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POSITIVELY-CURVED HYPERSURFACES
OF A HILBERT SPACE

MANFREDO P. DO CARMO

1. Statement of the results

A Riemannian Hilbert manifold M is a differentiable (C°°), connected
manifold, modeled on a (separable) Hilbert space, such that in the tangent
space Mp of M at each p € M there exists an inner product <(,>p, which varies
differentiably with p (see [7] for precise definitions). M can be made into a
metric space by defining the distance between two points p, q € M as the
infimum of the length of differentiable curves joining p and q; M is said to be
complete if it is complete in this metric.

The local differential geometry of Riemannian Hilbert manifolds develops
in exactly the same way as in the finite dimensional case so that we can define
a unique covariant derivative and obtain the notions of curvature tensor,
geodesies, sectional curvature, etc. (see [8] for details). It can be proved, for
example, that convex neighborhoods exist for each point of M [8, pp.
14-16].

However, for the global differential geometry, the situation is quite different.
Only a few theorems are known, the main reason being that completeness does
not imply, as it does in the finite dimensional case, that two given points of M
can be joined by a minimal geodesic; a simple example is given in [3].

The objective of this paper is to prove a global result, for the statement of
which we need a few definitions.

A differentiable (C°°) map x: M -> H of a Riemannian Hilbert manifold M
into a Hilbert space H is an immersion if the differential dx(p): Mp —* H is
one-one and dx(p)(Mv) c H is closed in H. If x is one-one it is called an
embedding.

An isometric immersion is an immersion x: M-*H such that dx(p): MP-*H
is an isometry for each pe M. If, in this situation, dx(p)(Mp) c H has codi-
mension one, we say that x(M) c H is a hypersurface of H. Of course, a
hypersurface may have self-intersections.

We now state the theorem, which will be proved in §4.
Theorem. Let M be a complete Riemannian Hilbert manifold with positive

sectional curvature K bounded away from zero at each point of M, i.e., for
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each p € M, there exists a δp > 0 such that K(σp) > δp for any two dimensional
subspace σp(Z Mp. Let x:M -+H be an isometric immersion of M as a hyper-
surface of a Hϊlbert space H. Then:

i) x is an embedding;
ii) x(M) C H is the boundary of a convex body in H; in particular, x

embeds M topologically as a closed subset of H,
iii) M is homeomorphic to a Hilbert space.
Remark 1. A theorem of this type was first considered by Hadamard [4],

who obtained conclusions i) and ii) for the case where dim M = 2, H = i?3,
and M is compact with positive curvature. The result was later generalized by
Stoker [11], allowing M to be complete but keeping the other conditions. The
case, where dim M = 2, H = Rz, and M is compact with nonnegative curva-
ture, was first treated by Chern and Lashoff in [1]. Finally, Sacksteder [10],
using some results of Heijenoort [5], obtained i) and ii) for the case where
dim Λf = n, H = Rn+1> and M is complete under the conditions that the sec-
tional curvatures of M are nonnegative and, at least at one point, are all
positive.

Remark 2. The theorem is likely to be true under weaker conditions on
the curvature. In the finite dimensional case, the Sacksteder's theorem quoted
at the end of Remark 1 is stronger than our Theorem, and the author does not
know of any counter example to a similar statement in the infinite dimensional
case.

The author wishes to thank I. Kupka, J. Palis, and F. Warner for conver-
sations. A joint work with E. Lima, in an attempt to find a new proof for
Sacksteder's theorem, was very useful in setting the main lines of the proof of
our Theorem.

2. Notation and preliminary lemmas

M will always denote a Riemannian Hilbert manifold, and H a Hilbert
space with inner product <,>. Bv denotes the bundle of unit normal vectors of
an immersion x: M-+H, i.e., a point of Bv is a pair (p, v(p)), where pzM
and v(p) is a normal vector at x(p). Let 2 be the unit sphere of H, and define
a map v\ Bv-* 2 by ϊ(p, v(p)) = v(p). For each v € 2> we also define a
height function h: M —> R by h(p) = (x(p), v), p € M.

For any differentiate function / : M->Λ, grad/ is the vector field in M
defined by

df(p) v = <grad/(p), v>p , p € M, v 6 Mp .

grad / is a curve ψ(t) in M with —2- = grac
dt

critical point of / is a point p € M where grad/(p) = 0. Choosing a coordinate

A trajectory of grad/ is a curve ψ(t) in M with —2- = grad/(^(0), and a
dt
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system around a critical point p, the second derivative d2f(p) defines a sym-
metric bilinear form on Mp, which does not depend on the coordinate system
and is called the hessian of / at p. If the self-adjoint linear map of Mv corre-
sponding to the hessian is non-singular, p is a nondegenerate critical point.
The index of a nondegenerate critical point p is the supremum of the dimen-
sions of the subspaces of Mv on which the hessian is negative.

