J. DIFFERENTIAL GEOMETRY
2 (1968) 233-252

A CLASS OF RIEMANNIAN METRICS ON A MANIFOLD

HIDEKI OMORI

0. Introduction

In his suggestive paper [3], R. Bott proved that if geodesics starting from
a point p in a riemannian manifold M are all closed geodesics whose length
of a lap is constant, then the number of conjugate points of p on a lap of
these closed geodesics are constant, counting the multiplicity. This result has
been extended recently by Nakagawa [9], who proved that if all geodesics
starting from a point p with a constant length ¢ come back to the point p
(these are not necessarily closed geodesics), then the number of conjugate
points on a lap of these closed geodesic segments are constant, counting the
multiplicity.

If a stronger condition is assumed so that the cut point of p with respect to
every geodesic starting from p may become a middle point of this closed geo-
desic segment, then the manifold M has a decomposition M = D, U Dy, as
it is seen in Warner’s paper [11], where D, is a disk, N is a cut locus of p,
which becomes a closed submanifold in this case, and D, is a normal disk
bundle of N in M.

In this paper, as an extension of these facts, it will be proved that if a
compact connected real analytic riemannian manifold M has a submanifold N
such that the cut point of N with respect to every geodesic, which starts from
N and whose initial direction is orthogonal to N has a constant distance 7
from N, then M has a decomposion M = Dy U ,Dy., where N’ is the cut
locus of N and Dy, D, are normal disk bundles of N, N’ respectively (cf.
Theorem 3.1). Of course, manifolds having such a decomposition are very
special, but at any rate, it seems interesting to consider some details about
that kind of manifold.

On a single manifold M, there are many, various riemannian metrics,
which form a convex set. Each of these riemannian metrics, however, ought
to be influenced by the topological structures of the manifold. Roughly speak-
ing, one must be able to determine the topological structures of M by using
only one riemannian metric, but at least at the present time it seems impossi-
ble. Therefore, it seems interesting to consider some useful class of rieman-
nian metrics instead of a single metric or the whole metrics. In this paper, it
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gﬂl be considered a class of riemannian metrics satisfying the following con-
itions :

Let N, N’ be connected submanifolds. Suppose there is a riemannian metric
G, such that (i) the cut locus of N is N’, (ii) the cut point for each geodesic
starting orthogonally from N has the constant distance z from N. The class
%(G,) of riemannian metrics to be considered in this paper is the set of
riemannian metrics G such that (a) G satisfies (i), (ii) above, (b) normal vec-
tor bundles of N, N’ under the metric G, coincide with those with respect to
G as a set and riemannian vector bundle.

Let Sy(r/2) be the normal sphere bundle of N each of whose fibre is a
sphere of radius z/2, and let Diff(Sy(x/2)) be the set of all diffeomorphisms
on Sy(r/2). The topology of ¥(G,) and Diff(Sy(z/2)) is so-called C=-topology.
Then, there is a continuous mapping J of %(G,) into Difi(Sy(x/2)), and

letting 157&(5 ~(®/2)) = image of J, 9(G,) is the total space of a fibre bundle
over Diff(Sy(z/2)) (cf. Theorem 2.12), where the fibre may be different at

each connected component of ﬁfr(s ~(/2)). The fibre of this bundle is closely
related to the set of all diffeomorphisms on M, which leave the sets N, N’
fixed respectively.

Therefore, if one can see the topological structure of ¥(G,) by using tech-
niques of differential geometry, then one can see the topological structures of

ﬁ\iﬁ(S ~(r/2)). However, at least at the present time the author does not know
anything about the topological stuructures of %(G,).

1. Compact riemannian manifold M with a submanifold NV
as the cut locus of NC M

Let M be a compact C~-manifold, and N, N’ closed, connected C~-sub-
manifolds of M. Consider a riemannian metric G on M. Hereafter, parameters
of geodesics are the arc length throughout this paper. For a geodesic g(),
0 <t < oo, starting from N and orthogonal to N at the starting point, the cut
point g(t,) of N is the point such that the geodesic g(#), 0 <t <1, attains the
distance between g(z,) and N but g(f) does not for f > ¢,. For defining the cut
point, the geodesic considered ought obviously to be orthogonal to N at the
starting point. The cut locus is the set of cut points for all geodesics starting
orthogonally from N.

In this section, a manifold M having a C~-riemannian metric with the
following property P(N, N’) with respect to the two submanifolds N, N’ will be
considered.

P(N, N): (i) The cut locus of N is N’. (ii) For every geodesic, starting
orthogonally from N, the distance from N to the cut point of N is constant
and equal to =.

1.1. Theorem. If there is a riemannian metric satisfying P(N, N’), then
M is diffeomorphic to a manifold Dy U , Dy, where Dy, Dy, are normal disk
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bundles of N, N' in M respectively and ¢ is an attaching diffeomorphism
of 09y onto 0D ..

Proof. Let G be the riemannian metric satisfying P(N, N’) and fix this
metric on M. Since N’ coincides with the cut locus of N, for every point
g e N’, there is a geodesic g(#), 0 <t < x, such that g(0)e N, g(r) = q.

% | g(?) is orthogonal to N’. In fact, if not, then for small § > 0, the distance
I

o’ between g(z — J) and N’ satisfies §’ < 4. Let g(2), 0 <t < &, be the geo-
desic attaining this distance. Put g(0) = g(x — ) and g(6”) € N’. Then there is
a geodesic A(t), 0 < t < t,, such that #(0) e N, h(t,) = g’(¢") and 7, < =. This
is a contradiction because there is a geodesic iz(t), 0<t<m such that
h(0) € N, h(z) = h(t)) and h(z) is a cut point of N. Therefore, the distance
between N and N’ is n. It follows that every geodesic starting orthogonally
from N strikes N’ orthogonally when the length becomes .

Let 9,.(c) be the normal disk bundle of N each of whose fibre is a disk of
radius ¢. For a small ¢ > 0, 2.(¢) is a tubular neighborhood of N, and for
each g € 39y.(¢), 2,(e) N N’ = p(q), where Z,(¢) is the e-neighborhood of g
and p is the projection of the bundle 2,.(c). Let g€ 39,.(e) and g(2),
0 <t <1, be the geodesic such that g(0) € N, g(¢,) = g and attains the dis-
tance between g and N.

