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Introduction

In our previous papers [8] and [9], we studied fibred spaces with
invariant affine connection and those with invariant Riemannian metric,
the fibres being 1-dimensional in both cases.

The idea of fibred spaces with invariant affine connection goes back
to the representation of spaces with projective connection. To represent
an n-dimensional manifold with projective connection, Princeton School
used an (n + 1)-dimensional manifold with affine connection admitting
a concurrent vector field with respect to which the affine connection
is invariant (See for example [5]), and Dutch School used a slightly
general manifold with affine connection (See for example, [4]). They
all identified a point in the manifold with projective connection with a
trajectory of the vector field with respect to which the affine connection
is invariant.

The idea of fibred spaces with invariant Riemannian metric goes
back to the five dimensional Riemannian space considered by Th. Kaluza
[1] and O. Klein [2] for getting a unified field theory of gravitation
and electromagnetism. To represent the space-time, they used a 5-
dimensional Riemannian space admitting a unit vector field with respect
to which the Riemannian metric is invariant, and identified a point in
the space-time with a trajectory of the unit vector field with respect to
which the 5-dimensional Riemannian metric is invariant.

In the present paper, we study fibred spaces with Riemannian met-
ric under the assumption that the Riemannian metric is projectable
instead of being invariant (See [3], [7]). In §1, we state definitions and
study some properties of a fibred space with projectable Riemannian
metric, and in §2 we develop the tensor calculus in the space. §3 is de-
voted to the discussions on the Riemannian connection and the induced
connection. We discuss geodesies in §4, and structure equations and
curvatures in §5. In the last §6, we assume that the Riemannian metric
is invariant with respect to a not necessarily unit vector field tangent
to the fibre, and the manifold is then slightly more general than that
we studied in [9].

Communicated March 30, 1967.
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1. Fibred space with projectable Riemannian
metric

Let M and M be two differentiable manifolds of dimensions n + 1 and
n respectively, and assume that there exists a differentiable mapping
π : M -* M, which is onto and of the maximum rank n. (The man-
ifolds, objects and mappings we discuss in the sequel are supposed to
be of differentiability class C°°, and the manifolds are assumed to be
connected.) Then, for each point P of M, the inverse image ττ~1(P)
of P is a 1-dimensional submanifold of M. We denote τr~1(P) by Fp,
and call Fp the fibre over the point P of M. We suppose that every
fibre Fp is connected, and moreover that there are given in M a vector
field C tangent to the fibre and a positive definite Riemannian metric
g satisfying the condition

(1.1) 9(C,C) = 1.

If we introduce in M a 1-form ή defined by the equation

(1.2) ή(X)=g(C,X),

X being an arbitrary vector field in M, we have

(1.3) ή(C) = 1.

The set (M, M, π;C,g) satisfying the conditions above is called a fi-
bred space with Riemannian metric g. We suppose moreover that the
condition

(1.4) {Cg)(X,Ϋ)=0

is satisfied for any two vector fields X and Ϋ in M such that ή(X) =
ή(Ϋ) = 0, where C denotes the operator of Lie derivation with respect
to C. If this is the case, the fibred space (M, M, π; C, g) is called & fibred
space with projectable Riemannian metric g. We call M and M the total
space and the base space respectively. The vector field C and the 1-form
ή are called the structure field and the structure form respectively. The
mapping π : M —> M is called the projection. If there is no fear of con-
fusion, we call, for the sake of simplicity, a fibred space (M, M, ττ; C, g)
with projectable Riemannian metric simply a fibred space M. The n-
dimensional distribution defined in M by the equation ή = 0 is called
the field of horizontal planes and its value at a point of M is called the
horizontal plane at that point.

We shall introduce some notations and terminologies for fibred space
(M,M,π;C,^) (Cf. [8], [9]). T(M) is the tangent bundle of M.7£(M)
is the space of all tensor fields of type (r, s) in M. We put T(M) =
Σr,sTs

r(M). The notations Γ(M),T/(M) and T(M) denote the re-
spective spaces with respect to M corresponding to Γ(M),7^r(M) and
T(M) respectively.
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Horizontal parts. A linear endomorphism T —• TH of T(M) is
defined by the following properties:

(H.I) fH = f for feT°0(M),

(H.2) XH =X-ή(X)C for XeTλ

0(M),

(H.3) α)H = ώ - ώ(C)ή for ώ G T?(M),

(H.4) (S®f)H = (SH)Θ(fH) for S,f eT(M).

