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THE EXISTENCE OF SPECIAL
ORTHONORMAL FRAMES

J. E. D'ATRI & H. K. NICKERSON

On an n-dimensional Riemann manifold M, the Laplace operator Δ on
functions can be written (locally) in the form

J = Σ * i * * i >

where {X19 , Xn} is a (local) frame, if and only if the frame is orthonormal
and divZi = 0, i = 1, , n. In Theorem 2.1, we formulate a condition
relating the existence of special orthonormal frames to the Riemann curvature
tensor. In Theorem 3.6, we show that the stronger condition: Xt is a Killing
vector field, i = 1, , n, which implies div-X^ = 0, requires that M be
Riemannian locally symmetric. It is further shown that most simply connected
irreducible Riemannian symmetric spaces cannot have orthonormal frames
consisting of Killing vector fields and that the spheres Sn have such frames if
and only if n = 1, 3, or 7.

1. Introduction and motivation

Let M be an n-dimensional Riemannian manifold of class C°° with metric
tensor g. The Riemannian connection F is characterized by the conditions

(1 ) X giX, Z) = g(FxY, Z) + g(Y, VXZ)

for all vector fields X, Y, and Z

(the connection is a metric connection) and

(2) ιx,Y} = rjY-rγx
for all vector fields X and Y

(the connection is torsionless).
Let {X19 , Xn} be an orthonormal frame on an open set U of M, that is,

g{Xu Xj) = δij , /, / = 1, , n .
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The Christofϊel symbols with respect to this frame are defined by

(The usual summation convention will be assumed, except in the case of
contractions.) Then (1) and (2) give

( 3) Γ)k + Γk

jt = 0 (skew symmetry)

(in particular, Γ% = 0) and

(4 ) [AT,, Xk] = c } ^ = (Γ}Λ - ΓJ,)*, .

From (3) and (4), we obtain

(40 2Γ)k = c%- c% + c{k .

In terms of this orthonormal frame, the Laplace operator Δ on functions is
given by

( 5 ) J = Σ ^ o Λ Γ .

where

(The classical choice of sign has been adopted in the definition of Δ.)
The question which motivates this paper is the following: given mzM9

when is it possible to find an orthonormal frame {X19 , Xn} in some open
neighborhood U of m such that

π

on I/?
Definition 1.1. A Riemannian manifold M is said to have the divergence

property if, in some neighborhood of each point of M9 there exists an ortho-
normal frame {X19 , Xn} such that any one of the following equivalent
conditions holds:

( a) div Xi = 0, / = 1, , n

( b) equation (6) holds

( c ) Σ Γ J « = 0 , ί = l , . . . , π .
j = l

Such a frame will be called divergence-free.
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We remark that it is not possible to use fewer than n vector fields in (6)
nor to use vector fields which are not orthonormal. The vector fields

Y μ = a i

μ X i , j E i = 1 , ••-, π ,

satisfy

Λ V V V T^/"V V i />4««r V >

J = 2J -̂ ^ ° *μ = 2J \Λi ° *ί + (dlV AJ

if a n d o n l y if

( 7 ) | ^ = ^ » J, i = 1, •••,",

a n d

n

i = 1 , •,'

Since (7) implies that the matrix (aj

μ) e O(w; j?) C Gl(n; R), it is not possible
to have any Yμ = 0, and the n vector fields {Γ15 , yn} will then also be
orthonormal.

We note also that the requirement div Xt = 0, / = 1, , ny may equally
well be stated as δωι = 0, i = 1, , n, where {ω1, , ωn) is the dual frame,
and δ is the metric transpose of the exterior derivative d.

All manifolds of dimension 1 are locally flat and have the divergence
property (trivially).

Proposition 1.2. // dimM = 2, then M has the divergence property if
and only if M is locally flat.

Proof. By skew-symmetry, condition (c) of Definition 1.1 reduces to Γ\x

= 0 and Γ\2 = 0; that is, it is necessary and sufficient that all Christofϊel
symbols vanish for an orthonormal frame to be divergence-free. The known
fact that orthonormal frames with vanishing Christoffel symbols exist if and
only if the curvature vanishes can also be obtained as a special case of
Theorem 2.1 below.

