.12) u%* = Σ uJA

h ,
A

(3.13) u%= -ΣuBhBΛ,
A B

(3.14) «*«, = 1 - Σ "A2 •
A

Let M be a normal contact manifold. Differentiating (3.1) covariantly and
making use of (1.11), (3.2) and (3.5), we obtain

UiBf - goi{uhBh* + Σ uANA<) + Σ HAji(- fA

hBh* + Σ hABNB<)
A A B

= FjU*Bh + Σ (UhHAjhNA< + r,W - UHΛ^Bh'
A A A A

+ Σ ίiLBAjN/),
B B

which implies

(3.15) Fjfih = Uigjh - uhgμ - Σ (fhHAhί - fiHAjh) ,
A A A

(3.16) Fjh = -uΛgjl + Σ (HBjihBA - f{LBAj) - UhHAih .
A B B

Differentiating (3.2) covariantly and making use of (1.11), (3.1), (3.2) and
(3.5), we have

uABj< - HrfUSBf + Σ hNs') + Σ W - IJBf + Σ hBCNc<)
B B B C

= -V}UhBh* - Σ (SA'HBH - F,hΛB)NB'
B

+ Σ hAB{~ Ha/Bf + Σ LBCJNC') ,
B ΰ

which implies

VM = - M i + HΔM + Σ (hABHB/ - LAB]fj) ,
B

(3.17) VjhAC = j/HCji - fHAji + Σ (LABJhBC - LBCjhAB) .
G B

Differentiating (3.5) covariantly and using (1.10) which holds in a normal

contact manifold, we find

W + Σ fjNA* = V^Bf + Σ u'H^N/
A A A

+ Σ {ViUANA + uA{- HΛfB{ + Σ LBAjNB<)} ,
A B

which implies
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(3.18) Fju1 = / / + Σ "AHAS ,

(3.19) FjUA = j j - WHAJi - Σ "BLBAJ .
A A

4. Contact Riemannian submanifolds

Let M be a (2n + l)-dimensional contact Riemannian manifold, and M a
(2m + l)-dimensional orientable difϊerentiable submanifold in M. We define a
1-form u on M by

(4.1) u = utdxl = ηβfdx1 ,

in terms of the contact form 57 = ί^dy.
Definition 4.1. Let gH be the induced Riemannian metric of M, and w

the 1-form defined by (4.1). If there exists a pair of positive constants t and
c such that η = tu and Gn = cg3i constitute a contact Riemannian structure
on M, then we call the submanifold M a contact Riemannian submanifold
of M.

Since (37, G) is a contact metric structure in a contact Riemannian sub-
manifold M, the linear mapping φf: T(M) —> T{M) and the vector field ξι

defined respectively by

(4.2) 2φjhGht = djVί -

satisfy the conditions

(4.3) ^£* = 1 ,

(4.4) φjψ = 0 , r;^/ = 0 ,

(4.5) φfφj = -δ) + Vj? .

Directly from Definition 4.1 we have
Proposition 4.2. Let M be a contact Riemannian submanifold in M, and

rM a contact Riemannian submanifold in M. Then fM is a contact Riemannian
submanifold in M.

Proposition 4.3. Let M be a contact Riemannian submanifold of M, and
fM a submanifold of M. If fM is a contact Riemannian submanifold of My

then rM is also a contact Riemannian submanifold of M.
Proposition 4.4. Let M be a contact Riemannian submanifold of a contact

Riemannian manifold M. // the dimension of M is greater than the codimen-
sion of M in M, then we have

(4.6) φ/ = // ,

(4.7) ui = ξi .
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Proof. From the definitions of ξ\ ηiy Gjt we have

(4.8) ξ' = &% = -Lg'% = -u* ,
c c

from which

(4

(4

•9)

.10)

On the other hand,

= 2B'

1 =

the

xBt f

t
z γjjξi = tUj — U3

C

«,«« = c/.

two equations

\. = B/BΛV^

_ f

c

- P :

imply fJt = (\lt)φάi and hence

(4.11) // = g*% = ^G*%t = £.φf .

Since // ,^/ satisfy (3.8) and (4.5) respectively, (4.11) together with (4.10)
implies

(4.12) - δ) + u*Uj + Σ / * / j = 4 ( - « * + -uj"h) •
A A A Γ \ C I

We assume now that there is a point p in M, at which the 2(n — m) + 1
vectors u\ f/ (A = 1, , 2(n — m)) are linearly dependent. Then we
can find a vector v*(p) orthogonal to the subspace spanned by uι and
fA

ι {A — 1, , 2(n — rri)), since M is of dimension greater than 2{n — m).
Transforming this vector vl(p) by (4.12), we get vh(p) = (c/t)2vh(p), that is,
(c/ί)2 = I? which together with (4.8) and (4.11) implies the Proposition.