If t, < 7 — e, then the distance between N and N’ becomes < z. Thus,
ty>m—e If ty>n—¢, then g(x) is not contained in N’. Therefore,
t, = = — ¢. Moreover, letting 2(£), 0 < t < ¢, be the geodesic such that £(0)

. d d
=gq, 8 = , we obtain — 1) =—
q, &) = p(@) pr _eg() Zilo

between N and N’ is < . Thus g(t) = g(zx — ¢ + ?).

Let Ty, Vy and Dy(r) be the tangent bundle of M, normal vector bundle
of N and normal disk bundle of N in ¥V, each of whose fibre is a disk of
radius r. As is well known, the exponential mapping Exp: T,, — M is a C~-
mapping. Put E = Exp|V . Then, from the argument above, E(D,(z)) = M.
Let Di(r) be the set of interior points of Dy(r). Then E: Di(x) - M — N’ is
diffeomorphic, because E(3D y(x)) = N’ is the cut locus of N.

Let V., Dy.(r) be the normal vector bundle and normal disk bundle of N’
respectively. Let E’ = Exp|Vy,. Then M = E(Dy(x/2)) U E'(Dy/(x/2)).
Since E: Dy(x/2) - E(Dy(x/2)), E': DyAx/2)— E'(Dy.(x/2)) are both diffeo-
morphism and E(@D y(z/2)) = 8E(D y(z/2)) = 0E'(D 5z /2)) = E’(3D y.(x[2)),
we obtain a desired decomposition of M by putting 2y = E(D y(x/2)), Dy
= E'(Dy.(z/2)) and ¢ = identity.

Let p: T, — M be the projection. Two riemannian metrics G,, G, both of
which have the property P(N, N’) are called equivalent (denoted by G,~G,),
if pX e N U N’ for X e T, is orthogonal to N U N’ with respect to G, implies
that X is also so with respect to G, and ||X||z, = ||X||s,. Let (G,) be the set

2’(t); otherwise the distance

E
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of riemannian metrics each of which has the property P(N, N’) and is equiva-
lent to G,. Of course, G, is assumed to have the property P(N, N’). Let
V x, V. be normal vector bundles of N, N’ with respect to G,. Normal vector
bundles of N, N’ with respect to any other metric in %(G,) coincide with
Vx, V. respectively as riemannian vector bundles. For every G ¢ 9(G,), de-
note by Exp, the exponential mapping T, — M with respect to G and put
E; = Expg|Vy, E¢ = Expg|Vy..

Since M = E (D y(x/2)) UEL(D y.(x/2)) and 9E ;(D y(z/2)) = 8EG(D y(z/2))
for every G e 9(G,), we have a C~-diffeomorphism ¢, = Ez'E; of S,(x/2)
onto Sy.(x/2), where Sy(z/2) = dDy(x/2), Syx/2) = aDy.(x/2). Clearly,
another definition of ¢ is given by

¢’G(X) = — T d Expgtl_ = d

= — —| ExpgtX .
2 dtls 11X il Po

Let lSTf/f(S ~(@/2)) be the set of C=-diffeomorphisms such that, denoting by

¢ an element of ﬁTﬁ(SN(n/Z)), there is a C~-diffeomorphism ¢ of M onto
Dpy(z/2)U .,;,GO,DNr(:r/Z) satisfying @(N)=N, O(N)=N"and d@ |V ,: V-V,
d@|Vy.: Vy, — V. are both identities, where V, V. are identified with
normal vector bundles of N, N’ in D,(x/2), Dy.(x/2) respectively.

Let Diffy(Sy(z/2)) be an arcwise connected component containing the
identity of the set of whole diffeomorphisms on S,(z/2). There is no diffi-

culty in verifying that for each ¢ € 13?&(3(7:/2» we have ¢ Diff(Sy(x/2)) <
Difi(S(z/2)).

1.2. Proposition. The mapping J defined by J(G) = ¢z} - is @ mapping
of 9(G,) onto Difi(Sy(x/2)).

Proof. Since J(%(G,) c Difi(S ~(/2)) is clear, we have only to show that

J is surjective. Let ¢ € ﬁviff(SN(n/ 2)). Since there is a diffeomorphism ¢: M
— Dy(x/2) Uy oD w(x/2) having the property mentioned above, it is enough
to show that there is a riemannian metric on D y(z/2) Uy, oD y.(z/2) satisfying
P(N, N’) and normal bundles of N, N’ coincide with ¥V, V. respectively. It
will be done in the next three lemmas.

Denote by (M, G) the manifold with riemannian metric G and let G be the
usual metric on S*-1.

1.3. Lemma. Let B(r) = {(x,, ---, x,) € R"; i x} < r*}. Then there is a

C=-riemannian metric on B(r) satisfying (i) B(r)i-—1 B(r — ¢) is isometric to
(S=-1, (ﬁ) X (r — &, rl, where ¢’ is some positive number depending only on ¢,
@) {t(x,, - - -, x,); 0 <t < 1} is a geodesic segment of constant length s, for
every (x, ---,X,) € 0B(r) and the parameter t is proportional to the arc
length, (iii) this riemannian metric is invariant under the natural operation of
the orthogonal group O(n) on B(r).
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Proof. Let h(t), 0 <t <&, be a C~-function satisfying a) A(t) = 1 for
E—d<t<E DO >0for 0<t<E—¢, ¢) limh™() = o for m =

t—0

1,2, --- and lim A(¢) = 0, d) the length of the graph is s,, that is,
t—0
[T wera=s,.
0
Let 6, - - -, 8,_, be local coordinates of 3B(r), and G;,(6, - - - 6,_,) the rie-

mannian metric G expressed by the local coordinates. Define the metric G on
B(r) — {0} by

,0 --- 0
(2O
(Gis(t, 6,y -+, 0,0)) = (?t) D Giy6,--6,0) |
0

where (¢, 6,, - - -, 8,_,) is considered as a polar coordinate. From the property
(c), G is considered as a metric on B(r). There is no difficulty in verifying
that G is a desired metric. Clearly ¢ = L.
€

1.4. Lemma. Let W =M X [0, 1]. Given any C=-riemannian metrics
Gy, G, on M X {0}, M x {1} respectively. Then there is a C=-riemannian
metric G on W satisfying (i) there are e-neighborhood U, of M X {0}, isome-
tric to (M, G,o) X [0, &), and e-neighborhood U, of M X {1}, isometric to
M, é) X (1 — ¢, 11, Gi) any {(x, 1); 0 < t < 1} for every x e M is a geodesic
segment of constant length s, where the parameter t is proportional to the arc
length and s is a positive number previously given.