Example 1.3. Let U be an open set in Rz, and let /(*, y, z) and h(x, y, z)
be functions of class C00 on U with

dy dz

Define the metric tensor g on U by taking

XT 3 r O r O v O V O

1 dx dy dz dy dz
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to be an orthonormal frame. It is easily (but tediously) verified that this
orthonormal frame is divergence-free, that the curvature is not covariant
constant (in general), and that this example cannot include the case of constant
curvature unless U is a flat Riemmannian manifold.

The rather computational Example 1.3 demonstrates that there exist non-
trivial manifolds having the divergence property. It also shows that we are not
presently able to give an effective criterion (other than that given in Corollary
2.2 below) for determining when a manifold has the divergence property. This
paper will present chiefly results concerning manifolds having the following
stronger property.

Definition 1.4. A Riemannian manifold M is said to have the Killing
property if, in some neighborhood of each point of M, there exists an ortho-
normal frame {Xl9 - , Xn) such that each Xu i = 1, , n, is a Killing
vector field (local infinitesimal isometry). Such a frame will be called a Killing
frame.

Since [13, p. 50] a linear combination, with constant coefficients, of Killing
vector fields is again a Killing vector field, a manifold has the Killing property
if and only if it is always possible to find frames consisting of Killing vector
fields such that g(Xi9 Xό) = constant for each choice of i and /.

The normality condition of Definition 1.4 implies that the isometries are
"translations", that is, the streamlines of the isometries are geodesies, since a
necessary and sufficient condition for this is that the Killing vector field have
constant length (cf. [8, p. 349], or [13, p. 50], or take X = Y in Proposition
3.1 below).

The necessary and sufficient condition that a vector field I b e a Killing
vector field is that the Lie derivative, with respect to X, of the metric tensor
g vanish. By (1) and (2), this condition is equivalent to

( 8 ) g(FγX, Z) + g(Y, VZX) = 0

for all vector fields Ύ and Z .

Thus, an orthonormal frame {Xl9 , Xn} is a Killing frame if and only if

g(FxXk, Xt) + g{Xp VXiXk) = 0 ,

or

( 9 ) Γ% + Γ4 = 0 , i , / , * = l , . . . , n .

When (9) is combined with (3), we find that the Christoffel symbols for a
Killing frame must be skew-symmetric in any pair of indices. In particular,
Γ}i = 0, so any manifold which has the Killing property also has the
divergence property.

Manifolds of dimension 1 are locally flat, and so have the Killing property
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(trivially). If dim M = 2, then M has the Killing property if and only if M is
locally flat. This follows from Proposition 1.2 and the fact that the Killing
property implies the divergence property, or from the classical result that a
surface cannot carry even one infinitesimal translation unless it is locally flat.

Example 1.5. The spheres Sn, considered as Riemannian manifolds im-
bedded in Rn+1 in the usual way, have the Killing property for n = 1, 3, 7;
in fact, there is a global Killing frame. The construction depends essentially
on the existence of a multiplication in R2 (complex numbers), Λ4 (quaternions),
and Rs (Cayley numbers) (cf. [4, p. 141]). Explicitly, writing points in R6 as
column vectors and identifying the tangent spaces to S7 with hyperplanes, we
can define vector fields Xu i = 1, , 7, by

p Xτ(p) X2(p) Xz(p) X4(p) X5(p) X6(p) X7(p)

X1

X*

Λ3

X1

X s

X*

X7

Xs

X1

-X1

X*

-X3

X9

-Xs

Xs

— X7

X3

-X*

-X1

X2

X7

-Xs

-X5

x"

X*

X3

-X2

-X1

-Xs

-X7

Xs

JC5

-xe

χ7

Xs

ĵ l

JC2

JC3

- J C 4

JC6

X5

Xs

X7

-X2

- J C 1

- J C 4

- J C 3

JC7

- J C 8

JC5

— JC6

- J C 3

JC4

^ 1

JC2

JC8

JC7

- J C 6

- J C 5

JC4

JC3

- J C 2

- J C 1

Since p-X^p) = 0 and X^-Xjip) = δij9 this gives a global orthonormal
frame on S7, which is also a Killing frame since

exp tXt: p —> (exp tXt)p = p cos t + Xt(p) sin t

is an isometry of S7 onto itself for each t € R.

If we imbed jR4 in J?8 as the subset JC5 = JC6 = JC7 = JC8 = 0, the restrictions
of X19 X2, Xz above yield a Killing frame on 5s.

