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BOUNDED CURVATURES

HARLEY FLANDERS

1. Introduction

We work with the hypersurface in En+1 which is the graph of a C" function

u = u(xλ, , xn)

on an open ball ΣO^)2 < R2 in £ n . We use the notation

p, = du/dx*, r,, = φulW W ,

w2 = l + |/>|2 = I + Σ Pi.

We also introduce the matrix

It is known that Λ has geometrical significance, indeed, its characteristic
roots are the principal curvatures of the hypersurface (see Flanders [3, pp.
116-126] for details). The various curvatures Kx = mean curvature,
2̂> 5 ^ n ( = total curvature) are given by the characteristic polynomial:

det(ί/ - A) = t* -

In [5], Heinz proved that if \Kλ\ > a < 0 for the function u = W(JC, >>) of two
variables defined over x2 + y1 < i?2, then R < I/a. This was generalized to n
variables in Chern [1, Theorem 1] and independently in Flanders [4]. Again
the hypothesis | ^ i | > α > 0 leads to R < I/a and this is best possible.

Heinz [5] also considered a surface u = u(x, y), x2 + y2 < R2, for which
the total (Gaussian) curvature

K2 =
 rJ—A , (w2 = 1 + p2 + p2)
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is bounded away from zero. His results are different for different sign.
Precisely he proved (i) if K2 > a > 0, then JR < 1/^5"and (ii) if K2 < -a < 0,
then JR < ej3/ ΛΛ. The first of these results is an easy consequence of the
situation in which Kλ is bounded away from zero and we shall give the in-
variable form of this result in the next section. The second result is more
difficult and depends on the following integral formula due to S. Bernstein:

2 JC (rt-s2)dxdy

(1.1)

"~ dr I ~" dr ίr J \dθ
0

Chern [1, Formula 71] gives the generalization of this formula which is the
first step for extending Heinz's proof to more than two variables. Using this
Chern [1, Theorem 4] shows that if K2 < — a < 0 and another rather com-
plicated inequality is satisfied, then R is bounded. It does not seem likely that
this technique of proof is adequate for obtaining a bound on R from the
single hypothesis that K2< — a, indeed such a result may not exist. It is
possible however to use the method of proof for results in a different direc-
tion which may turn out to be more natural. Instead of the curvatures we use
the invariants of JR = ||ri:; || divided by suitable powers of w. Since results for
the first and second of these work, one may conjecture that such are true for
all of the invariants. In particular one may conjecture that for the last of
these

an inequality \Kn\ > a > 0 bounds the domain.

2. K2 > a > 0

• Theorem 1. Let u = ufx1, , xn) be defined on \x\< R and suppose
K2>a>0. ThenR < 1/Ja.

Proof. We prove first that K2 < K\. At a given point x let λl9 , λn be
the principal curvatures. Then

= Σ hh ,

n*κ> = Σ A + Σ Wi.

For each /, / we have λ\ + λ) > 2λiλj hence by summing,
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n\n -

and K? > £ 2 follows. Thus Kx > ja; so by Chern [1, Theorem 1] or Flanders
[4] w e h a v e Λ < l / J £

Remark. Chern gave a slightly weaker result in [1, Theorem 2] and the
present result in the Corollary to Theorem 1 of [2]. Our proof is different.

3. The Bernstein-Chern formula

In this section we state in our notation Chern's generalization [1, Formula
71] of (1.1).

Let u = u(x\ , xn) be a C" function on \x\ < R and let 0 < r < R.
Then we have

(3.1)
\x]<r

dx"

\x\=r

The notation is the following. The form σ is the element of volume on the
unit sphere Sn"x. At |x| = r, the ordinary space gradient Vu = p = (p19 - , pn)
has a radial component of length du/dr and a component tangential to rS71'1.
It is this which we denote grad u so that

Vu = /> = i ϊL iL + grad M .
3r r

We shall discuss an alternate derivation of (3.1) elsewhere.

4. Bounded trace

We shall replace the matrix A by the matrix R = \r^\ divided by suitable
powers of w. We have the following result.

Theorem 2. Let W = W(JC) be a C " function on \x\ < R which satisfies

ΓAen
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Proof. For each x € rS11"1, set y = x/r € Sn~ι. Then y is the unit normal
at x to rS71'1. We recall the standard formula for the vector area element
rn~ισy of

rn~ισy = {dx2 dxn, —dxWx*. dr% •) =

where * is the usual adjoint in En (Flanders [3, pp. 136 ff.]).
We use du = pdx, *du = p*dx, and d*du = (Σ r^dx1 - - dxn to

compute:

l*l-r

J (Σ ru)dχl ώ" = f d*dw = Γ

= J p*dx = r71"1 j />.j<7
| x | = r | * | - r

<rΛ-1 J \p\o<t*-χ J wσ;
l l | J C |

J
|JC|-r

hence

(4.1) J (Σ ̂ ii)^1 •• ώ " < rΛ'1 J w^
l |

(This is the analogue of (3.1) for the first invariant of R. Most desirable
would be a corresponding relation for the general invariant.)