Proof. Let h(z) be a C=-function such that (i) #(f) = 0 for 0 < ¢t < £ and
s

ht)=1for1 — L <r<1, (i) W@ >0for £ <1< 1~ L. Define the
S R S

metric G on W by

s 0 - 0
0

Gt x 3D = 2 4G, 4 (1 — k)G, )
0

where x,, - - -, x,, are local coordinates on M. It is not hard to verify that G
has the desired property.

The following lemma is trivial.

1.5. Lemma. Let N,=M X (—¢,0], N,=M X [0, ¢). Given metrics
G,, G, on N,, N, such that N, is isometric to the product of (M; G;|M) and
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(=, 0] or [0, ¢). Assume there is an isometry ¢: (M, G,|M) — (M, G,|M).
Then N, U,N, becomes a riemannian manifold isometric to (M, G,|M)
X (— ¢, ).

Now, using these three lemmas, a poof of Proposition 1.2 will be given below.

Let G,, G| be arbitrarily fixed riemannian metrics on N, N’ respectively.
For each point x € N (resp. y € N’) there exists a neighborhood U of x (resp.
U’ of y) such that p~}(U) = U X D (z/2) (resp. p~%(U) = U’ X D,(x/2))
where p is the projection and D (= /2) (resp. D,(x/2)) is the fibre at x (resp.
at y). Take the metric G, (resp. Gj) on D (x/2) (resp. D,(x/4)) which is de-
fined in Lemma 1.3 and define the riemannian metric on U X D_(z/2) (resp.
U’ X D,(z/4)) which is a direct product. Being invariant under the natural
operation of orthogonal groups, the metrics on D,(x/2), D,(x/4) define rie-
mannian metrics G,, G; on Dy(z/2), Dy.(x/4) respectively. N, N’ are both
totally geodesic in D y(r/2), Dy.(x/4). From the property (i) in Lemma 1.3,
we see that Dy(r/2) — Dy(n/2 — ¢) and Dy.(x/4) — Dy.(x/4 — ) are iso-
metric to 0D y(x/2) X (r/2 — &, n/2], D y.(n/4) X (x]4 — &, n /4] respective-
ly. Remark that Dy.(x/2) — Di(zx/4) is diffeomorphic to dD.(zx/2) X [z/4,
7 /2], where D%.(x/4) is an interior point of Dy.(x/4).

Let ¢ e Diff(Sy(z/2)), and GY = (¢¢,0)x(G;|Sy(x/2)). Gi is a metric on
Sy(x/2). On Sy.(x/4), there is a riemannian metric G;|Sy(x/4).

From Lemma 1.4, there is a riemannian metric G, on D.(x/2) — D}.(z/4)
satisfying the properties (i), (ii) in this lemma. Therefore Lemma 1.5 shows
that G, U G, U G} is a riemannian metric on D, (z/2) U ¢GO,D ~m/2) satisfy-
ing the desired property.

Let 9(G,, #) be the set of the riemannian metrics on M such that (i)
Ge 9(Gy), (i) if Ge ¥%(G,, #), then E;(X) = Es(X) and E; (Y) = EG(Y)
for X e Dy(n/2), Y € Dy.(x/2).

1.6. Lemma. %(G,, &) is a convex subset, that is, for any G,G’ e
YU G,, F), tG + (1 — DG’ is contained in 9(Gy, F) for 0 <t < 1.

Proof. Let p be the projection from D%(2x/3) onto N. Let U be an open
neighborhood of x in N such that p~%(U) is diffeomorphic to U X Di(2z/3),
where Di(2z/3) = p~*(x). This diffecomorphism &: U X Di(2z/3) — p~*(U)
can be so chosen that p&(x, y) = x.

Give a polar coordinate (¢, ¢, - - - 67~*) on D%(2z/3) and an arbitrary coor-
dinate x'..-x? on U. Since E; is a diffeomorphism of Di{(2z/3) onto
24(2x[3) = Ez(DyQ2x/3)), ¢, 6", ---,6077%, x',---,x% is a coordinate on
some open subset of M. Since E (X) = E;.(X) for any X ¢ D§{(2x/3), G and
G’ are expressed in this coordinate by
10 ..-0 10 -.-0
0

Gij(t’ 0’ x) ’

0 0

G = G =

Git,6,x) |’
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where § = (6" --- 671, x = (x' - - - x9). Clearly, if  — 0, then the %-parts of
these metrics

110]0
o=

tend to O.
For any se[0, 1], G” = sG + (1 — s)G’ is obviously a riemannian metric
on M and on the open subset E;p~'(U), G’ is expressed by

10 .--0
GI/_ 0
=\ 66,9
0

and *-parts of this matrix tend to O if ¢ — 0. Considering all coordinate
neighborhoods by the same method as above, we can conclude from only the
shape of these matrices that G” € 9(G,, &).

1.7. Proposition. There is a one-to-one correspondence K from 4(G,, F)
X Diff(M, N, N’) onto J-'(id.), where Diff(M, N, N’) is the diffeomorphism
on M such that if & e Diff(M, N, N’) then £(N) = N, &(N’) = N’ and d¢ |V,
dg|V . are both identity. Moreover, the correspondence K is given by
K(G, &) = £,(G).

Proof. If J(G) = id., then £,(G) e J-'(id.) for every ¢ ¢ Diff(M, N, N').
Since J(9(G,, #)) = id., K(9(G,, ) X Difi(M, N, N’)) C J-'(id.).

Assume K(G, &) = K(G', &) for G, G’ e 9(G,, #), &, & ¢ Diff(M, N, N’).
Then £%,(G) = G’. Since d(¢'-1-£)|Vy = id. and E;(X) = E;(X), ELX)
= E¢(X), putting x = Eg(X). §%(x) = §6(Es(X)) = Eq(dE )X =
E;.(X) = x. It follows that £ = ¢’ and then G = G'.

Let G, eJ-'(id.). Define a mapping ¢ as follows:

£(x) = {EGO(X) » f x=EsX, XeDy(z/2),
(), it x=ELY, YeDilz/2),

Let &, &, be diffeomorphisms of D y(z/2) U ;; Dy.(r/2) onto M defined by

_(Eo(X), XeDym/2), |,
(x) = |Ee; _
0 {E;;i(X), XeDyim). = Ob

Then & = &£, 1t is easy to see that & e Diff(M, N, N’). From the definition
of &, &,&, we see &(Eq (X)) = E;(X) for X e Dy(z/2) and &(E;(X))
= Eg (X) for XeDy.(x/2). It follows that £,G, e 9(G,, %) and then
G:\ = K(&*(Gl), E-‘)-
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A curve ¢, in ]%(SN(n/ 2)) is called differentiable, if, putting z(x, s)
= @,(x), 7 is a C~-differentiable mapping of Sy(z/2) X [0, 1] onto Sy(x/2).

