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KILLING VECTOR FIELDS WITH TWISTOR

DERIVATIVE

Andrei Moroianu

Abstract

Motivated by the possible characterization of Sasakian mani-
folds in terms of twistor forms, we give the complete classification
of compact Riemannian manifolds carrying a Killing vector field
whose covariant derivative (viewed as a 2–form) is a twistor form.

1. Introduction

The concept of twistor forms on Riemannian manifolds was intro-
duced and intensively studied by the Japanese geometers in the ‘50s.
Some decades later, theoretical physicists became interested in these
objects, which can be used to define quadratic first integrals of the ge-
odesic equation (cf. Penrose and Walker [9]), or to obtain symmetries
of field equations (cf. [2], [3]). More recently, a new impetus in this
direction of research was given by the work of Uwe Semmelmann [10]
(see also [1], [5], [6]).

Roughly speaking, a twistor form on a Riemannian manifold M is a
differential p–form u such that one of the three components of its covari-
ant derivative ∇u with respect to the Levi–Civita connection vanishes
(the two other components can be identified respectively with the dif-
ferential du and codifferential δu). If moreover the codifferential δu
vanishes, u is called a Killing form. For p = 1, twistor forms correspond
to conformal vector fields and Killing forms correspond to Killing vec-
tor fields via the isomorphism between T ∗M and TM induced by the
metric.

Two basic examples of manifolds carrying twistor forms are the round
spheres and Sasakian manifolds, cf. [10], Prop. 3.2 and Prop. 3.4. A
common feature of these examples is the existence of Killing 1–forms
whose exterior derivatives are twistor 2–forms.

Conversely, if ξ is a Killing 1–form of constant length with twistor
derivative, then it defines a Sasakian structure (see Proposition 2.3 be-
low). It is therefore natural to drop the assumption on the length, and
to address the question of classifying all Riemannian manifolds with this
property.
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After some preliminaries on twistor forms in Section 2, we study the
behavior of closed twistor 2–forms with respect to the curvature tensor
in Section 3. This is used to obtain the following dichotomy in Section
4: if ξ is a Killing 1–form with twistor exterior derivative, then either ξ
satisfies a Sasaki–type equation, or its kernel is an integrable distribution
on M . The two possibilities are then studied in the last four sections,
where in particular new examples of Riemannian manifolds carrying
twistor 2–forms are exhibited. A complete classification is obtained in
the compact case, cf. Theorem 8.9.

Acknowledgments. It is a pleasure to thank Paul Gauduchon and
Christophe Margerin for many enlightening discussions.

2. Preliminaries

Let (Mn, g) be a Riemannian manifold. Throughout this paper vec-
tors and 1–forms as well as endomorphisms of TM and two times covari-
ant tensors are identified via the metric. In the sequel, {ei} will denote
a local orthonormal basis of the tangent bundle, parallel at some point.
We use Einstein’s summation convention whenever subscripts appear
twice.

We refer the reader to [10] for an extensive introduction to twistor
forms. We only recall here their definition and a few basic properties.

Definition 2.1. A p–form u is a twistor form if and only if it satisfies
the equation

(1) ∇Xu =
1

p + 1
X y du − 1

n − p + 1
X ∧ δu,

for all vector fields X, where du denotes the exterior derivative of u and
δu its codifferential. If, in addition, u is co–closed (δu = 0) then u is
said to be a Killing form.

By taking one more covariant derivative in (1) and summing over an
orthonormal basis X = ei we see that every twistor p–form satisfies

∇∗∇u =
1

p + 1
δdu +

1

n − p + 1
dδu.

Taking p = 1 and δu = 0 in this formula shows that

(2) ∇∗∇u =
1

2
∆u,

for every Killing 1–form u. For later use we also recall here the usual
Bochner formula holding for every 1–form u:

(3) ∆u = ∇∗∇u + Ric(u).
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Definition 2.2. A Sasakian structure on M is a Killing vector field
ξ of constant length, such that

(4) ∇2
X,Y ξ = k

(

〈ξ, Y 〉X − 〈X, Y 〉ξ
)

, ∀ X, Y ∈ TM,

for some positive constant k.

Notice that we have extended the usual definition (which assumes
k = 1 and ξ of unit length) in order to obtain a class of manifolds
invariant through constant rescaling.

If we denote by u the 2–form corresponding to the skew–symmetric
endomorphism ∇ξ, then (4) is equivalent to

(5) ∇Xu = kξ ∧ X, k > 0.

In particular, if ξ defines a Sasakian structure, then dξ is a closed twistor
2–form, a fact which was noticed by U. Semmelmann (cf. [10], Prop.
3.4). As a partial converse, we have the following characterization of
Sasakian manifolds:

Proposition 2.3. Let ξ be a Killing vector field of constant length

on some Riemannian manifold such that dξ is a twistor 2–form. Then

ξ is either parallel or defines a Sasakian structure on M .

Proof. We may assume that ξ has unit length. Let us denote by u
the covariant derivative of ξ

(6) ∇Xξ =: u(X), ∀ X ∈ TM.

It is a direct consequence of the Kostant formula that u is parallel in
the direction of ξ (see Section 4 for details). Since u is a closed twistor
form, we have

∇Xu =
1

n − 1
X ∧ δu, ∀ X ∈ TM,

whereas for X = ξ we get that δu is collinear to ξ. Since ξ never
vanishes, there exists some function f on M such that

(7) ∇Xu = fX ∧ ξ, ∀ X ∈ TM.

