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CONCENTRATED, NEARLY MONOTONIC,
EPIPERIMETRIC MEASURES
IN EUCLIDEAN SPACE

THIERRY DE PAuw

Abstract

We characterize Holder continuously differentiable m dimen-
sional submanifolds of Euclidean space among m rectifiable sets
S in terms of growth conditions on the m density ratios of the
Hausdorff measure H™ LS.

A ma maman

1. Foreword

We consider an m dimensional differentiable submanifold S ¢ R",
0 < m < n, whose tangent spaces Tan(S,z) vary Holder continuously
with respect to x € S. In other words there are 0 < « <1 and C; > 0
such that

dist(Tan(S, 1), Tan(S, x2)) < Ci|x1 — x2|*

whenever x1,z9 € S. Here dist(W7, Ws) measures the distance between
two m dimensional vector subspaces of R"; for instance we may set it
equal to the Hilbert-Schmidt norm of Py, — Py, where Py denotes the
nearest point projection on W. Our purpose is to study the measure of
area on S, that is the Radon measure ¢ = H™ LS defined as follows:

(H™LS)(A) = H™(S N A)

whenever A C R"™. We have denoted by H™ the m dimensional Haus-
dorff measure on S, see e.g., [10, 2.10.2], so that ¢ “coincides with the
Lebesgue measure in coordinate charts” according to the area theorem,
[10, 3.2.3]. We observe (Proposition 3.6.1) that each zp € S has a
neighborhood U with the following property (here spt(¢) = 5).

(A) For every x € spt(¢)NU and every 0 < r < R such that B(z, R) C
U one has:

¢B(z,r) ¢B(z,R))| _

a(m)rm a(m)R™ | —

CyR?*®.
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(B) For every x € U and every 0 < r < R such that B(z, R) C U, one

has:
¢B(z,r)) ¢(B(z, R))
a(m)rm a(m)R™
We notice that condition (B) guarantees the existence of a limit of the
density ratios for each z € U:

< CyR“.

0"(,2) = tim 2BET).

r—0t a(m)rm
The normalizing constant a(m) is chosen in order that:
(C) ©™(¢,x) =1 whenever x € spt(¢) NU.

Inequality (A) is a simple consequence of the area theorem together
with the Taylor expansion of the area integrand in coordinates (Lemma
2.3.4). Inequality (B) follows from (A) by comparing ¢(B(x,r)) (where
possibly z € S) to ¢(B(2/,r")) for some 2’ € S and ' > 0.

Our main result is the reciprocal of the above stated observation.

Theorem. Assume ¢ is a Radon measure in R™ verifying conditions
(A), (B) and (C) above in some open set U C R™. Then spt(¢) N U is
a Holder continuously differentiable submanifold of R™.

In case m = n — 1 the same conclusion holds without assuming (B)
according to the work of G. David, C. Kenig and T. Toro, [6]. For the
purpose of proving such results it seems important that the testing balls
B(z,r) be Euclidean. Regarding Lipschitzian regularity implied by the
controlled behavior of density ratios computed with respect to (very)
non Euclidean balls, see the recent account [13] by A. Lorent.

We will refer to condition (A) as the epiperimetry of ¢ near xg, to
condition (B) as its nearly monotonicity near zo, and to condition (C)
as to its density 1 property near xg. These three conditions are met
by measures ¢ corresponding to solutions of some variational problems
including soap films and soap bubbles. Specifically let S C R" be
(H™,m) rectifiable ([10, 3.2.14]) and (M,¢e,d) minimal in the sense
introduced by F.J. Almgren in [2]; then ¢ = H™ LS meets these three
requirements in a neighborhood of H™ almost every point zg € S (for
a definition of (M, ¢, §) almost minimality in the setting of currents see
subsection 3.4). The near monotonicity property (near every xo € S)
is a classical consequence of almost minimality (see Proposition 3.4.5
for the analogous result in the setting of currents). Nevertheless, to the
author’s knowledge it doesn’t seem to have been written up so far in
the context of sets (see the forthcoming [9]). The epiperimetry property
near ‘H™ almost every xyp € S has been proved by E.R. Reifenberg
[19] in the context of minimal sets. The density 1 property near H™
almost every xg € S follows simply from (H™,m) rectifiability, [10,
3.2.19], together with the epiperimetry property. Epiperimetry is the
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most important property needed to prove the regularity theorem. It
says that the density ratios a(m)~1r=™¢(B(z,r)) decrease sufficiently
fast to their limit when r | 0 for most x € spt(¢). Assuming that
S N B(xp, r9) is sufficiently close to being a graph with small Lipschitz
constant parametrized on some m dimensional affine subspace g+ W,
the epiperimetry property is proved by comparing the area of S inside
B(zg,70) to that of the graph of the solution of the Dirichlet problem
with boundary data close to SNBdry B(xg, 9) — however, the length of
this brief description is no indication of the technical complications that
arise when carrying out the actual proof. Adapting E.R. Reifenberg’s
proof of epiperimetry to the case of almost minimality together with the
main result of the present paper yields another proof of F.J. Almgren
almost everywhere regularity theorem in [2]. Regarding F.J. Almgren’s
memoir one may also consult E. Bombieri’s different proof in the setting
of currents [4] as well as G. David and S. Semmes’ account [7] on the
uniform rectifiability of the so-called restricted sets introduced in [2].

We now turn to giving a general idea of the methods used in this
paper (which are inspired in part by D. Preiss’ moments computations
in [17]). Assume ¢ verifies conditions (A), (B) and (C) above. It is
first observed (see also [8]) that (B) and (C) imply the following. For
every € > 0 there exists r = r(zgp,¢) > 0 and an m dimensional vector
subspace W (depending on z( and also possibly on r > 0 and ¢ > 0)
such that

(1) disty [spt(¢) N B(xo, 7)., (zo + W) N B(wo, yr)] <eyr

where disty; denotes the Hausdorff distance and v = ~(n,m,e) > 0.
This can be seen as follows. There exists § = d(n, m,e) > 0 such that if
¢ verifies (B) and (C) and if » > 0 is such that

(2) ¢(B(zo, 7)) < (1+0)a(m)r™,

then (1) holds for some W (see Lemma 4.5.5). For if this were not
true, a compactness argument would yield a weakly converging sequence
¢1, G2, ... with a limit ¢ verifying (C) and (B) with Co = 0 and U = R".
Such a measure ¢ would be necessarily of the type H" LW according
to a theorem of O. Kowalski and D. Preiss (see e.g., Theorem 4.5.4),
therefore contradicting the convergence in (local) Hausdorff distance of
spt(¢;), j = 1,2,..., to spt(¢) (Corollary 3.3.5). One also notices that
inequality (2) is inherited by neighbooring points of zy and persists at
smaller scales according to condition (B). Therefore E.R. Reifenberg’s
topological disk theorem (see Theorem 2.5.10) applies, asserting that
spt(¢) contains a neighborhood of zy which is homeomorphic to an m
dimensional ball. This consequence of (2) will be used repeatedly in the
present work, for instance for finding orthonormal families ey, ..., en,
such that o + pe; € spt(¢), j =1,...,m, for 0 < p < r small enough.
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The remaining part of the proof consists in controlling the distance
between m dimensional subspaces W, ,, and W, ,, which approximate
spt(¢) in the sense of (1) at different points x; and different scales r;,
i = 1,2. The reason for doing this is twofold. On the one hand we
want to estimate dist(W; ,, Wy 2,) by a quantity e(r) with the property
that Y222, £(277) < oo — this implies that a limit W, = lim, o+ Wi,
exists, therefore providing us with a tangent space of spt(¢) at . On
the other hand, we want to estimate dist(Wj, ., W, ») by a multiple of
B, for some 0 < 8 < 1, whenever r = 2|z; — 29| — this shows that the
tangent spaces W, vary Holder continuously with respect to . In order
to derive such estimates from information regarding the growth of ¢ in
Euclidean balls, we start by replacing the balls themselves by “smooth”
balls; specifically we introduce the quantity

anmﬂ=/’ (r |z — (g — 20)P)” do(y).

B(zo+z,r)

It is a plain consequence of Cavalieri’s principle (see e.g., [15, 1.15])
that conditions (A) and (B) remain valid with r—4V (¢, z, ) replacing
d(B(z, 7)) (for condition (A) to hold we obviously assume that z¢+z €
spt(¢)). Next we consider the quantity

VW%MZA(“*%%@-WW%M)

and we estimate H/}(QS, x,r)—V (¢, x,r)| in terms partly of the error term
Cyr2® appearing in (A) (Lemma 4.2.1), whereas V (¢, z,7) — V (¢, zo,7)
has a positive part controlled partly in terms of the error term Cor® ap-
pearing in (B) (Lemma 4.2.3), x € U arbitrary. The reason for studying
V (¢, z,r) lies in its geometrical significance. To see this we split the in-
tegrand into homogeneous polynomials of the variable x:

4
V((Z)v Zz, T) = Z Pk(¢7 xz, T)
k=0
= / (r? =y — 20*)” d(y)
B(zo,r)
+4<ﬂ:7/ y (r? =y — xo|?) d¢(y)>
B(zo,r)
2
o)

—2@P/ (r — [y — 20f2)? de(y)
B(zo,r)

+ O(rmH]a:\?’).



