A MORSE FUNCTION ON GRASSMANN MANIFOLDS

THEODOR HANGAN

Studying the critical sections of a convex body Wen Tsun Wu has obtained in [2] a Morse function on a Grassmann manifold. In the sequel it will be shown that another function may be obtained by composing the embedding of this manifold into a projective space with the well known Morse function of the projective space; our work is valid only for the real and complex fields.

1. The homology of the Grassmann manifold $G_{p,q}$ of all the p-planes of codimension q which pass through a fixed point 0 in an affine space A^n of dimension n=p+q was determined in 1934 by Ch. Ehresmann who gave a cell subdivision of $G_{p,q}$. The number of cells in his subdivision is the number $N=\binom{n}{p}$ of combinations of p elements of the set $\{1, \dots n\}$; such a combination $\sigma=(\sigma_1,\dots,\sigma_p)$ where $1\leq \sigma_1<\dots<\sigma_p\leq n$ is called a Schubert symbol. In the cell-subdivision of $G_{p,q}$, with each symbol σ one associates a cell of dimension

$$d(\sigma) = (\sigma_1 - 1) + \cdots + (\sigma_p - p).$$

Let us consider the lexicographical order in the set S(p, q) of all the Schubert symbols which correspond to the integers p and q; this means that $\sigma = (\sigma_1, \dots, \sigma_p) < \sigma' = (\sigma'_1, \dots, \sigma'_p)$ if and only if for the least integer $i \le p$ for which $\sigma_i \ne \sigma'_i$ the inequality $\sigma_i < \sigma'_i$ holds. We say that two symbols $\sigma = (\sigma_1, \dots, \sigma_p)$ and $\sigma' = (\sigma'_1, \dots, \sigma'_p)$ are neighboring if the sets $\{\sigma_1, \dots, \sigma_p\}$ and $\{\sigma'_1, \dots, \sigma'_p\}$ have exactly p-1 elements in common, or equivalently, if they differ only in what a single element is concerned. With these conventions we observe that the number $d(\sigma)$ equals the number of those Schubert-symbols which are less than and neighboring to σ . Indeed, in order to obtain a new symbol less than and neighboring to σ , the change of σ_i in σ may be made in $\sigma_i - i$ ways by replacing σ_i with a positive integer less than σ_i and different from $\sigma_1, \dots, \sigma_{i-1}$.

2. In the projective space P^{N-1} of dimension N-1 we consider homogeneous coordinates y_{σ} having as indices Schubert symbols $\sigma \in S(p, q)$ instead of positive integers running from 1 to N.

It is known, for example from [1], that the function

Communicated by S. S. Chern, February 1, 1968.

$$f = \sum_{\sigma \in S(p,q)} c_{\sigma} |y_{\sigma}|^2,$$

where c_{σ} are constants, and satisfy the inequalities $c_{\sigma} < c_{\sigma'}$ when $\sigma < \sigma'$ defines a Morse function on P^{N-1} when the coordinates y_{σ} satisfy the equation

$$\sum_{\sigma \in S(p,q)} |y_{\sigma}|^2 = 1.$$

The critical points of this function f correspond to the coordinate axes in the numerical N-dimensional space of the variables y_{σ} , and therefore may be denoted by A_{σ} , $\sigma \in S(p, q)$. The index of the point A_{σ} corresponding to the y_{σ} -axis is equal to and twice the number of constants $c_{\sigma'}$, which are less than c_{σ} , in the real and complex cases respectively. In other words, this index equals $n_{\sigma} - 1$ in the real case and $2(n_{\sigma} - 1)$ in the complex case, where n_{σ} is the number associated with σ in the ordering of S(p, q).

3. In the affine space A^n of dimension n denote by e_a , $a=1, \dots, n$, the basis vectors of the system of cartesian coordinates having the origin at 0. Consider p linearly independent vectors v_{α} , $\alpha=1, \dots, p$, with components with respect to the basis $\{e_a\}$ denoted by $v_{\alpha}^a \left(v_{\alpha} = \sum_{\alpha=1}^n v_{\alpha}^a e_{\alpha}\right)$ and form the determinants

$$(3) v^{\sigma} = \det \|v^{\sigma_{\alpha}}\|_{1}, \alpha = 1, \dots, p, \quad \sigma \in S(p, q),$$

which realize a system of Plücker coordinates for the p-plane spanned by the p vectors v_{α} . The Plückerian embedding π of $G_{p,q}$ in P^{N-1} is given by the equations

$$y_{\sigma} = v^{\sigma} .$$

Observe that when $v_{\alpha}=e_{\sigma_{\alpha}}$ the corresponding *p*-plane has the only non-zero component $y_{\sigma}=1$ and thus the points A_{σ} , which are critical points for the function f, belong to the image $\pi(G_{p,\sigma})$.