On the other hand, ξ has unit length so u(ξ) = 0. Differentiating this
last relation with respect to some arbitrary vector X and using (6) and
(7) yields

(8) u2(X) = fX − f〈X, ξ〉ξ, ∀ X ∈ TM,

and in particular the square norm of u (as tensor) is

〈u, u〉 := 〈u(ei), u(ei)〉 = −〈u2(ei), ei〉 = (1 − n)f.

On the other hand, (6) yields for every X ∈ TM

∇X(〈u, u〉) = 2f〈X ∧ ξ, u〉 = 4fu(X, ξ) = 0.

Thus f is a constant, non–positive by (8). If f = 0, ξ is parallel,
otherwise ξ defines a Sasakian structure by (7). q.e.d.
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3. Closed twistor 2–forms

In this section (Mn, g) is a (not necessarily compact) Riemannian
manifold of dimension n > 3. We start with the following technical
result:

Proposition 3.1. Let u be a closed twistor 2–form, identified with

a skew–symmetric endomorphism of TM . Then, for every other skew–

symmetric endomorphism ω of TM , one has

(9) (n−2)(Rω ◦u−u◦Rω) = (Ru◦ω−ω◦Ru)+(u◦Ric◦ω−ω◦Ric◦u),

where Rω is the skew–symmetric endomorphism of TM defined by

Rω(X) :=
1

2
Rej ,ω(ej)X.

Proof. The identification between 2–forms and skew–symmetric en-
domorphisms is given by the formula

(10) u =
1

2
ei ∧ u(ei).

Depending on whether u is viewed as a 2–form or as an endomorphism,
the induced action of the curvature on it reads

(11) Rω(u) = Rωek ∧ u(ek) and Rω(u) = Rω ◦ u − u ◦ Rω.

Let X and Y be vector fields on M parallel at some point. Differenti-
ating the twistor equation satisfied by u

(12) ∇Y u =
1

1 − n
Y ∧ δu ∀ Y ∈ TM

in the direction of X yields

∇2
X,Y u =

1

1 − n
Y ∧∇Xδu =

1

n − 1
Y ∧ ej y∇2

X,ej
u

=
1

n − 1
Y ∧ ej y RX,ej

u +
1

n − 1
Y ∧ ej y∇2

ej ,Xu

=
1

n − 1
Y ∧ ej y RX,ej

u +
1

n − 1
Y ∧ ej y∇ej

(

1

1 − n
X ∧ δu

)

=
1

n − 1
Y ∧ ej y RX,ej

u − 1

(n − 1)2
Y ∧∇Xδu

=
1

n − 1
Y ∧ ej y RX,ej

u +
1

n − 1
∇2

X,Y u,

whence

(13) ∇2
X,Y u =

1

n − 2
Y ∧ ej y RX,ej

u.

Using the first Bianchi identity we get

Ru(X) =
1

2
Rej ,u(ej)X =

1

2
(RX,u(ej)ej + Rej ,Xu(ej)) = RX,u(ej)ej .
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This, together with (11) and (13), yields

(n − 2)∇2
X,Y u = Y ∧ ej y RX,ej

ek ∧ u(ek)

= g(ej , RX,ej
ek)Y ∧ u(ek) − Y ∧ RX,u(ek)ek

= −Y ∧ u(Ric(X)) − Y ∧ Ru(X).

After skew–symmetrizing in X and Y we get

(n−2)RX,Y u = X∧u(Ric(Y ))+X∧Ru(Y )−Y ∧u(Ric(X))−Y ∧Ru(X).

Let now ω be some skew–symmetric endomorphism of TM . We take
X = ei, Y = ω(ei) in the previous equation and sum over i to obtain:

(n − 2)Rω(u) =
1

2

(

ei ∧ u(Ric(ω(ei))) + ei ∧ Ru(ω(ei))

− ω(ei) ∧ u(Ric(ei)) − ω(ei) ∧ Ru(ei)
)

= ei ∧ u(Ric(ω(ei))) + ei ∧ Ru(ω(ei))

= (u ◦ Ric ◦ ω − ω ◦ Ric ◦ u) + (Ru ◦ ω − ω ◦ Ru),

taking into account that for every endomorphism A of TM , the 2–form
ei ∧ A(ei) corresponds to the skew–symmetric endomorphism A −tA of
TM . q.e.d.

Corollary 3.2. If u is a closed twistor 2–form, the square of the

endomorphism corresponding to u commutes with the Ricci tensor:

u2 ◦ Ric = Ric ◦ u2.

Proof. Taking ω = u in (9) yields

(14) (n − 3)(Ru ◦ u − u ◦ Ru) = 0,

so u and Ru commute (as we assumed n > 3). We then have

0 = (n − 2)tr
(

u ◦ (Rω ◦ u − u ◦ Rω)
)

(9)
= tr

(

u ◦ Ru ◦ ω − u ◦ ω ◦ Ru + u2 ◦ Ric ◦ ω − u ◦ ω ◦ Ric ◦ u
)

(14)
= tr(u2 ◦ Ric ◦ ω − Ric ◦ u2 ◦ ω)

= −〈ω, u2 ◦ Ric − Ric ◦ u2〉.
Since u2 ◦Ric−Ric◦u2 is skew–symmetric and the equality above holds
for every skew–symmetric endomorphism ω, the corollary follows. q.e.d.

