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FIBRED SPACES WITH PROJECTABLE
RIEMANNIAN METRIC
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Introduction

In our previous papers [8] and [9], we studied fibred spaces with
invariant affine connection and those with invariant Riemannian metric,
the fibres being 1-dimensional in both cases.

The idea of fibred spaces with invariant affine connection goes back
to the representation of spaces with projective connection. To represent
an n-dimensional manifold with projective connection, Princeton School
used an (n + 1)-dimensional manifold with affine connection admitting
a concurrent vector field with respect to which the affine connection
is invariant (See for example [5]), and Dutch School used a slightly
general manifold with affine connection (See for example, [4]). They
all identified a point in the manifold with projective connection with a
trajectory of the vector field with respect to which the affine connection
is invariant.

The idea of fibred spaces with invariant Riemannian metric goes
back to the five dimensional Riemannian space considered by Th. Kaluza
[1] and O. Klein [2] for getting a unified field theory of gravitation
and electromagnetism. To represent the space-time, they used a 5-
dimensional Riemannian space admitting a unit vector field with respect
to which the Riemannian metric is invariant, and identified a point in
the space-time with a trajectory of the unit vector field with respect to
which the 5-dimensional Riemannian metric is invariant.

In the present paper, we study fibred spaces with Riemannian met-
ric under the assumption that the Riemannian metric is projectable
instead of being invariant (See [3], [7]). In §1, we state definitions and
study some properties of a fibred space with projectable Riemannian
metric, and in §2 we develop the tensor calculus in the space. §3 is de-
voted to the discussions on the Riemannian connection and the induced
connection. We discuss geodesics in §4, and structure equations and
curvatures in §5. In the last §6, we assume that the Riemannian metric
is #nvariant with respect to a not necessarily unit vector field tangent
to the fibre, and the manifold is then slightly more general than that
we studied in [9].

Communicated March 30, 1967.
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1. Fibred space with projectable Riemannian
metric

Let M and M be two differentiable manifolds of dimensions n + 1 and
n respectively, and assume that there exists a differentiable mapping
m : M — M, which is onto and of the maximum rank n. (The man-
ifolds, objects and mappings we discuss in the sequel are supposed to
be of differentiability class C*°, and the manifolds are assumed to be
connected.) Then, for each point P of M, the inverse image n~!(P)
of P is a 1-dimensional submanifold of M. We denote 7~!(P) by Fp,
and call Fp the fibre over the point P of M. We suppose that every
fibre Fp is connected, and moreover that there are given in M a vector
field C tangent to the fibre and a positive definite Riemannian metric
g satisfying the condition

(1.1) §(C,C)=1.

If we introduce in M a 1-form 7] defined by the equation
(1.2) i(X) = 3(C, X),

X being an arbitrary vector field in M, we have

(1.3) A(C) = 1.

The set (M, M ,w;é,g) satisfying the conditions above is called a fi-
bred space with Riemannian metric §. We suppose moreover that the
condition

(1.4) (L§H(X,Y)=0

is satisfied for any two vector fields X and Y in M such that 7j(X) =
Ai(Y) = 0, where £ denotes the operator of Lie derivation with respect
to C. If this is the case, the fibred space (M M, m;C, g) is called a fibred
space with projectable Riemannian metric g. We call M and M the total
space and the base space respectively. The vector field C and the 1-form
7j are called the structure field and the structure form respectively. The
mapping m : M — M is called the projection. If there is no fear of con-
fusion, we call, for the sake of simplicity, a fibred space (M, M, m;C, g)
with projectable Riemannian metric simply a fibred space M. The n-
dimensional distribution defined in M by the equation 7j = 0 is called
the field of horizontal planes and its value at a point of M is called the
horizontal plane at that point.

_ We shall introduce some notations and terminologies for fibred space
(M, M,r;C,§) (Cf. [8], [9]). T(M) is the tangent bundle of M. 7T (M)
is the space of all tensor fields of type (r,s) in M. We put T(M) =
ZrsTT(M). The notations T(M), 77 (M) and T (M) denote the re-
spective spaces with respect to M corresponding to T(M), T (M) and
T (M) respectively.
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Horizontal parts. A linear endomorphism T — TH of T(M) is
defined by the following properties:

(H.1) f=f for feT{(),
(H.2) XH =X -7 X)C for X eT}M),
(H.3) o =5 —o(C)i for &eTHM),
(H.4) (ST =(§")o (TH) for 5T e T(M).

