
J. DIFFERENTIAL GEOMETRY
2 (1968) 233-252

A CLASS OF RIEMANNIAN METRICS ON A MANIFOLD

HIDEKI OMORI

0. Introduction

In his suggestive paper [3], R. Bott proved that if geodesies starting from
a point p in a riemannian manifold M are all closed geodesies whose length
of a lap is constant, then the number of conjugate points of p on a lap of
these closed geodesies are constant, counting the multiplicity. This result has
been extended recently by Nakagawa [9], who proved that if all geodesies
starting from a point p with a constant length c come back to the point p
(these are not necessarily closed geodesies), then the number of conjugate
points on a lap of these closed geodesic segments are constant, counting the
multiplicity.

If a stronger condition is assumed so that the cut point of p with respect to
every geodesic starting from p may become a middle point of this closed geo-
desic segment, then the manifold M has a decomposition M = Dp \j φDN, as
it is seen in Warner's paper [11], where Dp is a disk, N is a cut locus of p9

which becomes a closed submanifold in this case, and DN is a normal disk
bundle of N in M.

In this paper, as an extension of these facts, it will be proved that if a
compact connected real analytic riemannian manifold M has a submanifold N
such that the cut point of N with respect to every geodesic, which starts from
N and whose initial direction is orthogonal to N has a constant distance π
from N, then M has a decomposion M = DN (J φDN,, where N' is the cut
locus of N and DN, DN, are normal disk bundles of N, N' respectively (cf.
Theorem 3.1). Of course, manifolds having such a decomposition are very
special, but at any rate, it seems interesting to consider some details about
that kind of manifold.

On a single manifold M, there are many, various riemannian metrics,
which form a convex set. Each of these riemannian metrics, however, ought
to be influenced by the topological structures of the manifold. Roughly speak-
ing, one must be able to determine the topological structures of M by using
only one riemannian metric, but at least at the present time it seems impossi-
ble. Therefore, it seems interesting to consider some useful class of rieman-
nian metrics instead of a single metric or the whole metrics. In this paper, it
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will be considered a class of riemannian metrics satisfying the following con-
ditions :

LetΛf, N' be connected submanifolds. Suppose there is a riemannian metric
Go such that (i) the cut locus of N is N', (ii) the cut point for each geodesic
starting orthogonally from N has the constant distance π from N. The class
^(Go) of riemannian metrics to be considered in this paper is the set of
riemannian metrics G such that (a) G satisfies (i), (ii) above, (b) normal vec-
tor bundles of ΛΓ, N' under the metric Go coincide with those with respect to
G as a set and riemannian vector bundle.

Let SN(π/2) be the normal sphere bundle of N each of whose fibre is a
sphere of radius π/2, and let Όifί(SN(π/2)) be the set of all diffeomorphisms
on SN(π/2). The topology of ^(Go) and Diff(SΛ (τr/2)) is so-called C~-toρology.
Then, there is a continuous mapping J of &(G0) into Όi8(SN(π/2)), and

letting Όift(SN(π/2)) = image of /, ^(Go) is the total space of a fibre bundle

overβϊk(SN(π/2)) (cf. Theorem 2.12), where the fibre may be different at

each connected component of βϊh(SN(π/2)). The fibre of this bundle is closely
related to the set of all diffeomorphisms on M, which leave the sets N, N'
fixed respectively.

Therefore, if one can see the topological structure of ^(Go) by using tech-
niques of differential geometry, then one can see the topological structures of

Diϋί(SN(π/2)). However, at least at the present time the author does not know
anything about the topological stuructures of

1. Compact riemannian manifold M with a submanifold M
as the cut locus of TV C M

Let M be a compact C°°-manifold, and N9 N' closed, connected C°°-sub-
manifolds of M. Consider a riemannian metric G on M. Hereafter, parameters
of geodesies are the arc length throughout this paper. For a geodesic g(t),
0 < t < oo 9 starting from N and orthogonal to N at the starting point, the cut
point g(tQ) of N is the point such that the geodesic g(f), 0<t<t0, attains the
distance between g(ί0) and N but g(ί) does not for ί > ί0. For defining the cut
point, the geodesic considered ought obviously to be orthogonal to N at the
starting point. The cut locus is the set of cut points for all geodesies starting
orthogonally from N.

In this section, a manifold M having a C°°-riemannian metric with the
following property P(N, NO with respect to the two submanifolds N, N' will be
considered.

P(N, N'): (i) The cut locus of N is N\ (ii) For every geodesic, starting
orthogonally from N, the distance from N to the cut point of N is constant
and equal to π.

1.1. Theorem. // there is a riemannian metric satisfying P(N, NO, then
M is diffeomorphic to a manifold 2)N \J 9@N,9 where 9N9 3lN, are normal disk



A CLASS OF RIEMANNIAN METRICS 235

bundles of N, N' in M respectively and φ is an attaching diffeomorphism
of d@N onto 33N,.

Proof. Let G be the riemannian metric satisfying P(N, N') and fix this
metric on M. Since N' coincides with the cut locus of iV, for every point
q € N'9 there is a geodesic g(t), 0 < t < π, such that g(0) € N, g(π) = q.

— g(i) is orthogonal to N'. In fact, if not, then for small δ > 0, the distance
dt .
δ' between g(τr — δ) and N' satisfies δ' < δ. Let g(t), 0 < t < δ', be the geo-
desic attaining this distance. Put £(0) = g(π — δ) and g(δ') e N'. Then there is
a geodesic h(t), 0 < t < t0, such that h(0) e N, h(t0) = g'(δ') and t0 < π. This
is a contradiction because there is a geodesic A(0, 0 < t < π, such that
fι(O) € N, h(π) = h(t0) and h(π) is a cut point of N. Therefore, the distance
between N and N' is π. It follows that every geodesic starting orthogonally
from N strikes N' orthogonally when the length becomes π.

Let 3>N,(ε) be the normal disk bundle of N each of whose fibre is a disk of
radius e. For a small ε > 0, 2N,{i) is a tubular neighborhood of N, and for
each q e d@N,(ε), 3q{ε) ( 1 ^ = p(q), where ^Q(e) is the ε-neighborhood of q
and p is the projection of the bundle @N,(ε). Let q € d@Nf(ε) and g(0,
0 < t < t09 be the geodesic such that g(0) e ΛΓ, ^r(ί0) = q and attains the dis-
tance between q and N.