The tensor field T ^ is called the horizontal part of Γ for any element T
of T(M). If a tensor field Γ in M satisfies the condition f = T^, then
T is said to be horizontal. On putting fv =f -fH, we call T v the
non-horizontal part of T for any element T of T(M). In particular, for
any element X of TQ(M) and any element w of T\{M),XV and w^
are called the vertical parts of X and w respectively. The space of all
horizontal tensor fields is denoted by TH(M). If we put THr

s{M) =
TH(M)Γ)Ts

r(M), we have TH(M) = Σr,sT
Hr

s(M).

Projectable tensor fields. When an element f of T(M) satisfies the
condition (C (fH))H — 0, we say that T is projectable. The space
of all projectable tensor fields in M is denoted by V(M). If we put
Vr

s{M) = V(M) Π Ts

r(M), VHr

s{M) = V{M) Π THr

s(M), VH{M) =
V(M) Π TH(M), then we have

r,s

We see that the Riemannian metric g given in M which satisfies (1.4)
is projectable, i.e., g e V%(M). In fact, from (1.4) we have (Cg)H =
(C gH + £ gv)H = (C gH)H, since gv = ή ® ή, and consequently
(C gv)H = (C(ή (g) ή))H = 0. If we take an arbitrary element ώ of
VH\[M), we find (£ ώ){C) = C (ω(C)) - ώ{£ C) = 0, which implies
C ώ = 0 because of (C ώ)H = 0. Thus we see that, for any element f
of VH%(M), the condition CT = 0 holds.

Lifts. We shall introduce the operation of taking lifts (Cf. [8], [9]).
The operation of taking lifts is a linear homomorphism T —> TL of
T(M) into T(M) characterized by the following properties:

(L.I) / i = /oτr for f €T°0(M);

(L.2)
For any element Xof T Q ( M ) , there exists a unique element XLoΐ

THl{M) such that πXL = X;

(L.3) ωL=*π(ω) for ω eT\{M);

(L.4) (5 ® T ) L = (S'1') ® (TL) for 5, Γ e T(M);

where the differential mapping of the projection π : M —> M is denoted
also by TΓ, and the dual mapping of the differential mapping TΓ by *τr.
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Taking an arbitrary element X of Tj(M), we find XLfL = (Xf)L

and {CXL)HfL = C((Xf)L) = 0, / being an arbitrary element of
T%(M), i.e., ( £ X L ) J ί - 0. Thus XL belongs to VH\(M). If we
take an arbitrary element ω of T\(M), we find α;L(XL) = (α;(X))L

and (C ωL)H{XL) = 0, X being an arbitrary element of Tj(M), i.e.,
(£ u; L ) H = 0. Thus ωL belongs to VH\{M). Therefore, taking account
of (L.4), we see that TL belongs to VH(M) for any element T ofT(M).
The element TL of VH(M) is called the lift of T.

Projections. Let / be an element of VQ(M). Then we have C f = 0.
Taking an arbitrary element X of Vl(M), we find C (XfL) = 0 for
any element / of 7 Q ( M ) . If ώ is an arbitrary element of V\(M), then
we find C {ώ(xL)) = 0 for any element X of Tj(M). Therefore, we
can define a linear homomorphism p: V(M) —> T(M) by the following
properties:

(P.I) (pf)(P) = f(P) for feV°0(M),

where P is an arbitrary point such that τr(P) = P, an arbitrary point
of M.

(P.2) (pX)f = p(X(fL)) for XeVl(M),

f being an arbitrary element of T Q ( M ) .

(P.3) (pω)(X)=p(ώ(XL)) for ΰ€P?(M),

X being an arbitrary element of T\{M).

(P.4) p(5 ® Γ) = (p5) ® (pf) for 5, Γ G V(M).

The tensor field pT is called the projection of T for any element T of

V(M).
Taking account of (L.I) ~ (L.4) and (P.I) ~ (P 4), we easily find

p(TL)=T for Γ G T ( M ) ; (pf)L = fH for ί € P(Af).

Thus the two spaces VH(M) and T(M) are isomorphic to each other
and p : VH(M) -^ T(M) is the isomorphism between them. The op-
eration of taking lifts is the inverse of the projection p restricted to
VH{M). We have now

Proposition 1.1. In a fibred space with projectable Riemannian met-
ric, we have, for any elements X, Y of PQ(M),

(1.5)

[X, Ϋ] e PJ(M), [X, Ϋ}H = [XH, ΫH}H, [XH, ΫH]V = -2Ω(X, Ϋ)C,

andp[X,Y] = \pX,pΫ], where Ω is a % form defined by the equation

(1.6) Ω = (dήf

in M (Cf. [8], [9]).
Formal tensor products. We denote by T(M) tf TH(M) the formal

tensor product, i.e., the tensor product of the two spaces T(M) and
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TH(M) regarded as two abstract tensor spaces over M. Since TH(M)
is a subspace of T(M), we denote by j : TH(M) —> T(M) the injection.
We shall now introduce a linear homomorphism i : T(M) (j TH (M) —>
T{M) by the following property:

(1.1) i(Γ|t S)=f®j(S) for f eT(M),S eTH(M).