The tensor field T is called the horizontal part of T for any element T
of T(M). If a tensor field T in M satisfies the condition T = T, then
T is said to be horizontal. On putting TV =T —TH we call TV the
non-horizontal part of T for any element T of 7(M). In particular, for
any element X of 74(M) and any element 1w of T9(M), X"V and w"
are called the vertical parts of X and w respectively. The space of all
horizontal tensor fields is denoted by TH(M). If we put TH7 (M) =
TH(M)NT7 (M), we have TH(M) = £, , TH7(M).

Projectable tensor fields. When an element T of T (M ) satisfies the
condition (£ (TH))H = 0, we say that T is projectable. The space
of all projectable tensor fields in M is denoted by P(M). If we put
Py (M) = P(M) N T7 (M), P (M) = P(M) n TH5(M), PH(M) =
P(M) n TH (M), then we have

P(M) =Y _Pr(M), PE()= "> PHr(n).

We see that the Riemannian metric § given in M which satisfies (1.4)
is projectable, ie., § € P3(M). In fact, from (1.4) we have (£L§)¥ =
(£ g" +L£ ") = (£ g")H, since §¥ = 7 ® 7], and consequently
(L Gg)" = (L@Geq)? =0. If we take an arbitrary element & of
PHO (M), we find (£ @)(C) = L (&(C)) —&(L C) = 0, which implies
L & = 0 because of (£ o)H = 0. Thus we see that, for any element T
of PHY(M), the condition L T = 0 holds.

Lifts. We shall introduce the operation of taking lifts (Cf. [8], [9]).
The operation of taking lifts is a linear homomorphism 7' — TL of
T(M) into T (M) characterized by the following properties:

(L.1) ff=for for feTYM);

(L.2)
For any element Xof 73(M), there exists a unique element X of

THL(M) such that 7X* = X;
(L.3) Wl =*1(w) for weTIM);
(L.4) (SeT): =(sH) e (Tt) for S,TeT(M);

where the differential mapping of the projection = : M — M is denoted
also by 7, and the dual mapping of the differential mapping = by *=.
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Taking an arbitrary element X of 73(M), we find X/ = (X f)L
and (LXL)HIL = L£((Xf)Y) = 0, f being an arbitrary element of
TYM), ie., (LXL)H = 0. Thus XT belongs to PHL(M). If we
take an arbltrary element w of 79(M), we find wX(XL) = (w(X))L
and (L‘ wh)H(XL) = 0, X being an arbitrary element of T§(M), i.e.,
(£ wh)H = 0. Thus w” belongs to PH (M). Therefore, taking account
of (L.4), we see that T belongs to PH (M ( ) for any element T of T(M).
The element T of P (1) is called the lift of T.

Projections. Let f be an element of PO( ). Then we have £ f = 0.
Taking an arbitrary element X of P}(M), we find £ (X' L) = 0 for
any element f of 7Q(M). If & is an arbitrary element of P9(M), then
we find £ (@(z%)) = 0 for any element X of T§(M). Therefore, we
can define a linear homomorphism p: P(M) — 7 (M) by the following
properties:

(P.1) (pf)(P) = f(P) for feP(M),

where P is an arbitrary point such that 7r(]5) = P, an arbitrary point
of M.

(P2) (PX)f =p(X(f1)) for X € P§(M),

f being an arbitrary element of 73(M).

(P-3) (p2)(X) = p@(X*)) for @€ PYM),

X being an arbitrary element of 7§(M).

(P.4) p(S®T)=@S)® (pT) for S,T e P(M).

The tensor field pT is called the projection of T for any element T of

P(A’gj{ing account of (L.1) ~ (L.4) and (P.1) ~ (P.4), we easily find
p(TH) =T for T eT(M); (D)t =TH for T e P(M).

Thus the two spaces P# (M) and 7 (M) are isomorphic to each other
and p : PH(M) — T (M) is the isomorphism between them. The op-
eration of taking lifts is the inverse of the projection p restricted to
PH(M). We have now

Proposition 1.1. In a fibred space with projectable Riemannian met-
ric, we have, for any elements X, Y of PO(M ),

(?XS)Y] e Py(M), [ X, Y)H = [XH,YH)H [XH VH)V = 20(X,Y)C,
and p[X,Y] = [pX,pY], where 2 is a 2-form defined by the equation
(1.6) 2= (@

in M (CE. [8], [9]).

Formal tensor products. We denote by T (M) § TH (M) the formal
tensor product, i.e., the tensor product of the two spaces 7 (M) and
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TH (M) regarded as two abstract tensor spaces over M. Since TH (M)
is a subspace of T (M), we denote by j : TH (M) — T (M) the injection.
We shall now introduce a linear homomorphism i : 7 (M) § TH (M) —
T (M) by the following property:

11)  i(TH4S)=T®jS) for TeT(M),SecTH().