If t0 < 7r — £, then the distance between N and Λ/7 becomes < π. Thus,
ί0 > π — ε. If t0 > π — ε, then ^(π) is not contained in Λ/7. Therefore,
t0 = 7τ — ε. Moreover, letting g(0, 0 < t < ε, be the geodesic such that g(0)

we obtain —
at

8(0 = ί
e at

g'(t)\ otherwise the distance

between N and N' is < π. Thus g;(t) = g(π — ε + t).

Let 2 V VN and Djvίr) be the tangent bundle of M, normal vector bundle
of N and normal disk bundle of N in VN, each of whose fibre is a disk of
radius r. As is well known, the exponential mapping Exp: TM —»M is a C°°-
mapping. Put £ = Exp 11^. Then, from the argument above, E(DN(π)) = M.
Let ^ ( r ) be the set of interior points of DN(r). Then E: D*N(π) -^ M - N' is
diffeomorphic, because E(dDN(π)) = W is the cut locus of JV.

Let FΛv, DN,(r) be the normal vector bundle and normal disk bundle of N'
respectively. Let E' = Exp|F i V /. Then M = E(DN(π/2)) \j E'(DN,(π/2)).
Since E: DN(π/2)->E(DN(π/2)), E'\ DN,(π/2)-+E'(DN,(π/2)) are both diffeo-
morphism and E(dDN(π/2)) = dE(DN(π/2)) = dE'(DN,(π/2)) = £/(3DΛΓ,(τr/2)),
we obtain a desired decomposition of M by putting ^ v = E(DN(π/2)), 3V.
= E\DNI(πj2)) and 9 = identity.

Let p:TM-+M bt the projection. Two riemannian metrics G15 G2 both of
which have the property P(N, N') are called equivalent (denoted by G1~G2),
if pX e N U iVr for Z € Γ v is orthogonal to N U N' with respect to Gi implies
that X is also so with respect to G2 and \\X\\Gχ = H-XΊÎ . Let ^(Go) be the set
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of riemannian metrics each of which has the property P(N, N') and is equiva-
lent to Go. Of course, Go is assumed to have the property P(N, N'). Let
F Λ , VN, be normal vector bundles of N, N' with respect to Go. Normal vector
bundles of N, N' with respect to any other metric in ^(Go) coincide with
VN, VN, respectively as riemannian vector bundles. For every G e ^(Go), de-
note by ExpG the exponential mapping TM-*M with respect to G and put
EG = ExpG IVN, EG = ExpG | VN,.

Since M = EG(DN(πβ)) {JE'G(DN,(πβ)) and ΘEG(DN(πβ)) = dEG(DN(π/2))
for every G e ^(Go), we have a C°°-diffeomorphism ψG = E'G

XEG of Sn(π/2)
onto SN,(*/2), where S^fe/2) = dDN(πβ), SN,(πj2) = dDN.(πβ). Clearly,
another definition of ^ G is given by

Let Diff(5^(π-/2)) be the set of C°°-diffeomorphisms such that, denoting by

^ an element of ΌiS(SN(πβ))9 there is a C°°-diffeomorphism Φ of M onto
)^D^Gτ/2) satisfying Φ(N)=N, Φ(N')=N' and dφ | F^: F^-> F^,
F^, ^ F^, are both identities, where VN9 VN, are identified with

normal vector bundles of N, N' in DN(πβ)9 DN,(πβ) respectively.

Let Diffo(5Λ(7τ/2)) be an arcwise connected component containing the

identity of the set of whole diffeomorphisms on Sn(πβ). There is no diffi-

culty in verifying that for each <p e Diff(5(τr/2)) we have <pΌΊ80(SN(πβ)) c

Diff(SiV(τr/2)).

1.2. Proposition. The mapping J defined by J(G) = ψGl φG is a mapping

of &(G0) onto Diϊf(5Λ(π/2)).

Proof. Since /(^(Go)) c 01^(5^(^/2)) is clear, we have only to show that

J is surjective. Let φ€ Diff(5ΛΓ(π/2)). Since there is a diffeomorphism Φ: M
—> DN(πβ) UφGoΨDN,(π/2) having the property mentioned above, it is enough
to show that there is a riemannian metric on DN(πβ) UφGoφDN>(π/2) satisfying
P(N, Λ/7) and normal bundles of N, N' coincide with VN, VN, respectively. It
will be done in the next three lemmas.

Denote by (M, G) the manifold with riemannian metric G and let G be the
usual metric on 5π~1.

1.3. Lemma. Let B(r) = {(xu . . , xn) € Rn; J^jή^f3]. Then there is a

C°°-riemannian metric on B(r) satisfying (i) B(r) — B(r — ε) is isometric to

(57 1"1, G) X (r — ε', r], where εf is some positive number depending only on ε,

(ii) {t(xx, , xn) 0 < t < 1} is a geodesic segment of constant length sλ for

every (x19 , xn) e dB(r) and the parameter t is proportional to the arc

length, (iii) this riemannian metric is invariant under the natural operation of

the orthogonal group O(n) on B(r).
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Proof. Let hit), 0 < t < ξ, be a C°°-function satisfying a) hit) = 1 for
ξ - ε' < r < f, b) Λ'(ί) > 0 for 0 < / < £ - ε', c) lim h™(t) = oo for m =

1,2, and lim hit) = 0, d) the length of the graph is s19 that is,

Let 015 - , θn.i be local coordinates of dB(r), and G o ( ^ θn^) the rie-
mannian metric G expressed by the local coordinates. Define the metric G on
B{r) - {0} by

1,0 . . 0

where (/, β1? , θn^ is considered as a polar coordinate. From the property
(c), G is considered as a metric on B(r). There is no difficulty in verifying

that G is a desired metric. Clearly e = — ε'.
ε

1.4. Lemma. Lei W = M x [0, 1]. Given any C^-riemannian metrics
Go, Gλ on M x {0}, Aί x {1} respectively. Then there is a C°°-riemannian
metric GonW satisfying (i) there are ^-neighborhood UQ of M X {0}, isome-
tric to (M, Go) X [0, ε), and ^-neighborhood Uλ of M X {1}, isometric to
(M, G) X (1 — ε, 1], (ii) any {(*, /) 0 < t < 1} for every x € M is a geodesic
segment of constant length s, where the parameter t is proportional to the arc
length and s is a positive number previously given.