EPIPERIMETRIC MEASURES 81

If normalized properly the term of degree 0 can be thought of as a
density ratio of ¢ at the point xg, at scale r, with respect to our “smooth
ball”. The term of degree 1 is associated with a vector

b(g,r) = /B vl ) ol

whose proper normalization can be thought of as a “smoothly weighted”
center of mass of ¢ in B(xg,r). Most importantly we abbreviate

Q(é.r)(x) = / (2, — 20)?d6(y),

B(zo,r)

which is a positive semi-definite quadratic form appearing in the term of
degree 2. To appreciate the meaning of Q(¢,r) think of ¢ = H™ L S, S
being a differentiable submanifold, g € S and r being sufficiently small.
In that case Q(¢,r)(x) is close to 2| Pray(s.40)(2)]* (whenever |z| is
small). The justification for the computations involving the comparison
of V(¢,z,r) and ‘A/(qﬁ, x,r) is the following. After normalizing properly
all the quantities introduced so far (we divide them by some multiple of
r™+2 in order that the term of degree 2 in the above expansion becomes
dimensionless) we show that if we are in the “close to flat” situation
described in the preceding paragraph then the normalized Q(¢,r) has
a trace close to m and there is an orthogonal family ey, ..., e, so that
xo + ¢e; € spt(¢) and Q(é,7)(e;) = |ei]?, i = 1,...,m. In other words,
Q(¢,7)(z) is close to | Py, , (z)|? where Wy, , is the subspace generated
by e1,...,en. In fact we show that the following is small:

pm—2 / dist(y — o, WxO,T)Qdcb(y).
B(zo,r)

It then follows that
spt(¢) N B(xo,7r/2) C B(xg + Wy o)

for some small € > 0. In turn, arguing that spt(¢)NB(zg, r) is essentially
a topological disk we obtain that (1) is satisfied for Wy, ,. Of course the
whole point is that we now have gained information about the error : it
has been controlled at each stage of the computation by the error terms
Cor® appearing in conditions (A) and (B), i.e., ¢ < 77 (our estimates
give § = a/8(m + 2), which is not optimal). Since we can repeat the
whole construction at smaller scales r this is enough to complete the
proof of the theorem.

2. Notations and preliminaries

Given z € R™ and A C R" nonempty, we let dist(z, A) = inf{|z —y| :
y € A} where |- | is the Euclidean norm. To a nonempty set A C R"
and r > 0 we associate the closed r neighborhood of A defined by

B(A,r)=R"N{x : dist(z, A) < r}
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and we often write B(a,r) instead of B(A,r) in case A = {a} is a
singleton. We define open balls as U(a,r) = R"N{z : |z —a| < r}. The
closure, interior and boundary of A C R™ are denoted respectively by
Clos A, Int A and Bdry A.

Linear subspaces and orthogonal maps. In this subsection we are
given two integers 0 < m < n and two finite dimensional real Hilbert
spaces V and W, their inner products being denoted respectively by
(.,.)vand (.,.)w. A linear map L € Hom(V, W) is an orthogonal in-
gection if (L(vy1), L(va))w = (v1, v2)y whenever v1,vo € V; notice that L
need indeed be injective, and therefore dim(W) > dim(V'). The adjoint
of a linear map L € Hom(V, W) is the only linear map L* € Hom(W, V)
such that (v, L*(w))y = (L(v),w)w, v € V,w € W. We let O(n,m) be
the collection of orthogonal injections R™ — R™. Elements belonging
to O*(n,m) := Hom(R™",R™) N {p : p* € O(n,m)} are called orthog-
onal projections. Furthermore, we denote by G(n,m) the collection of
m dimensional linear subspaces of R". Given W € G(n,m) we let
iw € Hom(W,R") be the orthogonal injection such that iy (w) = w,
w € W, and we define Py € Hom(R",R") by Py := iw o ij,. Note
also that ijy, o iy = idyy.

We consider two norms on Hom(V,W). For L € Hom(V,W) we
let ||L|| := sup{|L(v)| : v € V and |v| = 1}. Next we define the inner
product Lj- Ly := trace LioLy, L1, Ly € Hom(V, W), as well as the cor-
responding norm ||L||2 := VL - L, L € Hom(V, W). One readily checks
that [|L||3 = > ,c;1L(e;)|* whenever {e; : i € I} is an orthonormal
base of V. It follows that ||L|| < ||L]|2 < vVdim V||L||. Next we endow
G(n,m) with the distance defined by dist(W1, Wa) = ||Pw, — Pws||5-
We recall that if W € G(n,m) then W+ € G(n,n — m) is defined by
Wt = R"n{v: (v,w) = 0 for every w € W}. The following is in-
tended for estimating the “angles” between tangent planes to a graph.

Lemma 2.1.1. Let W € G(n,m), L1, Ly € Hom(W, W) and let

W; € G(n,m) be such that Wj :=im (iw + iy o Lj), j =1,2. Then
(A) dist(Wr, Wa) < 2m|| Ly — Lal|;
(B) IIL1 — La|l < 2y/T+ [Exy/T T L2 2 dist(W1, Wa).

Proof. We define K := iy + iy o L;, j = 1,2. Fix e € Wy with
le|] = 1 and let wy,we € W be such that Py, (e) = Ki(w;) and e =
Py, (e) = Kao(ws). Notice that (e — Py, (e), K1(w2)) = 0. Therefore
(3) <PW1(e)a€>:1_<6_PW1(€)76>

=1—(Pw,(e) — Pw, (e), Ka(wz) — K1(w2)).
Moreover one checks that |wy| < 1 so that

(4)
[(Pws(€) — P (€), Ka(wa) — Ki(w2))| < [[Pwy — Pwslly |1 — L.




EPIPERIMETRIC MEASURES 83

On letting ey, ..., e, be an orthonormal base of R"™ such that ey, ..., ep
span Wa, we use (3) and (4) to infer that

n

1w, — P, I3 = 2m =2 (Pw,(e5), P (e)))
j=1
m

=2m =2 (Pw,(e;), e;)
j=1
< 2m || Pw, — Pwylly 121 — Laf|,
which proves conclusion (A).
Next we choose e € W with |e| =1 and ||L; — La|| = |L1(e) — La(e)|.
Let w € W be such that Py, (K2(e)) = K1(w). Observe that
le — wf? < |e = w|? + |La(e) — Ly (w)?
= |Ka(e) — Ki(w)[”
= | P, (Ka(e)) — Pav, (K2(e))|”
< [1Pw, — P, |15 1 K21
therefore,
1Ly = Lall = |Ki(e) — Ka(e)|
< |Ki(e) — Ki(w)| + [Ki(w) — Ka(e)|
< [[Killle = w| + | Py — Py [l | K2
< 2| Kqll [ K2l [[Pw, — Pwlly

and it remains to observe that ||K;| < +/1+ ||L;]|?, j =1,2. q.e.d.

C1® functions and submanifolds. Given two metric spaces X and
Y, a function f : X — Y, and 0 < o < 1, we denote by h,(f) the
smallest 0 < C' < oo such that disty (f(z1), f(z2)) < Cdistx (a1, z2)*
for every 1,29 € X. If h,(f) < oo we say that f is Holder continuous
with exponent . Given an open set U C R™, a differentiable function
f:U—R"and 0 < a < 1, we say that f is of class C1'® whenever its
derivative Df : U — Hom(R™,R") is Holder continuous of exponent
a. Therefore it follows from the mean value theorem that |f(z + h) —
f(z) = Df(2)(h)] < ho(Df)|h|1T whenever 2,z + h € U, in case U is
convex.

Definition 2.2.2. Given A C R"” and 0 < a < 1, we say that A is
an m dimensional C1% submanifold of R™ whenever it is a submanifold
of class 1 and

A — G(n,m):z — Tan(A4,z)

is locally Holder continuous with exponent a.
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The definition of submanifold of class 1 can be found in [10, 3.1.19],
whereas tangent spaces are defined in [10, 3.1.21]. The following lemma
is obtained by applying uniformly the inverse mapping theorem. To
state it we need to recall that the graph of a function u: WNB — W,
W € G(n,m), B C W, is defined by

graph(u) := R" N {iw (w) + iy (w(w)) : w e W} .

Lemma 2.2.3. Let A C R" and 0 < a < 1. The following conditions
are equivalent.
(A) A is an m dimensional C1* submanifold of R™.
(B) For every a € A there exist v > 0, 0 < C < oo and an open
neighborhood U C R™ of a with the following property. For each
r € ANU there are W, € G(n,m) and u, : W, N U(0,7) — Wt
such that

(B.1) uy is of class C4* and hy(Duy) < C;

(B.2) uz(0) =0 and Du(0) =0;

(B.3) ANU = (z + graph(u,))NU.

Proof. Assume (A) holds true and fix a € A. One infers from the
definition of submanifold of class 1 that there exist 0 < g9 < 1, W, €
G (n,m), an open neighborhood U, C R" of a, and u, : W,NU(0,&q) —
Wit of class 1 such that Lip(us) < oo and conclusions (B.2) and (B.3)
are verified for x = a. We define f, : W, N U(0,e9) — R" by f, :=
iw, +iws © Uq, and Wy = im Df,(Pw,(z)) for each z € AN U, N
Pv}i(U(PWa(a), €0)). One readily checks that W, = Tan(A, x). Lemma
2.1.1 (B) now implies that
() [[Dua(z1) = Dua(z2)]|

< 2 (1 + Lip(uq)?) dist (Tan(A4, fa(21)), Tan(A, fa(22)))
< 2(1 + Lip(ua)?) " ho (Tan(A4, .) | Uy) |21 — 22|%,

for 21, 20 € W,NU(0,20)N Py, (Us—a), so that u, is C1< in this domain.
For x € AﬂUﬂPﬁ/i (U(Pw,(a),e0)) we now define h,, : W,NU(0,e9) —
W by the formula h, := z}jvx o f, so that

(6)  Dhy(z) =iy, oiw, + iy, o iy o Dua(z), 2 € WeNU(0,eo).