We set

b = IS*"1] = f σ

so that

Replacing u by — u we see that there is no loss of generality in supposing
Σ Tu > 0, which we do.

We now define

J nr n
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and assert

(i) f(r) > — ,
n

(ii) Γ w^^dx1 ... dxn > (Hγnλ
lxl£r

(iii)

The first of these is true because w > 1 the second follows by application of
the Holder inequality:

wdx1 • Λe ^ ί J w 1 + 1 M ί j l )
lxl^r

For (iii) we have

f (r) = r'1-1 J wσ > J (Σr«) dx1 - djc«

> « α Γ w^^rfjc1 . dxn ,

and (ii) applies. We thus have

fir)
> na

(n\1/n 1
\bl 7 '

We let 0 < r < rx < Λ and integrate:

n\—I— - —I—1 > nal—Ynϊn (rJr) .

We drop the second term on the left and let rx —*> R:

1 / yj \ 1/n

By this and (i),

The choice r — R/e is the best and yields the conclusion.
We may now duplicate the proof of Theorem 1 as applied to the symmetric

matrix R/w1+1/n instead of A to derive the following theorem.
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Theorem 3. Let u = u(x) be a C" junction on \χ\ < R and suppose

1

w2+2/n rn
>a>0.

Then

4a

We note that if the exponent of w in the hypothesis of Theorem 2 is in-
creased then the resulting bound on R may be decreased. The proof of
Theorem 2 works with this modification: the final step involves a power of r
rather than the logarithm. This logarithm seems to be the critical case. It
appears in Heinz's [5] proof of his Theorem 4 and again in our proof below
of Theorem 6. (It is not this critical case which appears in Chern's [1,
Theorem 4].)

Theorem 4. Let u = u(x) be a C" junction on \χ\ < Λ and suppose

Then

R<

Proof. We follow the proof of Theorem 2 closely. As before we assume
ru > 0 and set

In order, we derive

(i)

(iϋ)

/(r) = Γ wdx1 . . dxn .

Kr) > {b =

J ̂ ^^""ir,

We integrate (iii) from r to rlt 0 < r < rt < i?:
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> \ n a -T-

We drop the second term on the left, let rx —»R and use (i) to derive

da RS-1

The right hand side takes its max at r5"1 = R^/δ. We substitute this value
of r to obtain the conclusion of the theorem.

Having this result we may exploit the inequality on the second invariant of
the symmetric matric R/w1+δ/n to deduce the following.

Theorem 5. Let u = u(χ) be a C" junction on \χ\ < R and suppose

Then

1 > a > 0 ( « > ! )

R <

5. Bounded negative second invariant

Our main result is the following.
Theorem 6. Let u = u(χ) be C" on \χ\ < R in En and suppose

1
w2+4/n

rtJ < -α<0.

Then

Proof. For 0 < r < R, set

f(r) = Γ (1 + |grad uf)dxι - - dx*
\x\<.r

= Γtn-ιdt j (1 + |gradw|2)<7,
jxl-r

where grad u is the tangential component of Vu discussed in §3. The func-
tion / has the following properties:
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(i) f(r) > A
n

(ii) f w*+A/ndxι - - rfjcTO

(ϋi) f(r) = frr*"1 + r"'1 Γ |grad «|V ,

|*l-r

(iv) /"(r) = 6rΛ"2 + H—2L f ( r) + rΛ"2(r Γ | grad w |V) .
v %)

l*|-r

Property (i) is immediate from the definition. To obtain (ii) we use

^ = 1 + I/Ί2 = 1 + [ψj2 + |grad«i2,

1 + I grad u |* < w 2.

Thus

J / Λ \ w/(n+2) / n \ 2/(n + 2)

π ί̂ic1 dx" ζ y (w>y+»ή Π lj
by Holder's inequality, and so

f(Γ)( +l>/« < / Γ H;2+4/«djcl . . . dχn\ {^ γn \ *" ?

and (ii) follows. Property (iii) follows from the definition of /. Having it we
write the second rn~ι as rn~2r and differentiate:

f'(r) = (n - l)fer-2 + (Λ - 2)r«"2 J ( . .) + rΛ"2 A ( r J ( .