4. Killing vector fields with twistor derivative

We will use the general results above in the particular setting which
interests us. No compactness assumption will be needed in this section.

Let ξ be a Killing vector field on M , and denote by u its covariant
derivative:

(15) ∇Xξ =: u(X).
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By definition, u is a skew–symmetric tensor, which can be identified
with 1

2dξ. Taking the covariant derivative in (15) yields

(16) ∇2
X,Y ξ = (∇Xu)(Y ).

This equation, together with the Kostant formula

(17) ∇2
X,Y ξ = RX,ξY

(which holds for every Killing vector field ξ) shows that

(18) ∇ξu = 0.

Suppose now, and throughout the remaining part of this article, that the
covariant derivative u of ξ is a twistor 2–form. Notice that in contrast
to Proposition 2.3, we no longer assume the length of ξ to be constant.
Taking Y = ξ in (12) and using (18) yields

(19) ξ ∧ δu = 0,

so δu and ξ are collinear. We denote by f the function defined on the
support of ξ satisfying (1 − n)δu = fξ (this normalization turns out to
be the most convenient one in the computations below). On the support
of ξ the twistor equation (12) then reads

(20) ∇Xu = fX ∧ ξ, ∀ X ∈ TM.

Recall now the formula

(n − 2)∇2
X,Y u = −Y ∧ u(Ric(X)) − Y ∧ Ru(X)

obtained in the previous section. We take the inner product with Y in
this formula and sum over an orthonormal basis Y = ei to obtain:

−(n − 2)∇Xδu = −(n − 1)(u(Ric(X)) + Ru(X)).

Taking the scalar product with some vector Y in this equation and
symmetrizing the result yields

−n − 2

n − 1
(〈∇Xδu, Y 〉 + 〈∇Y δu, X〉) = 〈Ric(u(X)), Y 〉 + 〈Ric(u(Y )), X〉.

If we replace Y by u(Y ) in this last equation and use Corollary 3.2, we
see that the expression

〈∇Xδu, u(Y )〉 + 〈∇u(Y )δu, X〉
is symmetric in X and Y , i.e.,

(21) 〈∇Xδu, u(Y )〉 + 〈∇u(Y )δu, X〉 = 〈∇Y δu, u(X)〉 + 〈∇u(X)δu, Y 〉.
A straightforward calculation taking (20) and (21) into account yields

(22) u(ξ) ∧ df + u(df) ∧ ξ = 0.

On the other hand we have u(ξ) = ∇ξξ = −1
2d(|ξ|2) and

X(|u|2) = 2〈∇Xu, u〉 = 2f〈X ∧ ξ, u〉 = −2f〈X, u(ξ)〉,
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whence

(23) d(|u|2) = −2fu(ξ) = fd(|ξ|2).
Notice that the norm |u| used here is the norm of u as 2–form, and
differs by a factor

√
2 from the norm of u as tensor. More explicitly,

|u|2 = 1
2〈u(ei), u(ei)〉. Taking the exterior derivative in (23) yields

(24) 0 = df ∧ d(|ξ|2) = −2df ∧ u(ξ),

which, together with (22), leads to

(25) u(df) ∧ ξ = 0.

The main goal of this section is to show the following:

Proposition 4.1. Either f is constant on M , or u has rank 2 on M
and ξ ∧ u = 0.

Proof. Suppose that f is non–constant. Since the support of ξ (say
M0) is a dense open subset of M , there exists a non–empty connected
open subset U of M0 where df does not vanish. We restrict to U for
the computations below. First, (24) shows that u(ξ) is collinear to df ,
which, together with (25), implies that

(26) u2(ξ) = αξ,

for some function α defined on U .
Differentiating this relation with respect to some vector X and using

(15) and (20) yields

(X ∧ fξ)(u(ξ)) + u((X ∧ fξ)(ξ)) + u3(X) = αu(X) + X(α)ξ,

or equivalently

(27) u3(X) − (f |ξ|2 + α)u(X) = (X(α) − f〈X, u(ξ)〉)ξ − f〈X, ξ〉u(ξ).

In terms of endomorphisms of TM , identified with (2, 0)–tensors, (27)
becomes

u3 − (f |ξ|2 + α)u = (dα − fu(ξ)) ⊗ ξ − fξ ⊗ u(ξ).

The left hand side of this relation is clearly skew–symmetric. The sym-
metric part of the right hand side thus vanishes: (dα− 2fu(ξ))⊙ ξ = 0,
whence dα = 2fu(ξ)) on U . Using (23) we get dα = −d(|u|2), so

(28) α = −|u|2 + c

for some constant c. We now use (27) in order to compute the trace
of the symmetric endomorphism u2 on TxM for some x ∈ U . It is
clear that ξ and u(ξ) are linearly independent eigenvectors of u2 with
eigenvalue α. Let V denote the orthogonal complement of {ξ, u(ξ)}
in TxM . For X ∈ V , (27) becomes u3(X) − (f |ξ|2 + α)u(X) = 0, so
the minimal polynomial of the endomorphism u|V divides the degree 2
polynomial λ(λ−(f |ξ|2+α)). Thus u2 has at most 2 different eigenvalues
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on V : f |ξ|2 + α and 0, with multiplicities denoted by k and n − k − 2
respectively. We obtain:

−2|u|2 = tr(u2) = 2α + k(f |ξ|2 + α)
(28)
= 2c − 2|u|2 + k(f |ξ|2 + α),

showing that either f |ξ|2 + α is constant or k = 0. In the first case we
obtain by taking the exterior derivative

0 = d(f |ξ|2 + α) = |ξ|2df + fd(|ξ|2) + dα

(28)
= |ξ|2df + fd(|ξ|2) − d(|u|2) (23)

= |ξ|2df.