Next we suppose that uι and fj (A = 1, , 2{n — m)) are linearly inde-
pendent at any point of M. Then (3.12), (4.4) and (4.8) imply %AuAfAh=fjhuJ

— (c/t)φjh(c/t)ξj = 0. Since fA

h's are linearly independent, we have, in this
case,

(4.13) uA = 0 (A = 1, . . . ,2(n

which and (3.1) give

(4.14) -M'/i = 0 .

Transforming /^J by (4.12), we have
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(4.15) -fh + Σf,fifh=-*fΛ

A B B A B t A

because of (4.14). Substituting (3.11) into (4.15) we get ΣihAchCBί
h =

-(c/t)ψ implying B'G B

A

(4.16) ΣhAChcB= -£δBΛ,
c t2

and consequently

(4.17) Σ hAChcA = - ^ Σ δΛΛ = -2(n - m)*- .
A,C t2 A V

Furthermore, from (4.11) we obtain (c/tyφfφ^ = — δt

J + u^ + Σfifj>
A A A

which yields

- 2 m ^ = - 2 m - 1 + utw + 2(w - m ) + Σ hAChCA
V Λ,C

because of (3.11). On the other hand, uA = 0 and (3.14) imply u^1 = 1.
Thus we have, from the equation obtained above,

(4.18) - 2 m ^ = 2(n - 2m) + Σ hAChCA .
V A,C

Combining (4.17) and (4.18), we have (t/c)2 = 1, which completes the proof.
Corollary 4.5. Gjt = {uru

ryigjt , ^ = (uru
ryiut .

5. jp-invariant submanifolds

F-invariant submanifolds of a contact Riemannian manifold are recently
studied in [5]. In this section we show that any F-invariant submanifold is a
contact Riemannian submanifold.

Definition 5.1. Let M be a {In + l)-dimensional contact Riemannian
manifold. A (2m + l)-dimensional submanifold M of M is called an F-invariant
submanifold if the tangent space of M is invariant under the action of Fλ*.

Proposition 5.2. Let M be a (2m + \)-dimensional submanifold of a con-
tact Riemannian manifold M. In order that M be an F-invariant submanifold
it is necessary and sufficient that

(5.1) ΣhAChCB= -δAB

c

Proof. We first assume M to be F-invariant, and then by (3.1) show that

Fλ'Bf = UhBh , FfN/ = Σ hBANB' ,
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or equivalently fA

ι = 0 {A — 1, , 2(n — m)). Consequently, we have
utuA = 0 because of (3.9). If there is a point p on M, where ut(p) = 0, then
(3.8) implies //// = — δj, which means that the tangent space at p is even-
dimensional, contradicting our assumption. Hence we have uA = 0 in M.
Therefore we have J]cnAcncB = — δAB by virtue of (3.11). Next, we assume
that M is a submanifold of M satisfying the condition (5.1). Then, by means
of (3.11), we have fJfBi + uAuB = 0, and therefore Σ Λ / A < + uj = 0.
Thus we get / / = 0, uA = 0, which show that M is F-invariant.

Proposition 5.3. // M w α (2m + \ydimensional F-invariant submanifold
of M. Then M is necessarily a contact Riemannian submanifold of M.

Proof. Since M is F-invariant, as seen in the proof of Proposition 5.2
we have f/ = 0, uA = 0 (A = 1, , 2(n - m)). Therefore, (3.8) and (3.14)
imply fιhfh

j — —δ{+ utu
j, uμ1 = 1. If we now put η = w, G^̂  = g^ then

we find

+ Σ (HAjίN/ - HAίjN/)ηκ

which means that the (57, G) is a contact Riemannian structure on M. Thus
the proof is complete.

6. Conditions for a submanifold to be a contact
Riemannian submanifold

In this section we states a condition for a submanifold M in a contact
Riemannian manifold M to be a contact Riemannian submanifold. Since for
this purpose we have to use Proposition 4.4 so that we always assume in this
section that the dimension of M is greater than the codimension of M in M.
First we have

Proposition 6.1. Let M be a (2n + ϊ)-dimensional contact Riemannian
manifold. In order that a submanifold M in M be a contact Riemannian sub-
manifold it is necessary and sufficient that the relations

(6.1) uru
r = const. Φ 0 ,

(6.2) itfh> = -δ\ + (UrWyW

be both valid.
Proof. Let M be a contact Riemannian submanifold of M. Then from

Proposition 4.4 it follows that // = φf and consequently

(6.3) U*U' = φfφh> - -δ[ + ηi& = -a* + tup* .
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On the other hand, we have η^ = tutf = tuμ1 = 1, which implies

(6.4) u^1 = — = const. .