Proof. Let h(t) be a C°°-function such that (i) h(t) = 0 for 0 < t < — and
s

hit) = 1 for 1 - JL < / < l, (ii) h'(t) > 0 for ± < t < 1 - -L. Define the

metric G on W by

where x19 , ;cn are local coordinates on M. It is not hard to verify that G
has the desired property.

The following lemma is trivial.
1.5. Lemma. Let Nx = M x (— ε, 0], N2 = M x [0, ε). G/vew metrics

G1 ? G2 on JVX, N 2 5MCA ί/iαί iVt is isometric to the product of (M; G^M) and
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(•— ε, 0] or [0, ε). Assume there is an isometry φ: (M, G^M) —> (M, G2 |M).
Then Nτ U φN2 becomes a riemannian manifold isometric to (M, Gτ \ M)
X ( - ε, ε).

Now, using these three lemmas, a poof of Proposition 1.2 will be given below.
Let G1? G[ be arbitrarily fixed riemannian metrics on N9 N' respectively.

For each point x e N (resp. y e N') there exists a neighborhood U of x (resp.
U of y) such that p~\U) = ί/χ Z>,Gr/2) (resp. j r ^ ϋ ) = t/' X Dy(π/2))
where p is the projection and Dx(π/2) (resp. Dy(π/2)) is the fibre at x (resp.
at 3O. Take the metric G2 (resp. G£) on Dx(π/2) (resp. Dy(π/4)) which is de-
fined in Lemma 1.3 and define the riemannian metric on U X Dx(π/2) (resp.
U' X Dy{πlA)) which is a direct product. Being invariant under the natural
operation of orthogonal groups, the metrics on Z>x(τr/2), Dy(π/4) define rie-
mannian metrics G3, G'z on DN(π/2), DN,(π/4) respectively. N9 N' are both
totally geodesic in DN(π/2), DN,(π/4). From the property (i) in Lemma 1.3,
we see that DN(π/2) - DN(πj2 - ε) and DN,(π/4) - DN,(π/4 - ε) are iso-
metric to 3DΛ-(τr/2) X (τr/2 - ε, τr/2], dDN,(π/4) X (π/4 - ε, τr/4] respective-
ly. Remark that DN,(π/2) - D^π/4) is diffeomorphic to 9DΛ,(τr/2) X [π/4,
π/2], where Dĵ ,(π/4) is an interior point of DN,{πj4).

Let φeβm(SN(π/2))9 and G^ = (φβ9φ)*(Gz\SN{πl2)). G^ is a metric on
SN,(π/2). On SN,(π/4), there is a riemannian metric G'z\SN(π/4).

From Lemma 1.4, there is a riemannian metric G4 on DN,(π/2) — D^iπ/4)
satisfying the properties (i), (ii) in this lemma. Therefore Lemma 1.5 shows
that G3 U G4 U G3 is a riemannian metric on DN(π/2) UφGoφDN,(π/2) satisfy-
ing the desired property.

Let ^(Go, 2F) be the set of the riemannian metrics on M such that (i)
(ii) if GenGQ, &)9 then EG<,X) = EG{X) and £'Gϋ(Y) = £^(7)

{πl2), YeDN,(π/2).
1.6. Lemma. ^(Go, J27) /s Λ convex subset, that is, for any G, Gr e

), ίG + (1 - r)G7 is contained in SF(G0, J^) /or 0 < ί < 1.
Proo/. Let p be the projection from Di

N{2πj?>) onto N. Let U be an open
neighborhood of x in iV such that p~\U) is diffeomorphic to U X Z>i(2π/3),
where Z>ί(2τr/3) = p-\x). This diffeomorphism f: U X Z>i(2ar/3) -*p-KU)
can be so chosen that pf(jc, y) = ^.

Give a polar coordinate (ί, ^ , - 07"1) on Dx(2π/3) and an arbitrary coor-
dinate x1 - xq on [/. Since £ G is a diffeomorphism of Z)^(2π/3) onto
^ ( 2 J Γ / 3 ) = £βΦJr(2ίτ/3)), (/, 01, - - , θr~\ x1,-, xq) is a coordinate on
some open subset of M. Since EG(X) = EC,(X) for any Z € D^(2π/3), G and
G' are expressed in this coordinate by

0 . . . 0



A CLASS OF RIEMANNIAN METRICS 239

where θ = (θι θr~ι), x = O1 xq). Clearly, if t -• 0, then the *-parts of
these metrics

1

0

0

*
o

o j *.!

tend to 0.
For any s € [0, 1], G" = sG + (1 — s)G; is obviously a riemannian metric

on M and on the open subset EGp-ι(JJ), G" is expressed by

G" =

and *-parts of this matrix tend to 0 if t —» 0. Considering all coordinate
neighborhoods by the same method as above, we can conclude from only the
shape of these matrices that G" e &(G0, &).

1.7. Proposition. There is a one-to-one correspondence K from &(G0, &)
X Diff(M, N, NO onto J'ι(id.), where Diff(M, N, N') is the diffeomorphism
on M such that if ξ e Difϊ(M, N, N') then ξ(N) = N, ξ (NO = N' and dξ\VN,
dξ IVN, are both identity. Moreover\ the correspondence K is given by

Proof. If /(G) = id., then ξ*(G) z /^(id.) for every ξ e Diff(M, N, NO.
Since /(ar(Gβ, &)) = id., K{9(Q09 &) X Diff(M, JV, NO) c /^(id.).

Assume K(G, ξ) = K(G\ ξ') for G, G' e ^(G o, j r) , f, f € Diff(Λί, N, NO.
Then r*-χl*(G) = G'. Since d(ξ'-*.ξ)\VN = id. and Eσ(X) = £β,(JI0, £&
= E'G,(X), putting Λ = £C(Z). ξ'-*ξ(χ) = r ~ ^ ( £ G

EG,{X) = JC. It follows that ξ = f' and then G = G'.
Let Gx € /"Kid.). Define a mapping £ as follows:

?0, fi be diffeomorphisms of DN(π/2) U φGoDN,(π/2) onto M defined by

i = 0, 1 ,

Then f = foff1. It is easy to see that £ e Diff(M, JV, ΛP). From the definition
of f , , f t , ί , we see ξ(.EOι{X)) = E0J&) for XeDN(j:/2) and £(£^W)
= £^o(Jί0 for XeDw,(π/2). It follows that f ^ e S?(G0, ^ ) and then
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A curve φs in ΏiS(SN(π/2)) is called differentiable, if, putting η(x, s)
= φs(

χ)> V i s a C~-differentiable mapping of SN(π/2) X [0,1] onto SN(π/2).