This shows that f is constant on U , contradicting the definition of U .
We therefore get k = 0. This means that the restriction of u to the

distribution V vanishes, so

(29)
1

2
dξ = u =

ξ ∧ u(ξ)

|ξ|2

on U . In particular we get

(30) ξ ∧ u = 0 and u ∧ u = 0 on U.

It remains to show that the equation ξ ∧ u = 0 holds on the entire
manifold M , not only on the (possibly small) open set U . This is a
consequence of the following remark. The covariant derivatives of the
3–form ξ ∧ u and of the 4–form u ∧ u can be computed at every point
of M0 using (15) and (20):

∇X(ξ ∧ u) = u(X) ∧ u + ξ ∧ (fX ∧ ξ) =
1

2
X y (u ∧ u)

∇X(u ∧ u) = 2fX ∧ ξ ∧ u.

This can be interpreted by saying that the section (ξ ∧ u, u ∧ u) of
Λ3M0 ⊕ Λ4M0 is parallel with respect to the covariant derivative D on
this bundle defined by

DX(σ, τ) =

(

∇Xσ − 1

2
X y τ,∇Xτ − 2fX ∧ σ

)

.

Since a parallel section which vanishes at some point is identically zero,
(30) implies that ξ ∧ u vanishes identically on M0, thus on M because
M0 is dense in M . q.e.d.

Most of the remaining part of this paper is devoted to the study of
the two possibilities given by the above proposition.
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5. The case where f is constant

In this section we consider the case where the function f defined on
the support of ξ is constant, and we assume that M is compact. We
then have

Theorem 5.1. If the covariant derivative u := ∇ξ of a non–parallel

Killing vector field ξ on M satisfies

(31) ∇Xu = cξ ∧ X

for some constant c, then either ξ defines a Sasakian structure on M ,

or M is a space form.

Proof. For the reader’s convenience we provide here a proof of this
rather standard fact. We start by determining the sign of the constant
c. From (16), (17) and (31) we obtain

RX,ξY = ∇2
X,Y ξ = (∇Xu)(Y ) = (cξ ∧ X)(Y ) = c(〈ξ, Y 〉X − 〈X, Y 〉ξ).

Taking the trace over X and Y in this formula yields

Ric(ξ) = −Rei,ξei = (n − 1)cξ.

Now, the two Weitzenböck formulas (2) and (3) applied to the Killing
1–form ξ read

∇∗∇ξ =
1

2
δdξ =

1

2
∆ξ and ∆ξ = ∇∗∇ξ + Ric(ξ).

Thus Ric(ξ) = ∇∗∇ξ so taking the scalar product with ξ and integrating
over M yields

(n − 1)c|ξ|2L2 = |∇ξ|2L2 .

This shows that c is non–negative, and c = 0 if and only if ξ is parallel,
a case which is not of interest for us. By rescaling the metric on M
if necessary, we can therefore assume that c = 1, i.e., ξ satisfies the
Sasakian condition (4)

∇2
X,Y ξ = 〈ξ, Y 〉X − 〈X, Y 〉ξ.

If the norm of ξ is constant, we are in the presence of a Sasakian struc-
ture by Definition 2.2.

Suppose that λ := |ξ|2 is non–constant. Then the function λ is a
characteristic function of the round sphere. More precisely, the second
covariant derivative of the 1–form dλ can be computed as follows. Using
the relation ∇Xξ = u(X) we first get dλ = −2u(ξ); therefore (31) gives

∇Y dλ = −2(ξ ∧ Y )(ξ) − 2u2(Y ).

By taking another covariant derivative with respect to some vector X
(at a point where Y is assumed to be parallel) we obtain after a straight-
forward calculation

∇2
X,Y dλ + 2X(λ)Y + Y (λ)X + dλ〈X, Y 〉 = 0.
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By a classical theorem of Tanno (cf. [11]), if dλ does not vanish identi-
cally, the sectional curvature of M has to be constant, so M is a finite
quotient of the round sphere. q.e.d.

We end up this section by remarking that conversely, every Killing
vector field on the round sphere (and all the more on its quotients)
satisfies (14). This follows for instance from [10], Prop. 3.2. The
main idea is that the space of Killing 1–forms (respectively of closed
twistor 2–forms) on the sphere coincides with the eigenspace for the least
eigenvalue of the Laplace operator on co–closed 1–forms (respectively
on closed 2–forms), and the exterior differential defines an isomorphism
between these two spaces.

6. The case where ξ ∧ u = 0

From now on we suppose that the function f defined by (20) is non–
constant. By Proposition 4.1 the 3–form ξ∧dξ vanishes on M , thus the
distribution orthogonal to ξ (defined on the support of ξ) is integrable.
We start by a local study of the metric, at points where ξ does not
vanish.

Proposition 6.1. Around every point in the support of ξ, the mani-

fold M is locally isometric to a warped product I×λN of an open interval

I and a (n−1)–dimensional manifold N such that the differential of the

warping function λ is a twistor 1–form on N .