Theorem. The function $f \circ \pi \colon G_{p,q} \to R$ is a Morse function having $N = \binom{n}{p}$ nondegenerate critical points, which are $\pi^{-1}(A_{\sigma})$, and the index of each such point is $d(\sigma)$ in the real case and $2d(\sigma)$ in the complex case.

4. The points $\pi^{-1}(A_{\sigma})$ are critical for the function $f \circ \pi$ since their images A_{σ} are so for the function f. In order to show that the critical points $\pi^{-1}(A_{\sigma})$ are nondegenerate and their index is $d(\sigma)$, we introduce a system of local coordinates on $G_{p,q}$ in the neighborhood U_{σ} of the p-plane $\pi^{-1}(A_{\sigma})$ whose points are the p-planes having a nondegenerate projection on $\pi^{-1}(A_{\sigma})$. Clearly, if $e_{\overline{\sigma}_i}$, i = p + 1, \cdots , p + q, $1 \le \overline{\sigma}_i \le n$, $\overline{\sigma}_i \ne \sigma_{\sigma}$, are the vectors of the already chosen basis in A^n , which are not in $\pi^{-1}(A_{\sigma})$, then the pq local coordinates x_{σ}^i of a point x belonging to U_{σ} are determined by the formulas

$$v_{\alpha} = e_{\sigma_{\alpha}} + \sum_{i=p+1}^{n} x_{\alpha}^{i} e_{\bar{e}_{i}}, \qquad \alpha = 1, \dots, p$$

 v_{α} being the generating vectors of x. Observe now that $v^{\sigma}=1$ and that the only determinats v^{ρ} , $\rho \in S(p,q)$, which are linear functions of the coordinates x_{α}^{i} , are those corresponding to the symbols ρ which are neighboring to σ . The other determinants v^{ρ} are homogeneous polynominals in x_{α}^{i} of degree greater than one. In order for the embedding $\pi \colon G_{p,q} \to P^{N-1}$ to satisfy the condition (2) we use the following formulas:

(5)
$$y_{\rho} = \frac{v^{\rho}}{\left(\sum_{\tau \in S(p,q)} |v^{\tau}|^{2}\right)^{1/2}}.$$

Thus the function $F = f \circ \pi$ becomes

(6)
$$F = \frac{\sum\limits_{\rho \in S(p,q)} c_{\rho} |v^{\rho}|^{2}}{\sum\limits_{\tau \in S(p,q)} |v^{\tau}|^{2}},$$

and at the origin of the system of coordinates x_{α}^{i} the value of this function F is c_{σ} . This point is a critical one and the quadratic form F_{σ} , which approximates the function $F - c_{\sigma}$ in the neighborhood of the origin, is

$$F_{\sigma} = \sum_{\sigma'} (c_{\sigma'} - c_{\sigma}) |v^{\sigma'}|^2$$

where σ' is neighboring to σ . $|v^{\sigma'}|^2$ is the square of one of the coordinates x_a^i in the real case, and is its modulus $(\operatorname{Re} x_a^i)^2 + (\operatorname{Im} x_a^i)^2$ in the complex case. Hence the last part of the theorem follows from the choice of the constants c_a .