1.8. Proposition. // there is a differentiable curve φs in DΊfί(SN(π/2)),
then there is a one-to-one correspondence I from J'Kψo) o n t o J'Kφd-

Proof. Let J'Kφ0) => G. There exists a C°°-diffeomorphism ξG of
DN(π/2) \J9CQVODN,(K/2) onto M, which is defined by

!*(*) = f ? ? ^ ' xJDJ{πl2l:

Let Λ(ί) be a C~-function such that ή ( ί ) = 0 , 0 ^ ί < l / 3 , h(t) = l,
2/3 < ί < 1, Λ'(ί) > 0, 1/3 < t < 2/3. Define a diffeomorphism Φ on
DN{πl2) by

\<b*,tf

where φs = φ^-φ,. Let X be a vector field on D%{πβ) — DN(π/5) defined

. Put ^ = dφ#* and y = dfG^. y is a vector fieldby
D y - - - - dt
on ^(π/2) — SN(π/5)9 where ^^(r) = EGDN(r). Y coincides with
Xrzr^. 1 £ c ί - ^ - = df0«" at neighborhoods of yN(π/2) = EG(SN(π/2))

dthxn \\x\\
and t^7 Gr/5) = E (S (π/5))

Replace the riemann metric G on &N(π/2) — @N(π/5) by Gx, where

- z , P2zyG

= Z - p2Z =

Since |y||» = ||Z||2

C + | |y - X\\G = 1 + IIy - Z||2G, it is easy to see that G'
is positive definite, <y, y>G, = 1 and <y, PsZ)^/ = 0. G' coincides with G at
neighborhoods of £%(τr/2), &*N(π/5), and therefore can be naturally extended
to be a riemannian metric on M; this extended metric is denoted by G'.
Put /(G) = G'. An integral curve of Y is a geodesic with respect to G'.
Therefore £G, = EG-Φ, and then l^T 1 ^, | SN(π/2) = E J " 1 ^ ^ Vi
= ψGi}φoφό1φi= ΨGJPI- Thus, / ( O e / - 1 ^ ) .

Conversely, let G ' β / " 1 ^ ) - Replace Φ by Φ'1 and make a riemannian me-
tric G" by the same method as above. Then, putting /'(GO = G", G" <= J " 1 ^ )
and it is easy to show that /'•/ = identity (the proof of this will be seen in
Lemma 2.11).
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2. C~-topoIogy for 9{Gd, Ό\B(Sn(π/2)) and Diff(M, N9 N')

Let M be a compact C~-manifold, and Diffr(M), Diff(M) the sets of the
Cr- and C°°-diffeomorphisms on M respectively. As is well known Diffr(M) is
a C°°-Banach manifold compatible with Cr-topology. Let I), k > j be the na-
tural inclusion of Diftk(M) into DifF(M). The projective limit topology of
{Diffr(M), /*} for Diff(M) is called C°°-topology. Hereafter Diffr(M), Diff(M)
imply the groups with Cr-topology, C°°-topology respectively.

2.1. Lemma. Diff(M) is locally arcwise connected.
Proof. Let /~ be the inclusion of Diff(M) into Diffr(M). For any neigh-

borhood U of id. in Diff(Λ/), there are r and a neighborhood V of id. in
Diffr(M) such that itΐYKV) C £/. For an arbitrarily fixed C°°-riemannian
metric, if r > 1, there is a neighborhood W such that (i) W C F, (ϋ) for
every ψ e W, there exists uniquely a vector field X on M satisfying φ(x) =
Exp X(x), (iii) φt = Exp ίATOc), 0 < ί < 1, is also contained in W. (This is a
proof of locally arcwise connectedness of Diffr(M).) W is not necessarily con-
vex or open.

Since Exp is a C^-mapping, if φ is a C°°-difϊeomorphism, then so also is ψt.
Thus, (J~yιW is arcwise connected.

2.2. Corollary. ΌΪfί(SN(π/2)) is an open subset of ΌiS(SN(π/2)).

It is an immediate conclusion from the fact that ΌΊQ(SN(π/2)) D

φ Diffo(S*(7r/2)) for every ψ € DM(SΛ(π/2)).
The following lemma is trivial.
2.3. Lemma. Diff(M, N9 N') is a closed subgroup of Diff(M).
Let ^ r , ^ be the O- and C°°-riemanian metrics on M, and «^r, 5^ the Cr-

and C°°-S3m[imetric bilinear forms on M, respectively. ^ r is a Banach space
with respect to Cr-norm and <&r is an open subset of £fr. Then <&τ X Γ^ is a
C°°-Banach manifold. ^ r X ^ r is identified naturally with the tangent bundle
of ^ r . Then <3r X Sfr X r(T^) is the tangent bundle of ^ r X TV, where
ΓίΓ^) is the tangent bundle of TM. A vector field on ^ r X TM is a cross sec-
tion of this bundle. Using a local coordinate neighborhood ϋ on M, the tan-
gent bundles Tv, T{TΌ) are identified with U X Rn, U X Rn X Rn X Rn

respectively. Therefore the tangent bundle of ^ r X Tv is identified with
&r X U X Rn X S?r X Rn X Rn and a vector field on &r X Tv is a mapping
of &r X U X Rn into ^ X F X Rn.

Define a vector field 2£ as follows: Letting JC1, , xn be a coordinate on
ί/, andp\ — ,pn the natural coordinates of Rn, ^(G,JC1, ,x n ,p 1 , - ,p71)

= (0, p1, , pn, - ().} ̂ *^, - - , - { ?.} c PV), where j ^ j ̂  is the Chris-
toffel's symbol of G with respect to the coordinate system JC1, . . , xn.

2.4. Lemma. X is a C^-vector field on <3r X TM.
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Proof. We have only to show that

(G,x\. ,x\p\ •• > / > n ) -

is a Cr"1-function. For this, it suffices to prove that for an arbitrarily fixed

(r, p) = (x\ . . . , *», p\ . . . , p»), the function G -> {.'.} (JC, p) is a C~-func-
{JKi G

tion. Therefore, we have only to show that for a fixed (JC, p) and i, /, £, the
mappings G -> G i Λ Λ , G -> G i J are both C~-differentiable. Let η: S -> S<ΛJfc be
a function on Sfr. Then ̂  is a linear function and thus C°°-differentiabίe. It
is easy to show that G -* Gij is C°°-differentiable.