Counterexample 1.6. Eisenhart [1, p. 212] stated that the trajectories of
two infinitesimal translations meet at constant angles; that is, if X and Y are
Killing vector fields of constant length, then g(X, Y) = constant. This
statement was deleted in [2, p. 240], and was questioned in 1952 by Nijenhuis
(cf. [8, p. 351, footnote]). A counterexample is found on S7 by taking X
= [X19 X2] and Y = Xz in Example 1.5. Then X, being the bracket product of
Killing vector fields, is itself a Killing vector field. It is easily verified that the
components of X(p) = [X19 X2](p), as a point of R*, are 2(JC4, JC3, —JC2, -JC1,
*8, x7, — JC6, — x*), from which it follows that X has constant length 2 but does
not meet Y = Xz at a constant angle on S7. These considerations show that
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it is impossible to extend Theorem 1.6 [13, p. 50] to translations as claimed
by Yano[13, p. 51].

2. Conditions in terms of curvature

The torsionless metric connection on M will always be denoted by F. Let
F be any other connection on an open set U c M. For any vector field X on
U,

(10) Ex = Vx - Px

is a derivation of the algebra of tensor fields on V. Since the derivations Ex

depend linearly (with respect to variable coefficients) on AT, they define a
tensor field E of type (1, 2) on £/. Conversely, any such tensor field E defines
a connection F by (10). With respect to an arbitrary frame {Xτ, , Xn}, the
tensor E is expressed in terms of components by

ExXk = v)

where

(100 v% = Γ)k - f }* .

The curvature transformations R(X, Y) of F are given by

Λ(ΛΓ, Y) = F* o F r - Pγ o F* - F ^ F ] = [P x , F Γ ] - F [ j r, r ]

= Λ(Z, Y) - [Px, Eγ] + [Pγ, Ex] + [Ex, Eγ] + Eί

so the connection F will be locally flat if and only if

(11) R(X, Y) = [Pχy Eγ] - [Pγ, Ex] - [Ex, Eγ] - EίX^ ,

or, in terms of components,

(no RU

The connection F is a metric connection if and only if (1) is satisfied, and
therefore if and only if each Ex is skew-symmetric, that is,

(12)

for all vector fields X, Y, and Z ,

or, in terms of components,

(120 gsiV'jk + ΛΛ}* = 0 ,

which becomes
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(12") rfjk + τfit = 0

in the case of an orthonormal frame.
Given a flat metric connection F on U, it is not hard to show that, in some

neighborhood of each point m of U, there is an orthonormal frame with
respect to which the Christofϊel symbols Γ)k of F vanish, i.e., for which

(13) V% = Γ)k, U , * = 1, . . . , π .

In fact, the conditions (110 are the integrability conditions for the system

(14) Xrvl = Vί(Γ'Jk - η%) , μf h k = 1, . . , n ,

whose solutions define a new frame {Yu , Yn} by AT* = vjl^, for which
the Christoffel symbols of F vanish. Moreover, if the given frame {2ΓJ is
orthonormal and (12) holds, and if the initial values of the solutions vμ

k are
chosen so that the matrix (i>£)m is orthogonal, then the solution matrix (v$ is
orthogonal, so that {Yμ} is an orthonormal frame. This follows from

in) = Σ (Xj vOvi + Σ
n n

by (3) and (12").
Thus we have proved the following in one direction.
Theorem 2.1. Given a tensor field E of type (1, 2) satisfying the skew-

symmetry condition (12) on an open set ί/, then (11) is a necessary and
sufficient condition in order that in some neighborhood of each point of U
there exist an orthonormal frame satisfying (13).

Conversely, if we have an orthonormal frame satisfying (13), then (11) is
true for this frame by direct computation, and therefore for all frames since
(11) is tensorial.

Practical application of Theorem 2.1 depends on being able to recognize
the desired properties of the Christoffel symbols Γ)k for a special orthonormal
frame in terms of the components η)k of E relative to an arbitrary frame.
Inspection of the transformation laws for a tensor of type (1,2) gives easily

Corollary 2.2. A necessary and sufficient condition that a Riemannian
manifold have the divergence property is that, for arbitrary frames, the
Riemann curvature tensor can be written (locally) in the form (110 where the
tensor η)k satisfies not only the skew-symmetry condition (120 but also

Σ vU = ° > * = l , • • - , « .