The induced metric. Since the Riemannian metric # given in M
is projectable, its projection g = pg is & positive definite Riemannian
metric in the base space M. We call g the induced metric of M. We
have the equation

(1.7) (g(X,Y))L=g(XL,YL) for X,Y € Tj(M),

or equivalently (See [3])

(1.8) 5 (pX,py)-p(5(X,y) ) for X , y e 7>"i

induced connection. Let there be given an affine connection V in
the total space M, and assume that the vector field VyX is projectable
for any two elements X and Ϋ of VH\(M). Then the given affine
connection V is said to be projectable. When an affine connection V is
projectable, we can introduce an affine connection V in the base space
M by the equation

(1.9) VγX=p(VγLXL),

X and Y being arbitrary elements of T\(M). The affine connection V
thus introduced is called the projection of V, or the induced connection
in M. It is easily verified that if the given projectable affine connection
V is torsionless, so is the induced connection V. We have now the
following formulas:

Y P ( Y ) for

(Vf) VT for

Y and T being defined by Y = pΫ and T — pf. We shall now state

Proposition 1.2. In a fibred space with projectable Riemannian met-
ric g, the Riemannian connection V determined by g is also projectable,
and the projection V of V coincides with the Riemannian connection
determined by the induced metric g — pg in the base space.

Proposition 1.2 will be proved in §3 (Cf. Proposition 3.1). In the

sequel, we always denote by V the Riemannian connection determined

by the projectable Riemannian metric g in the total space M.

Van der Waerden-Bortolotti covariant derivatives. Given an element

Ϋ of TQ(M), we define a derivation Vy in the formal tensor product

T(M) )J TH(M) by the following properties:
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(W.I) VΫf = Vyf for ΓeT(M).

(W.2) VΫS = CVγHS + ή(Ϋ)CS)H for SeTH(M).

(W.3)

Vy(T Jt 5 = (VyΓ)# 5 + ΓtfVyS) for TeT{M),*SeTH(M).

For any element VF of T(M) # T ^ (M), the correspondence Y —• VyVF

defines an element W of T(M) tf TH(M), which is called the t αn der

Waerden-Bortolotti coυariant derivative of WΛ When VF and Ϋ belong

respectively to VH{M) and VH\(M), Vγ\V is an element of VH{M).

The second fundamental tensors. We define an element h oίTH%(M)

by equation

(1.11) h(Ϋ,X)C = (VγHXH)v,

X and Ϋ being arbitrary elements of T Q ( M ) , and define an element H
of Γ ^ 1 ^ ^ ) by the equation

(1.12)

X being an arbitrary element of T\(M). The tensor fields h and H are
called the second fundamental tensors of the given fibred space.

Applying the operator Vyπ on both sides of the identity g(C, XH) —
0, we find

(1.13)

X and Ϋ being two arbitrary elements of TQ(M). If we take an element

XH = [C,XH] is vertical, and hence VχHC = (V^X^)^, which im-
plies

(1.14) HX = -(VόX
H)H,

X being an arbitrary element of PQ(M). On the other hand, we have
Vc9(XH, yH) = 0 for any two elements X and Ϋ of P$(M). Thus we
obtain

(1.15)

because of (1.14). From (1.13) and (1.15), we have

Proposition 1.3. In a fibred space with projectable Riemannian met-
ric g, the second fundamental tensors h and H are horizontal, and have
the properties

) = Q, h(X,Ϋ) = g(HX,Ϋ),

X andΫ being arbitrary elements ofT\(M).



FIBRED SPACES 77

Since C XH is vertical for any element X of V\(M), we can put

(1.16) λ(X)C = -C XH for X e

and easily see that (1.16) defines in M a 1-form λ, which is horizontal.
Taking account of (1.11), (1.12), (1.14) and (1.16), we have the following
formulas:

VΫX = (VΫX)H + h(Ϋ, X)C, VΫC = -HΫ,

(1.17) Vef =-HΫ-λ(Ϋ)C, for X,Ϋ ePH1

0(M),

vόc = p,

where P is a horizontal vector field defined by

(1.18) g(P,Z)=λ(Z) for Z e Tj(M).

The first equation of (1.17) reduces to

(1.19) WΫX = (VyX)L + h(Ϋ, X)C for X,Ϋ e PH1

0(M),

where X = pX and Y — pΫ. Equation (1.19) is called the co-Gauss
equation, and the second equation of (1.17) is called the co-Weingarten
equation. As a consequence of (1.5) and (1.17), we have the equation

(1.20) h = - Ω = - (dή)H.