2.5. Lemma. The mapping Φs: &
r X TM-*&r X TM defined by

is a C'^-diffeomorphism for r > 1.

Proof. Since Exp^-Y is a geodesic, it is easy to see that (G, — ExpσfcS
\ at tt t

is the integral curve of X whose intial point is (G, JJQ. Thus, from the well-
known theorem concerning the integral curve of a differentiable vector field
on Banach manifolds (cf. [10]), we have that the mapping Φs is a Cr"1-diffeo-
morphism.

2.6. Corollary. ^(Go), ^(Go, &) are both closed subsets of &.
Proof. From the above lemma, the mappings EG: DN(π/2) -+ M,

E'G- DN(π/2) -*M depend continuously on G € ̂ r . Therefore ^r(G0) is closed
for any r > 1, where ^r(G0) is the set of the Cr-riemannian metrics having
the property P(N, N') and being equivalent to Go. Thus, ^(Go) is closed in ̂ .

By the method similar to the above, we have that ^(Go, JO is closed in

2.6. Proposition. ΓAe mapping J is continuous from &(GQ) onto

We have only to show the continuity of / and it suffices to prove
that Jr: ^r(G0)—>Difϊr-1CSiy(7r/2)) is continuous for all r > 1, where the
mapping Jr is defined in the same way as /, that is, Jr is defined as follows:

dt 2

From Lemma 2.5, Φ2 is a C^-diffeomorpnism of ^ r X Γ^ onto itself,
and Φ2(^r(G0) X SN(π/2)) = «KG0) X SN,(π/2). Let <? be the projection from
^ r x TM onto Γ^. Then qΦ2 is a Cr"^differentiable mapping, and qΦ2(G, X)

. If G e ̂ r(G0), then fG: X - » 4 ExpGtX is a C r- χ diffeomor-

phism of Sjvfcr/2) onto S*,&r/2). Let Diff -1(SJV(π/2), SH.(jc/2)) be the
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C^-diffeomorphisms of SN(π/2) onto SN,(π/2) with C^-topology. Since
SN(π/2) is compact, the differentiability of qφ2 implies that the mapping
/: ^ r(G 0) -» Όiffr-KSwiπ/l), SN,(π/2)) is continuous, where /(G) = ΨG. Since
ψc = — ΨG and /r(G) = ^otyG = Φei(— ΦG), we have that Jr is continuous
for allr > 1.

2.7. Lemma. The mapping K: & X Όi8(M)-*& defined by K(G,φ)
= φ*(G) is continuous, where all the topologies are C°°'topology.

It is not hard to verify this lemma, since we have only to show that
Kr: &r X Diffr+1(M) -> ̂ r is continuous for r > 0, where Kr(G, φ) = p*(G).

2.8. Proposition. The mapping K: 9(G09 &) X Diff(M, N, NO -> /"Kid.)
ώ β homeomorphism.

Proof. Clearly K is continuous. Let Gx € /"Kid.). As in the proof of Pro-
position 1.7, define a diffeomorphism ξGχ as follows:

f ω ^ F ^ S ί ί * ) , xeEGlDN(π/2),
ζGlKJ \E'GoE'G~Kx), xeE'GlDN(*/2).

ξOl is a diffeomorphism contained in Diff(M, N, N'). First of all, it will be
proved that the mapping K: J'Kid.) -• Diff(D^(;r/2) U ΦG DN,(π/2), M) defined
by

K(G)(X) = ίE ί ? Z ' Z 6 D ^ ( π / 2 ) '
lE'aX, XeDN.to/2)

is continuous, where D'ιfί(DN(π/2) U ψGoDN,(π/2), M) is the C°°-diffeomorphisms
from DN(π/2){JφGpN,(π/2) onto M with C°°-topology. Let p be the projection
7V —* M. Then from Lemma 2.5, the mapping 27: ̂ r X TM —> M defined by

>7(G, X) = p(£ Expotx) = ExpGZ is aCr"^mapping. If Xe DN(π/2) (resp.
\Λι /
(
\Λ

X*DN.(fll2))9 then 7(G, Z) = £<?* (resp. E^X). Since DN(πj2) \)ψQDN.{xβ)
is compact, we see that Kr: /"Kid.)7 —• Diffr~1(W5 N, NO is continuous, where
/£r and /~1(id.)r are those which are naturally defined on ^ r (G 0 ). Therefore, K
is continuous. Since ξGl(x) = EGJKXQ^"Kx) or Ef

Goέ(G0"Kx)9 the mapping
if: /"Kid.) -• Diff(M, //, NO defined by £(G) = ξG is continuous.

Since K(G)*{G)e9(Q0,&, the mapping *: /-ι(id.) — ar(Gβ, &), κ(G)
= KiG)JjG), is continuous. It is easy to show that K(κ(G), K^G)-1) = G.
Therefore X is a homeomorphism.

2.9. Proposition. Under the same assumption as in Proposition 1.8, I is
a homeomorphism.

Proof. It suffices to prove that / is continuous, because Z"1 is constructed
by the same method. Take a local coordinate system (/, θ, x) on D^(2JΓ/3)

which is used in the proof of Lemma 1.6. Let JC be the set of the C°°-metrics
on DN(π/2) such that if G € Jί, then
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with respect to this coordinate system. Let

( I x V Λ VaVb y> /^ γa\

- Σ GjaY«, Gtj )
Ί<.a<.n

where Y* is the i-th coeflδcient of ^ . Letting &(DN(π/2)) be the set of C°°-
metrics on DN(π/2) with Cw-topology, / , : ̂  -> &(DN(π/2)) is a continuous
mapping, where the topology for JC is a C°°-toρology. It is not hard to verify
that/(G) = (£G)*/y(£>c1)*(G) on ̂ (τr/2). /(G) = G at the neighborhoods of
S?N(π/2) and ^(τr/4), where^(τr/2) = E0(SNteβ))9 SN(π/4) = £β(Dj,(ίr/4)).
Since £ G : DN(π/2) -> M is continuous with respect to G, we see that / is con-
tinuous.