It is easy to check that for every w € W, one has

N |w]

(7) | (i, 0w, ) (w)] =

V1+ [Dua(Biy, (2))[?

Therefore

) 1<]Dhe() ] = | Giv, o) | < VIF Ba(Duug)2e%

whenever |Py, (z)] < e, 0 < ¢ < gp. For such 0 < ¢ < g9, on set-
1
ting 6(¢) := (emax{l,ha(Dug)} 1)> < e it follows from the inverse
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mapping theorem (see [10, 3.1.1], second half of page 210) that
d(e)(1+¢)
"\/1+ hy(Du,)2e2

is well-defined and a homeomorphism onto its image. Next, if z €
W,NB(0,(e)) and w € W, then

ol W,NB (o ) — W, NB(0,6(c))

:  Dua(2)]))

~ ha(Dua)i(e)”)

(9 IDRo(2)(w)] = Jwl (1 + | Dua(Pr, (2))]2)

_1
2

> [w] (1 + ha(Dua)?*)
> plw

for some p > 0 provided 0 < € < ¢ is chosen small enough. Therefore
there exists r > 0, independent of x, such that h;! : W,NU(0,7) — W,
is a diffeomorphism of class 1 onto its image, and Lip(h, ') is bounded
above uniformly in z. Finally we define u, : W, NU(0,r) — W, by the
formula

% —1 %
= O (e) (e) [e)
Uy 3= Ty OT o fa o Tpy (x)0hy

It is obvious that u,;(0) = 0. Moreover,

Du(0) = iy 0 Dful P, () © (ify, o) ™ =0

because W, = im D f (P, (x)). On choosing a small enough neighbor-
hood of a, U C U, conclusion (B.3) is clearly verified. One checks that
uz, * € ANU, are uniformly Holder continuous with a formula analo-
gous to (5). This finishes the proof that (A) implies (B). The proof that
(B) implies (A) is similar, shorter, and left to the reader. q.e.d.

Jacobians. Given W € G(n,m), amap f: W — R" and z €¢ W
such that f is differentiable at z, we recall that the m jacobian of f
at z is defined by J,f(2) := \/det(Df(2)* o Df(z)). The following
well-known lemma is useful for estimating the measure of a graph.

Lemma 2.3.4. For each m = 1,2, ... there exists 0 < ca.34(m) < 00
with the following property. Whenever

(A)1<m<n, WeGnm),u:W—W;
(B) z € W, w is differentiable at z and || Du(z)|| < 1;
(C) f:W —=R" and f =iw + iy ou;

there exists o € R such that |o| < ca34(m) and

1
Imf(z) =1+ 5IIDU(2)H§ + || Du(z)|;-

“Here and in the remaining part of this paper 7,(v) = z + v.
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Proof. Set L := Du(z) € Hom(W, W) and notice that
Jmf(Z)Q = det ((ZW +iyr o L) o (iw +iyLo L))
= det(idw + L* o L).

On letting Ay, ..., Ay be the eigenvalues of L* o L, we readily check that
1+ A,...,14+ )\, are the eigenvalues of idy + L* o L, whence

m m

Inf(2)? =]JA+X)=1+> XN +R

i=1 i=1
where R is a sum of products involving at least two eigenvalues. Since
Aj>0,7=1,...,m, wesee that R > 0. Now Y " \; = trace L*o L =
| L||3; in particular R < ¢(m)||L||3 because \; < ||L||3,i=1,...,m, and
IIL||]2 < 1. The intermediate value theorem then shows that

Inf(2)* =1+ |13 + ool LII2

for some 0 < op < ¢(m). It now suffices to plug in the Taylor expansion
of order 2 of /1T +t with ¢ := ||L||2 + oo||L||3. q.e.d.

Radon measures. A Radon measure is a Borel regular measure ¢ on
R"™ such that ¢(C) < oo whenever C' C R" is compact, [10, 2.2.5].
According to Riesz’s representation theorem they correspond biunivo-
quely to nonnegative linear functionals on the space C.(R") of com-
pactly supported continuous real-valued functions on R", [10, 2.5.13].
The weak convergence of Radon measures ¢; — ¢ is then defined as the
weak convergence of the corresponding linear functionals (see also [15,
1.24] for testing weak convergence at the level of sets). Together with
the Banach-Alaoglu theorem [20, 3.15], Riesz’s representation theorem
implies de la Vallée Poussin’s compactness theorem [15, 1.23]. The
support of a Radon measure ¢ is the smallest closed set C' such that
dp(R™ ~ C) = 0. We will also use the following trivial result.

Lemma 2.4.5. Let ¢, ¢1, ¢2,... be Radon measures in an open set
U C R" and assume that ¢; — ¢ as j — oo. Then for every compact
K C U and every € > 0 there is an integer jo such that

spt(¢) N K C U N {z : dist(z,spt(¢;)) < e}
whenever j > jo.

Proof. Suppose instead that there is a compact set K C U, € > 0 and
a sequence k(1),k(2),... as well as wy(;) € spt(¢)NK such that for every
integer j one has dist(zy(;), spt(¢w(;j))) > €. Choose = € spt(¢)NK and a
subsequence I(1),1(2), ... of k(1),k(2), ... such that z;;) — = as j — oo.
When j is sufficiently large for |z;;) — 2| < €/2 we have B(x,¢/2) C
B(2y(5), €) so that U(z,e/2) Nspt(¢y(j)) = 0. Therefore ¢y;)(U(z,e/2)N
U) = 0, hence ¢(U(x,e/2) NU) = 0 as well, in contradiction with
x € spt(g). q.e.d.
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Reifenberg flatness. Given two nonempty bounded sets A1, Ay C R™
we define their Hausdorff distance as follows:

diSt'H(Al,AQ) = inf{r >0:A41C B(AQ,T‘) and AQ C B(Al,T)}.
We readily check that
disty (A1, Ag) = max{ sup dist(x1, As), sup dist(arg,Al)} )
T1€A1 T2€A2

The following lemma is proved for instance in [5].

Lemma 2.5.6. Let 0 < m < n be integers and Wi, Wy € G(n,m).
The following holds:

||PW1 - PW2|| = dlStH(Wl N B(Ov 1)) W2 N B(O7 1))
as well as
||PV[/1 — PW2” = max{dist(z, Wz) rzeWin B(O, 1)} .
We now turn to defining Reifenberg flat sets.

Definition 2.5.7. Let 0 < m < n be integers, S C R", x € 5,
r > 0 and € > 0. We say that S is (¢,m) flat at (z,r) if there exists
W € G(n,m) such that

dy (SNB(x,r), (z+W)NB(x,r)) <er.
Given € > 0 we also define
G(S,z,r¢e) = G(n,m)N{W : dy(SNB(z,r), (x+W)NB(x,r)) < er}.
The following two easy lemmas are proved for instance in [5].

Lemma 2.5.8 (Same center, different scales). Assume that
(A) SCR", 2€8,e>0,0<r<RandeR <r;
(B) Wy, € G(S,z,7,¢) and Wy g € G(S,z, R, €).
Then Wy g € G(S,z,7,2eRr~!) and

1P, , = Pw, qll < e(1+2Rr7").

Lemma 2.5.9 (Different centers, same scale). Assume that
(A) SCR", z1,20€ 85,e>0,v>1, R>0,0< A <1, |21 — 29| <
(1= A)ER;
B) 1-A+e+v 1<
(C) Wazi,R S G(S, z;, R, 8), 1=1,2.
Then
HPVle,R - PWzQ,RH < Gev.

The following is usually referred to as Reifenberg’s topological disk
theorem. Indeed E.R. Reifenberg proved it in [18]. Later C.B. Morrey
extended the result, replacing the ambient space R™ by a Riemannian
manifold, see [16]. For recent developments see [5].
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Theorem 2.5.10. Let n > 0 be an integer. There exist constants
0 < e2510(n) < oo and 0 < co5.10(n) < oo with the following property.
Assume that

(A) 0 <m < n is an integer, S C R™ is closed, xg € S, 19 > 0;

(C) 0 <e<ezs10(n);

(D) for every x € S N B(xg,2rg) and every 0 < r < 2rg, S is (g,m)
flat at (z,7);

(E) Wy € G(S, SL‘(],’I"(),E).

Then there exists a continuous map
T: (1‘0 + W()) N B(J}(), 7"0) — S
such that:

(F) |7(z) — z| < ca25.10(n)erg for every x € (xo + Wo) N B(xo,70);
(G) 7 is Hélder bicontinuous: for every x,y € (o + Wo) N B(xg,70)
one has

[1 —cas5.10(n)elly — x|1+02,5.10(n)5

<|7(y) — 7(z)|
< [1 4 ca510(n)elly — a| 251000,
(H) 7 is one-to-one;
(I) SNB(xzg,ro/2) CimrT.
3. Monotonicity and epiperimetry
3.1. Spherical excess.

Definition 3.1.1. Given an open set U C R", a Radon measure
¢ on U, x € U and R > 0 such that B(z, R) C U, and an integer
m € {0,...,n}, we define the lower spherical excess and upper spherical
excess of (¢, x, R,m) as follows:

exc! (¢, x, R)
— s { <¢<B<x,p2>> 6Bz, p)

a(m)py’ a(m)pt

> =0<P1§02§R}

and

exc” (¢, z, R)
:: Sup{ <¢(B(:E,P2)) B ¢(B(x,/)1)))+ (0<pr<p2< R} :

a(m)py' a(m)pf"
We also put
|lexc™||(¢, z, R) := max{exc]' (¢, x, R),exc” *(¢,x, R)}.
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Remark 3.1.2. It is clear that exc!"(¢, z, R) <oco and exc™ *(¢, =, R)
< oo whenever ©*" (¢, z) < co. The definitions are so that
¢(B(z, R)) _ ¢(B(z,7))

—exc' (¢, z, R) < a(m) " — o (m)rm < exc™*(¢p, x, R)

whenever 0 < r < R.