When the 1-form λ and one of the second fundamental tensors h
and H vanish identically in M, equations (1.17) reduce to

V y X = (V Ϋ X) L , VΫC = 0, VόX = 0, VόC = 0

for any two elements X and Ϋ of VH\(M), where X = pX and Y = pΫ.
As is well known, when the above equations are satisfied, the Rie-
mannian manifold M is locally a Pythagorean product of a Riemannian
space and a straight line. In such a case, we say that the fibred space
is locally trivial.

The field of horizontal planes defined by ή = 0 is integrable if and
only if dή = 0 (mod 77), i.e., if and only if h = — Ω = — (dή)H =
0 (Cf. (1.20)). Thus we have

Proposition 1.4. In a fibred space M with projectable Riemannian
metric, the field of horizontal planes defined by ή — 0 is integrable, if
and only if the second fundamental tensor h or H vanishes identically
in M.

The vector field P appearing in the last equation of (1.17) is the
first curvature vector of the fibre. Thus the vector field P vanishes
identically in M if and only if each of the fibres of M is a geodesic.
Thus, taking account of Proposition 1.4, we have

Proposition 1.5. A fibred space with projectable Riemannian met-
ric is locally trivial if and only if each of its fibres is a geodesic and the
field of horizontal planes is integrable.

When the curvature vector field P of fibre vanishes identically in M,
the given fibred space M with projectable Riemannian metric g reduces
to that with invariant Riemannian metric g in the sense of [9].
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2. The tensor calculus in a fibred space with
projectable Riemannian metric

Let (M, M, τr; C, g) be a fibred space with projectable Riemannian met-
ric g. Since the projection π : M —» M is differentiable and of the
maximum rank n everywhere, there exists, for any point P of M, a coor-
dinate neighborhood E/" containing P such that ί7 — π(U) is a coordinate
neighborhood of the point P = π(P) in M, and the intersection FQΠU
is expressed in U by equations y1 = α1, , ?/n = αn with constants
α1, , αn with respect to certain coordinate system (y1, , y n + 1 ) de-
fined in U, where Q is an arbitrary point of U. We call such a neigh-
borhood U a cylindrical neighborhood of M. Since we restrict ourselves
to cylindrical neighborhoods in M, we call them simply neighborhoods
of M. Given a neighborhood U in M, the set (E/, U, π; C, g) is a fibred
space with projectable Riemannian metric g, where U — τr(E7), and π, C
and g denote respectively the restrictions of π, C and g given in M to
U. In the sequel, we shall identify the operations of taking horizontal
parts, lifts, projections, etc. in (£/, E/, π; C, ̂ ) with the corresponding
operations in (M, M, π, C, ̂ ) respectively.

Let (x'1) be coordinates defined in Ό of M, and (ξα) coordinates
defined in U = τr(E7) C M. (The indices h,i,j,k,m,s,t run over the
range {1,2, , n + 1}, the indices α, 6, c, d, e, / the range {1,2, , n},
and the so-called Einstein summation convention is used with respect to
these two systems of indices.) We denote by Eh and gji the components
of the structure field C and the projectable Riemannian metric g with
respect to (xh) in U. Then the structure 1-form ή defined by (1.2) has
in U components of the form

(2.1) Ei=gihE
h, ϊ.e.,ή = Eidxi.

Taking a point P with coordinates (ξa) arbitrarily in U, we may assume
that Fp Π U be expressed by n equations

(2.2) ξa=ξa(xh

in U, where n functions ξa(xh) are diίferentiable in U, and their Jaco-
bian matrix (dξa/dxι) is of the maximum rank n. Putting

(2.3)

where di denotes the operator dι = d/dxτ, we see that n local covector
fields ζa with components E* are linearly independent in U. Taking
account of (1.1) and (1.2), we obtain
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(2.4) EiE* = gjiE
jEi = 1, ^ ^ α = 0,

because the structure field C is tangent to fibres. Thus the n -f 1 local

covector fields ή and ζa are linearly independent.

Taking account of (2.4), we see that the inverse of the matrix (Ef, Eι)

has the form

(2-5)

where Ejj;, for each fixed index 6, are components of a local vector field

Bb in U. Then the n + 1 local vector fields £?& and C are linearly

independent in U. The equation (2.5) is equivalent to the conditions

(2.6) Ei

bEi

a = δa

b, Ei

bEi = 0,

^ £ ? 4

β = 0, EiEi = l,

that is,

(2.6') Cα(βί>) = ̂ , ή(B6) = 0, C°(C) = 0, ή(C) = l,

or to the condition

(2.7) Ei

aEh

a + EiE
h = 6*.