Formula (iv) follows.
We now derive the differential inequality

/"(r) > ^^-fix) + ^ /(r)1+2/Λ ,
r r2

where
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/ n \ 2 / n

' - * ( £ )
To do this we use, in order, (iv) above, (3.1), and the hypothesis of the
theorem:

/" (r) - H—± f{r)
r

> r71-2—- r j Igradwpσ)
dr \ J I

lx|«r

> 2 Λ I w2+4/ndx1 JJC71

I n\2/n 1

We proceed to integrate this inequality. We have

/ T" —r J
(n-2)

- 2(n - 2)

and

+2/n \ / / O \ JXλ-Vnlt {2+2/n

r) = (2 + D M - - 2C - D έ ^ i

hence

fiff en I f+"» V
r < -» ~ 1 + n \ r2'"-" / "

As r -* 0 + , /(r) = O(rn) so there is no problem integrating from 0 to r:

en f+2/n

/(r)1 + 1 / n I 1 + n I r

We let 0 < r0 < rx < JR and integrate again:
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«(_J M > (-^-Γ
1 / r \l/2

rj

We may let rλ ->/?, replace r0 by r, and use (i) above to obtain

This is true whenever 0 < r < R. To make the optimal choice of r, we set
r = v/ί, 0 < v < 1 and have

1 / 9/2 \1/2

Λ \ π(n + 1) /π(n + 1)

The maximal value of (—'Vint;) is e"1 taken at t; = e"1; so the theorem
follows.

In the conclusion of the theorem the fact that R is bounded by a constant
over >\a is probably the best result. The particular constant we have, based
as it is on some drastic estimates, is probably not the best. One may ask
whether increasing the exponent on w in the hypothesis leads to an order of
magnitude on R less than ojα. The present method of proof leads only to a
better constant. We have the following result.

Theorem 7. Let u be a C" junction on\x\<R in En and suppose

1 Σ (rurjj - /?,) < -a < 0 ,
w2+4δ/n

where δ > 1. Then

(akL+A) .

The proof parallels the proof of Theorem 6 with a slight difference only at
the last integration. We sketch the main points. The relation (ii) becomes

/

/ n \ 2δ/n 1

W 2 + 4δ/ndχi . . . ^ n > I -5-/W

Ixl^r

/Cr)<-+»>/»

The differential inequality is replaced by
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f"(r) > n ~ 2 fjr) + —

TΓ •
from which follows

2c

CΠ ( f+

"" n + δ

One integration leads to

+2δ/n V

f > I en V* 1
+"n - \n + δ I r8 '

Since δ > 1 a second integration, where 0 < r0 < rλ < R, leads to

n__J L_l > i / en γ*( l i_
d L /(ro)^» /(r,)'^ J ~ (δ - 1) \ n + δ I Vrg"1 rf-1

- J _ > δ ( c YΊJ Lλ
Kr)»n ~ (δ - 1) \n(n + δ) I Xr1'1 R"-1!

for 0 < r < R. By the estimate on / in (i) above,

/ π\«- J_ g / c \v/ 1 _ J_\

1 > g I 2a γ*l 1 1\
r> - δ - 1 \n(n + δ) I Ir4"1 J?4"1/ '

Setting r = vΛ, 0 < v < 1 we find

>
R ~ δ-

We maximize v — vs to complete the proof.
We remark that

the constant in Theorem 6. Indeed, it is easy to obtain Theorem 6 as a limit-
ing case of Theorem 7 by the simple device of slightly decreasing R and a.

We note as a corollary the special case δ = n/2.
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Corollary 1. Let u be a C" function on | x | < R and suppose

4 r Σ (Turjj - r|,) < -a< 0 .
4

4
W4

Then

7. Relation to curvature

We return to the considerations of § 7 and compute to what extent the ex-
pression in this corollary is related to the second curvature K2.

We have

w w2

where

= Σ
The 2 x 2 principal minor of A is

1
w2

=

rii — —ΓSil
W2

1

w2 U r k i r k k
W2

w2

w 2 * *

- PΛi)

Summing we find

When π = 2 this formula reduces to the standard one for Gaussian curvature:

TV4

For n > 2 we can at least get some insight into the situation by assuming at
some point that R is diagonal,



R =

After a short calculation we find
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This shows that it is hopeless to expect that a bound on [tr(Λ2Λ)]/w4 is im-
plied by a bound on K2 or visa-versa. It remains an open question whether
an inequality of the form K2< — a < 0 forces a bound on R. Of course one
may ask similar questions about K39 K4y - with both positive and negative
bounds.
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