The induced metric. Since the Riemannian metric § given in M
is projectable, its projection g = pg is a positive definite Riemannian
metric in the base space M. We call g the induced metric of M. We
have the equation

(1.7) (9(X, Y)F =g(X",Y") for X,Y €To(M),
or equivalently (See [3])
(18)  g(pX,pY) =p(HX.Y)) for XY ePHy(M).

The induced connection. Let there be given an affine connection V in
the total space M, and assume that the vector field @yX’ is projectable
for any two elements X and Y of PH}(M). Then the given affine
connection V is said to be projectable. When an affine connection V is
projectable, we can introduce an affine connection V in the base space
M by the equation

(1.9) VyX =p(VyrX"),

X and Y being arbitrary elements of 73(M). The affine connection V
thus introduced is called the projection of V, or the induced connection
in M. It is easily verified that if the given projectable affine connection
V s torsionless, so is the induced connection V. We have now the
following formulas:

VyT =p(VyrTE) for T eT(M),Y € T}(M),

(1.10) T : 28 ~

Y and T being defined by Y = pf/ and T = pT. We shall now state

Proposition 1.2. In a fibred space with projectable Riemannian met-
ric §, the Riemannian connection V determined by § is also projectable,
and the projection V of V coincides with the Riemannian connection
determined by the induced metric g = pg in the base space.

Proposition 1.2 will be proved in §3 (Cf. Proposition 3.1). In the
sequel, we always denote by V the Riemannian connection determined
by the projectable Riemannian metric g in the total space M.

Van der Waerden-Bortolotti covariant derivatives. Given an element
Y of T§(M), we define a derivation %y in the formal tensor product
T (M) § TH(M) by the following properties:
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(W.1) VT =VyT for T eT(M).
(W.2) Ve = (Vyu§+i(P)L SF for §eTHWD).
(W.3)

VTt 5= (VgD 4 S+T4Vs8) for TeT(I),5eT" ().

For any element W of T (M) § TH(M), the correspondence Y — VYW
defines an element VW of T(M) t TH (M), which is called the van der
Waerden-Bortolotti covariant derivative of W When W and Y belong
respectively to PH (M) and PH} (M), VYW is an element of P* (M )-

The second fundamental tensors. We define an element h of THY(M)
by equation

(1.11) MY, X)C = (Vyu XH)V,

X andY _being arbitrary elements of T3(M), and define an element H
of THY (M) by the equation

(1.12) HX = -V4uC,

X being an arbitrary element of 73(M). The tensor fields h and H are
called the second fundamental tensors of the given fibred space. _

Applying the operator Vyx on both sides of the identity §(C, X ) =
0, we find

XandY being two arbitrary elements of T3(M). If we take an element
X of 'PO(M) then £ }

XH = [C,XH] is vertical, and hence VzxC = (Vs X*#)H, which im-
plies

(1.14) HX = (Vs XM,

)g being an arbitrary element of PL(M). On the other hand, we have
V&g(XH,YH) =0 for any two elements X and Y of Py(M). Thus we
obtain

(1.15) gHX,Y) = - §(X,HY),
because of (1.14). From (1.13) and (1.15), we have

Proposition 1.3. In a fibred space with projectable Riemannian met-
ric §, the second fundamental tensors h and H are horizontal, and have
the properties

MX,Y)+hY,X)=0, AX,¥)=gHXY),

X and Y being arbitrary elements of T} L(M).
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Since £ X* is vertical for any element X of P}(M), we can put
(1.16) MX)C =—-L X" for X e P{(M),

and easily see that (1.16) defines in M a 1-form ), which is horizontal.
Taking account of (1.11), (1.12), (1.14) and (1.16), we have the following
formulas:

(1.17) VY =—-HY — X(

where P is a horizontal vector field defined by

(1.18) §(P,Z)=X\Z) for ZeThM).

The first equation of (1.17) reduces to

(1.19) VX = (Vy X)L +h(Y, X)C for X,Y e PH(M),

where X = pX and Y = pY. Equation (1.19) is called the co-Gauss
equation, and the second equation of (1.17) is called the co- Weingarten
equation. As a consequence of (1.5) and (1.17), we have the equation

(1.20) h=—02=- (dj)".

When the 1-form )\ and one of the second fundamental tensors h
and H vanish identically in M, equations (1.17) reduce to

Ty X = (VyX)b, 950 =0, VoK =0, o€ =0

for any two elements X and Y of PH} (M), where X = pX and Y = p¥.
As is well known, when the above equations are satisfied, the Rie-
mannian manifold M is locally a Pythagorean product of a Riemannian
space and a straight line. In such a case, we say that the fibred space
is locally trivial.