In the above proposition, the vector field ^ is fixed, but need not leave 9
fixed, that is, let Diff^(D^(π/2)) be the set of the C~-diffeomorphisms on
£>*(τr/2) such that if Φ € Diff^(DjV(π/2)), then (i) Φ(SN(r)) = SN(r)9 (ii)
Φ\DN(π/4) = id., (iii) Φ{tX) = tΦ{X) for XeSM), Gr/4)(5/3) < ί < τr/2.
The topology is a C°°-topology.

Replacing ^ in the above proof by dΦSC', Φ € Difϊ^(DJV(π/2)), the mapping
/7/(G, Φ) = ΓdφXΦ) is a continuous mapping of Jέ X Diff^(Z)^(τr/2)) into
&(DN(π/2)). It is clear that /"(G, Φ) = G on £>*(π/4) and
-Z)ίr(Gc/4)(5/3)).

Define a mapping /: ^(Gα) X DiffJP(DΛΓ(π/2)) -> ^(Go) as follows:

ί(Γ φ\(x\ - I W ' ί G , Φ){E'G%{G){x) , * € EGDN{πj2) ,
1 ' Λ ^ Iσω xeEDto/2)

Thus, the following lemma can be easily proved.
2.10. Lemma, ϊ is a continuous mapping.
2.11. Lemma. /(/(G, Φ), Φ0 = /(G, ΦΦO
Proof. First of all, it will be proved that /"(G, ΦΦO =

We have the following commutative diagram:
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0*Or/2)

U>,Gr/2),<?) —

DM2)

where (DN(π/2), metric) implies DN(π/2) having the riemannian metric, and
® implies the change of metrics. There is no difficulty in verifying that the
mappings ® work as exponential mappings, that is, for instance, the mapping

Φ:(D*Gr/2), ΦΆΛG)) -> (DN(π/2), ΓdΦAG)) satisfies φ[t^-) is a

geodesic with respect to IdΦX{G), whose parameter is the arc length. The
second diagram is obtained from the first one.

Since the exponential mappings DN(π/2) — (DN(π/2), Γd9φtscΦ)), DN(π/2)
-> (DN(π/2), Φ*ldΦ>3rΦ~%ΦAG)) coincide, both metrics are expressed in the
same local coordinate as above as follows:

Immediately, we see that *-parts of both matrices coincide. Therefore,
β ) . Since /(G, Φ) = EaΓi9E£,
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/(G, ΦΦO = EGβ^dφlscΦ^EάllGΓdΦ,E

= Ei(G,Φ)JdΦ'χEϊ{G,φ)EGIdΦsr

= /(/(G, Φ), ΦO

2.12. Theorem. (^(Go), /, Diff(5iV(7r/2)) & a fibre bundle where the fibre

may be different at each connected component of Όiβί(SN(π/2)).
Proof. We have only to prove the local triviality. Let W be a neighbor-

hood of id. in Diff(5tf(7r/2)) such that (i) for every φeW, there exists uniquely
a vector field X on SN(π/2) satisfying φ(x) = Exp X(x), (ii) φt(x) = Exp tX(x),
0 < t < 1, is also contained in JF, where a C°°-riemannian metric is fixed
on SN(π/2). It suffices to prove that (J~KW), /, W) is a trivial bundle.

Let h{i) be a C~-function such that h(f) = 0 for 0 < ί < 1/3, A(ί) = 1 for
2/3 <t< 1, and A'(*) > 0 for 1/3 < t < 2/3. Define a mapping η: W-*
Όi&ADN(π/2)) by

It is clear that ^ is continuous.
Define f: /^(id.) x W -> /-̂ WO by ?(G, 9) = /(G, 37(9)). f is a continuous

one-to-one mapping. Putting ζ(G) = /(G, ̂ (J(G))"1), ζ: G->ζ(G) is a con-
tinuous mapping of J~ι(W) onto /-^id.).

Since ?(ζ(G), /(G)) = /(/(G, ^(/(G))-1), ^(/(G))) = G, we see that
, W) is a trivial bundle.

3. Riemannian manifolds having the Property P(N)

From Lemmas 1.3-1.5, it is easily seen that if M is diffeomorphic to
DN ΌφDN,, then there is a riemannian metric having the property P(N,N'),
where N9 N' are C°°-manifolds and DN> DN, are disk bundles over IV, Nf re-
spectively.

In this section the following theorem will be proved:
3.1. Theorem. // an analytic riemannian manifold M satisfies the property

that there is an analytic submanifold N such that for any geodesies starting
orthogonally from N the distance from N to the cut point is the constant π9

then the cut locus of N is an analytic submanifold N' and M satisfies P(N, N').
The assumed property in the above theorem is briefly called P(N).
a) Properties of geodesic spheres
It is well-known that there is a positive number r0 depending only on M such

that if r < r0, then Exρp: Dp(r) —• S)p(r) is diffeomorphic for every point of M
this is due to the compactness of M. Fix a real number r < ro/2 and take
two points p19 p2 such that the distance between px and p2 is strictly smaller
than 2r. Clearly, S*Pl(r) Π 2pSχ) Φ φ. Let SfN(e) denote the normal geodesic
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sphere bundle of radius ε of the submanifold N. If N = {p}, then S?N(e) is the
geodesic sphere of radius ε. Given q € SfVl(r) U SfpSr) and let gt(t)9 0 < / < r,
i = 1,2, are geodesic segments such that &(/•) = p% and &(0) = q.

3.2. Lemma. // a unit vector Y is expressed by Y — aXx + bX2, a>0,
b > 0, then for sufficiently small s > 0, we have

wAere ^ = — giit).
dt 0

Proof. Since ExpQ: Dq(2r) —* @q(2r) is a diffeomorphism, E x p , 1 ^ ^ ) ,
i = 1,2, are both analytic submanifolds of Tq(M). It follows that there is a
small f > 0 such that

{Y; || Y - rZJ < f] - {0} c Exp-1 »9., / = 1, 2 .

From an elementary calculation, we see that for a small i > 0

that is, the lemma is true for a flat manifold. It follows that

Exp, {Z; ||Z - i r | | < £} - {̂ } c ^ t ( r ) U ajβ(

Since Έxpq{Z;\\Z — sY\\ < s] is an analytic submanifold of M and Y is
a normal vector at q, there exists a small 5 > 0 such that @ExVqSY(s) c
ExpQ {Z; ||Z - iYII < ί}. This completes the proof.