Combining (6.3) and (6.4), we get (6.1) and (6.2).
Conversely, if (6.1) and (6.2) are both valid, putting

ηt = (u^y'u, , Gjt = {uru
r)-lgjt ,

we have

Thus (//, ηi9 Gjίηj, Gji) is an almost contact Riemannian structure on M.
By virtue of (6.1) and (1.4) we now have

= (uruT\B/B/FfJf)λ - BfB/rji + Σ (HAH ~ HAίj)N/0

= (uruT^B/(Fμr)λ - Fλημ) = KuXr^B/B/F^

= 2(uru')-% = 2Gihff ,

which shows that (η, G) is a contact Riemannian structure on M.
Proposition 6.2. Let M be a contact Riemannian manifold. In order that

a submanifold M in M be a contact Riemannian submanfold, it is necessary
and sufficient that the following relations be both valid:

(6.5) uru
r = const. ,

(6.6) f/= - M - ^ M Λ A " 1 .
B

Proof. Let M be a contact Riemannian submanifold in M. Then from
Proposition 6.1, we have (6.5). On putting

(6.7) f/ = PAu* + PA* (A = 1, ., 2(n - mf) ,

where P/ are vectors orthogonal to u\ if we transvect (6.7) with uί9 we get
f/Ui — uiuΨA, which together with (3.13) implies

(6.8) PA = (uruTιh% = - 0 M * ' ) - 1 Σ uBhBA .
B

Substituting (6.8) into (6.7), we have
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{Ό.yj j A — —yUγU ) ι_i uBnBAu T *A ?
B

which implies jA

ιjBi = (w^)" 1 2 uDhDAuchCB + PAΨBi and consequently

(6.10) Σ M ^ = (UrU*)-1 Σ uBhBAuchCA + Σ PA'PAZ
A A,B,C A

On the other hand, since M is a contact Riemannian submanifold, from
(3.9) we have U^^AU — (u U1)^ — ΣBU^BA = 0. Substituting (3.13) into
the above equation, we get

(6.11) (U^UA = - Σ uchCBhBA .
B,C

Then a combination of (6.10) and (6.11) gives

(6.12) Σf/fM = Σ ("A2 + P/PAU -
A A

However, by virtue of (3.8) we obtain Σ i / i l i = fjifίj + 2m + 1 — utu\
which reduces to

(6.13) Σ f/hi = 1 - UiU* = Σ »A*
A A

because of (3.14) since M is a contact Riemannian submanifold. Comparing
(6.12) with (6.13), we have ΣAPA^AI = 0, that is, P/ = 0 (A = 1, ,
2(n — m)). Hence we obtain (6.6).

Conversely, if the submanifold satisfies (6.5) and (6.6), according to (3.8)
we get

(6.14) * * A

A,B,C

Since ]μ is skew symmetric, the condition (6.6) implies fί

huίfAh = (uίu
ί)uA

— ΣBίBίuihBA = 0 because of (3.9). Substituting (3.13) into the above equa-
tion, we get

(6.15) Σ UC^CBHBA = —(utU^Uji .
B,C

Therefore (6.14) reduces to

fihfhj = — δi + w^ j + (uru
rYι Σ ujutui

B
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Thus the conditions stated in Proposition 6.1 are satisfied, and the proof is

complete.

7. Contact Riemannian submanifolds in a
normal contact manifold

Let M be a normal contact manifold. In this section we define the notion of
a normal contact submanifold M in M. After deriving a condition for M to be a
normal contact submanifold in M, we show that any (2m + l)-dimensional
F-invariant submanifold M in M is a normal contact submanifold.

Definition 7.1. Let M be a normal contact manifold, and M a contact
Riemannian submanifold in M. If the induced contact structure of M in M is
normal, the submanifold M is called a normal contact submanifold.

Proposition 7.2. Lei M be a normal contact submanifold in M, and fM a
normal contact submanifold in M. Then fM is a normal contact submanifold
in M.