Lemma 3.1.3. Asume that
(A) U CR" is open, R>0,B(0,2R) CU,0<n<1;
(B) ¢ is a Radon measure in U;
then for every x € B(0,nR) and every 0 < r < R the following holds:
G(B(x.r)) _
a(m)rm —
Proof. It suffices to observe that
6(B(x,)) _ 6(B(z, R))
a(m)rm — a(m)R™
¢(B(0, R + |z])) jz[\"™ m
< 1+ — R
< (0"7(¢,0) + exc™ (4,0, R)) (1 + )" + exc('(¢, z, R).
q.e.d.

(0™ (¢,0) + exc™*(¢,0,2R)) (1 + )™ + exc' (¢, x, R).

+ exc!'(¢,x, R)

3.2. Nearly monotonic measures.

Definition 3.2.1. A gauge £ is a nondecreasing function of r > 0,
such that {(r) — 0 as r — 0.

Definition 3.2.2. Given an open set U C R", a Radon measure ¢ on
U, a gauge £ and an integer m € {0,...,n}, we say that ¢ is ({, m) nearly
monotonic in U if for every x € U and every 0 < r < dist(z, Bdry U)
one has

exc(¢,2,1) < £(r).
Furthermore, if ¢ is (£, m) nearly monotonic in U and ¢ vanishes iden-
tically we say that ¢ is m monotonic in U.

Lemma 3.2.3. Let U C R"™ be open, let £ be a gauge and let ¢ be
a (&, m) nearly monotonic measure on U. Then ©™(¢,x) exists and is
finite for every x € U, and the function U — R : z +— @™ (¢, x) is upper
$emicontinuous.

Proof. For B(x,r) CU we abbreviate ¢, (r):=a(m)~1r=m¢(B(z,7)).
By definition one has

_§<R) < (PI(R> - 9%(7')

whenever B(z, R) C U and 0 < r < R. Therefore,

—¢(R) < liminf (9o (R) — 0 (r)) = @z(R) — limsup ¢q(7)

10
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and, in turn,

0 < liminf ¢, (R) — limsup @, (7).
_Rlow() Twp@()

Next we let x,x1,x2,... € U be such that x; — x as j — 0o, and we let
r > 0 be such that B(z;,2r) C U, j = 1,2,..., and p — ¢(B(z,p)) is
continuous at r. The above implies that

O"(6,2;) < ¢, (1) +E(r)
<atrot oy —al) (14 22) e

for each j =1,2,.... Consequently,
limsup ©" (¢, ;) < a(r) +&(r)

J—o0

and the conclusion follows on letting r tend to 0. q.e.d.

Remark 3.2.4. We could have possibly allowed, in the above defi-
nition, for any real number m > 0. However since the density ©™ (¢, z)

exists at every x € U whenever ¢ is a nearly monotonic measure, mak-
ing the further assumption that ¢ (U N{z: 0 < O™ (¢, x) < o0}) # 0 —

as we will —forces m to be an integer in the range 0,...,n (a theorem
of J.M. Marstrand, see [14], [15, Theorem 14.10] or [12]). In the sequel
we will in fact assume for m to be within the range 1,...,n — 1: the

case m = 0 is irrelevant (every Radon measure ¢ in U is 0 monotonic
in U) and the case m = n and £ = 0 corresponds to ¢ = L™ L_u where
ueL®(L"LLU), u>0and Au >0 weakly, i.e., u is subharmonic (see
[8, Example 3.9, Proposition 5.7]).

Lemma 3.2.5. Let ¢; be a (&, m) nearly monotonic measure in an
open set U C R™, j=1,2,..., and let ¢ be a Radon measure in U and
€ a gauge. If ¢p; — ¢ as j — 00 and & — & (pointwise) as j — oo, then
¢ is (§,m) nearly monotonic in U.

Proof. For B(z,R) C U, 0 < p < po < Rand j = 1,2,..., the
following holds:

_fj(R) < a(m ,05” B a(m pm
Therefore,
— imsu 7@(]3(%"02)) — limin ¢:(Ul,p))
(10) §(R) < ljﬂoop a(m)py’ 1jﬂoof a(m)p™
< ¢(B($,p2)) o ¢(U($,ﬁ))
- a(m)py a(m)pm

Given 0 < p1 < p2 < R we pick a decreasing sequence p; < pr < p2, k =
1,2,...,such that p, — p1 when k — oo. Since B(z, p1) = N2, U(z, pi)
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it follows readily from (10) that

et < BE)  6(B(rp)

a(m)pg a(m)pp

The lemma is proved. q.e.d.

3.3. Concentrated measures.

Definition 3.3.1. Let U C R” be open, 0 < m < n and let ¢
be a Radon measure in U. We say that ¢ is m concentrated in U if
O (¢, x) > 1 for ¢ almost every = € U. We also define the m set of ¢
as follows:

setm(¢) =U N{x: ©7(p,x) > 1}.

Remark 3.3.2. Notice that set,,(¢) C spt(¢) but equality need not
hold (it does not for instance if n =2, m =1 and

o0
1 iy
¢ = H'LBdryB(a;,27)
=1
where a1, as, ... is a dense sequence in R? — the next lemma shows this
measure is not nearly monotonic).

Lemma 3.3.3. Let U C R" be open, 0 < m < n, let £ be a gauge
and let ¢ be a Radon measure in U. If ¢ is m concentrated and (§,m)
nearly monotonic in U then ©™ (¢, x) > 1 for every x € spt(¢).

Proof. Since ¢ is m concentrated we have ¢(spt(¢) ~ set,,(¢)) = 0,
therefore set,,(¢) is relatively dense in spt(¢). It then follows from the
(&, m) near monotonicity of ¢ and Lemma 3.2.3 that set,,(¢) = spt(¢).

q.e.d.

Lemma 3.3.4. Let ¢; be an m concentrated ({;, m) nearly monotonic
measure i an open set U C R", j = 1,2,..., and let ¢ be a Radon
measure in U and & a gauge. If p; — ¢ as j — oo and & — £ (pointwise)
as j — oo, then ¢ is m concentrated and (£, m) nearly monotonic in U.
Furthermore, for every compact K C U and every € > 0, there is an
integer jo such that

spt(¢) N K C U N {z : dist(z,spt(¢;)) < e}
as well as

spt(¢;) N K C UN{z : dist(z,spt(¢)) < e}
whenever j > jo. In particular, if xo € spt(¢;) for every j = 1,2,...
then g € spt(¢).

Proof. That ¢ is (£, m) nearly monotonic in U is the conclusion of
Lemma 3.2.5. We turn to proving that ¢ is m concentrated in U. Let
x € spt ¢. It suffices to show that ©™ (¢, z) > 1. Suppose instead that
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O™ (p,x) < 1 — 0 for some 0 < § < 1. We choose 19 > 0 so that
&(rp) < 6/3, and 0 < r < ¢ so that B(z,r) C U,

" O(B(z,1))

a(m)rm
as well as ¢(Bdry B(x,r)) = 0. Next we choose an integer jo such that
&i(r) < &(ro) < 0/3 whenever j > jo. Referring to (11) we also choose
an integer j; such that

<1-9§

¢;(B(z,7))
12 1-—
(12) a(m)rm < o
whenever j > j;. We select € > 0 sufficiently small for
r\" 0
1 1-96 1-=
(13) 1-9(;5) <1-3

and finally we refer to Lemma 2.4.5 (applied for instance with K =
{z}) to choose an integer j > max{Jjo, j1} such that x € B(spt(¢;),e).
Therefore there exists y € spt(¢;) with | —y| <e. Now we have

¢j(Bly,r —¢)) _ ¢;(B(z,r)) < r >m 5

am) o = ampm \r—z) 173

according to (12) and (13). Whence
¢j (B(y7 r—& )
0" (¢j,y) < ————-
(¢jay) - a(m)(r N 5)m
<1-6/34¢(r)
<1-2§/3,
in contradiction with Lemma 3.3.3.

In view of Lemma 2.4.5 it remains only to show that for every compact
K C U and € > 0 there exists an integer jo such that spt(¢;) N K C
UNn{z : dist(z,spt ¢;) < e} whenever j > jo. Suppose instead that there
is a compact set K C U, € > 0 and a sequence k(1),k(2),... as well as
Ty(j) € sPt(@r(;)) N K such that dist(zy;),spt¢) > e for every integer
j. Choose z € K and a subsequence [(1),1(2), ... of k(1),k(2),... such
that z;;) — = as j — oo. Let &’ > 0 be sufficiently small for ¢’ < ¢,
B(z,¢') C U and {(¢') < 1/2. If j is large enough for |z — x;(;)| < &'/4
then referring to Lemma 3.3.3 we obtain

G1(5) (B(,€'/2)) = du5) (B(ay(j), €'/4))
> a(m)(e'/4)™ (0™ (dugj), ()
— exc'(¢yj), i), €' /4))
> a(m)(e'/4)™ (1 — &) (€'/4))-
Letting j — oo in the above inequality yields

¢(B(z,€'/2)) = a(m)(e'/4)™ (1 = £('/4)) > 0

+excl'(¢j,y,r —¢)
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in contradiction with dist(z,spt¢) > > &'
Finally, if o € spt(¢;) for every j = 1,2,... we apply the inclusion
we just proved to K = {x¢} and we infer that xg € spt(¢). q.e.d.