Proof. By the integrability theorem of Frobenius, M can be written
locally as a product I × N where ξ = ∂

∂t and N is a local leaf tangent

to the distribution ξ⊥. The metric g can be written

g = λ2dt2 + ht

for some positive function λ on I × N and some family of Riemannian
metrics ht on N . Of course, the fact that ξ = ∂

∂t is Killing just means

that λ and ht do not depend on t, i.e., g = λ2dt2+h is a warped product.
The 1–form ζ, metric dual to ξ, is just λ2dt, so u = 1

2dζ = λdλ ∧ dt.
We now express the fact that u is a twistor form on M in terms of the
new data (λ, h). Let X denote a generic vector field on N , identified
with the vector field on M projecting over it. Similarly, we will identify
1–forms on N with their pull–back on M . Since the projection M → N
is a Riemannian submersion, these identifications are compatible with
the metric isomorphisms between vectors and 1–forms.

The O’Neill formulas (cf. [8], p. 206) followed by a straightforward
computation give

∇ ∂
∂t

u = 0 and ∇Xu = λ∇Xdλ ∧ dt, ∀ X ∈ TN,

where we denoted by the same symbol ∇ the covariant derivative of the
Levi–Civita connection of h on N . Taking the inner product with X



KILLING VECTOR FIELDS WITH TWISTOR DERIVATIVE 159

in the second equation and summing over an orthonormal basis of N
yields δMu = λ∆Nλdt, so u is a twistor form if and only if

∇Xdλ = − 1

n − 1
X∆Nλ, ∀ X ∈ TN

which just means that dλ is a twistor 1–form on N . q.e.d.

We can express the above property of dλ by the fact that its metric
dual is a gradient conformal vector field on N . These objects were inten-
sively studied in the ‘70s by several authors. In particular Bourguignon
[4] has shown that a compact manifold carrying a gradient conformal
vector field is conformally equivalent to the round sphere. The converse
of this result does not hold (i.e., not every conformally flat metric on the
sphere carries gradient conformal vector fields, cf. Remark 8.3 below).
We study this notion in greater detail in the next section.

7. Gradient conformal vector fields

Definition 7.1. A gradient conformal vector field (denoted for con-
venience GCVF in the remaining part of this paper) on a connected
Riemannian manifold (Mn, g) is a conformal vector field X whose dual
1–form is exact: X = dλ. The function λ (defined up to a constant) is
called the primitive of X.

Let X be a GCVF. Since X is a gradient vector field, its covariant
derivative is a symmetric endomorphism, and the fact that X is con-
formal just means that the trace–free symmetric part of ∇X vanishes.
Thus X satisfies the equation

(32) ∇Y X = αY, ∀ Y ∈ TM

where α = − δX
n . In particular, LXg = 2αg.

In the neighbourhood of every point where X is non–zero, the metric
g can be written

(33) g = ψ(t)(dt2 + h)

for some positive function ψ. Conversely, if g can be written in this
form, then ∂

∂t is a GCVF whose primitive is Ψ (the primitive of ψ in
the usual sense).

We thus see that the existence of a GCVF does not impose hard
restrictions on the metric in general. Remarkably, if the GCVF has
zeros, the situation is much more rigid:

Proposition 7.2. Let X be a GCVF on a Riemannian manifold

(Mn, g) vanishing at some x ∈ M . Then there exists an open neigh-

bourhood of x in M on which the metric can be expressed in polar coor-

dinates

(34) g = ds2 + γ2(s)gSn−1 ,
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where gSn−1 denotes the canonical round metric on Sn−1 and γ is some

positive function γ : (0, ε) → R
+. The norm of X in these coordinates

is a scalar multiple of γ:

(35) |X| = cγ.

Notice that the metric defined by (34) is in particular of type (33),

as shown by the change of variable s(t) :=
∫ t
0

√

ψ(r)dr.

Proof. Let τ be the unit tangent vector field along geodesics passing
trough x. From ([4], Lemme 4) we have that X is everywhere collinear to
τ . Using the Gauss Lemma, we know that the metric g can be expressed
as g = ds2 + hs in geodesic coordinates on some neighbourhood U of
x, where hs is a family of metrics on Sn−1 (of course, τ = ∂

∂s in these
coordinates). Since x is an isolated zero of X (cf. [4], Corollaire 1),
the norm of X is a smooth function |X| = β defined on U − {x}, and
X = βτ . We then compute

ḣs = L τg = β−1LXg + 2d(β−1) ⊙ X♭ = 2αβ−1g − 2
dβ

β
⊙ ds

= 2αβ−1hs + 2αβ−1ds2 − 2
dβ

β
⊙ ds.

By identification of the corresponding terms in the above equality we
obtain the differential system

{

dβ = αds

ḣs = 2αβ−1hs.

The first equation shows that β only depends on s: β = β(s) =
∫ s
0 α(t)dt. The second equation yields

(36) hs = β2(s)h

for some metric h on Sn−1.
We claim that h is (up to a scalar multiple) the canonical round

metric on the sphere. To see this, we need to understand the family of
metrics hs on Sn−1. We identify (TxM, g) with (Rn, eucl) and Sn−1 is
viewed as the unit sphere in TxM . If V is a tangent vector to Sn−1 at
some v ∈ TxM , then hs(V, V ) is the square norm with respect to g of
the image of V by the homothety of ratio s followed by the differential
at v of the exponential map expx. In other words,

hs = s2(expx)∗(g)
∣

∣

∣

TvSn−1

.