1.8. Proposition. If there is a differentiable curve o, in ]%(SN(n/2)),
then there is a one-to-one correspondence I from J=Y(¢,) onto J=*(¢,).

Proof. Let Jg)>G. There exists a C>-diffcomorphism &; of
Dy(x/2) Uggp,Du(/2) onto M, which is defined by

_ EG(X) , Xe DN(ﬂ/Z) s
i {Eeoo , XeDy(z/2),

Let A(t) be a C>-function such that A(f) =0, 0<t<1/3, h( =1,
2/3<t<L1, W(@® >0, 1/3<t<2/3. Define a diffeomorphism & on
Dy(z/2) by

X eDyx/4),
@ N
X) = {¢h(t,(X) X e Sy((n/d)t + /4),

where ¢, = % - Qs Let Z be a vector field on Di(x/2) — Dy(z/5) defined

by (0 = 2 l "X” . Put ¥ = dO% and Y = d&,¥. Y is a vector field
nxu
on Di(x/2) — Dy(x/5), where Du(r) = E;Dy(r). Y coincides with
=91 E4 X _ 4e,a at neighborhoods of Fy(r/2) = Es(Sx(z/2))
dt| L X0

and S y(z/5) = Eg(Sy(x/5)).
Replace the riemann metric G on 24(x/2) — D,(x/5) by G’, where

(Z,Z%% = P:Zle- IPZlo- 1Y% — |PZ] <Y — X, pZDg
— 1P Z)|6 Y — X, p.Z)¢ + {P:Z, P:L)s »

pZ=2~{2, %%, pZ=Z—pZ=(Z,X):X.

Since |[Y|2 = | X[ + |Y — X[z =1+ |Y — X|3, it is easy to see that G’
is positive definite, (Y, Y4 = 1 and (¥, p.Z)>; = 0. G’ coincides with G at
neighborhoods of & y(x/2), & x(rn/5), and therefore can be naturally extended
to be a riemannian metric on M; this extended metric is denoted by G’.
Put I(G) = G’. An integral curve of Y is a geodesic with respect to G’.
Therefore EG, =E;-®, and then E;'E; |Sy(z/2) = E;'Eg-¢7'¢
= do.pops ' 01= Qo1 Thus, I(G) e J-X(p,).

Conversely, let G’ ¢ J-*(¢,). Replace @ by ¢! and make a riemannian me-
tric G” by the same method as above. Then, putting I'(G") = G, G" € J"*(¢,)
and it is easy to show that I’-1 = identity (the proof of this will be seen in
Lemma 2.11).
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2. C~-topology for ¥(G,), Diffi(S,(x/2)) and Diffi(M, N, N')

Let M be a compact C~-manifold, and Diff"(M), Diff(M) the sets of the
C7- and C~-diffeomorphisms on M respectively. As is well known Diff"(M) is
a C=-Banach manifold compatible with C"-topology. Let I%, k > j be the na-
tural inclusion of Diff*(M) into Diff/(M). The projective limit topology of
{Diff"(M), I'} for Diff(M) is called C~-topology. Hereafter Diffi"(M), Diff(M)
imply the groups with C"-topology, C~-topology respectively.

2.1. Lemma. Diff(M) is locally arcwise connected.

Proof. Let I? be the inclusion of Diff(M) into Diff"(M). For any neigh-
borhood U of id. in Diff(M), there are r and a neighborhood V of id. in
Diff’(M) such that (I7)-(V) c U. For an arbitrarily fixed C=-riemannian
metric, if r > 1, there is a neighborhood W such that (i) W C V, (i) for
every ¢ ¢ W, there exists uniquely a vector field X on M satisfying ¢(x) =
Exp X(x), (iil) ¢, = Exp tX(x), 0 <t < 1, is also contained in W. (This is a
proof of locally arcwise connectedness of Diff"(M).) W is not necessarily con-
vex or open.

Since Exp is a C=-mapping, if ¢ is a C~-diffeomorphism, then so also is ¢,.
Thus, (I7)'W is arcwise connected.

2.2. Corollary. ISTE(S ¥(/2)) is an open subset of Diff(Sy(z/2)).
It is an immediate conclusion from the fact that ﬁTﬁ(SN(x/ 2))D

¢ Diff,(Sx(x/2)) for every ¢ ¢ Difi(Sx(r/2)).

The following lemma is trivial.

2.3. Lemma. Diffi(M, N, N’') is a closed subgroup of Diff(M).

Let 47, ¢ be the C”- and C~-riemanian metrics on M, and %7, & the C’-
and C~-symmetric bilinear forms on M, respectively. &~ is a Banach space
with respect to C™-norm and #7 is an open subset of &7. Then ¥” X T, is a
C~-Banach manifold. 7 X &7 is identified naturally with the tangent bundle
of ¥7. Then &7 X &7 X T(T)) is the tangent bundle of ¢r X T,, where
T(T,) is the tangent bundle of T,. A vector field on ¢~ X T, is a cross sec-
tion of this bundle. Using a local coordinate neighborhood U on M, the tan-
gent bundles T, T(T,) are identified with U X R*, U X R* X R* X R*
respectively. Therefore the tangent bundle of ¥ X T, is identified with
¥ X UX R* X & X R* X R* and a vector field on ¥” X T, is a mapping
of 7 X U X R" into &* X R* X R".

Define a vector field Z as follows: Letting x!, - - -, x* be a coordinate on
U, and p?, - - -, p» the natural coordinates of R*, Z(G, x*,-- -, x*,p*, -+ -, p%)

1 ini n) il . .
=@, p,---,p*, — {i].}Gp DI, e, — {l.].}ep p’), where {fk}a is the Chris-
toffel’s symbol of G with respect to the coordinate system x2, - - ., x™.

2.4. Lemma. £ is a C™*-vector field on 47 X T,.
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Proof. We have only to show that
1 . e . 1 .« o i
G, 2, -y xm, P ,p")—»{]-k}G
is a C*~'-function. For this, it suffices to prove that for an arbitrarily fixed

x,p)=, .-, x*, p*, ..., p"), the function G — {];(‘ (x, p) is a C=-func-
G

tion. Therefore, we have only to show that for a fixed (x, p) and i, j, k, the
mappings G — G;; ,, G — G% are both C~-differentiable. Let 7: S — S, , be
a function on 7. Then 7 is a linear function and thus C=-differentiable. It
is easy to show that G — G is C=-differentiable.