The field of horizontal planes defined by 7 = 0 is integrable if and
only if dij = 0 (mod ), ie., if and only if h = —2 = — (df)¥ =
0 (Cf. (1.20)). Thus we have

Proposition 1.4. In a fibred space M with projectable Riemannian
metric, the field of horizontal planes defined by 7 = 0 s integrable, if
and only if the second fundamental tensor h or H wvanishes identically
in M.

The vector field P appearing in the last equation of (1.17) is the
first curvature vector of the fibre. Thus the vector field P vanishes
identically in M if and only if each of the fibres of M is a geodesic.
Thus, taking account of Proposition 1.4, we have

Proposition 1.5. A fibred space with projectable Riemannian met-
ric is locally trivial if and only if each of its fibres is a geodesic and the
field of horizontal planes is integrable.

When the curvature vector field P of fibre vanishes identically in M,
the given fibred space M with projectable Riemannian metric § reduces
to that with invariant Riemannian metric g in the sense of [9].
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2. The tensor calculus in a fibred space with
projectable Riemannian metric

Let (M, M, n;C, §) be a fibred space with projectable Riemannian met-
ric §g. Since the projection 7 : M — M is differentiable and of the
maximum rank n everywhere, there exists, for any point P of M, a coor-
dinate neighborhood U containing P such that U = 7 (U) is a coordinate
neighborhood of the point P = 7r(P) in M, and the intersection FgN U
is expressed in U by equations y! = a',---, y” = a™ with constants
a',--- ,a™ with respect to certain coordinate system (y!,--- ,y"t!) de-
fined in U, where @ is an arbitrary point of U. We call such a neigh-
borhood U a cylindrical neighborhood of M. Since we restrict ourselves
to cylindrical neighborhoods in M, we call them simply neighborhoods
of M. Given a neighborhood U in M, the set (U, U, ;C, g) is a fibred
space with projectable Riemannian metric §, where U = n(U), and 7, C
and § denote respectively the restrictions of 7, C' and § given in M to
U. In the sequel, we shall identify the operations of taking horizontal
parts, lifts, projections, etc. in ([7 ,U,m; C, g) with the corresponding
operations in (M, M, r,C, §) respectively.

Let (z") be coordinates defined in U of M, and (£*) coordinates
defined in U = n(U) C M. (The indices h,1,j,k,m,s,t run over the
range {1,2,--- ,n+ 1}, the indices a,b,c,d, e, f the range {1,2,--- ,n},
and the so-called Einstein summation convention is used with respect to
these two systems of indices.) We denote by E* and g;; the components
of the structure field C and the projectable Riemannian metric § with
respect to (") in U. Then the structure 1-form 7 defined by (1.2) has
in U components of the form

(2.1) E; = gi,E", ie., ij = E;jdz’.

Taking a point P with coordinates (£*) arbitrarily in U, we may assume
that F;, N U be expressed by n equations

(2.2) £ = ¢€%(a")

in U, where n functions £%(z") are differentiable in U, and their Jaco-
bian matrix (0§* /83;") is of the maximum rank n. Putting

(2.3) E* = 8;¢%,

where 8; denotes the operator 9; = 9/9z*, we see that n local covector
fields ¢* with components E,* are linearly independent in U. Taking
account of (1.1) and (1.2), we obtain
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(2.4) E,E' = gjiEjEi =1, EiEia =0,

because the structure field C is tangent to fibres. Thus the n + 1 local
covector fields 7 and (® are linearly independent.
Taking account of (2.4), we see that the inverse of the matrix (E,%, E;)
has the form
_ Eh
25) ez = (3.

where E'l',‘, for each fixed index b, are components of a local vector field
B,inU. Then the n + 1 local vector fields B, and C are linearly
independent in U. The equation (2.5) is equivalent to the conditions

(2.6) E'YE,*=6%,  E“E;=0,
E‘E,* =0, E'E; =1,
that is,
(2'6,) Ea(éb) = 5;717 ﬁ(Bb) =0, Ea(é) =0, ﬁ(é) =1,

or to the condition
(2.7) E,°E" + E;E" = 6.

The first and the second equations of (2.6) or (2.6)" show that n local
vector fields By, span the horizontal plane at each point of U.