The first and the second equations of (2.6) or (2.6)' show that n local
vector fields B^ span the horizontal plane at each point of U.

Since the given Riemannian metric g is projectable, taking account
of the equations C gji = VjEi + ViEj and (VjEi)Ei = 0, we can put

(2.8) Cgji = Pb{Ej

bEi + EjEi

b)

in U, where Pt> are certain n functions in U. Thus, as a consequence of
the definition (1.2) off), we obtain

(2.9) CEi = I\Ei

h.

As was proved in [8], we find C E{

a = 0 and C Eh = 0. Thus, taking
account of (2.6), we find

C E\ = -PbE
h, CEh=0,

££7^ 0 CE

Hoήzontal parts. Let there be given a tensor field, say, Γ of type
(1,1) in the total space M. Then T has components of the form

(2.11) fi

h = Tb

aEi

bEh

a + Th°Ei

bEh -hTo

α£7i£?Λ ° h
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in each neighborhood U of M, where Tb

a,Tb°,To

a and To° are all

functions in U. Then, taking account of (H.I) ~ (H.4), we see that the

horizontal part fH of f has in U components f11^ = T b aEi bEh

a-

Invariant functions. Let / be an element of VQ(M). We have, by
definition, C f = 0, which implies that / is expressed as / = f{ζa(xh))
in each neighborhood U of M, where ξa(xh) are the functions appearing
in equation (2.2) defining fibres. Thus we have dj = E{

adaf (Cf. [8]),
where da denotes the operator da — d/dξa. Any element / of VQ(M)
is called an invariant function in M. We shall identify any invariant
function / with its projection f = pf and denote the invariant function
/ by the same symbol / as its projection.

Projectable tensor fields, projections and lifts. Let there be given
a tensor field, say, f of type (1,1) in the total space M. Then f is
projectable if and only if it has in each neighborhood JJ components
T/1 of the form (2.11) with invariant functions Tb

a, i.e., if and only
if C Tb

a = 0. Thus, taking account of (P.I) ~ (P 4), we easily see
that for any projectable tensor field, say, f of type (1,1)? its projection
T = pT has components Tb

a(ξ) with respect to coordinates (ξa) defined
U

Let there be given a tensor field, say, T of type (1, 1) in the base
space M, and Tb

a its components in U = π(U). Then, taking account
of (L.I) ~ (L.4), we easily see that the lift TL ofT has components of
the form

(2-12) Γ > = Tb

aEi

bEh

a

with respect to coordinates (xh) defined in E7, where T^ appearing in

(2.12) denotes the lift of Tb

a.

Projectable Riemannian metric. If we put

(2.13) gcb = 9jiEicE\,

then gcb are invariant functions in U by virture of (2.6) and (2.8).
Thus, the projection g — pg has components gcb in U = τr(ϊ7). Taking
account of (2.6) and (2.7), we have the formula

(2.14) g i i 3

If we define gιh by the equation

(2.15) (gih) = (9jir\ i.e., gji9

ih = δ),

then gιh are components of an element G of V\ (M) in U. If we define
gba by the equation

(2.16) (gba) = (gΛ)-\ i.e., gcbg
ba = δa

c,
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then gba are invariant functions in U, and hence the projection G — pG
has components gba in U = π(U). We have the formulas

(2.17) gba=gihEi

bEh\ gih = g^E*b Eh

a+ ElEh.

Moreover, taking account of (2.6), we find the following formulas:

E°=gihg
baEh

a, Ei=gihE
h,

(2 18)
Eh h i E ^ Eh=ghiEi.

The curvature vector field of fibres. The 1-from λ defined by (1.16)
being horizontal, λ has components of the form

(2.19) Pi = PbEl i.e., λ = {PbE\)dxi

in each neighborhood TJ of M, and the curvature vector field P of fibres,
which is defined by (1.18), has components of the form

(2.20) Ph = PaEh

 α , Pa = gabPb,

where Pb are functions appearing in (2.10).

3. The Riemannian connection and the induced
connection

The Riemannian connection V determined by the projectable Riemannian

metric g has the ChristoffePs symbols < . . > constructed from gji as its

coefficients in each neighborhood U of the total space M. For any vec-
tor field X in M, its covariant derivative VX has components of the

form VjXh = djXh + { ^ } X* in U, Xh being the components of X

mϋ.
If we take account of (1.17), (2.19) and (2.20), we can put in U

VjEh

 b = Γa

cbE *E\ + hcbE μ h - hb

aEjEh

a - PbEjE\

VjEh = -hc

bE μ% + PbEjEh

b,

where Pb are the functions appearing in (2.10), Pa are defined by Pa =

gabPb and Γa

cb, hcb and hb

a are certain functions in U. We note here that

the functions Γa

cb has the symmetry property Γa

cb = Γa

bc. Comparing

(1.17) with (3.1), we see that the second fundamental tensors h and H

have respectively the components of the form

(3.2) hji = hcbEό

cEb, hf = KEbEh

a.