2.5. Lemma. The mapping @,: 47 X T, — %7 X T, defined by

@@m=@%

ExpgtX )

is a C*~-diffeomorphism for r > 1.
Proof. Since ExpstX is a geodesic, it is easy to see that (G, -:iit} ExpgtX >
It

is the integral curve of & whose intial point is (G, X). Thus, from the well-
known theorem concerning the integral curve of a differentiable vector field
on Banach manifolds (cf. [10]), we have that the mapping @, is a C7~-diffeo-
morphism.

2.6. Corollary. ¥%(G,), 9(G,, &) are both closed subsets of %.

Proof. From the above lemma, the mappings E;: Dy(z/2) — M,
EZ: Dy(z/2) — M depend continuously on G ¢ 7. Therefore 97(G,) is closed
for any r > 1, where ¢7(G,) is the set of the C’-riemannian metrics having
the property P(N, N’) and being equivalent to G,. Thus, #(G,) is closed in .

By the method similar to the above, we have that 4(G,, &) is closed in
4(Gy).

2.6. Proposition. The mapping J is continuous from %(G,) onto

DIf(S,,(x/2)).

Proof. We have only to show the continuity of J and it suffices to prove
that J7: ¥7(G,) — Diff-}(Sy(x/2)) is continuous for all r > 1, where the
mapping J” is defined in the same way as J, that is, J7 is defined as follows:

r@m=wkg

ExthX> . XeSun/2).
2

From Lemma 2.5, &, is a C"~*-diffeomorpnism of ¥ X T, onto itself,
and @,(%7(G,) X Sy(r/2)) = ¢7(G,) X Sy.(x/2). Let g be the projection from
%7 X T, onto T,. Then g®, is a Cr--differentiable mapping, and q9,(G, X)
= di! ExpstX. If G e 97(G,), then ¥s: X — %1 ExpgtX is a C7-* diffeomor-

T2 2
phism of Sy(z/2) onto Sy.(zx/2). Let Diff"*(Sy(x/2), Sy/(x/2)) be the
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Cr-'-diffeomorphisms of Sy(x/2) onto Sy.(x/2) with C~—’-topology. Since
Sxy(x/2) is compact, the differentiability of g®, implies that the mapping
J: 97(Gy) — Diffr~¥(Sy(z/2), Sy.(x/2)) is continuous, where J(G) = ¥,. Since
¢ = — ¥ and J(G) = ¢glpe = ¢z2(— ¥;), we have that J7 is continuous
forallr > 1.

2.7. Lemma. The mapping K: ¢ X Difi(M) — ¢ defined by K(G, ¢)
= ¢4(G) is continuous, where all the topologies are C=-topology.

It is not hard to verify this lemma, since we have only to show that
Kr: 7 X Diffr*'(M) — %7 is continuous for r > 0, where K7(G, ¢) = ¢,(G).

2.8. Proposition. The mapping K: 9(G,, %) X Diff(M, N, N’) — J*(id.)
is a homeomorphism.

Proof. Clearly K is continuous. Let G, e J-'(id.). As in the proof of Pro-
position 1.7, define a diffeomorphism &, as follows:

EGOE(-;II(x) ’ X € EG1DN(7E/2) s

é6,(x) = {E,G L& (x), xeEgDy(x/2).

&5, is a diffeomorphism contained in Diff(M, N, N’). First of all, it will be
proved that the mapping K: J-*(id.) — Diff(D x(x/2) U ¢; Dn.(z/2), M) defined
by
E.X, XeDy(/2),

,GX’ XGDN/(TE/z)

is continuous, where Diff(D y(z/2) U ¢, Dy.(z/2), M) is the C=-diffeomorphisms
from Dy(z/2) U ¢6,Dn+(n/2) onto M with C~-topology. Let p be the projection
T, — M. Then from Lemma 2.5, the mapping 5: 47 X T, — M defined by

2G,X) =p (%l ExthX> = Exp¢X is a C"~'-mapping. If X e D,(r/2) (resp.
'l

X e Dy.(n/2)), then 7)(G,’X) = E;X (resp. E;X). Since D,(z/2) Uss DnAx/2)
is compact, we see that K7: J-!(id.)” — Diff"~%(M, N, N’) is continuous, where
K~ and J-*(id.)" are those which are naturally defined on ¥7(G,). Therefore, K
is continuous. Since &5 (x) = EGOK(G,)'l(x) or E{;oIf(Gl)‘l(x), the mapping
K: J-Gd.) — Diff(M, N, N’) defined by K(G) = &, is continuous.

Since I'(’(G)*(G) € 9(G,, #), the mapping «: J-'(id.) — 9(G,, &), «(G)
= I'(’T(G)*(G), is continuous. It is easy to show that K(x(G), Ko™ =0.
Therefore K is a homeomorphism.

2.9. Proposition. Under the same assumption as in Proposition 1.8, 1 is
a homeomorphism.

Proof. It suffices to prove that I is continuous, because I-* is constructed
by the same method. Take a local coordinate system (z, 4, x) on D%(2x/3)
which is used in the proof of Lemma 1.6. Let .# be the set of the C~-metrics
on Dy(x/2) such that if Ge A, then

KG)(X) =
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~ 0
G=1: &, 6
0

with respect to this coordinate system. Let

R 1+ GpYeY?, — 3 G,Ye
15(G) = 2sapsn asasn , 2Li,j<n,
- Z jSLYa’ Gij
25asn

where Y* is the i-th coefficient of % . Letting ¥(Dy(x/2)) be the set of C>-
metrics on Dy(x/2) with C~-topology, Iy: 4 — %(Dy(x /2)) is a continuous
mapping, where the topology for .# is a C=-topology. It is not hard to verify
that I(G) = (EG)*f,(Eal)*(G) on 94(zx/2). I(G) = G at the neighborhoods of
& v(x/2) and D y(x/4), where & y(x/2) = Ec(Sy(x/2)), D n(x[4) = E;(Dy(n/4)).
Since E;: Dy(n/2) — M is continuous with respect to G, we see that I is con-
tinuous.

In the above proposition, the vector field # is fixed, but need not leave %
fixed, that is, let Diff,(Dy(x/2)) be the set of the C=-diffeomorphisms on
Dy(x/2) such that if @ e Diff,(Dy(x/2)), then (1) D(Sy(r)) = Sy(r), (i)
@ |Dy(x/4) = id., (i) O@X) = (X)) for X e Sy(1), (=/4)(5/3) <t <L x/2.
The topology is a C~-topology.