Since the given Riemannian metric g is projectable, taking account
of the equations L g;; = V;E; + V;E; and (V;E;)E* = 0, we can put

(2.8) L gji= Pb(EjbE‘i +E;E;")

in U, where P, are certain n functions in U. Thus, as a consequence of
the definition (1.2) of 7, we obtain

(2.9) L E; = P,E,"

As was proved in [8], we find £ E;* = 0 and £ E? = 0. Thus, taking
account of (2.6), we find

L Eh=—-PE", LEM=0,

(2.10)
LE~*=0, L E;=PE,"

Horizontal parts. Let there be given a tensor field, say, T of type
(1,1) in the total space M. Then T has components of the form

(211) T,»=T,°E,*E" + T,°E,°E" + T,°E,E", + T,E,E"
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in each neighborhood U of M, where T, T,° Tp® and T,° are all
functions in U. Then, taking account of (H.1) ~ (H.4), we see that the
horizontal part 7 of T has in U components T Hh =T, °E; YE",.

Invariant functions. Let f be an element of PO(]W ). We have, by
definition, £ f = 0, which implies that f is expressed as f = f(£%(z"))
in each neighborhood U of M, where £%(z") are the functions ‘appearing
in equation (2.2) defining fibres. Thus we have 9;f = E, %9 f (Ct. [8]),
where J, denotes the operator d, = 9/9¢*. Any element f of PY(M)
is called an invariant function in M. We shall identify any invariant
function f with its projection f = pf and denote the invariant function
f by the same symbol f as its projection.

Projectable tensor fields, projections and lifts. Let there be given
a tensor field, say, T' of type (1,1) in the total space M. Then T is
projectable if and only if it has in each neighborhood U components
T of the form (2.11) with invariant functions T,®, i.e., if and only
if L Tp* = 0. Thus, taking account of (P.1) ~ (P.4), we easily see
that for any projectable tensor field, say, T of type (1,1), its projection
T = pT has components T,*(&) with respect to coordinates (£%) defined
in U ==(0).

Let there be given a tensor field, say, T of type (1, 1) in the base
space M, and T,° its components in U = 7(U). Then, taking account
of (L.1) ~ (L.4), we easily see that the lift T* of T has components of
the form

(2.12) T,"=T,"EE"
with respect to coordinates (z") defined in U, where T,;" appearing in
(2.12) denotes the lift of T',°.

Projectable Riemannian metric. If we put

(213) geb = gjichEib,

then g are invariant functions in U by virture of (2.6) and (2.8).
Thus, the projection g = pg has components g., in U = w(U). Taking
account of (2.6) and (2.7), we have the formula
(2.14) 9ji = 9aEFE* + EjE;.

If we define g** by the equation

(2.15) (9") = (g50) 7", ie., gjig™ =",

then g™ are components of an element G of P3(M) in U. If we define
g% by the equation

(2.16) (9°%) = (9e6) 7", ie., gebg™ = 62,
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then g%® are invariant functions in U, and hence the projection G = pG
has components g*® in U = 7(U). We have the formulas

(217) gba =gihE,~ bEh b, gih =gbaEib Eha+EiEh.
Moreover, taking account of (2.6), we find the following formulas:

E? = gyng*®E",, E; = g E",

2.18 4 .
(219 EMy =g"guEf,  E"=g“E;

The curvature vector field of fibres. The 1-from X defined by (1.16)
being horizontal, A has components of the form

[

(2.19) P, = PBE®, ie., A= (P,E})dz

in each neighborhood U of M, and the curvature vector field P of fibres,
which is defined by (1.18), has components of the form

(2.20) P" = PeE,°®, P*=g%P,

where P, are functions appearing in (2.10).

3. The Riemannian connection and the induced
connection

The Riemannian connection V determined by the projectable Riemannian
metric § has the Christoffel’s symbols {jhz' constructed from g;; as its
coefficients in each neighborhood U of the total space M. For any vec-
tor field X in M, its covariant derivative VX has components of the
form V;Xh = ;X" + {jhi} X¢in U, X" being the components of X
inU.

If we take account of (1.17), (2.19) and (2.20), we can put in U
V;E", = I'%,E ¢E" + hoE $E" — h*E;E" — P,E;E",

(3.1) -
V,;E" = —h}E ¢E% + P°E;E,

where P, are the functions appearing in (2.10), P® are defined by P* =

gabe and I'%;, hepy and b, are certain functions in U. We note here that

the functions I'%, has the symmetry property I'¢, = I'%,. Coznparin.g

(1.17) with (3.1), we see that the second fundamental tensors h and H

have respectively the components of the form

(3.2) hji = hoEFE®, h"=h/E}E",.