5. It remains to be proved that the function F has no other critical points different from $\pi^{-1}(A_{\sigma})$. In order to do this suppose that v is a critical point for F, and that σ is the least Schubert symbol having the property that the p-plane v belongs to U_{σ} . Thus the matrix of the components of a system of p vectors v_{σ} which span the p-plane v in U_{σ} is of the form

$$\begin{pmatrix}
0 \cdots 0 & 1 v_1^{\sigma_1+1} \cdots 0 & v_1^{\sigma_2+1} \cdots 0 & \cdots v_1^n \\
0 \cdots \cdots \cdots \cdots 0 1 & v_2^{\sigma_2+1} \cdots 0 & \cdots v_2^n \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 \cdots \vdots & \vdots & \vdots \\
0 \cdots \vdots & \vdots & \vdots \\
\end{pmatrix}.$$

Clearly $v_{\alpha}^{a} = 0$, $a < \sigma_{\alpha}$, and $v_{\alpha}^{\sigma\beta} = \delta_{\alpha}^{\beta}$ where δ_{α}^{β} is the Kronecker symbol. Now we consider the curve $w: (-\varepsilon, \varepsilon) \to G_{p,q}$ obtained by keeping the vectors v_{2}, \dots, v_{p} constant and varying only v_{1} in accord with the formulas

(8)
$$w_1^i = v_1^i + tv_1^i, i \neq \sigma_1; w_1^{\sigma_1} = v_1^{\sigma_1} = 1, w_{\alpha} = v_{\alpha}, \alpha = 2, \dots, p.$$

Thus, when v_1^i , $i \neq \sigma_1$, are not all zero, $\left(\frac{dF(w(t))}{dt}\right)_{t=0} \neq 0$ which contradicts the hypothesis that v is a critical point. Indeed, from (6) we obtain

$$\left(\frac{dF(w(t))}{dt}\right)_{t=0} = 2 \operatorname{Re} \frac{\left(\sum_{p} c_{\rho} v^{\rho} \overline{w}_{0}^{\rho'}\right) \left(\sum_{\tau} |v^{\tau}|^{2}\right) - \left(\sum_{\tau} v^{\tau} \overline{w}_{0}^{\tau'}\right) \left(\sum_{p} c_{\rho} |v^{\rho}|^{2}\right)}{\left(\sum_{\tau} |v^{\tau}|^{2}\right)^{2}},$$

where $w_0^{\rho'}=\left(\frac{dw^\rho}{dt}\right)_{t=0}$. From (7) and (8) we observe that if $w_0^{\rho'}\neq 0$, then the symbol $\rho=(\rho_1,\cdots,\rho_p)$ must have $\rho_1>\sigma_1$ and in this case $w_0^{\rho'}=v^\rho$. We write such a symbol in the form $\rho=\rho_1\overline{\rho}$ where $\overline{\rho}\in S(p-1,q+1)$ is the Schubert symbol $\rho=(\rho_2,\cdots,\rho_p)$. With this convention the numerator on the right-hand side of (9) then becomes

$$\begin{split} \mathfrak{N}_{1} &= \left(\sum\limits_{\rho_{1} > \sigma_{1,\bar{\rho}}} c_{\rho_{1}\bar{\rho}} | \, v^{\rho_{1}\bar{\rho}} |^{2} \right) \left(\sum\limits_{\tau_{1} > \sigma_{1,\bar{\tau}}} | \, v^{\tau_{1}\bar{\tau}} |^{2} \, + \, \sum\limits_{\bar{\tau}} \, | \, v^{\sigma_{1}\bar{\tau}} |^{2} \right) \\ &- \left(\sum\limits_{\tau_{1} > \sigma_{1,\bar{\tau}}} | \, v^{\tau_{1}\bar{\tau}} |^{2} \right) \left(\sum\limits_{\rho_{1} > \sigma_{1,\bar{\rho}}} c_{\rho_{1}\bar{\rho}} | \, v^{\rho_{1}\bar{\rho}} |^{2} \, + \, \sum\limits_{\bar{\tau}} \, c_{\sigma_{1}\bar{\tau}} | \, v^{\sigma_{1}\bar{\tau}} |^{2} \right) \\ &= \sum\limits_{\sigma_{1} > \sigma_{1},\bar{\rho},\bar{\rho}} \left(c_{\rho_{1}\bar{\rho}} - \, c_{\sigma_{1}\bar{\tau}} \right) | \, v^{\rho_{1}\bar{\rho}} |^{2} | \, v^{\sigma_{1}\bar{\tau}} |^{2} \, . \end{split}$$