Corollary 3.3.5. Let ¢; be an m concentrated ({;, m) nearly mono-
tonic measure in an open set U C R™, 1 =1,2,..., and let ¢ be a Radon
measure in U and & a gauge. Assume there exists a cone C' C R™ such
that sptp = CNU. If p; = ¢ as j — oo and & — & (pointwise) as
j — 00, then

disty (spt(¢) N B(0,7),spt(¢;) NB(0,r)) — 0 as j — oo
whenever r > 0 is such that B(0,r) C U.

Proof. Let 0 < € < r. According to Lemma 2.4.5 there is an integer

jo such that if j > jg then
spt(¢) NB(0,r) C U N {x : dist(z,spt(¢;)) < €}.
Fix j > jo and let « € spt(¢) N B(0,r). If |x| < r — e there exists
y € spt(¢;) such that |y — x| < e, whence y € spt(¢;) N B(0,r). If
|z| > r—¢ then referring to the coneness of spt(¢) we choose =’ € spt(¢)
such that |2’ — z| < e and |2'| = r —e. We find ¢/ € spt(¢;) N B(0,r)
such that |y — 2/| < e, so that |y — x| < 2e. Therefore
sup{dist(z,spt(¢;) N B(0,7)) : « € spt(¢) N B(0,7)} < 2e.
According to Lemma 3.3.4 there is an integer j; such that

spt(¢;) NB(0,r) C U N {y : dist(y, spt(¢)) < e}
whenever j > ji. Fix j > j; and let y € spt(¢;) N B(0, 7). There exists
x € spt(¢) such that |y —z| < e. Therefore |z| < r+¢. Referring to the
coneness of spt(¢) we find 2’ € spt(¢) N B(0,r) such that |2’ — z| < z.
It follows that |2’ — y| < 2¢ and, in turn,

sup{dist(y, spt(¢) NB(0,7)) : y € spt(¢;) N B(0,7)} < 2e.

Ifj> max{jo,jl} then

disty (spt(¢) N B(0,7),spt(¢;) N B(0, 7)) < 2¢
and the proof is complete. q.e.d.

3.4. Examples of concentrated nearly monotonic measures. We
start by proving a useful criterion for near monotonicity.

Lemma 3.4.1. Let Uy and U be bounded open sets such that Clos Uy
CU. Let € be a gauge and ¢ a Radon measure in U such that for every
x € U the function

B
(0, dist(z, Bdry U)) — R : 7 exp[{(r)]%
is increasing. Then there exists a constant 0 < c3.4.1(Up, U, ¢, &, m) < 00
such that ¢ is (c3.4.1&, m) nearly monotonic in Uy.
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Proof. For B(x,r) CU we abbreviate ¢, (r):=a(m)~1r—m¢(B(z,7)).
On letting r(Uy,U) := inf{dist(z,BdryU) : x € Up} > 0 we observe

that
¢U)
r(Uo, U)™
whenever z € Uy and B(x,r) C U. Next choose ca such that exp[t] <

1 + cot whenever 0 < ¢ < £(diamU). It remains to notice that for
B(z,R) C Up and 0 < p; < p2 < R one has

0z (r) < €1 := exp[¢(diam U)]a(m)

wz(p1) < expl§(p1)]pz(p1) < expl€(p2)]wz(p2)
< (14 c2é(R))¢a(p2)
< wz(p2) + caci§(R),

which proves the lemma. q.e.d.
The assumption of the preceding lemma leads to our next definition.

Definition 3.4.2. Given an open set U C R", a Radon measure ¢
on U, a gauge ¢ and an integer m € {0,...,n} we say that ¢ is ({,m)
almost monotonic in U if for every x € U the function

(0, dist(x, Bdry U)) — R : 7 — expl¢ (T)]%

is increasing.

We now turn to giving a family of examples of nearly monotonic
measures. Along with the concept of mass of an integral current, we
will need the notion of size of such a current, introduced by F.J. Almgren
in [3] (see also the work of H. Federer, [11]). In the remaining part of
this section we will use some specific notations borrowed from [10] (see
pp. 670-671 Ibid).

Definition 3.4.3. Let U C R" be open and T € 1,,(U). The size of
T is the defined as follows:

S(T) := H" (setm (I T1]))-

The almost minimal currents were introduced by E. Bombieri in [4],
after F.J. Almgren defined and proved the regularity of minimal sets in
his memoir [2].

Definition 3.4.4. Let U C R"™ be open, ¢ a gauge, 0 < § < oo and
T € 1,,(U). We say that T is (M, e, ) minimal (resp. (S,¢e,d) minimal)
whenever the following holds: for every compact set C C U and for
every X € I,,(U), if

(A) sptX C C;
(B) 0X =0;
(C) r:=diamsptX < J;
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then
M(ITLC)<(Q+e(r)MTLC+ X)
(resp. S(T'LC) < (14¢(r)STLC+ X) ).

The following proposition and its proof are more or less classical (see
e.g., [10, 5.4.3; 5.4.4]). As a particular case we notice that if T' € L,,(U)
is absolutely mass minimizing then ||T'|| is m monotonic (take e = 0 in
the proposition). This generalizes to stationary currents (see [10, 5.4.2])
and for that matter to stationary varifolds (see [1, 5.1(2)]).

Proposition 3.4.5. Assume that

(A) Uy U C R" are open, € is a gauge and 0 < § < 00;
(B) ¢ is a gauge and

E(r) = m/OT @dcl(p) < o0

for every 0 < r < g;
(C) T eIn(U) is (M,e,d) minimal (resp. (S,¢e,0) minimal);

(D) diam Uy < 6 and spt(9T) N Clos Uy = 0.

Then the measure ||T|| (resp. H™ Lset,,(||T])) is (§,m) almost mono-
tonic in Uy.

Proof. We let ¢ = ||T']| in case T' is (M, ¢, §) minimal, whereas in case
T is (S,€,d) minimal we put ¢ = H™ Lset,,(||T"||) . For each B(z,r) C
U we abbreviate f;(r) := ¢(B(z,r)). Next we let C' := Clos Uy, we fix
B(z,r) C Uy and we define

X =08, x (T u,r+) — TLB(z,7)

where u(y) = |y — x|, y € R™. We observe that sptX C C, 2r =
diamsptX < 4, and 90X = 0 (the latter follows from [10, 4.1.11; 4.2.1],
and the fact that spt(0T) N B(z,r) = ). Therefore

(14) M(TLB(z,r)) < (1+¢&(2r)M(6, x (T,u,r+))
(15) S(TLB(x,r)) < (14+e(2r))S(6, x (T,u,r+)),

according to whether 7" is (M, ¢,d) minimal or (S,e,d) minimal. It
follows from [10, 4.2.1; 4.1.11] that

(16) M6, x (T ,u,r+)) <
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in case T' is (M, ¢,d) minimal. In the other case we deduce from [10,
4.3.8, 3.2.22] that

A7) 8@ x (Tou,r+) < —S(Tu,r4))
fo(r+h) _fz("ﬂ)‘

ro.
< — limsup

m h—0t+ h
Plugging (16) into (14) (resp. (17) in (15)) yields
(18) falr) < (1+£(20) - fL(1)

whenever f, is differentiable at r. Since f, is increasing, so is logof,
and, according to (18), one has

o f V() = J2(r) o m 1
tororf ()= £ > (i)

T (1—<(2r))

v

for £1 almost every 0 < r < g. From this we infer that the function
7 — explé(r)]r~™ fu(r), 0 < r < $, is increasing. The conclusion follows
at once. q.e.d.

Remark 3.4.6. In case S C R" is an (M, ¢,d) minimal set in R"
with respect to some closed set B C R™ (in the sense of F.J. Almgren,
see [2]) and ¢ verifies the integrability condition (B) of Proposition 3.4.5,
the measure ¢ = H™ LS is (£, m) nearly monotonic as well. Proving this
is slightly more difficult than proving the above proposition because the
cut and paste procedure is no more available: comparison surfaces have
to be Lipschitzian deformations of the original surface. For a full proof
see [9] (notice J. Taylor [21, II.1] infers such a monotonicity formula
from [2] for balls centered on the set S).

3.5. Epiperimetric measures.

Definition 3.5.1. Given an open set U C R", a Radon measure ¢
on U, a gauge &, an integer m € {0,...,n}, an open set Uy C U and
a Borel set B C Uy, we say that ¢ is (§,m) epiperimetric in (B, Up)
whenever for every € B and every r > 0 such that B(z,r) C Up the
following holds:

exc" (¢, x,1) < E(1).

In the sequel we will require that a measure ¢ be epiperimetric in
(B, Up) only in case ¢ is m concentrated and B C set,, ¢.

Remark 3.5.2. The following comments are in order.

(A) The proof of the so-called epiperimetric inequality uses compar-
ison surfaces which are obtained by solving a Dirichlet problem
together with a priori estimates on the rate of decrease of the
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Dirichlet energy on balls. In case ¢ = 0 and § = oo this is essen-
tially the content of E.R. Reifenberg’s paper [19].

(B) The cases of epiperimetry alluded to so far are particular to the
following geometrical situation: one assumes that spt(7") is suffi-
ciently close (in Hausdorff distance and in density) to some “mul-
tiplicity one” m dimensional affine subspace. Epiperimetry is also
known for mass minimizing currents in case m = 2 and spt(7) is
sufficiently close to an integer multiplicity plane (see [22]), as well
as for (M, ¢, ) minimal sets when m = 2 and n = 3 (see [21]).