Therefore, as consequences of Proposition 1.3, we have the following
equations:
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(3.3) ilji +hi; =0, heb + hee = 0,
hji =hi"gni,  heb = heGpa-

Equations (3.1) are called the co-Gauss equation and the co- Weingarteu
equation respectively. Differentiating covariantly both sides of equations
(2.6), we have, as consequences of (2.6) and (3.1),

(3.5)
6]'Eia = _Fachchib + hcancEi + hbanEib - PanEi,
V;E;i = —hE;°E® + BE;E;®.

_ Let X and Y be two vector fields with components XM and }?h in
M respectively. Then, in each neighborhood U of M, we have X h =
X°EMy + X°E" and Yh = Y°Eh, + YOE", where X, X° and Y?,Y?
are certain functions in U. Taking account of (3.1), we see that Vi X
has components of the form

(3.6)
(Vi X)h =YV X9 — h2XO0)Er, + Y089 X® — hy?XP + PXY)E",

+ Y%(0:X° + hep XP)ER + Y°(5o X° — P, X°)ER
9, and 9y being defined by 8, = E*,0;, and 8y = E"0j, and V.X* by
(3.7) VX% =0.X% + I, X°.

We shall prove that the functions I' are invariant in U. To do this,

we shall first find the Lie derivative £ {jhi} of the Christoffel’s symbols

{jhi}' As is well known, the Lie derivative of {jhi} is given by the

equation

68 o) = ST )+ T g0~ T (L g0

in each neighborhood U (Cf. [6]). On the other hand, (2.8) reduces to
L gj= P E; + P, »E;, P;j being defined by P B,E; b Thus we have

(3.9)
h 1, - - = ~ ~
L {] ’L} = §(VJ.P1 + Vin)Eh + thEi + Qith
— (he*Py + b2 P,)E;°E;*E", + (E; P; + E; P;)P" — P, P,E",
by virtue of the second equation of (3.5), where we have put
~ 1 - ~ =~ = - -
(3.10) Qi =5(V;B-ViPy), Qf=Qug", P"=Pg"

As is well known, the identities
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L(V; XM -V, (LXh) = (c {jhi}) X, L(V@:) =V (L) = — (z: {th}) @h
hold for any vector field X" and any covector field @; in M (Cf. [6]).
Thus we have, by virtue of (2.10) and (3.9),
(3.11) L(V;E;*) = (he"Ps + h"P.)E;°E® — Q;"E;Ep® — Q;"E;Ep°
~ (E;P; + E:F)P,

- 1 ~ - S - . - -
(3.12)  L(V;E") = S(V;Pi + ViP;) + Q;" + E;(E'Qi") + P;P".

Applying the operator L to the two equations of (3.5), we find re-
spectively
(3.13) L(V;E*) =— (L TS)EFEL + (h* Py + hy"P.)E;°E;®
+ (L h*)Ej°E; + (L hy*)E;E;* — (L P*)E;E;
— P°Py(E,%E; + E;E;),

(3.14)  L(V;E") =— (L h*)E;°E" + P;P" + (h."P,)E;°E"
+ (L P*)E;E", — (P,P*)E;E".

If we compare the right-hand sides of (3.11), (3.12) with those of (3.13),
(3.14) respectively, we obtain the following equations:

(3.15) LTS =0,

L hey =—Q;EI.EY, L Py=2Q;;EIEY,

(3.16) o o -
h¢P, = (V;P)EI E*, P,P* = —(V;P,)E'E".
Equation (3.15) shows that the functions I'% are invariant in each neigh-
borhood U of M.
Let X and Y be two arbitrary vector fields in the base space M.
Then, because of (3.6), Vy. X’ has in U components of the form

(Vyr X = (YV XY E", + (haYX°)E",
X?® and Y* being the components of X and Y in U = Tr(ﬁ). If we take
account of (3.7) and (3.15), we find L(Y°V.X?*) = 0, which is equiva-
lent to the condition (£(VyrXL)H)H = 0. Therefore the Riemannian
connection V is projectable. Thus, as a consequence of the definition
(1.9) of the induced connection V, we see that the vector field Vy X
has components of the form

YV X% = Y%(3.X® + T4 X?)

in U, where I'% appearing in the equation above are the projections of
the invariant function I'% appearing in (3.1) and (3.5). Consequently,
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the induced connection V has I'§ as its coefficients in U. On the other
hand, the equation Vg = 0 is a direct consequence of V§ = 0. Therefore,
we obtain the equation

(3.17) 5={s)

because of I' = I and Vg =0, { b} being the Christoffel’s symbols

determined by gcp. Thus we have

Proposition 3.1. In a fibred space with projectable Riemannian met-
ric g, the Riemannian connection V determined by § is projectable and
the induced connection V coincides with the Riemannian connection
determined by the induced metric g = pg.