Lemma 1. Let M be complete, x: M —*H an isometric immersion, and
ψ{t) a trajectory of the gradient field of a height function h{p) = <x(p), v),
p € M. Then φ(t) is defined for allteR.

Proof. We first show that ||gradΛ|| < 1. By the definition of gradΛ, we
have

( 1 ) * ihoψit)) = dh(φ'(t)) = rfλ(grad h) = ||grad h\\*.
dt

On the other hand, since h — (x, ι>) and x is a local isometry,

( 2 ) * (hoφ(t)) = <dx{φ'{t)\ v> = <djc(grad A), v} = <grad Λ, v> .
at

Comparing the right hand members of (1) and (2), we obtain the stated
inequality.

Now suppose, for instance, that φ(t) is defined for t < t0 but not for t = ί0.
Then, there exists a sequence {ίj, ί = 1, , n, converging to tQ such that
{ψih)} does not converge. 5ince ||grad h\\ < 1, we obtain

Wgrzdh(φ(t))\\dt < \h - t,\,

where d is the distance in the intrinsic metric of M. It follows that the non-
convergent sequence [φih)} is a Cauchy sequence this contradicts the complete-
ness of M and proves the lemma.

Lemma 2. Under the same hypotheses of the theorem, except the com-
pleteness of M, let h = <JC, v) be a height function on M. Then p is a critical
point of h if and only if v is a normal vector at x(p). In this case, p is a non-
degenerate critical point, which is either a maximum or a minimum.

Proof, p € M is a critical point of h if and only if, for all v € Mv,

dh(p) v = <dx(p) v, v) = 0 ,

which proves the first statement.
Now, we choose a coordinate system at p, and write the quadratic form

corresponding to the hessian of h at p as

d2h(p)(v) = <cPx(p){v), v > , v e M
p.
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The right hand member of (3) is the normal curvature of x(M) at x(p) in the
direction dx(v), and has a fixed sign for all v € Mv since all sectional curvatures
are positive. If we denote by A: Mv -> Mp the self-adjoint map corresponding
to the hessian, this means that (Av9 v}, v € Mp, has a fixed sign, and the
spectrum of A does not contain zero since the curvature is bounded away from
zero at p. It follows that A is non-singular, and hence p is a nondegenerate
critical point. Thus it is clear that the index of h at p is either zero or the
dimension of Mv this means that p is either a minimum or a maximum, and
hence finishes the proof.

Lemma 3. Let x: M —*H be an isometric immersion of M as a hypersur-
face of H. Let h = <*, voy be a height function and φ(t), t € [a, b], be a
trajectory of grad A. // there exists a point tx € (a, b) such that the function
||grad Ap(f)|| has a relative minimum for t = t19 then the normal curvature of
x(M) ox (pίO) in the direction of dx(φf(tj) is zero.

Proof. Set φ(tλ) = p e M, and let W be a neighborhood of p in M such that
there exists a differentiable cross-section of the unit normal bundle Bv over W.
Restricting this section to <ρ(t), we obtain a unit normal vector v(f) defined in
an open interval / c [a, b], tx € 7. For each teJ, let Ut c W be a neighbor-
hood of the level surface of h passing through φ(t), and let Tt c dx(Mφit)) C H
be the tangent space of x(Ut) at x(φ(t)).

For notational convenience, we identify vectors in Mφ{t) with their images
in dx(MφW) c H. We remark that Tt has codimension two, and that the vectors
gradλ(p(ό), vOi i>(0 belong to Tj , the orthogonal complement of Tt in H;
furthermore <grad h(φ(i)), v(t)} = 0.

Next, define ^(ί), t ζ J, as the unit vector of the projection of v(ί) in T^ onto
the direction normal to v09 i.e., vx(t) is differentiable for t € / , and <IΊ(0> *Ό>

= 0. Finally, set <vif), ̂ (ί)> = a(t), t <= J.
Now, we first notice that

||gradλ||2 = <gradA, v0} = ± ^ ( 0 , ^ ( 0 ) = ±cΛf) .