Therefore, as consequences of Proposition 1.3, we have the following

equations:
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(3.3) hji 4- hij = 0, hcb 4- hbc = 0,

(3.4) hji = hjh9hi, hcb = hc

agba.

Equations (3.1) are called the co- Gauss equation and the co-Weingarteu
equation respectively. Differentiating covariantly both sides of equations
(2.6), we have, as consequences of (2.6) and (3.1),

(3.5)

V 7? L 771 c EP U 1 D ΈP ΈP u
jEti = —flcb£jj Eji + ΓbΣjjZL/i .

Let X and Ϋ be two vector fields with components Xh and Ϋ̂ 1 in
M respectively. Then, in each neighborhood U of M, we have Xh =
X α E h

α + X 0 ^ and Ϋ'1 = y ° ^ α + Y°Eh, where Xα, X° and Ya^ F°
are certain functions in U. Taking account of (3.1), we see that VyX
has components of the form

(3.6)

ΦΫX)H = Yc(X7cX
a - hc

aX°)Eh

a + Y°(d0X
a - hb

aXb 4- PbX
b)Eh

a

+ Yc(dcX° + hcbX
b)Eh + Y°(d0X° - PbX

b)Eh,

da and d0 being defined by da = Eh

adh and do = Ehdh, and VcX
a by

(3.7) VcX
a = dcX

a 4- Γa

chX
b.

We shall prove that the functions Γ£b are invariant in U. To do this,

we shall first find the Lie derivative C < . . > of the ChristoffeΓs symbols

< . . >. As is well known, the Lie derivative of < . . > is given by the

equation

(3.8) c{*\ = \^k^j{C gik) + Vi(£ gJk) - V k(£ 9ji)}

in each neighborhood ΪJ (Cf. [6]). On the other hand, (2.8) reduces to
C gji = PjEi + PiEj, Pj being defined by Pό = PbEj b. Thus we have

(3.9)

C | ^ J = \(ViPi + Vi

- (hc

aPb + hb

aPc)Ej

cEi

bEh

a

by virtue of the second equation of (3.5), where we have put

(3.10) Qji^l&jPi-ViPj), Q^ = Qji9ih, Ph = Pi9

ih.

As is well known, the identities
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X\ C$ id)-* ACΛΪ) = -(c {j1. j ) ώh

hold for any vector field Xh and any covector field ώi in M (Cf. [6]).
Thus we have, by virtue of (2.10) and (3.9),

(3.11) C(VjEia) = (hc

aPb + hfPJEfE* - QjhEiEh

a - QihEjEh

a

(3.12) C(VjEh) = \{VjPi + ViPj) + Qjh + EjiE'Qf) + PjPh.

Applying the operator £ to the two equations of (3.5), we find re-
spectively

(3.13) C(VjEia) =-(C Γ&EfEi* + (hc

aPb + hfPJE

+ (C hc

a)EjcEi + (£ hh

a)EjE> - (C

-PaI\(Ej

bEi + EjEi

h),

(3.14) C(VjEh) = -(C hc

a)Ej

cEh

a + P, P Λ + (hc

aPa)Ej

cEh

+ (£ Pa)EjEh

a - (PaP
a)EjEh.

If we compare the right-hand sides of (3.11), (3.12) with those of (3.13),
(3.14) respectively, we obtain the following equations:

(3.15) C Γ?h = 0,

C hcb = -QjiEicE**, CPh = ΊQ
(3.16)

Λ2P {VP)EiE\ PaP
a = -{

Equation (3.15) shows that the functions Γ%b are invariant in each neigh-

borhood U of M.

Let X and y be two arbitrary vector fields in the base space M.
Then, because of (3.6), VγhXL has in JJ components of the form

r = (YcVcX
a)Eh

a + {hcbY
cXb)E\

Xa and Ya being the components of X and Y in U — π(U). If we take
account of (3.7) and (3.15), we find C(YcVcX

a) = 0, which is equiva-
lent to the condition (C(VYLXL)H)H = 0. Therefore the Riemannian
connection V is projectable. Thus, as a consequence of the definition
(1.9) of the induced connection V, we see that the vector field VyX
has components of the form

y cχ-7 γa Vrc/'Λ Vα _ι_ P α vb\V C A — I {OCΛ •+• 1 cbΛ )

in U, where Γ£b appearing in the equation above are the projections of
the invariant function Γ£b appearing in (3.1) and (3.5). Consequently,
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the induced connection V has Γ£b as its coefficients in U. On the other

hand, the equation Vg = 0 is a direct consequence of Vg = 0. Therefore,

we obtain the equation

(3-17) -ίi}
because of Γc

α

6 = Γ6°c and Vg = 0, < a, > being the ChristoffeΓs symbols

determined by g^. Thus we have

Proposition 3.1. In a fibred space with projectable Riemannian met-
ric g, the Riemannian connection V determined by g is projectable and
the induced connection V coincides with the Riemannian connection
determined by the induced metric g — pg.