Taking account of (3.10) and (3.16), we have

Proposition 3.2. In a fibred space with projectable Riemannian met-
ric, the second fundamental tensors h and H are projectable if and only
if (d)\) =0, and the curvature vector field P of fibres is projectable if
and only if (d)\)V =0, where X and P are defined respectively by (1. .16)
and (1.18). Both h and P are projectable if and only if the 1-form X is
closed.

Proposition 3.3. In a fibred space with projectable Riemannian met-
ric, P = 0 holds if and only if (V:P)V = 0; h(X,P) =0, or, equiv-
alently, (H X) = 0 holds for an element X of T(M) if and only if
(v H P)V =o.

Van der Waerden-Bortolotti covariant derivatives. Let there be
given an element of the formal tensor product 7 (M) § TH (M), say,
T belongmg to TH(M) § THI(M). Then T is expressed as follows:
T Tk agk § & &t Cb # B, in each neighborhood U of M, T 52 being
certain functlons in U, where {&;} = {8/0z7} is the natural frame of
coordinates (z") defined in U, {é*} the dual base to {&;}, B, local
vector fields with components E”,, and ¢® the local covector fields with
components Eif, allin U. We call T K p? }he components of Tin (U, U ),
where U = n(U). Let i : T(M) §f TH(M) — T(M) be the linear ho-

momorphism defined by (I.1) in §1. Then the image T = z(f’) has in U
components of the form

(3.18) TP = Twd BB,

* % *
and the van der Waerden-Bortolotti covariant derivative VT of T has,
in (U,U), components of the form
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by virtue of (W.1) ~ (W.4) given in §1 (Cf. [8], [9]). We put conven-
tionally in U

V,E*y = 0,Eh, + {jhi} B — {C‘Z} E;°E",,
(3.20)
ji

V,E = ;' — { h }Eh“ + {;} E;°Ep,

which are the components of (VB,)Y and(V(?)V respectively. If we take
account of (3.18), (3.19) and (3.20), we have the formula
(3.21)

VWt = Vi(T 134  ELE )

= (VT ) BPER o + T (ViEL) Era + T/ EH(VIER),

which are the components of VT = @i(:;“) in U. The first equations of
(3.1) and (3.5) reduce respectively to

V,E" = haE;°E* — hy@E;Eh, — P,E;E",
(3.22) ’ Jj b cbvj b Lvy by
VjEia = hcancEi + hbanEib - PanEi,
which are the co-Gauss equations.
Let there be given an element of 7 (M), say, S belonging to 7HY (M).

Let Sp® be the components of 5’ Then % § has, in (U, U), components
of the form

(3.23) Vi 56° = B;°VeSy® + E;08°,

because of (3.19), where we have put

a2} - 5o

the operators 9. and 9y being defined by 8. = E7.9; and 8y = E79;.
On putting S = z(g'), we have (VS)H = (z(% é))H, which shows that
(VS)H has components of the form (Vcha)EjCEibEha. Therefore we
see that for an element S of PHY (M), the projection p(@z(g')) = V(pg')

has components of the form V.S3® in U.
The Ricci formulas. As is well known, we have the Ricci formula

(3.24) V9, K — 9,9 % = R X

for any element Xof T 6(]\2 ), X" being the components of X, where
Kkjih denote the components of the curvature tensor K of the pro-
jectable Riemannian metric § given in M.

For any element of 7 (M) § TH (M), say, T belonging to T3(M) t TH(M),
we have the formula, by virtue of (3.19),

(3.25) VijThb — VijThb=I~<kjihTib - EgE]c'chbaThm
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where T, are the components of 7*’ in (U,U), and

s s -anfg)-e o) {2} (o) {2Ho)

are invariant functions in U, the components of the curvature tensor K
in U. We denote by Kkj,-h = chb“EkdchEibEha the components of
the lift K~ of K. The formula (3.25) is the Ricci formula for the van
der Waerden-Bortolotti covariant differentiation.

4. Geodesics

We have studied in [9] the behaviour of geodesics in a fibred space with
invariant Riemannian metric §, and proved six Propositions 4.1~4.6,
where we assumed the condition £§ = 0. In our present case, we can
show that these six Propositions 4.1~4.6, except Proposition 4.2, are all
valid for any fibred space with projectable Riemannian metric. We can
prove now the following proposition instead of Proposition 4.2 stated in

[9].

Proposition. In a fibred space M with projectable Riemannian met-
ric, the projection of a geodesic given arbitrarily in M is also a geodesic
in the base space M with respect to the induced metric, if and only if
the second fundamental tensor h or H vanishes identically.