3.6. C* embedded submanifolds. In this subsection we show that
the Hausdorff measures carried by C1® submanifolds are locally nearly
monotonic and epiperimetric (on their support).

Proposition 3.6.1. Let 0 < o« < 1 and let S C R" be an m di-
mensional C* embedded submanifold of R™. For each a € S one has
O™ (H™LS,a) = 1 and there exists a neighborhood U C R™ of a such
that the following holds.

(A) The restriction of the measure H™ LS to U is (&2, m) epiperimet-
ric in (S,U) with &(r) = car?® for some cy > 0 depending only
upon m, S, a and U.

(B) The restriction of the measure H™ LS to U is (§1,m) nearly
monotonic with £1(r) = c1r® for some ¢ > 0, depending only
upon m, S, a and U.

Proof. Given a € S we choose U and 0 < C' < oo as in Lemma
2.2.3(B).

We first proceed to prove (A). Fix x € SN U and set W := Wy,
u = ug and f = 4w + iy o u where W, and u, are as in Lemma
2.2.3(B). Next fix > 0 such that B(z,r) C U. In order to keep the
notation short we will assume that x = 0. We claim that

(19) f(B(0,7y)) C SNB(0,r) C f(B(0,7))
where
(20) Ty = rm.

The second inclusion above is obvious. For proving the first one we let
z € WNB(0,r,) and we observe that

1F(2)]? = |2 + |u(2)?
< |z]* (1 + C?|2*)
< rf (1 + 02T2a)

<r
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Next we infer from Lemma 2.3.4 that for every z € WNB(0,r) one has:
(21) [Jmf(z) =1 < C"'r*®

where C' = 2C? + ¢9 3 4(m)C*. This, together with (19) and the area
theorem [10, 3.2.3(1)], yields on the one hand

(22) H™(SNB(0,r)) —a(m)r™ < /WmB(o : (Jmf(z) = 1) dH™(2)

< C'r*a(m)rm,
and on the other hand (recalling (20))
(23) H™ (SNB(0,r)) — a(m)r™

> Inf(z)dH™(z) — a(m)r™
WNB(0,r)

> (1= 7‘2a) a(m)r]” —a(m)r™
= a(m)r™ (1= C'r2) (1 C2r2) % — 1)

> —a(m)r™ (1 + %) max{C?, C'}r?.
Conclusion (A) as well as the fact that ©™(H"™ LS, z) = 1 now easily
follow from inequalities (22) and (23).

We turn to the proof of conclusion (B). We start by defining §(z¢) :=
inf{|xzg — x| : 2 € SNU} for each 9 € U. Since S is locally compact
the set C(xp) := SN Clos UN{x: |rg — x| = é(xo)} is nonempty. It is
easily seen that U := U N {xq : C(z0) NU # 0} is a neighborhood of a.
We will prove that conclusion (B) holds true when H™ LS is restricted
to that possibly smaller set U. We now fix some 2y € U ~ S, we set
9 := d(z9) > 0 and we choose = € C(zg) NU. We let W, u and f be
as before and, in order to keep the notation short, we will assume that
x =0 (s0 that J = |xg|). We readily check that zg € W=. Let 7 > § be
such that B(xzo,r) C U. We claim that

(24) £(B(0,7,)) C SN B(zg,7) C f(B(0,7%))
where
(25) T = \/maX{O,r2 —(5+ 07«1+a)2}

(26) rt = \/7“2 — (6 — Cri+a)?,
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In order to prove the first inclusion we let z € W N B(0,7,) and we
simply observe that (if ., > 0)

1£(2) = zol* = |£(2)]* + |wol* — 2(x0, £(2))
= |2 + [u(2)[* + 8% — 2(x0, u(2))
<72 + |u(2)]* + 6% + 26]u(2)]
<rl+ (5+Cr1+°‘)2
<r?

In order to prove the second inclusion we let y € SNB(zg, ), we choose
z € W with y = f(z) and we compute, as above,

1212 < 72 — |u(2) ] = |20l + 2(z0, u(z))
<1 — Ju(2)[* — 6% + 20]u(2)|
— 2 — (5 — |u(2)])?
<7t = (5-Crtte)”,

Next we claim that, on letting p := v/r2 — §2, the following holds:

(27) rit—p" > —Cuormr®
(28) <1
r
,,,*
30 — <1
(30) C <,

where 0 < Cy, C* < oo depend only upon m and C'. We start by proving
(27) in case r, = 0, that is when r* — (§ + C’r1+°‘)2 < 0. Expanding
the square and recalling that 6 < r < 1 we find that

p? =r? =82 <25Crte 4 C2p2(1+a)
< (2C 4 C?) r*te,

and it suffices to raise this inequality to the power % and to recall that
m > 2. In case r, > 0 the analogous computation yields

31 P2=p2 (4 Crite)t = 2 ¢

( ) * p )
where

(32) £ 1= 2501+ C22019) < (20 + O7) p2He

Furthermore, one easily checks that if b > a > 0 then

a™ —b"™ > e(m)b™ 2 (a? — b?),
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where ¢(m) = 2 if m is even, and c¢(m) = Tt + 277" if m is odd.
Applying this inequality to a = r, and b = p, and referring to (31) and

(32), we obtain

ri—p’)

m—2

Vv

—ec(m)r

> —c(m)(C? + 2C)r™+

which finishes the proof of (27). In order to prove (29) we recall from
(26) and the definition of p that

(33) (1) =% — (6 — Cr't*)?
=p’+e

where

(34) = 2501 — 02p2(1Ha) < (2C + C2yr2+e,

If ¢ < 0 then r* < p and (29) is obvious; therefore, we subsequently
assume that € > 0. It is an easy matter to check that if a > b > 0 then

a™ — b™ < ¢(m)a™ 2(a® — b?).

Applied to a = r* and b = p, this inequality together with (33) and (34)
yields the following:

< e(m)(2C + C%)rm e,

which proves (29). Inequalities (28) and (30) are obvious consequences
of (25) and (26). We now use (24), (21), (26), (29), (30) together with
the area theorem [10, 3.2.3(1)] and we find that

(35) H™(S N B(xg,7)) — a(m)p™
< H™ (f (B(0, ) — a(m)p
= / I f(2) dH™(2) — a(m)p™

WnB(0,r*)
< (14+C07)) alm) (7)™ = a(m)p™
(m) (7)™ = p™) + a(m)C’ (7)™ (r*)*
(m)r™ (C*r* + C'r**).

m

N ~—

81
81

IN
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On the other hand, using (24), (21), (25), (27), (28) and the area theo-
rem, we obtain

(36) H™(S N B(zg,7)) — a(m)p™
> H™ (f (B(0,74))) — a(m)p™

— [ hf@ () - atm
WNB(0,r+)

> (1 — C”Tfo‘) a(m)rl* — a(m)p™

= a(m)(r]" — p™) — C'a(m)r]'r2®

> —a(m)r’™ (C*ra + C’T2O‘) .
Define

&(r) :==max {C*+C',C, + C'} r™.

Now on letting ¢(r) := a(m) lr=™H™(S N B(xg,r)) and g(r) =

o (r? — 52)% whenever r > § and B(zg,7) C U we infer from (35)
and (36) that

> —§(R) = &(r)

whenever R > r > § and B(xg, R) C U. This is because g is in-
creasing, as can be checked easily (in fact g(r) can be thought of as
a(m) lr=mH™(W N B(zo,r)), and H™L W is an m monotonic mea-
sure). Consequently we obtain that exc.(H™ LS, zo, R) < 2{(R), from
which conclusion (B) follows at once. q.e.d.

4. First and second moments computations

In this section we are given the following data: an open set U C R"
such that 0 € U and a Radon measure ¢ on U such that ©™(¢,0) exists.

4.1. Definitions and normalization. For z € U and r > 0 such that
B(z,r) C U we define

V(1) = /B o, =y o),

which we develop into successive homogeneous polynomials of x:

4

V(g,z,1r) = Z Py(¢,x,r).

k=0
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It is a simple matter to check that

Polo 1) = / (2 — yP?)? délw)

B(0,r)

Pi(¢,2,7) = 4 <:c /B o ) d¢><y>>
Py(2.7) = 4 / ()% d(y) — 22 / (2 — [yP?) do(y)

B(0,r) B(0,r)

Py(d,2,7) = —Afaf? / () db(y)

B(0,r)
Py(¢,x,7) = [z|'¢(B(0, 7).

We single out two quantities because of their geometric significance:

b(g.r) = /B y(r? — [y[?) do(y),

)

Q6.1 (x) == / ()% de(y).

B(0,r)

If “normalized properly”, b(¢, ) may be thought of as a weighted center
of mass of ¢ in B(0,r), whereas Q(¢,r)(x) should be thought of (as a
function of x) being close to |Py (x)|? for some W € G(n,m) approxi-
mating spt(¢) in B(0,r), provided of course that we make assumptions
assuring that spt(¢) is sufficiently close to flat in B(0,7). One trou-
ble is that b(¢,r) and Q(¢,r) do not normalize simultaneously to being
“dimensionless”. We choose to normalize V and each polynomial Py,
k =0,...,4, dividing them by arP where a and p are as follows: p is
chosen in order that the normalized version of P» be “dimensionless”,
and a is chosen so that the normalized version of () has trace close to
m.