Replacing # in the above proof by d0%’, ¢ e Diff (D y(x/2)), the mapping
1"(G, @) = I,,.(G) is a continuous mapping of # X Diff,(Dy(z/2)) into
4(Dy(x/2)). It is clear that I(G,®) =G on Dy(zx/4) and D(x/2)
— Diy((=/4)(5/3)).

Define a mapping [: 9(G,) X Diff ;(Dy(x/2)) — 9(G)) as follows:

(Ex)l"(G, ONEG)(G)(x) , xeEgDy(x/2),

16,00 = {ZF xe EDyx/2)

Thus, the following lemma can be easily proved.

2.10. Lemma. [ is a continuous mapping.

2.11. Lemma. [({(G, @), ¢) = [(G, 99").

Proof. First of all, it will be proved that I'(G, @9") = @, 1 + D31} (G).
We have the following commutative diagram:
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o
(Dy(7]2), 03M4e+(G) Dy(n/2)

id. / &
id.

wl-l ’ - —_

DN(R/Z) —_— (Dx(=[2), ¢;|1‘"(G) e (D‘\~(:/2), l«ws¢; ()]

@
id. E; @ E; ¢
®
id.
(D.\'(ﬂlz)v G) —I,——. (D,\.(:r/2), l;ox(G) (D.\'(”/z)i ¢tlzcr¢;‘lzor(0)

do'z

Eq E,; E.

M id. M id. M

G =E;'G, G’ =EglyyE5'G, G’ = Egli:0:1:(G),

(00)!
(D(x/2), B Dy(x/2)
w / ®
id. o'
Dy(r/2)
~ o0’ ~
(Dx(x/2), G) (Du([2), PolieeOiils(G))

id. id.
Taeor
®

(D(/2), I1pe:¢G)

where (D (x/2), metric) implies Dy(x/2) having the riemannian metric, and
@ implies the change of metrics. There is no difficulty in verifying that the
mappings ® work as exponential mappings, that is, for instance, the mapping

®: (Dy(x/2), D3'1365(G)) — (Dy(x/2), I144(G)) satisfies di(t "_};W)
geodesic with respect to I,,.(G), whose parameter is the arc length. The
second diagram is obtained from the first one. R

Since the exponential mappings Dy(z/2) — (Dy(x/2), I}50-+(G)), Dy(x/2)

— (Dy(x/2), 07*1{,,,,@“11{,,,(@)) coincide, both metrics are expressed in the
same local coordinate as above as follows:

10 ...0

0

0
Immediately, we see that x-parts of both matrices coincide. Therefore,
L300 2(G) = Dy lyo D51 40+ (G). Since i(G, 9) = Eg, a Gor
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I(G, 09') = Ec @150 e 03'EH 5 150 EGH(G)
= Ef(G,o)‘I:w:E;:G,o).EG.IfszE.l(G)
= I(G, 9), ¥) .

2.12. Theorem. (%9(G,),/J, 151\&(s ~(m/2)) is a fibre bundle where the fibre

may be different at each connected component of lSTﬁ(S v(/2)).
Proof. We have only to prove the local triviality. Let W be a neighbor-

hood of id. in ISin(S w(7/2)) such that (i) for every ¢ e W, there exists uniquely
a vector field X on Sy(z/2) satisfying ¢(x) = Exp X(x), (ii) ¢,(x) = Exp tX(x),
0Lt <1, is also contained in W, where a C>=-riemannian metric is fixed
on Sy(z/2). It suffices to prove that (J-%(W), J, W) is a trivial bundle.

Let h(?) be a C=-function such that 4(t) = 0 for 0 <t < 1/3, h(r) =1 for
2/3<t<1, and K'() >0 for 1/3 << 2/3. Define a mapping 7: W —
Diff,(Dy(x/2)) by

- X, xeDN(zr/4),
7(p)(x) Oney(X), xeSy((x/Mt + =/4).

It is clear that 7 is continuous.

Define &: J-'(id.) X W — J-X(W) by &(G, ¢) = 1(G, 5(¢)). & is a continuous
one-to-one mapping. Putting £(G) = I(G, 7(J(G)-Y), ¢: G—&(G) is a con-
tinuous mapping of J-*(W) onto J-(id.).

Since £(8(G), (@) = [((G, 7J(G)), U(G))) = G, we see that
(J-* W), J, W) is a trivial bundle.

3. Riemannian manifolds having the Property P(N)

From Lemmas 1.3-1.5, it is easily seen that if M is diffeomorphic to
Dy U,Dy., then there is a riemannian metric having the property P(N, N’),
where N, N’ are C~-manifolds and D, D,. are disk bundles over N, N’ re-
spectively.

In this section the following theorem will be proved:

3.1. Theorem. If an analytic riemannian manifold M satisfies the property
that there is an analytic submanifold N such that for any geodesics starting
orthogonally from N the distance from N to the cut point is the constant T,
then the cut locus of N is an analytic submanifold N’ and M satisfies P(N, N’).

The assumed property in the above theorem is briefly called P(N).

a) Properties of geodesic spheres

It is well-known that there is a positive number r, depending only on M such
that if r < r,, then Exp,: D,(r) — 9,(r) is diffcomorphic for every point of M;
this is due to the compactness of M. Fix a real number r < r,/2 and take
two points p,, p, such that the distance between p, and p, is strictly smaller
than 2r. Clearly, 2% (r) N 2.(r) + ¢. Let & y(c) denote the normal geodesic
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sphere bundle of radius ¢ of the submanifold N. If N = {p}, then & y(e) is the
geodesic sphere of radius e. Givenge %, (r) U &, () andletg,(),0<t<r,
i =1, 2, are geodesic segments such that g;(r) = p; and g,(0) = q.

3.2. Lemma. If a unit vector Y is expressed by Y = aX, + bX,,a> 0,
b > 0, then for sufficiently small s > 0, we have

9li:q:tq.slf(s) - {61} C 9;;1(’) U 91: «_-(r) ’

d
here X; = —| g;(1).
wher dtogz()

Proof. Since Exp,: D,(2r) — 2,(2r) is a diffeomorphism, Exp;'¥, (1),
i=1, 2, are both analytic submanifolds of T,(M). It follows that there is a
small 7 > 0 such that

{Y;|Y — #X,| </} — {0} C Exp;’ &

b

i=1,2.
From an elementary calculation, we see that for a small § > 0
12 - Y1 <8 — {0 U {F31Y - X, < 7,
that is, the lemma is true for a flat manifold. It follows that
Exp, {Z;|Z — $Y| < §} — {g} € 25,(r) U 95,(7) .