3.3. Lemma. Let k be the distance between N and the cut locus of N
(denoted by (C(N)). For any point q e S?N(k) and for any geodesic segment
g(t), 0<t<k, such that g(0) e N, g(k) = q, we have 39W(k - s) - {q} c
2ι

N(k) for anyθ<s<k.
Conversely , if there is a point p1 e ^(k) such that 2)v,(k — s) c 3)βC),

letting s be the distance between N and p', then (i) S?p,(k — s) Π yN(k) con-
sists of only one point q9 (ii) there is a geodesic segment of length k joining
N and q and through p'.

Proof. Assume Sgw(k — s) - {q} ς£ @%(k). Then there are a point
q e 2g{s)(k - s) Π S?Nik) such that q ψ q\ and a geodesic segment ^(ί),
0 < ί < k — s, joining ^(5) to q. It follows that

(W, q) < p(N9 g(s)) + p(g(s), q) = k,

because g(t) and g'(t) intersect at g(s) with the angle <π, where p is the dis-
tance function defined on M from the riemannian metric. The inequality
p(N, q)< k contradicts the assumption k = p(N, C(Λ0), proving the first part
of this lemma.
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Assume S?p,(k - s) Π SfN(k) = φ. Then ^ p , ( £ - .s) c ^ ( * ) Taking a
geodesic g(ί), 0 < t < oo, such that g(0) £ N and g(s) = p', we see that
g(k) € ί£p/(Λ — .s) and then g(k) e ^(k), contradicting the assumption.

Let q, q e ^ ( / : ) Π <£%>(£ — s) and assume q Φ q. Then we have a con-
tradiction ρ(N, q) < kby the same argument as in the proof of the first part of
this lemma. Thus, £fN(k) Π Sfv,{k — s) = {<?}. Moreover, the geodesic g(t),
0 < t < oo, such that g(0) € N and g(s) = p' satisfies at the same time that
g(k) = #, since #(£) € yN(k).

3.4. Proposition. PP#A ίAe same notation as above, assume that there is
q € £fN(k) such that there exist at least two geodesic segments g^t), g2(t),

0 < t < k, joining N to q. On putting gx(k) = g2(k) = q and Xt = — g4(ί),
Λ *

we obtain (i) ΛΓX = — X2 or (ii) Expα kY € N /or any wraί vector Y contained
in the 2-plane spanned by XΎ,X2.

Proof. Clearly XxφX2. Assume XΎΦ —X2. Then

where r, s are small numbers determined in Lemma 3.2, for a unit vector Y
satisfying Y = aXτ + bX2, a>0, b > 0. From Lemma 3.3, we have
^0i(*-r)(r) U ^ . ( A -TOM — {#} C ^(/c ) . Therefore @ExpqSY(s) — {^} c @ι

N{k).
From Lemma 3.3 again, there is a geodesic segment g joining N to q and
passing through Expc sY. It is easy to show that g = {Exp9 ίY; 0 < t < k).
Therefore Exp^ kY e N for any unit vector Y such that Y = aXx + fcX*,
α > 0, b > 0.

Let L = {Y || Y|| = 1, Y = αZ, + bX2, a > 0, ί> > 0} and S = {Y || Y|| = 1,
Y = aXλ + bX2}. S is an analytic submanifold of the tangent space Tq(M) at
q and Expα (L) C N. Since N is analytic, Exp^ is an analytic mapping, L is
an open subset of S, and Exp^ maps the set S into N.

3.5. Corollary. With the same assumptions and notation as above, there
is a geodesic starting orthogonally from N and striking N orthogonally when
the length becomes 2k. The subset {X € Tq(M); \\X\\ = k, ExpqXe N} is
contained in λ + l-dimensional vector subspace of Tq(M) for some λ, where
Tq(M) is the tangent space of M at q.

b) Manifold having the property P(N)
Let E = Exp I VN. Since M is analytic, £ is an analytic mapping. Denote

by K(X) the kernel of dE at X. It is well-known that if K(X) φ {0}, then
E(X) is a focal point of N with respect to the geodesic defined by X. There-
fore, from the assumed property P(N), K(X) is contained in the tangent space
TxSN(π) of SN at X for every X e SN(π). Of course, K(X) may be {0} at some
point of SN(π).

3.6. Lemma. Let Cό = {X e SN(π) dim K(X) = j} and C) be the set of inte-
rior points of Cj in SN(π). Then, for any open subset U in SN(π), U Π Cjo+1 is an
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open subset of U - U{C 7; / = 0, 1, , /0}. Therefore, U{C<; / = 0, 1,
• , w— 1} is an open and dense subset of SN(π).

Proof. It is easy to see that if a sequence {Xn} contained in a single C5

converges to Xo € SN(π) then dim K(Xo) > /. Since j 0 + 1 is the possible
minimal dimension of K(X), if X is in U — U{Cy, j = 0, 1, , j0}, then
U Π Cjo+ι is an open subset in it.

If there were an open subset of SN(π) in SN(π) — U {C, / = 0,1, , Λ— 1},
putting this open subset to be U, we see that U Π Ck is open in SN(π), where
k is the minimal integer such that Ck Π U ψ φ. Therefore, U D Ck is con-
tained in U{Cy, / = 0,1, , Λ— 1}. This is a contradiction.

If Cy ψ φ for some / > 1, then K(X) is an involutive distribution on Cj and
is also an analytic distribution since E is analytic. Let / be any integral mani-
fold of K in C. Then we see easily that E(Γ) is a point in M, that is, there
are many geodesies starting from N orthogonally to N and shrinking to a point
E(I) when the length becomes π.

3.7. Lemma. Every geodesic starting orthogonally from N strikes N ortho-
gonally when the length becomes 2π.

Proof. Let X e SN(π). Assume at first that X e Co. Since S (̂τr) is the cut
locus of N, there exists an element Y € SN(π) different from X such that
E(X) = E(Y). Let gx(t), gγ(t) be geodesies defined by E(tX), E(tY) respec-

d dtively. If gx(i) Φ —I gY(i), then from Proposition 3.4, we have that
dt κ dt\9

X εCj,j> 1. This is a contradiction. Thus, gx(2π — t) = g y (0
Assume J£ 6 U [C],; / > 1}. Let /^ be the integral manifold through Z in

some Cj, / > 1. Since £(7^) is a point, there is Y e I such that gx(t)

d d t κ

Φ -r ίκ(0 From Proposition 3.4 again, we see that gx{2π) € iV and g(0

strikes N orthogonally.
Since U{C<; / > 0} is dense in S(N) and every geodesic with initial direc-

tion contained in U { C ; ; 7 > 0 } strikes N orthogonally when the length
becomes 2π, we have this lemma, using a continuity property of geodesies.