Proof. Since M and 'M are normal contact submanifolds respectively in
M and M, there exist two pairs of positive constants (t, c) and (t'9 c'). Then,
as we have seen in § 4, rM becomes a contact Riemannian submanifold in M
with respect to the pair (ft, c'c). We denote these contact metric structures on
M in M and on 'M in M respectively by (ηi9 GJt) and (ηa9 Gba), and denote
the contact metric structure on fM in M by (fηa9

 fGba). Then we have

— dbηa — dα^δ = 20 f i α ,

and therefore

'Ϋcφba — Pcφba =

= t'c\ηίBjGjhBc3Ba* - ηhBa*GjtBe>Bb<)

which proves by virtue of (1.11) that the structure (%, 'Gab) is normal.
Proposition 7.3. Let M be a contact Riemannian submanifold of a normal

contact manifold M, and suppose that the dimension of M is greater than the
codimensίon of M in M. In order that M be a normal contact submanifold in
M it is necessary and sufficient that

(7.1) Σ PAHAH = Hgji + KujUι
A

hold, where
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(7.2) PA = -(uru^ Σ uBhBA ,
B

and H and K are suitable scalar functions defined on M.
Remark. As it is easily checked, the left hand member of (7.1) is inde-

pendent of the choice of the unit normal vectors to M.
Proof of Proposition 7.3. Let M be a normal contact submanifold in M.

Then by the definition of normality we have

because of Proposition 4.4. Substituting (3.15) and (3.18) into the above
equation and taking account of (4.4), (6.6), Proposition 4.4 and Corollary 4.5,
we find

NJt* = ffutfi + Σ PAHA\) - Uuj(δΐ + Σ PAHA\)
(7.3) A A

+ {uχ)-%n + Σ "AHΛ)UJ - (/J + Σ uAHA\)Uί} = 0 .
A A

On the other hand, we know that the vector field ξ1 is a Killing vector field if
the contact Riemannian structure is normal. Thus, from (3.18) and (4.7),
we have

(7.4) Σ uAHAjί = 0 .
A

Substituting (7.4) into (7.3) and taking account of (3.14), we obtain

Njth = {Σ PHAr

h - (UrUr)-l Σ UAWr](f.ru. _ U u ) = Q ,
A A A

and therefore Σ PA^AJI = (uru
r)~ι Σ UASJΪ + KujUt, which proves the ne-

cessity of the given condition.

Conversely, suppose that in a contact Riemannian submanifold M in M the
condition (7.1) holds. Differentiating

(7.5) U = P"i
A A

covariantly, we get FjfAi = VJPA^ + PAP'jUt. Substituting (3.16) and (3.18)

into the above equation, we find

+ Σ (HBjίhBA - ίiLBΛJ) - fihHAjh
B B

which together with (7.5) implies
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- Σ PAUASH + Σ (HBJihBAPA - PPuJLBΛj) - Σ
A ByA B A A

= Σ UiPAv3pA + Σ P'ifji + Σ
A A A B

Transvecting this with fji and making use of (7.1), we get — fjifih{Hgjh +
KujUh) = 2mJ] PA2 from which H = £ PJ. Therefore (7.1) reduces to

(7.6) Σ PAHA» = Σ PΆgji + KujUi .
A A

Substituting (7.6) into the left hand member of (7.3), we find

Njf = (//«, - ffujXl + ΣP2~ («r"r)-'
(7.7) A Λ

= (ururY\urUr + UrUT Σ P*A ~ WjKUt - ffiij) .

On the other hand, (7.2) and (6.11) imply

Σ PA2 = («r«')" ! Σ UBhBAUchCA = (UrUT)-1 Σ «C
A B,C C

Thus, from (3.14) and (7.7) it follows that Njt

h = 0, which completes the
proof of the sufficiency.

Corollary 7.4. Let M be a contact Riemannian submanifold in a normal
contact manifold M. If M is a totally geodesic or a totally umbilical sub-
manifold in M, then M is a normal contact submanifold.

As we have mentioned in the previous paper [3], every totally umbilical
submanifold M in a normal contact manifold M is not a normal contact sub-
manifold. In [3] we have proved that a normal contact submanifold of co-
dimension 2 in a normal contact manifold of constant curvature is either an
F-invariant submanifold or a totally umbilical submanifold. However, if the
codimension is greater than 2 we cannot prove this fact, because by Proposi-
tion 7.2, for example, an F-invariant submanifold rM in a totally umbilical
submanifold M in M is also a normal contact submanifold in M. In general, a
normal contact submanifold in a normal contact manifold is neither F-invariant
nor totally umbilical.

Proposition 7.5. An F-invariant submanifold in a normal contact mani-
fold is a normal contact submanifold.

Proof. Since the submanifold is F-invariant, it follows that f/ = 0, uA = 0
(A = 1, , 2(n — m)). Consequently we have utu

l = 1 because of (3.14).
Substituting these into the left hand member of (7.3), we find

Njf - (1 - (UrWyWfUi - ffUj) = 0 ,

which completes the proof.
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