Since the differential at the origin of the exponential map is the identity,
we get

lim
s→0

hs

s2
= gSn−1 .
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Using this together with (36) shows that lims→0
β(s)

s is a positive real

number denoted by c and c2h = gSn−1 .

We thus have proved that g = ds2 + γ2(s)gSn−1 , where γ = β
c . q.e.d.

8. The classification

We turn our attention back to the original question. Recall that ξ is
a non–parallel Killing vector field on (Mn, g) such that ξ ∧ dξ = 0 and
dξ is a twistor form. We distinguish two cases, depending on whether ξ
vanishes or not on M .

Case I. The vector field ξ has no zero on M . The distribution or-
thogonal to ξ is then globally well–defined and integrable, its maximal
leaves turn out to be compact and can be used in order to obtain a
dimensional reduction of our problem.

Definition 8.1. Let N be a Riemannian manifold, let λ be a positive
smooth function on N , and let ϕ be an isometry of N preserving λ (that
is, λ ◦ ϕ = λ). The quotient of the warped product R ×λ N by the free
Z–action generated by (t, x) 7→ (t+1, ϕ(x)) is called the warped mapping

torus of ϕ with respect to λ and is denoted by Nλ,ϕ.

Proposition 8.2. A compact Riemannian manifold (Mn, g) carries

a nowhere vanishing Killing vector field ξ as above if and only if it is

isometric to a warped mapping torus Nλ,ϕ where (Nn−1, h) is a compact

Riemannian manifold carrying a GCVF with primitive λ and ϕ is an

isometry of N preserving λ.

Proof. The “if” part follows directly from the local statement given by
Proposition 6.1. Suppose, conversely, that (M, ξ) satisfy the conditions
above. We denote by ϕt the flow of ξ and by Nx the maximal leaf of of
the integrable distribution ξ⊥. Clearly ϕt maps Nx isometrically over
Nϕt(x). We claim that this action of R on the space of leaves of ξ⊥ is
transitive. Let x ∈ M be an arbitrary point of M and denote

Mx :=
⋃

t∈R

Nϕt(x).

For every y ∈ Mx we define a map ψ : (−ε, ε) × Ny → M by

ψ(t, z) := ϕt(z).

The differential of ψ at (0, y) is clearly invertible, thus the inverse func-
tion theorem ensures that the image of ψ contains an open neighbour-
hood of y in M . On the other hand Mx contains the image of ψ by
construction; therefore Mx contains an open neighbourhood of y. Thus
Mx is open. For any x, y ∈ M one either has Mx = My or Mx∩My = ∅.
Thus M is a disjoint union of open sets

M =
⋃

x∈M

Mx
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so by connectedness we get Mx = M for all x.
Since the norm of ξ is constant along its flow, we deduce that |ξ|

attains its maximum and its minimum on each integral leaf Nx. By the
main theorem in [4], each leaf is conformally diffeomorphic to the round
sphere, so in particular it is compact. Reeb’s stability theorem then
ensures that the space of leaves is a compact 1–dimensional manifold S
and the natural projection M → S is a fibration. Hence S is connected,
i.e., S ∼= S1. On the other hand we have a group action of R on S given
by t(Nx) := Nϕt(x) and S is the quotient of R by the isotropy group of
some point. Since S is a manifold, this isotropy group has to be discrete,
therefore is generated by some t0 ∈ R. Then clearly M can be identified
with the warped mapping torus Nλ,ϕ, where N := Nx, ϕ := ϕt0 and the
warping function λ is the restriction to N of |ξ|. q.e.d.

Remark 8.3. A compact Riemannian manifold admitting gradient
conformal vector fields is completely classified by one single smooth
function defined on some closed interval and satisfying some boundary
conditions. More precisely, such a manifold is isometric to the Riemann-
ian completion of a cylinder (0, l)×Sn−2 with the metric dt2+f(t)gSn−2 ,
where f : (0, l) → R

+ is smooth and satisfies the boundary conditions

(37) f(t) = t2(1+ t2a(t2)) and f(l− t) = t2(1+ t2b(t2)), ∀ |t| < ε,

for some smooth functions a, b : (−ε, ε) → R
+.

The proof is very similar to that of Theorem 8.6 below and will thus
be omitted.

Case II. The vector field ξ has zeros on M . The study of this situa-
tion is more involved since the distribution orthogonal to ξ is no longer
globally defined. On the other hand one can prove that the orbits of
ξ are always closed in this case, which turns out to be crucial for the
classification. This follows from a more general statement:

Proposition 8.4. Let M be a compact Riemannian manifold and let

ξ be a Killing vector field on M . If the covariant derivative of ξ has

rank 2 (as skew–symmetric endomorphism) at some point x ∈ M where

ξ vanishes, then ξ is induced by an isometric S1–action on M , and in

particular its orbits are closed.

Proof. Let Z denote the set of points where ξ vanishes, and let Z0 be
the connected component of Z containing x. It is well–known that Z0

is a totally geodesic submanifold of M of codimension 2 (equal to the
rank of ∇ξ). Moreover, at each point of Z0, ∇ξ vanishes on all vectors
tangent to Z0.