In order to describe the normalization we introduce the following
constants

w(m, q) := / (1= 1yP*)* dc™(y), ¢=0,1,2,...
R™NB(0,1)
For instance w(m,0) = a(m) and w(m,1) = 2(m + 2)"'a(m). The
significance of these constants is indicated in the following lemma.

Lemma 4.1.1. Let x € U and r > 0 be such that B(x,r) C U. Let
also @ > 0 and € > 0 be such that

o 1=
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for every 0 < p <r. Then for each ¢ =0,1,2,... one has

< ew(m, q)r2atm,

/ (r — o — yI?)? dé(y) — u(m, Q)2+
B(z,r)

Proof. 1t suffices to observe that
[l u) dotw)
B(z,r)
:/ o <B (x, r2 — %)) dch(t)
0
S(«9+5)/rﬁm<B<0, A )dﬁl
0

—@+2) [ (- lP) dem
B(0,r)
= (0+ e)w(m, g)r+.
The other inequality is proved exactly the same way. q.e.d.
Finally we define
w(m,0) —w(m,1)  «a(m)

v(m) = m T m+t2

for a reason that will be transparent in the next lemma. We are now
able to define the normalized versions of the various integrals intro-
duced so far. We adopt the convention that boldface indicates that
the corresponding quantity is normalized, i.e., divided by v (m)r™*2:

V(o,z,7) = v(m) ™2V (¢, z,7)

Pi(¢,z,7) = v(m) ' ™ 2Py(o,z,7), k=0,...,4
b(¢,r) == v(m) " lr ™ 2b(p, 1)
Q(¢,7) = v(m) " 2Q(, 7).

Lemma 4.1.2. Let r > 0 be such that B(0,r7) C U, and € > 0 be
such that

¢(B(,p))  om
o -0 <
for every 0 < p <r. Then
|traceQ(¢, T) - m@m(qs’ 0)| < e(m + 4)

Proof. If eq,..., e, is an orthonormal basis of R™ then

trace Q(¢,r) ZQ (p,7) /( Iyl do(y).

)
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Therefore, on letting 0 := 0" (¢,0), we have

‘Gml/(m)rm+2 — trace Q(¢, 7')‘

Brms (m)r™ 2 / I dé(y)
B(0,r)

<

o (im, 1)+ / (2 — |y?) dé(y)

B(0,r)
+ ‘64«;(77@,0)7“’”+2 — 7‘2¢(B(O,T))}
< ew(m, 1)r™ 2 4 ew(m, 0)r™?
according to Lemma 4.1.1. The proof is completed on dividing both
sides by v(m)r™m+2. q.e.d.

4.2. Two estimates. In order to deduce some relevant geometric in-
formation from the moments, we will need two basic estimates. These
involve comparing V (¢, z,r) and V (¢, z,r) to the following:

~ 2

V(o) = [ ) doy),
V(gz,1) i= v(m) 2V (6,2, 7).

Lemma 4.2.1. There exists a constant 0 < c42.1(m) < oo with the

following property. Whenever
(A) U C R" is open, ¢ is a Radon measure in U, 0 € U and ©™(¢,0)

exists;
(B) z €U, r>0,B(0,2r) CU and 2|x| < r;
one has:

‘V(gb,x,r) - V(gf),x,r)‘ < caor (m)v(m)r™ (r|m]3 (rme(B(0, 7))
+ r2|z|2exc™* (9,0, 2r) )

Proof. We first claim that if x € R™, r > 0 and 2|z| < r then
(a) (B(z,r) ~B(0,7))U(B(0,7) ~ B(z,r)) C B(z,r+|z|) ~ B(z,r—
I);
(b) lf |g)/ € (B(z,r) ~ B(0,7)) U (B(0,7) ~ B(z,r)) then one has
|r? = |z — yl*| < 3rfal;
(c) B(0,r —2|z|) C B(x,r — |z]);
(d) B(z,r + |z|) C B(0,r + 2|z]).
These are rather obvious statements and we leave the proof of (a), (c)
and (d) to the reader. For proving (b), in view of (a) we have that

O<r—lz[<|z—yl<r+]z]

whence
r? = 2r|z| + |2 < |z —y|* <r* 4 2r|z] + |2
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and in turn
—la* = 2r|z| < r? — |z —y|* < 2rlz| — |z

Since |z| < 7, one has |z|?> < r|z| and (b) follows immediately.
Using these four properties we now see that

(7 |V(gz.r) = V(g,x,r)]
< 9r2a26[ (B(0, ) ~ B(x,7)) U (B(x,7) ~ B(0,7))
< 92 (6(B(a,r + |o)) = 6(B(a,r  |«])) )
< 922 (6(B(0, r + 2Jz)) — 6(B(O, r — 2Jz1))).
Since 7+ 2[z| < 2r we have that

¢(B(O, 7 +2[z[)) _ 6(B(O,7))
a(m)(r +2lz))™ — a(m)rm

+ exc™* (¢,0,2r)

so that

H(B(0, 4 2la])) < (1 n 2—>m¢><B<o,r>>

as well as

whence

oBO.r - 20e) > (1- 27
—a(m)(r —2|z|)"exc™* (¢,0,r).
From this we deduce that
(38) (B0, + 2[z])) — ¢(B(0,r — 2[z]))

e (o2 (o= 21

+ (14+2"™)a(m)r™exc™* (¢,0,2r)
< o(B(0,r)m2" 2
+ (1 +2™)a(m)r"exc™ ™ (¢,0,2r)

because on letting f(t) := (1 +¢)"™ — (1 —¢)™, 0 < t < 1, it is easily
checked that f(t) < m2™t. Plugging (38) into (37) proves the lemma.
q.e.d.
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Definition 4.2.2. Given x1,z9 € U and r > 0 such that B(z,7) U
B(z2,7) C U, as well as an integer m € {0, ...,n}, we define the devia-
tion relative to (¢, x1,x2,7,m) as follows:

#(B(w1,7)) — ¢(B(4U2,7"))‘

dev™ (¢, x1,z0,7) 1= o

Lemma 4.2.3. There exists a constant 0 < cq.2.3(m) < oo with the
following property. Whenever

(A) U C R" is open and ¢ is a Radon measure in U;
(B) 0, €U, r>0, B(0,r)UB(x,r) CU;

one has
V(9,2,7) = V(6,0,7) < cras(mpw(m)r™(dev™(g,2,0,7)
+excl'(,x,7) + exc™*(9,0,1)),
as well as
V(6y,7) = V(6,0,1)] < cana(m)pm)r™+(|dev™ (6,2,0,7)
+ llexc™ | (¢, ,7) + lexc™ | (,0,1)).

Proof. We observe that

V(dya,r) = /B ) oty

-/ ¢><B <x r2—ﬂ>> aci(
- /0 o(B(z, p))dp(r* — p*) dL (p);

similarly,

V(6.0.0) = [ GBO.0MAG? - )L o),
so that
(39)
V(g,2,r)=V($,0,7) = /Or (6(B(z, p)) = 3(B(0, p)))dp(r? — p*) L (p).
For 0 < p < r we have on the one hand

¢(B(z,p)) _ ¢B(z,1))

am)p™ — a(m)rm

+ excy' (¢, x, 1)
so that

(40) »(B(x,p)) < pmw

D alm)pmexel (6,1, 7),
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and on the other hand
4(B(0,p) _ (B(0,7)

a(m)pm < - a(m)rm + exc™*(9,0,1),
hence
@) —om.0) < " BOD 4 o uyrexer(6,0.0)

One also checks that
(42) / 4pm+1(r2 _ p2) dﬁl(p) = 8(m + 2)71(m i 4)71,’”m+4.
0

Plugging (40) and (41) into (39), and using (42) yields the first required
estimate. In order to prove the second conclusion it suffices to apply
the first one with 0 and x swapped. q.e.d.

4.3. Controlling the length of the first moment. In this subsec-
tion we obtain some estimates about |b(¢,r)|. The first one is a trivial
bound O(r) due to the normalization we have chosen.

Lemma 4.3.1. Let U C R™ be open, 0 € U, and let ¢ be a Radon
measure on U so that ©™(¢,0) exists. For each v > 0 such that
B(0,7) C U one has

[b(¢,7)| < 2r (0™(¢,0) + [lexc™|[(¢,0,7)).

Proof. 1t suffices to apply Lemma 4.1.1:

1b(6,7)] < / o 67 =) d0)

)

<7 (0™(6,0) + [lexc™||(¢,0, 7)) w(m, 1)r™+2,

and divide by v(m)r™+2. q.e.d.

We will also need to control the deviation in the following way.

Lemma 4.3.2. Assume that

(A) U C R" is open, 0 € U and ¢ is a Radon measure on U so that
O™ (¢,0) exists;

(B) 0<r <R and B(0,2R) C U;

(C) € is a gauge, e(R) <1, z € U and |z| = ¢(R)R.

Then,

a(m)”'dev™(¢,,0,r) < m2™ 'e(R)(©™(¢,0) + |lexc™||(¢,0,2R))
+exc™*(¢,0,2R) + exc' (¢, x, R) .



108 T. DE PAUW

Proof. 1t suffices to compute:
a(m) tdev™(¢p,x,0,7)
_ oB(z,r))  #(B(0,r))

a(m)rm a(m)rm
SBER) | i 6(B0)
S ammn Texe (@ B) ==

< (BA[z)™ o(BO, R+ [z])) 6B, 7))

- R™  a(m)(R+ |z|)™ a(m)rm
+ exc!'(¢,z, R)

¢(B(0, R + |z]))
a(m)(R + [z[)™

SBO.R+ ) 4BOY)
am) R+ agmym X (@@ B)

<m2™ 1e(R)(0™(¢,0) + [lexc™||(¢, 0, R + |z]))
+exc™ (9,0, R + |z]) + excl (¢, z, R).