3.8. Corollary. Let 2}ι

N{π) be the normal, open disk bundle of N of radius
π in M. For any point p € ^(π), every geodesic segment g starting orthogo-
nally from N and ending at p is contained in the geodesic gx(t), —oo<t
< oo, where X = E^(p) contained in D^(π). Moreover, p is not a focal point
of N with respect to g.

Proof. The first part of this corollary is immediately verified from Lemma
3.7, that is, if not, there exists a geodesic segment g of length <π and not
contained in gx(t), contradicting the assumed property P(N).

Assume there is a geodesic segment g(t), u<t<v, such that g(u) € N,
g(v) = p and p is a focal point of N with respect to this geodesic segment.
Let ί0 be the maximum of the numbers {f; g(t') zN,t' <v}. Then, using
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Lemma 3.7, we obtain that if v — tQ < π (resp. v — t0 > TΓ), p is a focal point
of N with respect to the geodesic g(ί), ί0 ^ * < v (resp. v < t < 2π + tQ).
That is due to the fact, an immediate consequence of Lemma 3.7, that the
Jacobi field Y(t) on g(t), u<t<v, satisfying Y(v) = 0, Y(u) € Tg{u)(N)

and — Y = 5α(tt)(y(«)) also satisfies Y(u ± 2̂ :) € Tg(uu.2r)(N) and — Y
ώ w *" dt u±2κ

= ^(u±2,:)(Y(M ± 2π)), where Sg(w)(Y) is the second fundamental form of N at
g(u) regarded as a linear transformation on Tgiu)(N) with respect to a normal

vector — g(t).
dt u

Let Ω(N, p) be the set of absolutely continuous mappings σ: I -»M such
that σf is square integrable, σ(Q) € N, σ(l) = p. The definitions of the absolute
continuity of mappings and the square integrability of σ' have been done in
§13 of [10]. By a method similar to Theorem (10) in [10], we see that Ω(N, p)
is a C°°-Hilbert manifold without boundary. Since σ is absolutely continuous,
there is an integrable mapping a'\l-^Tu and

J' σ'(i)dt.

Let Jp be a function on Ω(N, p) defined by

This function Jp is differentiable, and if p € ^ ( T Γ ) , then the critical values of
Jv are discrete and critical points on the same critical level are finitely many,
since p is not a focal point of any geodesic starting orthogonally from N. The
proof of this is done by a parallel argument of the proof of condition (C)
in [10].

Since a critical point of Jp is a geodesic segment starting orthogonally from
N and ending at p with a parameter proportionate to the arc length, the critical
v a l u e s o f Jp a r e d 2 , (2π ± d)\ -. -, (2nπ ± d)\ •-, w h e r e d = p(N, p ) .

Let p' be a point in &N{n) such that d = p(N, p'). Put e = p(p9 p'). If ε is
sufficiently small there exists uniquely a geodesic segment g(ί), 0 < t < ε,
joining p and p\

3.9. Lemma. There is a natural imbedding c of Ω(N, p) into Ω(N, pf).

Moreover dJzK- °°5 Π) C J~}f- oo,_L_/ + ε l /or α// Z, wΛer̂  0 < ε < 1
\ 1 — ε J

is assumed.
Proof. For any σ € Ω(N, p), we define



A CLASS OF RIEMANNIAN METRICS 251

[σl—— t) , 0 < ί < l - ε ,

W + ε - 1) , 1 — e < ί < 1 .

Easily, we see Jp,(c(σ)) = (1 — ε)/(σ) + ε.
Similarly, there is a natural imbedding r' of Ω(N9 p') into Ω(N, p) such

that

Put / = (2π)2 and take ε so that it may satisfy

_ i — (2πy + ε<(2π + d)\ 1 (2,r)2 + g ( 2 ~ ε ) < (2* + Λ)2.
1 — ε (1 — ε)2 1 — ε

Putting Γ = (2π)2 + ε^ ~ ε', we have two mappings id. and t't of
(1 — ε)2 1 - ε

JpK— oo, (2^)2] into / ^— oo, Π and it is easy to show that t't is homotopic
to id. Therefore

is injective, where H* implies singular homology group.
3.10. Theorem. Assume a compact connected analytic riemannian mani-

fold has an analytic, connected and closed submanifold N and satisfies P(N),
then K(X) is constant on SN(π).

Proof. Since SN(π) is connected, it suffices to prove that Cj is open for

each /. Let X € CJ5 p = E[ — X\ and take p' as above. Using the handle
\π I

body decomposition theorem [10] with respect to the function Jp, we have

(Z, A = 0,

z, i = u
w0, otherwise,

where j v is defined as follows:
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Since pr <= &\M, ρ(N, pθ = d, there is X' € SN(π) such that El—X') = p.

Therefore there is Cd, such that X' e Cjf.
On the other hand, ι* is injective. Thus, we have / = /'. Therefore C, is

an open subset of SN(π).
From this theorem, K is an involutive distribution on SN(π). From Corollary

3.5, if λ > 1, then E'\E(X)) is the maximum integral manifold through X of
this distribution K. Therefore E(SN(π)) is an analytic submanifold of M.
Clearly E(SN(π)) is the cut locus of N, and putting N' = E(SN(π))> P(N, NO
is satisfied.

If λ = 0, then, for any X € SN(π), there is exactly one element Y € SN(π)

such that E(X) = £(7) and — I E(tX) = - ~ E(ίΓ). This is an immediate

conclusion from Corollary 3.5 and the fact that E(X) is a cut point and not
focal point of N. Therefore, there is an involutive diffeomorphism φ on S ί̂ff)
defined by φ(X) = Y. Obviously φ is fixed point free and SN(π)/{id. φ) is
diffeomorphic to E(SN(π)). Thus, E(SN(π)) is a manifold and putting N'
= ECSN0c)), P(N9 NO is satisfied,
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