Corollary 2.3. A necessary and sufficient condition that a Riemannian
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manifold have the Killing property is that, for arbitrary orthonormal frames,
the Riemann curvature tensor can be written {locally) in the form (110 where
the tensor η)k satisfies not only the skew-symmetry condition (12") but also

(15) J?}* + arf* = O, * ' , / , * = 1, ••-,*.

The condition

(16) η% + Vίj = 0

for arbitrary frames is a necessary and sufficient condition that V and F have
the same geodesies [5, p. 146]. Since (16) and (12") imply (15), while (15)
and (12") imply (16), we have also

Corollary 2.4. A necessary and sufficient condition that a Riemannian
manifold have the Killing property is that there exist (locally) a flat metric
connection (with torsion, in general) having the same geodesies as the
Riemannian connection.

Example 2.5. Any compact connected Lie group G has the Killing property
if the metric is the bi-invariant metric induced by the Killing form of its Lie
algebra g. (Cf. [3, p. 92, pp. 125-6, pp. 188-9]: the canonical flat
connection, making left-invariant vector fields covariant constant, has the
same geodesies at e e G a s the Riemannian connection, namely, the one-
parameter subgroups.) It will follow from Proposition 3.7 that, for this
example, the tensor η)k in (110 is covariant constant so that (110 reduces to
a condition considered by Eisenhart [1, p. 137] but without requiring that the
connection be metric nor that the rfjk satisfy (120- Right-invariant vector
fields on G can be used similarly to give Killing frames on G.

The condition that a special orthonormal frame consist of infinitesimal
conformal motions (rather than of infinitesimal isometries) is also invariant,
but does not give anything new.

Proposition 2.6. A "conformal" frame on a Riemannian manifold must
be a Killing frame.

Proof. The appropriate conditions (for orthonormal frames) are (12") and

(17) rfjk = δ)λk

for suitable λk determining a 1-foπn λ = λkω
k. However, these conditions

imply λ = 0, as is seen by alternate applications of (17) and (12"):

which implies

+ δttj + Φ * = 0 , or λj = 0
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3. Consequences of the Killing property

If, for any vector field X defined on U, the derivation Ax of the algebra of
tensor fields on U is defined by

Ax = Lx — Vx ,

then [5, p. 235]

(18) VYX = -AXY for all vector fields Y,

since the connection V is torsionless. The condition (8) that X be a Killing
vector field is therefore equivalent to the condition

(19) g(AxY, Z) + g(Y, AXZ) = 0

for all vector fields Y and Z;

i.e., that Ax be skew-symmetric with respect to the metric tensor g. Moreover
[5, p. 235], [7, p. 110], [6, p. 535]

(20) VγAx = [F y, Ax] = Λ(Z, Y)

for all vector fields Y,

and

(FXR){Y, Z) = - (AXR)(Y, Z)
Ξ - U * , R(Y, Z)] + R(AXY, Z) + R(Y, AXZ)

for all vector fields Y and Z,

whenever X is a Killing vector field while, if X and Y are both Killing vector
fields, then the Killing vector field [AT, Y] satisfies

(22) Aίx^ = [Λx, Aγ] - Λ(Z, Y) .

Proposition 3.1. Suppose that X and Y are Killing vector fields. Then

(23) AXY + AYX = 0

// and only if

(24) g(X, Y) = constant .

Proof. By (1), (18), and (19), we have

Z.rfJT, Y) = S(F Z *, Y) + £(*, FZY)

= -g{AxZ, Y) - ί(Z, ^ F Z ) = g(Z, AXY + AYX)

for arbitrary vector fields Z.
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Now assume that M has the Killing property and that {Xlf , Xn} is a
Killing frame. By Proposition 3.1 (or (9) and (3)), we have

(25) AxXk + AXjXj = 0 , /, * = 1, . -, n .

The tensor £ of § 2, corresponding to our Killing frame, is determined by

(26) EYXk = FyXk, * = 1, . . . , π ,

for all vector fields Y,

which expresses (13), and satisfies the skew-symmetry conditions (cf. (12) and
(16))

EXY + EYX = 0 ,

which will be used without explicit reference. We have also, from (18), (26),
and skew-symmetry,

(27) EZJ = AZJ9 j = l, . . . , # i .

From (2) and (26) we have

(28) [Xk9 XJΛ = ΫxkXι — ΫxyXk — ^EXjcXι

so

(29) W Λ = -EZjVKk9 Xt] = -2EZjEZkXt .