Since Exp,{Z;|Z — §Y|| < §} is an analytic submanifold of M and Y is
a normal vector at g, there exists a small s > 0 such that Desppsr() C
Exp,{Z;|Z — 5Y| < §}. This completes the proof.

3.3. Lemma. Let k be the distance between N and the cut locus of N
(denoted by (C(N)). For any point q € & (k) and for any geodesic segment
80, 0 <t < k, such that g(0) e N, g(k) = q, we have 9, (k — s) — {g} C
D4(k) for any 0 < s < k.

Conversely, if there is a point p’ € Di(k) such that 9,(k — s) C 2,(k),
letting s be the distance between N and p’, then (i) & ,.(k — s5) N Ly(k) con-
sists of only one point q, (ii) there is a geodesic segment of length k joining
N and q and through p’.

Proof. Assume 2,,(k —s) — {q} ¢ D%(k). Then there are a point
g€ D,k —s5) N Ly(k) such that g = ¢/, and a geodesic segment g'(¢),
0Lt <k —s, joining g(s) to g. It follows that

o(N, g) < p(N, g(s)) + p(g(s), §) = k,

because g() and g’(¢) intersect at g(s) with the angle <z, where p is the dis-
tance function defined on M from the riemannian metric. The inequality
o(N, q) < k contradicts the assumption k = p(N, C(N)), proving the first part
of this lemma.
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Assume &, (k —5) N Fy(k) = ¢. Then 2,(k — s) C Di(k). Taking a
geodesic g(#), 0 <t < oo, such that g(0) e N and g(s) = p’, we see that
g(k) € 2,/(k — s) and then g(k) € 2%(k), contradicting the assumption.

Let g, ge #y(k) N &,k —5) and assume g # g. Then we have a con-
tradiction p(N, @) < k by the same argument as in the proof of the first part of
this lemma. Thus, #y(k) N &,.(k — 5) = {q}. Moreover, the geodesic g(z),
0 <t < oo, such that g(0) ¢ N and g(s) = p’ satisfies at the same time that
g(k) = g, since g(k) € £ y(k).

3.4. Proposition. With the same notation as above, assume that there is
g e Py(k) such that there exist at least two geodesic segments g,(1), g.(t),

0 <t <k, joining N to q. On putting g,(k) = g(k) =qand X, = Zid? AR
kE

we obtain (i) X, = —X, or (ii) Exp, kY € N for any unit vector Y contained
in the 2-plane spanned by X,, X,.
Proof. Clearly X, # X,. Assume X, # —X,. Then

Dixpgsr®) — {8} C Doy () U Dy (1),

where r, s are small numbers determined in Lemma 3.2, for a unit vector Y
satisfying ¥ =aX, 4+ bX,, a>0, b >0. From Lemma 3.3, we have
Dy~ () U Dy (r) — {q} C Dj(k). Therefore Dey, v (s) — {q} T Dy(k).
From Lemma 3.3 again, there is a geodesic segment g joining N to g and
passing through Exp,sY. It is easy to show that g = {Exp,tY;0 <t < k}.
Therefore Exp, kY € N for any unit vector Y such that Y = aX, + bX,,
a>0,b>0.

LetL = {Y;|¥|=1,Y = aX, + bX,,a>0,b >0} and S = {¥; Y| = 1,
Y = aX, + bX,}. S is an analytic submanifold of the tangent space T, (M) at
g and Exp, (L) C N. Since N is analytic, Exp, is an analytic mapping, L is
an open subset of S, and Exp, maps the set S into N.

3.5. Corollary. With the same assumptions and notation as above, there
is a geodesic starting orthogonally from N and striking N orthogonally when
the length becomes 2k. The subset {X e T, (M);|X| = k, Exp, X € N} is
contained in 2+ 1-dimensional vector subspace of T (M) for some 2, where
T (M) is the tangent space of M at q.

b) Manifold having the property P(N)

Let E=Exp|Vy. Since M is analytic, E is an analytic mapping. Denote
by K(X) the kernel of dE at X. It is well-known that if K(X) % {0}, then
E(X) is a focal point of N with respect to the geodesic defined by X. There-
fore, from the assumed property P(N), K(X) is contained in the tangent space
T xSy(n) of Sy at X for every X € Sy(z). Of course, K(X) may be {0} at some
point of Sy(x).

3.6. Lemma. Let C;={X € Sy(x); dim K(X) = j} and C/ be the set of inte-
rior points of C;in Sy(x). Then, for any open subset U in Sy(z), U N C;,,,is an
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open subset of U — U{C;;j=0,1, -, j}. Therefore, U{C};j=0,1, ---
---, n—1} is an open and dense subset of Sy(n).

Proof. 1t is easy to see that if a sequence {X,} contained in a single C,
converges to X, e Sy(r) then dim K(X,) > j. Since j, + 1 is the possible
minimal dimension of K(X), if X is in U — U{C,;;j=0,1, ---, i}, then
U N C,,,, is an open subset in it.

If there were an open subset of Sy(z) in Sy(z) — U{C};i=0,1,.-.,n—1},
putting this open subset to be U, we see that U N C, is open in Sy(x), where
k is the minimal integer such that C, N U # ¢. Therefore, U N C, is con-
tained in U{C},j=0,1, --.,n—1}. This is a contradiction.

If C} # ¢ for some j > 1, then K(X) is an involutive distribution on C; and
is also an analytic distribution since E is analytic. Let I be any integral mani-
fold of K in C. Then we see easily that E(I) is a point in M, that is, there
are many geodesics starting from N orthogonally to N and shrinking to a point
E(I) when the length becomes .

3.7. Lemma. Every geodesic starting orthogonally from N strikes N ortho-
gonally when the length becomes 2r.

Proof. Let X e Sy(z). Assume at first that X € C,. Since Sy(x) is the cut
locus of N, there exists an element Y € Sy(x) different from X such that
E(X) = E(Y). Let gx(t), g-(t) be geodesics defined by E(tX), E(tY) respec-
tively. If -—-%' gx() # %ll gy(?), then from Proposition 3.4, we have that
XeC,;,j>1. This is a contradiction. Thus, g;(2z — 1) = g,().