On the other hand, since <i/0, ^(0) = 0 and (v^f), vx(t)y = 1, we obtain

and hence * i € Γ, and / * L , p(ί)\ = 0, It follows that
dt \ dt i

da / dv

The assumption that ||gradΛ(y>(0)||< 1 has a minimum for t = tx implies

that *L(O = 0 and |α(O| ̂  1. Therefore, /-*L, ̂ (ί)) = 0 for t = r1? and
Λ \ dt I
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v(0, 1 (̂0 are linearly independent. Since ζv(t), v(t)y = 1, we have also that

/j*L, v(ή) = 0, from which it follows that — (O e Ttl.
\ dt I dt

Finally, since <dx(φ'(t))9 v(φ = 0 and i^i-fo) e 7^, we obtain that

ζd2x(φ'(t)), v(φ = 0 for t = *1? which proves the lemma.
The following lemma is well known.
Lemma 4. Let f: M^R be a differentiable function and p e M a non-

degenerate critical point of f, which is either a maximum or a minimum. Then:
a) there exists a neighborhood V of p in M such that either lim φ(i) = p

t-.-oo

(for minimum p) or lim φ(t) = p (for maximum p), where φ(i) is a trajectory
ί—oo

of gτnd f with φ(O)e V;

b) inf ||grad/(^)||^= 0 ,

if S is a level surface of f sufficiently close to p.

3. The main lemma

Lemma 5. Under the hypotheses of the Theorem let h = (x, Vs) be a height
function on M. Then h has at most two critical points.

Proof. Let p be a critical point of M. Then by Lemma 2 we may assume,
for definiteness, that p is a minimum. Let ψ(i) be a trajectory of grad h issuing
from p, i.e., ^(0) is close to p and lim ψ(t) = p. Then by Lemma 1, ψ(i) is

ί— 00

defined for all t > 0, and we have the following alternatives:
(i) lim φ(t) = qe M. q is then a critical point of h, and we say that φ(t)

ί — 00

is going into q.
(ii) lim φ(i) does not exist.

ί-oo

Suppose that (i) holds and let S be a level surface of ft, sufficiently close to
p. Let A c 5 be the set of points in S, which lie on the trajectories of grad A
issuing from p and going into q. By continuity, the fact that q is a non-
degenerate maximum, and Lemma 4, A is an open set in S. We want to show
that A is also closed in 5.

Assume that A is not closed in S. Then there exists a sequence of points
{pj, i = 1, . . . , n, -, converging to p0 such that the trajectories φi through
Pi go into q, but the trajectory φ0 through p0 does not. By the above argument,
it is clear that φ0 does not go into another critical point distinct from q. More-
over, by continuity, arbitrarily near to any point of φ0 there passes a trajectory
φN for N sufficiently large. It follows that ft is bounded on <p0, and hence
||grad h\\ is not bounded away from zero on φ0.

Now consider small level surfaces Sx and 52 of A around p and q respectively.
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Since <p0 does not go into q, we may choose S2 such that no point of φ0 belongs
to the region B2 of M bounded by £2. Let εx > 0 and ε2 > 0 be the infima of
||grad h\\ on 52 and S2 respectively, and let e < min (ε1? ε2), ε > 0 (cf. Lemma
4(b)). By continuity and the fact that ||grad h\\ is not bounded away from zero
on φ0, we can choose a trajectory <pN for a sufficiently large N such that
|| grad A(r)|| < ε for some point r on φN with r $ B2 and r $ B19 where Bx is the
region bounded by Sx. By a translation of the parameter t, we may assume
that φN(0) e ^ and

| - | | g r a d / i o ^ ( 0 ) | | > 0 .
at

Then the positive differentiable function \\gr2idhoφN(t)\\, te [0, + oo), changes
at least three times from increasing to decreasing or reversely. Therefore this
function has a point of relative minimum, which by Lemma 3 implies that the
normal curvature of x(M) at such a point in the direction of grad h is zero.
This contradicts the hypothesis of the Theorem, and hence A is closed as we
claimed.

Since S is connected, A = S and all the trajectories issuing from p go into q.
Now, suppose that (ii) holds. As we have seen, this implies that no trajec-

tory issuing from p has a limit as t -> oo. We want to show that M is then
completely covered by the trajectories issuing from p.

The set A c M covered by the trajectories issuing from p is, by continuity,
an open set in M. To prove that A is closed, we consider a sequence {pj,
i = 1, . . . , n, , Pi € Λί, converging to pQ € M, such that pt belongs to a
trajectory <pt issuing from p we will show that the same happens with p0.

It is clear that p0 is not a critical point of A, otherwise a trajectory φt suf-
ficiently close to p0 would go into po; this contradicts (ii). Therefore, there is
a trajectory φ0 of grad h passing through p0. We may assume that ^/0) = pj9

j = 0, 1, , n, - , and want to prove that lim φo(t) = p.
t — - o o

We remark that arbitrarily near to any point of φo((— oo, 0]) by continuity
there passes a trajectory φN, for a sufficiently large N, which goes into p as
ί —* _ oo. It follows that h is bounded on φΌ((— oo, 0]), and hence ||gradλ||
is not bounded away from zero on φQ((— oo, 0]).