Equations (11), (27), and (20) give

R(Xk, Xi) = F X f c £ ^ i - VXιEXk - [£X l f c, £ X ι ] -

so

3ΛCX'fc, Jfi) = — [EXje, EXι] —

and

(iυ; J/vvAΛ, Λι)Λj = —t,Xkt,Xι/Lj + E,XιtLx

or

(300 31ttw =

Proposition 3.2. // M Λαs ίΛe Killing property, then all sectional curva-
tures are non-negative.
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Proof. From (30)

g(Xk, R(Xk9 Xι)Xι) = g(Xk, EXlEXkXt)

= g{EΣkXt, EΣkXt) > 0 .

Since any frame obtained from the given Killing frame by a constant orthogonal
matrix is again a Killing frame, this argument covers all sectional curvatures.

Lemma 3.3. The quantity Xrg(Xu EXkXj) is skew-symmetric in any pair
of indices.

Proof. We compute

3Xrg(Xi, EXkX}) = 3g(PX{Xi, EXkXj) + 3g(X(, PXιEXkXj)

= 3g(EXιXu EXkX}) + g(Xu 3R(Xk, X^X,) + 3g(Xu

= 2g(Xit [EXk, EXι]Xj + EZjE

where the first step follows from (1), the second from (26), (27), and (20),
and the third step from (30). The last expression is clearly skew-symmetric in
A: and /. Furthermore, the quantity g{Xu EXkXj) is skew-symmetric in any
pair of indices.

Lemma 3.4. Each R(Xk, Xι)X} is a Killing vector field.
Proof. By (2), (18), (22), (27), (28), and (30), we have

[Xj, [xk> xt)] = vxμk, x{\ -

= -[EXk, EXι]Xj + R(Xk, Xt)Xj + 2EXjEXkXι

= 4R(Xk, Xt)Xj .

Lemma 3.5. Each Killing vector field Y = R(Xk, Xι)Xj satisfies (24) for
X = Xh, h = 1, ••-,«, and therefore also

(31) •AB(XktXι-)XjXh •=• —AXhR(Xk, X{)Xj = —E X h R(X k , Xi)Xj .

Proof. It suffices to prove

(32) Xh• g(Xt, EXιEXkX}) = -Xh g{X» EXjEXkXt) ,

since this will give, by (30),

= Xh-g(Xt, - EXkEXtXj + EXιEXkXj + 2EXjEXkXd = 0

for h = 1, , n. We prove (32) by using

[Xk, ΛΓJ = (Γ'ki - Πk)Xs = 2Γ'kiX,
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and the skew-symmetry of

as shown in Lemma 3.3. Then

and

Z (Y Pi Λ Y (Y
k - \Λ j 1 ιh) — Λj'\Λk

V (Y

These give

= 2(Xs Γih)Γ*ki , k

Since Xt (Z 7 ΓfΛ) is skew-symmetric in I and /, we must have

which is equivalent to

(320 ZΛ (ΓlΠj) =-Xh (TjJΊtύ

The above proof also shows that each R(Xk, Xι)Xό is an infinitesimal
translation. The same holds also for the Killing vector fields [Xk, ΛΓJ
= 2EZkXι since

g{EXkXu EXkXt) = g(Xk9 R(Xk, Xt)Xt) = constant ,

although these fields do not have constant coefficients in general.
Theorem 3.6. // M has the Killing property, then M is Riemannian locally

symmetric, that is, the Riemannian curvature is covariant constant.
Proof. From Lemma 3.5, we have

h = EXhR(Xk, Xι)Xj .
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Thus

(FXhR)(Xk, Xι)X1

= VXlt(R(Xk, Xt)Xj) - R(VXhXk, XOXj

- R(Xk, VXlXdXj - R(X*, XiW^X,

= EXhR(Xk, Xt)Xj - R{EXhXk, Xt)Xj

— R(Xk, EXhXj)Xj — R(Xk, Xj)EXjXj ,

or

, Xt) = [EZh, R(Xk, Xt)] - R(EXjιXk, Xύ - R(Xk, EΣhXt)

by (21) and (27).
Proposition 3.7. For a Killing frame {Xl9 , ΛΓn}, ίΛe following

conditions (for arbitrary i, /, /:, /) are equivalent:
(a) ίfte coefficients c)k = ^(Z f, [ZJ 5 Z fc]) in (4) ΛΓ^ constant;
(b) ίλέ? Christoffel symbols Γ)k = g(AΓί? VxXk) are constant;
(c) Λ(Z Λ ,Z Z )Z, = EZjEzJCι:

(d) ίΛe ίen5<?r 37% in (110 is covariant constant.
Proof. The equivalence of (a) and (b) follows from (4) and (40. As noted

in the proof of Lemma 3.4, we have

4R(Xk, Xι)Xj = —AίZ]t9Zι7Xj + AXj[Xk, Xt] ,

which will equal 2AXj[Xk, Xt] = 4EXjEXkXι as required in condition (c) if
and only if

~~A£ZktZιγ£j = AXj[Xk, Xι\ ,

which is equivalent to (a) by Proposition 3.1. Finally we compute, in the
Killing frame, using (13) and (27),

9 EXιEXkXj + ExEXιXk -

where the next to the last step follows from the computation used in the proof
of Lemma 3.3. This shows that (a) and (d) are equivalent.

For use in § 5, we note that the next to the last step above can be altered
to give

(33) Vιη\j = leCir,, EXιEXkXό + EXjEXιXk - EXkEXχXό).
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Condition (a) is clearly satisfied in Example 2.5. By Lemma 3.3, condition
(b) is satisfied if dim M < 4. Ad hoc proofs (omitted) show that this is also
true for dim M < 6. The computation in Counterexample 1.6 shows that (a)
is not satisfied in the case M = S7.

4. The Killing property and symmetric spaces

By Theorem 3.6, a Riemannian manifold having the Killing property must
be locally symmetric. Thus, each point of a connected Riemannian manifold
having the Killing property has an open neighborhood which is isometric to
an open neighborhood in a simply connected Riemannian symmetric space M.
Then M also has the Killing property and, moreover, has global Killing
frames. In fact, a local Killing frame exists on M because of the given local
isometry, and can be extended uniquely to give a global Killing frame. The
extension of each Killing vector field to a global Killing vector field is possible
since the symmetry implies completeness; the extension remains orthonormal
since the Riemannian structure on M is subordinate to a real analytic
Riemannian structure (cf. [12, p. 240], [3, p. 187]).

The Lie algebra g of the group G of isometries of M is isomorphic to the
Lie algebra of global Killing vector fields on M, where X € g corresponds to
the Killing vector field Z* of the 1-parameter family of isometries induced by
exp tX eG acting on M.

For any simply connected Riemannian symmetric space M, there exists
[12, p. 243] a Riemannian product decomposition

(34) M = Mo X MτX . . . X Mm ,

unique up to a permutation of the Mμ, μ > 0, in which Mo is a Euclidean
space and each Mμ, μ > 0, is a simply connected irreducible Riemannian
symmetric space. By Proposition 3.2, no factor Mμ, μ > 0, can be of noncom-
pact type if M has the Killing property. The decomposition comes from a
decomposition

direct sum of ideals, and implies [12, p. 243] that any a € G is the composition
of isometries of Mμ, μ = 0,ί, - , m, onto itself, or of Mμ onto Mv, μv > 0,
μ Φ v,'ύMμ and Mv are isometric.

Theorem 4.1. A simply connected Riemannian space M has the Killing
property if and only if each factor, in any Riemannian product decomposition
(34), has the Killing property.

Proof. (Our original proof has been considerably shortened, following
suggestions privately communicated by Joseph A. Wolf.) It is clear that the
product of Riemannian manifolds having the Killing property will have the
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Killing property with respect to the product Riemannian structure. Conversely,
let {AΓf, , X*} be a Killing frame on M, corresponding to {X19 , Xn) € g,
and let Xiμ be the component of Xt lying in g,, μ = 0, 1, , m. Then Xfμ is
tangent to each copy of Mμ in the product decomposition of M, and is induced
by the 1-parameter family exp tXiμ which acts trivially on all components
except Mμ. Since the metric g on M is the product of the metrics gμ on Mμ9 it
follows that g(Xf, Xf) = constant on M implies gμ(Xfμ, X*μ) = constant on
Mμ. Since the set {Xfμ, , X*μ} must generate the tangent space to Mμ at
any point, it follows that Mμ has the Killing property, by the remark following
Definition 1.4.