Assume X € U{C}; j > 1}. Let I be the integral manifold through X in

some C}, j > 1. Since E(Iy) is a point, there is Y € I such that —% gx(®
#* dit gv(t). From Proposition 3.4 again, we see that g,(27) € N and g(2)
strikes N orthogonally.

Since U{Cj; j > 0} is dense in S(N) and every geodesic with initial direc-
tion contained in U{Cj};j> 0} strikes N orthogonally when the length
becomes 2z, we have this lemma, using a continuity property of geodesics.

3.8. Corollary. Let 2% (x) be the normal, open disk bundle of N of radius
m in M. For any point p € 2i(n), every geodesic segment g starting orthogo-
nally from N and ending at p is contained in the geodesic gx(t), — o < t
< oo, where X = E-'(p) contained in D%(x). Moreover, p is not a focal point
of N with respect to g.

Proof. The first part of this corollary is immediately verified from Lemma
3.7, that is, if not, there exists a geodesic segment g of length <z and not
contained in gx(#), contradicting the assumed property P(N).

Assume there is a geodesic segment g(¢), u < ¢t < v, such that g(u)e N,
g(v) =p and p is a focal point of N with respect to this geodesic segment.
Let #, be the maximum of the numbers {¢'; g(t) ¢ N, ¢’ < v}. Then, using
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Lemma 3.7, we obtain that if v — ¢, < = (resp. v — 1, > =), p is a focal point
of N with respect to the geodesic g(?), {, <t < v (resp. v <t < 2r + 1.
That is due to the fact, an immediate consequence of Lemma 3.7, that the
Jacobi field Y () on g(t), u <t <wv, satisfying Y(v) =0, Y(u) € T,,(N)
and a‘i Y = S,,(Y(®) also satisfies Y(u & 27) € T, uuse,(N) and g. Y

% U2z

= Sgsn(Y(u = 21)), where S,,,(Y) is the second fundamental form of N at
g(u) regarded as a linear transformation on T, (N) with respect to a normal

g@.

u

Let 2(N, p) be the set of absolutely continuous mappings ¢: I — M such
that o’ is square integrable, ¢(0) € N, ¢(1) = p. The definitions of the absolute
continuity of mappings and the square integrability of ¢’ have been done in
§13 of [10]. By a method similar to Theorem (10) in [10], we see that 2(N, p)
is a C~-Hilbert manifold without boundary. Since ¢ is absolutely continuous,
there is an integrable mapping ¢’: I — T, and

vector 4
dt

() = o(0) + f " (Dt .
0

Let J, be a function on 2(N, p) defined by

J,(0) = flna’(t) \°ds .

This function J, is differentiable, and if p € 2%(r), then the critical values of
J, are discrete and critical points on the same critical level are finitely many,
since p is not a focal point of any geodesic starting orthogonally from N. The
proof of this is done by a parallel argument of the proof of condition (C)
in [10].

Since a critical point of J, is a geodesic segment starting orthogonally from
N and ending at p with a parameter proportionate to the arc length, the critical
values of J, are @&, 2r + d)?, - - -, 2nx + d)?, - - -, where d = p(N, p).

Let p’ be a point in 24(x) such that d = p(N, p’). Pute = p(p, p’). If eis
sufficiently small there exists uniquely a geodesic segment g(r), 0 <t <,
joining p and p’.

3.9. Lemma. There is a natural imbedding ¢ of Q(N, p) into Q(N, p’).
Moreover (J3¥(— oo, I]) C J5* (_ @, < LI e] for all I, where 0 < ¢ < 1

— &

is assumed.
Proof. For any ¢ € 2(N, p), we define
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a( 1 t), 0<t<l —e,
z(a)(t)={ 1—e

gt+e—1, 1—-e<tL1.

Easily, we see J,.(¢(0)) = (1 — &)J(0) + «.
Similarly, there is a natural imbedding ¢ of Q(N, p’) into Q2(N, p) such
that

(13~ - l+s]) S L, 5(2'5)].

o b
—e 1 —e¢) 1—e
Put / = (2r)* and take ¢ so that it may satisfy

1 &2 — o)

Q0 +e< Qu+dr, —L_(@or+ < (2n + ).
1—c¢ (1 —¢)? 1—c¢
Putting I/ = a 1 T 2n) + #-_—e)-, we have two mappings id. and /¢ of
—¢ —¢

J;¥(— o0, (2r)*] into J;*(— oo, I'] and it is easy to show that /¢ is homotopic
to id. Therefore

1

— &

tat HyUH(— 00, QaFD — By (13— 0, L0 4]
is injective, where H, implies singular homology group.
3.10. Theorem. Assume a compact connected analytic riemannian mani-

fold has an analytic, connected and closed submanifold N and satisfies P(N),
then K(X) is constant on Sy(x).

Proof. Since Sy(r) is connected, it suffices to prove that C; is open for

each j. Let XeC,, p= E(i X) and take p’ as above. Using the handle
T

body decomposition theorem [10] with respect to the function J,, we have

Z, 21=0,
H (U (— o, Q2P =1{Z, 2=]j,
0, otherwise,

Zz, 2=0,

(2n)2+€]>= z, 1=7,
0, otherwise,

1

— €&

HX(J;}(_OO, 1

where j’ is defined as follows:
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Since p’ € 2%(x), p(N, p’) = d, there is X’ € Sy(x) such that E(i:-X’) =p.
Therefore there is C;, such that X’ ¢ C,..

On the other hand, ¢, is injective. Thus, we have j = j’. Therefore C; is
an open subset of S, (x).

From this theorem, K is an involutive distribution on Sy(z). From Corollary
3.5,if 2 > 1, then E-*(E(X)) is the maximum integral manifold through X of
this distribution K. Therefore E(Sy(z)) is an analytic submanifold of M.
Clearly E(Sy(x)) is the cut locus of N, and putting N’ = E(Sy(x)), P(N, N')
is satisfied.

If 2= 0, then, for any X e S,(r), there is exactly one element Y € Sy(x)

such that E(X) = E(Y) and dit { E(X) = —dit \ E(1Y). This is an immediate
1 1

conclusion from Corollary 3.5 and the fact that E(X) is a cut point and not
focal point of N. Therefore, there is an involutive diffeomorphism ¢ on Sy(x)
defined by ¢(X) =Y. Obviously ¢ is fixed point free and Sy(x)/{id. ¢} is
diffeomorphic to E(Sy(z)). Thus, E(Sy(zx)) is a manifold and putting N’
= E(Sy(m)), P(N, N’) is satisfied,
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