But $c_{\rho_1\bar{\rho}} > c_{\sigma_2\bar{\tau}}$ since $\rho_1 > \sigma_1$, and as among the components $v^{\sigma_2\bar{\tau}}$ there is at least one different from zero (the component $v^{\sigma}=1$) we infer that $\mathfrak{N}_1=0$ only if all the determinants $v^{\rho_1\bar{\rho}}$ vanish. Among these determinants v^{ρ} we find those, for which p-1 indices in the symbol ρ coincide with $\sigma_2, \cdots, \sigma_p$ and are equal to $\pm v_1^i, i > \sigma_1$. Thus, if v is a critical point for F, then its coordinates $v_1^i, i > \sigma_1$, must vanish. The same method may be used to show that all the components $v_{\sigma}^i, i > \sigma_{\sigma}$, vanish for a critical point v. Indeed suppose that for a critical point v we have

(10)
$$v_{\alpha}^{i} = 0, i > \sigma_{\alpha}, \alpha = 1, \dots, k-1 < p$$

and consider the curve $w: (-\varepsilon, \varepsilon) \to G_{p,q}$ defined by

(11)
$$w_k^i = v_k^i + t v_k^i, i \neq \sigma_k, \quad w_k^{\sigma_k} = v_k^{\sigma_k}, \quad w_{\beta} = v_{\beta}, \beta \neq k$$

From (10), (11) and (7) we infer that the components v^{ρ} where ρ is not of the form $\rho = (\sigma_1, \dots, \sigma_{k-1}, \rho_k, \dots, \rho_p)$ are zero, and that the derivatives $w_0^{\rho} = \left(\frac{dw^{\rho}}{dt}\right)_{t=0}$ where $\rho_k = \sigma_k$ are also zero. Thus \mathfrak{N}_1 , now denoted by \mathfrak{N}_k , becomes

$$\begin{split} \mathfrak{N}_{k} &= \left(\sum_{\rho_{k} > \sigma_{k}, \bar{\rho}} c_{\sigma_{1} \cdots \sigma_{k-1} \rho_{k} \bar{\rho}} | v^{\sigma_{1} \cdots \sigma_{k-1} \rho_{k} \bar{\rho}}|^{2}\right) \left(\sum_{\tau_{k} > \sigma_{k}, \bar{\tau}} | v^{\sigma_{1} \cdots \sigma_{k-1} \tau_{k} \bar{\tau}}|^{2} + \sum_{\bar{z}} | v^{\sigma_{1} \cdots \sigma_{k} \bar{\tau}}|^{2}\right) \\ &- \left(\sum_{\tau_{k} > \sigma_{k}, \bar{\tau}} | v^{\sigma_{1} \cdots \sigma_{k-1} \tau_{k} \bar{\tau}}|^{2}\right) \left(\sum_{\rho_{k} > \sigma_{k}, \bar{\rho}} c_{\sigma_{1} \cdots \sigma_{k-1} \rho_{k} \bar{\rho}} | v^{\sigma_{1} \cdots \sigma_{k-1} \rho_{k} \bar{\rho}}|^{2} \\ &+ \sum_{\bar{z}} c_{\sigma_{1} \cdots \sigma_{k} \bar{\tau}} | v^{\sigma_{1} \cdots \sigma_{k} \bar{\tau}}|^{2}\right) \\ &= \sum_{\rho_{k} > \sigma_{k}, \bar{\rho}, \bar{\tau}} \left(c_{\sigma_{1} \cdots \sigma_{k-1} \rho_{k} \bar{\rho}} - c_{\sigma_{1} \cdots \sigma_{k} \bar{\tau}}\right) | v^{\sigma_{1} \cdots \sigma_{k-1} \rho_{k} \bar{\rho}}|^{2} | v^{\sigma_{1} \cdots \sigma_{k} \bar{\tau}}|^{2}, \end{split}$$

where $\bar{\rho}$ denotes $\rho_{k+1}\cdots\rho_p$ for abbreviation. As above $\mathfrak{R}_k=0$ implies $v_k^i=0,\,i>\sigma_k$. Hence the only critical points F are the points $\pi^{-1}(A_\sigma)$.

Bibliography

- [1] J. Milnor, Morse theory, Ann. of Math. Studies, No. 51, Princeton University Press, Princeton, 1963.
- [2] W. T. Wu, On critical sections of convex bodies, Sci. Sinica 14 (1965) 1721-1728.

Institute of Mathematics Bucarest, Rumania