5. Structure equations and curvatures

Let there be given a fibred space with projectable Riemannian metric g.
Then, by a similar device as given in §4 of [9], taking account of (3.20)
and (3.22), we can prove the following structure equations:

(5.1) Kue® — Kab® = (haphe® — heapha®) + 2hachs?,
(5'2) chbo = (vdhcb - Vchdb) + 2hchb;
(5.3) Koer® = Oohcy + heehy® + VP, — P.P,

by virtue of the Ricci formula (3.24) and (3.25), where we have put

Kio® = Kiji"E*¥4E? .EWEp®, Kaa® = Kiji" E*4E7 E'Ey,
f(0cb0 = KkjihEkchElith’

K kjih being the components of the curvature tensor K of §. Equations
(5.1), (5.2) and (5.3) are called the co-Gauss equation, the co-Codazzi
equation and the co-Ricci equation respectively.

If we take account of the well known identity Kkjih+Rjikh+Kikjh =
0, we find the identities

vdhcb + Vt:hbd + vbhdc + hchb + hchd + hdec = 0,

(5.4) 1
dohep + E(VCPb — VbPC) =0
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because of (5.2) and (5.3) respectively. The identities (5.4) are equiva-
lent to the identity d(di) = 0, where 7 is the structure 1-form. Equa-
tions (5.2) and (5.3) reduce respectively to

(5.5) Kae® = —Vihae + hacPs + hoe Py — hpa P,
Kch = hcehb + = (V P, +V Pb) P.P,

by virtue of (5.4). Taking account of (5.1), we have

Proposition 5.1. If, in a fibred space with projectable Riemannian
metric g, the second fundamental tensors are projectable, then the cur-
vature tensor K of § is also projectable. When K is projectable, the
equality pK = K holds if and only if the second fundamental tensors
vanish identically, where K denotes the curvature tensor of the induced
metric g = pg. (Cf. Proposition 5.1 in [9]).

Denote by 'y(X Y) the sectional curvature with respect to the sec-
tion determined by two vectors X and Y in M, and by v(X,Y) the
sectional curvature with respect to the section determined by two vec-
tors X and Y in M. Then, taking account of (5.1), we find

(5.6) (VX Y)F — (X" YE) =3{h(X", YI)P(IX A Y
for any two vector fields X and Y in M, where | X A Y| denotes the
magnitude of the bivector X AY in M. Therefore we have
Proposition 5.2. In a fibred space M with projectable Riemannian
metric, g, the inequality
(X, Y)E > 5xE,YE) for XY e TH(M)
holds. The equality (v(X,Y))r = (XL, YT) holds for any two ele-

ments X andY of T{(M) if and only if the second fundamental tensor
vanishes identically in M (Cf. [3]).

6. Fibred spaces with invariant Riemannian metric

Let there be given a fibred space (M M, T, C, g) with Riemannian met-
ric §. When the condition

(6.1) L,z5=0

is satisfied, p being a certain function positive everywhere in M, the
fibred space is called a fibred space with invariant Riemannian metric
g. (In a previous paper [9], we meant by a fibred space with invariant
Riemannian metric § a fibred space satisfying the condition Lzg = 0.)
The condition (6.1) reduces to
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(62) L 9ji = PjEi + pl‘E]’, .Pj = —8]‘ lng,

L denoting the Lie derivation with respect to C. Taking account of
(2.8), we get P; = P.E;°, which implies Lp = 0, i.e., that the function
p is invariant in M. Thus we have

Proposition 6.1. Any fibred space with invariant Riemannian met-
ric § is a fibred space with projectable Riemannian metric §. In a fibred
space with invariant Riemannian metric, the curvature vector field P
of fibres is projectable, and its components are given by f’] = —0;logp,
where p is the function appearing in (6.1), and is an invariant function
mn M.

In our case, I5J is a gradient. Thus, taking account of Propositions
3.2 and 5.1, we have

Proposition 6.2. In a fibred space with invariant Riemannian met-
ric g, the second fundamental tensors h and H are projectable and the
curvature tensor K of g is also projectable.

As a consequence of (3.5), we have dij = —h — 7j A d(log p), which

implies d(p~17) = —p~'h, and consequently
d(p™'h) =0, ie., Va(p~ heb) + Ve(p™ hog) + Vi(p ™ hac) = 0.

The last equation is a consequence of (5.4), and P, = —0.logp. The
cohomology class determined in the base space M by the closed form
P~ LhepdEC NdEY is called the characteristic class of the given fibred space
with invariant Riemannian metric.
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