We now assume that φQ(t) does not go into p as t —> — oo, and choose a level
surface Sλ near p such that no point of y>0((— °°» 0]) belongs to the region Bx

bounded by SΎ. Let εx be the infimum of ||gradλ|| on Sl9 ε2 = ||gradλ(po)||
and ε < min(ε15 ε^, ε > 0. Arguing as in case (i), we find a trajectory φN

for a large N such that the function ||grad hoφN(f)\\, t e (— oo, 0], has a point
of minimum. Application of Lemma 3 shows that our assumption leads to a
contradiction; hence A is closed in M.

By connectedness, A = M and M is completely covered by the trajectories
issuing from p.
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An entirely similar argument shows that also in case (i), M is completely
covered by the trajectories issuing from p and going into q. Therefore h has
at most two critical points, and hence the proof of Lemma 5 is finished.

Remark. Actually, in view of the first part of Lemma 2, we have proved
a little more, namely: Either h has one minimum (or maximum) p and the
trajectories of grad h issuing from p cover M, or h has one minimum p and
one maximum q and the trajectories of grad h issuing from p and going into
q cover M.

4. Proof of the Theorem

Proof of (i). Suppose that p, q are distinct points in M with x(p) = x(q).
Consider the height function h = (x, y>, where v is a normal vector p. By
Lemma 2, p is a critical point of h and, by Lemma 5 there is a trajectory of
grad h issuing from p and passing through (or going into) q. Thus x(p) and
x(q) are at different levels; this contradicts the fact that x(p) = x(q) and
proves (i).

Proof of (ii). The above argument shows that x{M) lies entirely on one
side of the tangent hyperplane of x(M) at x(p) for any p 6 M, and has no point
in common with this hyperplane other than x(p).

Now, the intersection of all closed half spaces of H, which are bounded by
the tangent hyperplanes and contain points of JC(M), is a closed convex subset
K c H. It is clear that x(M) is contained in the boundary K! of K. Moreover,
since the curvature is positive, x(M) is not contained in a hyperplane, and K
has interior points. Therefore K is a convex body in H.

In order to prove that x(M) = K', we first show that x(M) is an open set in
K'. For this purpose, we remark that through each point k of K! there passes
a support hyperplane of K, i.e., a hyperplane of H containing points of the
closure of K but no interior points of K. This follows from a geometric form
of the Hahn-Banach theorem, which implies that k and K are separated by a
hyperplane (see [2, p. 417]).

Now, since JC : M —> H is an immersion, for each p e M there exists a neigh-
borhood U of p in M with x(U) c K'. We will show that there is a neighbor-
hood V of Jt(p) in H such that F Π K' = *([/). Assuming the contrary, we
obtain a sequence {kt}9 kt e K\ kt $ x(U), i = 1, , n, , which converges
to x(p). Let 7r be the tangent hyperplane of x(M) at x(p). Clearly the sets x(U)
and {ki} are on the same side of π, and kt ίπ. By the above remark, through
each ^ there passes a support hyperplane ^ of K. If all ^ are parallel, then
there will be points of x(JJ) on both sides of some πx\ if some τr< for large i is
not parallel to π9 then it will intersect x(U). In any case, our assumptions lead
to a contradiction, which shows that x(M) is an open set in K\

We now prove that x(M) = X7. Assume that there exists a point £ € K',
k $ x(M), and fix any point x(p) € x(M). Since X7 is the boundary of a convex
body, K' is connected [6, p. 31] and there exists a rectifiable curve θ(t) in
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K\ t € [0, a]9 with 0(0) = x(p) and θ(ά) = k. Since x(M) is open in K\ there
is a neighborhood of jc(p) containing an initial segment of 0, and therefore
exists a point ξ € [0, a] such that θit) € JC(M) for t e [0, f) and θ(ξ) ix(M).
This implies the existence of a sequence {ί2}, ^ < f, i = 1, , n, , con-
verging to ξ such that the sequence {0(ί*)} does not converge in x(M). We
denote by ^ the length of θ(t) from 0 to tu and remark that the sequence {αj
converges. From this and the inequality

due to the local isometry of x, we conclude that {0(*i)} is a nonconvergent
Cauchy sequence; this contradicts the completeness of M and proves (ii).

Proof of (Hi). We first show that the convex body K does not contain an
entire line of H. Assume that there exists a line L C K and let π be a hyper-
plane tangent to x(M) at x(p). Then by convexity, the segment x(p)r joining
x(p) to any point r € L belongs to K. The limit points of all segments x(p)r,
r e L, fill up a line 1/ parallel to L and passing through p, and hence are con-
tained in π. Since K is closed, V c 1£. It follows that the tangent hyperplane
π contains an entire line of points of K; this contradicts the remark made at
the beginning of the proof of (ii).

By the above argument and the topological classification of boundaries of
convex bodies in a Hubert space [6, p. 31, Prop. 1.7], we obtain (iii), and
the proof of the Theorem is complete.
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