Taking account of (3.10) and (3.16), we have

Proposition 3.2. In a fibred space with projectable Riemannian met-
ric, the second fundamental tensors h and H are projectable if and only
if (dλ)H = 0, and the curvature vector field P of fibres is projectable if
and only if (dλ)v = 0, where λ and P are defined respectively by (1.16)
and (1.18). Both h and P are projectable if and only if the 1-form λ is
closed.

Proposition 3.3. In a fibred space with projectable Riemannian met-
ric, P = 0 holds if and only if (V~CP)V = 0; h(X,P) = 0, or, equiv-
alently, \(HX) = 0 holds for an element X of Tj(M) if and only if

Van der Waerden-Bortolotti covariant derivatives. Let there be
given an element of the formal tensor product T(M) jj TH(M), say,

f belonging to T\(M) fl TH\(M). Then T is expressed as follows:

T = Tkhaek tί ij Hb$Ba in each neighborhood U of M, T k

jba being

certain functions in U, where {έj} = {d/dxj} is the natural frame of

coordinates (xh) defined in U, {ek} the dual base to {ê  }, Ba local

vector fields with components Eh

a, and ζb the local covector fields with

components Ef, all in U. We call T kJba the components of T in (17, U),
where U = π(U). Let i : T(M) J( TH(M) -^ T(M) be the linear ho-

momorphism defined by (I.I) in §1. Then the image T = i(T) has in U
components of the form

(3.18) fk

jih = Tk

jbaEibEh

a,

* * *
and the van der Waerden-Bortolotti covariant derivative V T of T has,
in (U,U), components of the form

(3.19) ^ιTkha
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by virtue of (W.I) ~ (W.4) given in §1 (Cf. [8], [9]). We put conven-
tionally in U

(3.20)

which are the components of (VBb)
vand(Vζa)v respectively. If we take

account of (3.18), (3.19) and (3.20), we have the formula

(3.21)

Uh = tι(TkjbaEi

bEh

a)

which are the components of VΓ = V^(T) in U. The first equations of
(3.1) and (3.5) reduce respectively to

VjE\ = hcbEjcEh - haEjEh

a - PbEjE\

which are the co-Gauss equations.

Let there be given an element of TH(M), say, S belonging to TH\(M).
* * * ~

Let Sba be the components of S- Then V S has, in (ί/, [/), components
of the form

(3.23) VjSb

a = EjcVcSh

a +

because of (3.19), where we have put

the operators dc and do being defined by dc = E^cdj and do = Ejdj.

On putting S = i(5), we have (VS)H = (i(V5))H, which shows that
(VS)H has components of the form (VcSb

a)Ej

cEi

bEh

a Therefore we

see that for an element S oίVH\(M), the projection p(Vi(5)) = V{pS)
has components of the form VcSba in U.

The Ricci formulas. As is well known, we have the Ricci formula

(3.24) VkVjXh - VjVkX
h = KkjfX1

for any element X of TQ(M), Xh being the components of X, where
Kkjίh denote the components of the curvature tensor K of the pro-
jectable Riemannian metric g given in M.

For any element oίT(M) Jt TH(M), say, f belonging to T\{M) jj TH\(M),
we have the formula, by virtue of (3.19),

(3.25) VkVjTh

h - VόVkT
h

h = kkji

hT\ -
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where Th

b are the components of T in (£/, £/), and

are invariant functions in U, the components of the curvature tensor K
in U. We denote by Kkji

h = Kdcb

aEk

dEjcEibEh

a the components of
the lift KL of K. The formula (3.25) is the Ricci formula for the van
der Waerden-Bortolotti covariant differentiation.

4. Geodesies

We have studied in [9] the behaviour of geodesies in a fibred space with
invariant Riemannian metric g, and proved six Propositions 4.1~4.β,
where we assumed the condition Cg = 0. In our present case, we can
show that these six Propositions 4.1~4.6, except Proposition 4.2, are all
valid for any fibred space with projectable Riemannian metric. We can
prove now the following proposition instead of Proposition 4.2 stated in
[9].