The above theorem reduces the local classification of Riemannian manifolds
having the Killing property to determining which manifolds appearing in a
decomposition (34) have the Killing property.

Certainly a Euclidean space, being flat, has the Killing property. The same
is true for a compact simple simply connected Lie group, by Example 2.5,
and for the spheres 51, S3, and S7 as noted in Example 1.5.

Many of the remaining possibilities are eliminated on the stronger ground
that these manifolds cannot carry even one Killing vector field of constant
length. These results follow from the work of Wolf [9], [10], [11], [12], and
the discussion below also follows the outline kindly supplied to us by Professor
Wolf.

Irreducible components of noncompact type are eliminated, a fortiori, by
Theorem 1 of [11]. Components of compact type are eliminated if rankG
= rank K, where K is the isotropy subgroup of G at some point mzM, since
this implies ([10], or [12, p. 255]) that M has positive Euler characteristic
and therefore cannot carry any non-vanishing vector field. Also most com-
ponents of compact type with rank G > rank K, non-trivial K, are eliminated
[10] because there are only a finite number of isometries of constant dis-
placement, so that there is no non-trivial 1-parameter family of isometries of
constant displacement.

The survivors of this last screening are the odd-dimensional spheres S2*-1

= SO(2n)/SO(2n — 1) and the spaces M = SU(2n)/Sp(n), n > 1. The spheres
Sn with n Φ 1, 3, 7 do not have the Killing property ([9], or § 5 below). In
the remaining case, Killing vector fields of constant length exist [10] but we
have not yet determined whether any of these spaces have the Killing property.

5. Spaces of constant curvature

Although the question of which spaces of constant (positive) curvature
cannot have the Killing property has been settled in § 4, we give here an
independent (local) proof which does not depend on the theory of symmetric
spaces, but on tensorial identities. We have

(35) 3FιVij
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which follows from (33) and the skew-symmetry of η, and

(36) Vιη\j = R)kl - V)sVkl ,

which follows from (300, (35), and skew-smmetry. These can be used to
derive the important identity

(37) RihkVlj - ηljRUt - η\sR*jhk =

In fact, we have

U* - η\sR
s

jhk) = 9Fh(FkV\j) - 9

A + rfjsR\kh)

The first step uses the definition of curvature, the second uses (35) then we
work out the covariant derivatives of the products, using (36) for those terms
in which Vh acts on a factor η involving the index k, and (35) for all other
terms. The last step uses (35) and skew-symmetry.

The identity (37), with the left-hand side interpreted as (FhFk — F*ΓΛ)^,
can be used to give a tensorial proof of Theorem 3.6 by the same devices used
in the proofs of (32) and Lemma 3.5.

Proposition 5.1. A space M of constant positive curvature can have the
Killing property only if dim M = 3 or 7.

Proof. In what follows, the summation convention will be assumed only
for indices designated by the letters r, s, or t. We assume that

(38) R)kl = Kiδiδjt - δlδjk) , where K ψ 0 ,

and that M has the Killing property. When (38) is combined with (300 for
k = ί, we obtain

(39) η)sy
su = φfι% = Kiδίδj, - δlδji) .

When (38) is combined with (37), we obtain

(40)
= Kiδitfj - δί-ηϊj - ηijδu + ffkjδlh - 7)\hδjk + rfιkδjh) .

We take h = ί, k = r, multiply (40) by τfvt, and sum on r and /. The left-hand
side gives, by (39),

= K(n -



SPECIAL ORTHONORMAL FRAMES 409

The right-hand side gives

by (35). Since K = 0 is excluded by hypothesis, the equality of these ex-
pressions requires either n = 7, or

(41) FtfίP = 0 , i,J,l,P= 1, ••-,*.

If dim M > 3, condition (41) cannot be satisfied under the assumption (38).
For, in this case, we can choose i = h Φ j Φ k Φ /in (40). Then (41) would
imply 0 = Kτftj9 1 < / Φ k Φ I < n, but the vanishing of the ηk

tj implies that
M is locally flat, by (1Γ). If dim M < 3, the Killing property implies that M
is locally flat, as noted in § 1.

Added in proof. It can be shown that if Xl9 - , Xpj p < dim M, are
orthonormal Killing vector fields, then (FXR)(Y, Z)W vanishes whenever
X, Y, Z, W lie in the p-dimensional distribution generated by {Xl9 , Xp}.
This generalizes Theorem 3.6.
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