Since M is compact, its isometry group G is also compact. The
Killing vector field ξ defines an element X of the Lie algebra g of G.
The exponential map of G sends the line RX onto a (not necessarily
closed) Abelian subgroup of G. Let T be the closure of this subgroup and
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denote by t its Lie algebra. T is clearly a compact torus. We claim that
T is actually a circle. If this were not the case, one could find an element
Y ∈ t defining a Killing vector field ζ on M non–collinear to ξ. Let y
be some point in Z0. Since by definition ξy = 0 we get exp(tX) · y = y
for all t ∈ R, whence g · y = y for all g ∈ T , thus showing that ζ
vanishes on Z0. Since the space of skew–symmetric endomorphisms of
TxM vanishing on TxZ0 is one–dimensional, we deduce that (∇ζ)x is
proportional to (∇ξ)x. Finally, since a Killing vector field is determined
by its 1–jet at some point, and ξx = ζx = 0, we deduce that ζ is collinear
to ξ, a contradiction.

Therefore T is a circle acting isometrically on M and ξ is the Killing
vector field induced by this action. q.e.d.

Let M0 denote as before the set of points where ξ does not vanish.
The integrable distribution ξ⊥ is well–defined along M0 and T acts freely
and transitively on its maximal integral leaves. If (N, h) denotes such a
maximal integral leaf, Proposition 6.1 shows that M0 is isometric to the
warped product S1 ×λ N , g = λ2dθ2 + h, where λ is a positive function
on N whose gradient is a conformal vector field X. Since λ is the
restriction of the continuous function |ξ| on M , it attains its maximum
at some x ∈ N . Of course, X vanishes at x.

We thus may apply Proposition 7.2 to the gradient conformal vector
field X on N . The metric on N can be written h = ds2 + γ2(s)gSn−2

on some neighbourhood of x. The length of X, which by (34) is equal
to cγ(s), only depends on the distance to x. Assume that X vanishes
at some point y := expx(tV ) (where V is a unit vector in TxN). Then
it vanishes on the whole geodesic sphere of radius t. On the other hand
X has only isolated zeros, so the geodesic sphere S(x, t) is reduced to
y. This would imply that N is compact, homeomorphic to Sn−1, so
M0 = S1 × N is compact, too. On the other hand M0 is open, so by
connectedness M0 = M , contradicting the fact that ξ has zeros on M .

This proves that x is the unique zero of X on N . In fact we can
now say much more about the global geometry of M . Recall that M
is the disjoint union of M0 and Z, where Z, the nodal set of ξ, is a
codimension 2 submanifold and M0 = N ×S1 is endowed with a warped
product metric. In order to state the global result we need the following

Definition 8.5. Let l > 0 be a positive real number and let γ, λ :
(0, l) → R

+ be two smooth functions satisfying the following boundary
conditions:

(38)

{

lims→0 γ(s) = 0, lims→l γ(s) > 0

lims→0 λ(s) > 0, lims→l λ(s) = 0
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We view the sphere Sn as the topological join of Sn−2 and S1, obtained
from [0, l] × Sn−2 × S1 by shrinking {0} × Sn−2 × S1 to {point} × S1

and by shrinking {l} × Sn−2 × S1 to {point} × Sn−2.
Then Sn, endowed with the Riemannian metric

g = ds2 + γ2(s)gSn−2 + λ2(s)dθ2

defined on its open submanifold (0, l) × Sn−2 × S1 is called the Rie-

mannian join of Sn−2 and S1 with respect to γ and λ and is denoted
by Sn−2 ∗γ,λ S1.

Notice that the metric g extends to a continuous metric on Sn. We
will see below under which circumstances this extension is smooth.

Theorem 8.6. Let N be a maximal leaf of the distribution ξ⊥ of M0

and let x ∈ N be the unique zero of the gradient conformal vector field

X = ∇(|ξ|) on N . We then have

(i) There exists some positive number l, not depending on N , such

that the exponential map at x maps diffeomorphically the open

ball B(0, l) in TxN onto N .

(ii) The submanifold Z is connected, isometric to a round sphere Sn−2.

The closure of each integral leaf N defined above is N = N ∪ Z.

(iii) M is isometric to a Riemannian join Sn−2 ∗γ,λ S1, where γ is (up

to a constant) equal to the derivative of λ.

Proof. (i) Consider the isometric action of S1 on M induced by ξ.
For θ ∈ S1 denote by Nθ the image of N through the action of θ on
M . Of course, Nθ is itself a maximal integral leaf of ξ⊥. For every unit
vector V ∈ TxN , we define

l(x, V ) := sup{t > 0 | expx(rV ) ∈ N, ∀ r ≤ t}.
Clearly, l(x, V ) is the distance along the geodesic expx(tV ) from x to the
first point on this geodesic where X vanishes. Of course, the exponential
map on Nθ coincides (as long as it is defined) with the exponential map
on M since each Nθ is totally geodesic. As noticed before, the norm of
X along geodesics issued from x only depends on the parameter along
the geodesic, therefore l(x, V ) is independent of V and can be denoted
by l(x). Since we have a transitive isometric action on the Nθ’s, l(x)
actually does not depend on x neither, and will be denoted by l. This
proves that each Nθ is equal to the image of the open ball B(0, l) in
Tθ(x)Nθ via the exponential expθ(x).

(ii) Let us denote by Zθ the set Nθ\Nθ. By the above, Zθ is the image
of the round sphere S(0, l) in Tθ(x)Nθ ⊂ Tθ(x)M via the exponential
map (on M) expθ(x). In particular, each Zθ is a connected subset of Z,

diffeomorphic to Sn−2. Every element θ′ ∈ S1 maps (by continuity) Zθ

to Zθ′θ and on the other hand, it preserves Z. We deduce that Zθ = Zθ′
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for all θ, θ′ ∈ S1, and since Z is the union of all Zθ, we obtain Z = Zθ.
The other assertions are now clear.