Proposition. In a fibred space M with projectable Riemannian met-
ric, the projection of a geodesic given arbitrarily in M is also a geodesic
in the base space M with respect to the induced metric, if and only if
the second fundamental tensor h or H vanishes identically.

5. Structure equations and curvatures

Let there be given a fibred space with projectable Riemannian metric g.
Then, by a similar device as given in §4 of [9], taking account of (3.20)
and (3.22), we can prove the following structure equations:

(5.1) Kdcb

a - Kdcb

a = (hdbhc

a - hcbhd

a) + 2hdchb

a,

(5.2) Kdcb° = {Vdhcb - Vchdb) + 2hdcPb,

(5.3) Koch0 = dohcb + hcehb

e + VcPb - PcPb

by virtue of the Ricci formula (3.24) and (3.25), where we have put

kocb° = Kkji

hEkEicEiEh,

kkji
h being the components of the curvature tensor K of g. Equations

(5.1), (5.2) and (5.3) are called the co-Gauss equation, the co-Codazzi
equation and the co-Ricci equation respectively.

If we take account of the well known identity Kkji
h+Kjik

h+Kikj
h =

0, we find the identities

Vchbd + Vbhdc + hdcPb + hcbPd + hbdPc = 0,

(5.4)
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because of (5.2) and (5.3) respectively. The identities (5.4) are equiva-
lent to the identity d(dή) — 0, where ή is the structure 1-form. Equa-
tions (5.2) and (5.3) reduce respectively to

(5.5) Kdcb — —Vbhdc + hdcPb + hbcPd — hbdPc,

b° = hcehb

e + - ( V c P b 4- VCP6) - PcPfe

by virtue of (5.4). Taking account of (5.1), we have

Proposition 5.1. If, in a fibred space with projectable Riemannian
metric g, the second fundamental tensors are projectable, then the cur-
vature tensor K of g is also projectable. When K is projectable, the
equality pK = K holds if and only if the second fundamental tensors
vanish identically, where K denotes the curvature tensor of the induced
metric g = pg. (Cf. Proposition 5.1 in [9]).

Denote by 7(X,Ϋ) the sectional curvature with respect to the sec-
tion determined by two vectors X and Ϋ in M, and by 7(Jf, Y) the
sectional curvature with respect to the section determined by two vec-
tors X and Y in M. Then, taking account of (5.1), we find

(5.6) (7(X, Y))L - η{XL,YL) = 3{h(XL, YL)}2(\X Λ Y\2)L > 0

for any two vector fields X and Y in M, where \X Λ Y\ denotes the
magnitude of the bivector X AY in M. Therefore we have

Proposition 5.2. In a fibred space M with projectable Riemannian
metric, g, the inequality

{Ί{X,Y))L>η{XL,YL) for X,YeTl(M)

holds. The equality (η(X,Y))L = η(XL,YL) holds for any two ele-
ments X and Y ofT\(M) if and only if the second fundamental tensor
vanishes identically in M (Cf. [3]).

6. Fibred spaces with invariant Riemannian metric

Let there be given a fibred space (M, M, τr; C, g) with Riemannian met-
ric g. When the condition

(6.1) Cpc9 = 0

is satisfied, p being a certain function positive everywhere in M, the
fibred space is called a fibred space with invariant Riemannian metric
g. (In a previous paper [9], we meant by a fibred space with invariant
Riemannian metric g a fibred space satisfying the condition C^g = 0.)
The condition (6.1) reduces to
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(6.2) C gji = PjEi + PiEj, Pj = -dj log/?,

C denoting the Lie derivation with respect to C. Taking account of

(2.8), we get Pj = PcEjc, which implies Cp = 0, i.e., that the function

p is invariant in M. Thus we have

Proposition 6.1. Any fibred space with invariant Riemannian met-
ric g is a fibred space with projectable Riemannian metric g. In a fibred
space with invariant Riemannian metric, the curvature vector field P
of fibres is projectable, and its components are given by Pj = —dj logp,
where p is the function appearing in (6.1), and is an invariant function
in M.

In our case, Pj is a gradient. Thus, taking account of Propositions
3.2 and 5.1, we have

Proposition 6.2. In a fibred space with invariant Riemannian met-
ric g, the second fundamental tensors h and H are projectable and the
curvature tensor K of g is also projectable.

As a consequence of (3.5), we have dή = — h — ή Λ d(logp), which
implies d(p~ιή) = —p~ιh, and consequently

dip-^h) = 0, i.e., Vd{p-ιhch) + Vc(p-ιhhd) + Vh{p-ιhdc) = 0.

The last equation is a consequence of (5.4), and Pc = —dclogρ. The
cohomology class determined in the base space M by the closed form
p~1hcι)dξcΛdξb is called the characteristic class of the given fibred space
with invariant Riemannian metric.
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