(iii) This point is an implicit consequence of the local statements from
the previous sections. First, by Proposition 6.1 M0 is diffeomorphic to
N × S1 with the warped product metric g = gN + λ2dθ2, where λ is
a function on N whose gradient X is a GCVF vanishing at x. From
Proposition 7.2 and (i) above we see that N \ {x} is diffeomorphic to
(0, l)× Sn−2 with the metric gN = ds2 + γ2(s)gSn−2 . If we denote by S
the orbit of x under the S1–action on M defined by ξ, this shows that
M0 \ S is diffeomorphic to (0, l) × Sn−2 × S1 with the metric

g = ds2 + γ2(s)gSn−2 + λ2(s)dθ2,

where λ represents the norm of ξ and X = ∇λ = λ′(s) ∂
∂s . From (35)

we get |λ′| = |X| = cγ. Taking into account that X does not vanish on
M0 \ S, we see that λ′ does not change sign on (0, l), so γ equals the
derivative of λ up to some non–zero constant. Finally, the boundary
conditions (38) are easy to check: lims→0 γ(s) = 1

c |Xx| = 0, lims→l γ(s)
is equal to the radius of the round (n−2)–sphere Z and is thus positive,
lims→0 λ(s) = |ξx| > 0 and lims→l λ(s) = 0 because ξ vanishes on Z.
q.e.d.

In order to obtain the classification we have to understand which of
the above Riemannian join metrics are actually smooth on the entire
manifold. For this we will use the following folkloric result:

Lemma 8.7. Let f : (0, ε) → R
+ be a smooth function such that

limt→0 f(t) = 0. The Riemannian metric dt2 + f(t)gSn−1 extends to

a smooth metric at the singularity t = 0 if and only if the function

f̃(t) := f(t
1

2 ) has a smooth extension at t = 0 and f̃ ′(0) = 1.

Notice that the above condition on f amounts to saying that f(t) =
t2 + t4h(t2) for some smooth germ h around 0.

Corollary 8.8. Let γ : (0, l) → R
+ be a smooth function satisfying

lims→0 γ(s) = 0 and lims→l γ(s) > 0. For c > 0 consider the function

(39) λ(s) := c

∫ l

s

γ(t)dt.

The Riemannian join metric

g = ds2 + γ2(s)gSn−2 + λ2(s)dθ2

defined on (0, l) × Sn−2 × S1 extends to a smooth metric on Sn if and

only if there exist two smooth functions a and b defined on some interval

(−ε, ε) such that

(40) γ(t) = t(1 + t2a(t2)) and γ(l − t) =
1

c
+ t2b(t2), ∀ |t| < ε.
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Proof. Since λ(0) > 0, g extends to a smooth metric at s = 0 if and
only if ds2 + γ2(s)gSn−2 extends smoothly at s = 0. By Lemma 8.7,
this is equivalent to γ2(t) = t2 + t4h(t2) for some smooth h, so γ(t) =

t
√

1 + t2h(t2) = t(1 + t2a(t2)) for some smooth function a. Similarly, g
extends smoothly at s = l if and only if the same holds for ds2+λ2(s)dθ2,
which, by Lemma 8.7 is equivalent to the existence of some smooth
function d defined around 0 such that λ(l− t) = t+ t3d(t2). Taking (39)
into account, this is of course equivalent to the second part of (40).
q.e.d.

Summarizing, we have

Theorem 8.9. Let (Mn, g) be a compact Riemannian manifold car-

rying a non–parallel Killing vector field ξ whose covariant derivative is

a twistor 2–form. Then one of the following possibilities occurs:

1. M is a space form of positive curvature and ξ is any Killing vector

field on M .

2. M is a Sasakian manifold and ξ is the Sasakian vector field.

3. M is a warped mapping torus Nλ,ϕ

M = (R × N)/(t,x)∼(t+1,ϕ(x)), g = λ2dθ2 + gN ,

where N is a compact (n − 1)–dimensional Riemannian manifold

carrying a GCVF with primitive λ (cf. Remark 8.3), and ϕ is an

isometry of N preserving λ and ξ = ∂
∂θ .

4. M is a Riemannian join Sn−2 ∗γ,λ S1 with the metric g = ds2 +
γ2(s)gSn−2 + λ2(s)dθ2 where γ : (0, l) → R

+ is a smooth function

satisfying the boundary conditions (40), λ is given by formula (39),
and ξ = ∂

∂θ .

We end these notes with some open problems related to the classi-
fication above. One natural question is the following : which compact
Riemannian manifolds carry twistor 1–forms ξ with twistor exterior de-
rivative? To the author’s knowledge, in all known examples ξ is either
closed or co–closed. In the first case, the metric dual of ξ is a GCVF,
so the manifold is described by Proposition 7.2. The second case just
means that ξ is Killing, and the possible manifolds are described by
Theorem 8.9.

More generally, one can address the question of classifying all compact
Riemannian manifolds Mn carrying a Killing or twistor p–form whose
exterior derivative is a non–zero twistor form (2 ≤ p ≤ n − 2). Besides
the round spheres, the only known examples are Sasakian manifolds
(for odd p), nearly Kähler 6–manifolds (for p = 2 and p = 3) and nearly
parallel G2–manifolds (for p = 3).
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