< ((1+eR)™-1)

q.e.d.

We are now able to improve on Lemma 4.3.1.

Proposition 4.3.3. There ezists a constant 0 < c4.3.3(m) < oo with
the following property. Whenever

(A) U C R"™ is open, 0 € U, ¢ is a Radon measure on U so that
0™(¢,0) =1, and & is a continuous gauge;
(B) ¢ is (&, m) nearly monotonic in U and is (§, m) epiperimetric in

({0}, 0);
(C) 0<r<1,&02r) <1, B(0,2y7) CU;

the following holds:
[b(¢,7)| < ca3.3(m)r max{{‘/?, 5(2%)} .

Proof. We start by choosing 0 < v(m) < % and n(m) such that
(43)  n(m) := dy(m) —v(m)* (2eq.2.1(m) + 8+ 8(m +2)) > 0.
We define a gauge € by the formula e(p) := max{p,&(p)}, p > 0. Now

either |[y(m)b(o,7)| < ry/e(y/r) or |y(m)b(p,r)| > r/e(y/r): we will
subsequently derive an estimate for |b(¢, )| in the latter case. We first
observe that

(44) re(r) <re(vr) < ryfe(vr) < |y(m)b(e, 7).
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Since |b(¢,r)| < 4r (according to Lemma 4.3.1), |[y(m)b(¢,r)| < § <r
as well, and we see that

(45) [y (m)b(e, )] < v < Vre(vr).
According to (44) and (45), the intermediate value theorem applied to
the function

[r,v/r] = R: p— pe(p)
ensures that there exists some R > 0 with

r<R<Vr
and
Re(R) = |y(m)b(o,r)].
Let z := v(m)b(¢,r). Since Py(¢,z,7) = V(4,0,7) = V(4,0,7) we
deduce from Lemma 4.2.1, Lemma 4.2.3, and Lemma 4.3.2 together
with (45) that

Py(¢,z,7) + Po(d, z,7) + Ps(p, 2, 7) + Ps(, z,7)
= V(é,2,7) — Polo,z,7)

< |V, z,r) - V(o 7")‘ +V(¢,2,7) — V(,0,r)
< cgq.9.1(m)v(m)r™(2r|z)® + r?|z|?)

+ C4'2'3(m)1/(m)rm+4 <2a(m)m2m*1€(R)

+ (au(m) + 1) (exc™ (¢, 0,2R) + exc™ (¢, x, R))).

Dividing by v(m)r™*? and recalling the definition of ¢, hypothesis (B)
and relation (44), we obtain

(46)
Pi(¢,z,7) + Pa(o,z,7) + P3(p,x, 1) + Py(, x,7)
< fof e m) (27 +1)
+cq.9.3(m)3 c(m)r? (<(R) + exc™*(6,0,2R) + excl’ (¢,z, R)

< |2*2¢4.9.1(m) + eq 2 3(m)e(m)re(2R),
where
c(m) := 3max {a(m)m2™, a(m) + 1} .
We further observe that (according to Lemma 4.1.1)
Pa(6,2,1) = ~2Aalu(m) 2 [ (2 ) dotw)
B(0,r)
2 _8’$‘27
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as well as

Pa(6,,r)| < dlaf2(m) 2 / 2] [y] dé(y)

0,r
< 8(m + 2)Jzf?
and
P4(¢a xz, T) Z 07
which together with (46) yields
(47)

Pi(¢,x,7) < |z]* (2¢4.91(m) + 8+ 8(m + 2))+cy 9 3(m)c(m)r’e(2R).
Finally recall that x = v(m)b(¢,r) so that

Py (¢,z,7) = dy(m)[b(¢,7) [,

[2|? = y(m)?[b(, 7).
Therefore, by (43), (47) becomes
n(m)[b(¢,r)|* < eq.9 3(m)e(m)r?e(2R),

and in turn:
(48) b(6, )| < y/n(m)leq 2 g3(m)e(m) ry/e(2v7).

We recall that according to the initial dichotomy either (48) holds true
or

(49) (¢, )] < y(m)~'ryfe(V7).

This readily proves the proposition. q.e.d.

4.4. Controlling the large eigenvalues of the second moment.

Proposition 4.4.1. There ezists a constant 0 < cq.4.1(m) < oo with
the following property. Whenever

(A) U Cc R" is open, 0 € U, ¢ is a Radon measure in U and & is a

continuous gauge;
(B) 0<r<1,B(0,2yr)CcU,£2yr)<1,z€U and

o =rmax{%, : 5(2\/?)};

(C) ¢ is (§,m) nearly monotonic in U and (§,m) epiperimetric in
({0,z},U);
(D) ©™(¢,0) = O™ (¢, x) = 1;
the following holds true:

1Q(,7)(z) — 2| < 04.4,1(m)\xl2max{{3/77, VS (2\/77)} ,
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Proof. We first notice, as in the proof of Proposition 4.3.3, that Lem-
mas 4.2.1 and 4.2.3 imply the following;:

(50) ’Pl(qb, x,r) + Py(o,x,7) + P3(¢, z,7) + Pa(0, x, r)|
< cg o 1 (mp(m)r™ (2r|zf® + r?|z[*exc™*(¢,0,2r))
+ C4‘2.3(m)v(m)rm+4(|devm(qb,x, 0,7)| + |lexc™||(¢,0,r)
+ |lexc™||(¢, z,7)).

Next we estimate |dev" (¢, z,0,7)|:

(51) ‘a(m)_ldevm(gb,x,o,r)‘ = ’¢o(z](372(;;2) - (b(i](?’n(j;’ri’?)’

< llexc™||(¢,0,7) + |lexc™||(¢, z, )
< 24(r).

+

In order to simplify the writings we introduce the following notation:
otr) = max { 97, /e (207) }.

Dividing (50) by v(m)r™*2 and using (51) and hypothesis (B), we ob-
tain the following:

(52) ‘Pl(d):xv 7") =+ P2(¢,£U,7") + Pg((b,.%', 7") + P4(¢7$7T)‘

< canq(mal? < (14 &0r) + £<2r>)

+ 04.2'3(771)7‘2 (|dev™ (¢, x,0,7)| + 2&(r))
< cg.9.1(m)z* (n(r)(1+£(r) +£(2r))
+cy.9.3(m)|z|*4n(r)2¢(r).

]
r

According to Proposition 4.3.3 we also also have that
(53) |P1(¢,l‘,’l“)| :4|<$,b(¢, 7ﬁ)>|
< ey g glmlelrmax { 7[5 (2v0) |

= dcy 3 3(m)|zn(r).
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Furthermore,

(54)  [P3(¢ar)] < 4|x2V(m)_17“_m_2/B(0

) || |yl de(y)
< 4|z[Pw(m) =" 2 (r)ré(B(0, 7))
< 4(m +2)|z[*n(r) (1 + &(r)),
as well as
(55) Pu(¢,z,7)| = |2 *w(m) " r ™™ 26(B(0, 1))
< |zfPn(r)*r2v(m) "l 2g(B(0, 7))
< (m+ 2)[a*n(r)?(1 + £(r)).
Plugging (53), (54), and (55) into (52), and observing that n(r)2¢(r) <
€(r), we find that
(56) Po(6,2,7)| < eq.1(m)lel” (n(r)(1+£(r) +£(2r))
+4dcy9.3(m)la|*VE(r)
+4cy 3 3(m)|a|*n(r)
+5(m + 2)|z[*n(r)* (1 + &(r))
< c(m)lz|*n(r),

for some c¢(m) > 0 depending only upon m. Finally, recalling the defi-
nition of Py(¢,z,r) and referring to Lemma 4.1.1, it is an easy matter
to check that

(67)  4]Q(¢,)(@) = [2*] < 4llexcl|(¢,0,7)|z]* + [Pa(g, z,7)|.
Plugging (56) into (57) yields the expected estimate. q.e.d.

4.5. Closeness to flat.

Definition 4.5.1. Let U C R" be open, let ¢ be a Radon measure in
U, ACU, R>0 and let m be a nonnegative integer. We say that ¢ is
(m, A, R) uniform if there exists C' > 0 such that for every z € ANspt ¢
and every 0 < r < R with B(z,7) C U one has ¢(B(z,r)) = Cr"™. In
case U = R™ and ¢ is (m, A, R) uniform for every A C R" and every
R > 0 we simply say that ¢ is m uniform.

The following are two easy lemmas.

Lemma 4.5.2. Assume that:

(A) ¢ is an m uniform measure in R";
(B) 0 < g <m is an integer, W € G(n,q), and spt¢$ C W.
Then ¢ = 0.
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Proof. Let U C R"™ be open and bounded, and € > 0. Referring to
Besicovitch’s covering theorem [10, 2.8.15], find a disjointed family of
closed balls B(z;,r;) contained in U, such that z; € spt¢ and r; < e,
7=1,2,..., as well as

¢ (UNsptg ~ U;-";lB(xj,rj)) =0.

Notice that

$(UNspte) = Cri* < Calq)'e™ THIW N D).
j=1

The conclusion follows from the arbitrariness of € > 0 and U. q.e.d.

Lemma 4.5.3. Assume that:

(A) U C R" is open, ¢ is a nonzero Radon measure in U;
(B) ACU is open, R >0 and ¢ is (m, A, R) uniform;
(C) W e G(n,m) and ANsptop C W.

Then there exists C > 0 such that L A=CH™ LW N A.

Proof. In order to keep the notations short we put ¢ = H™ L W N A.
We first observe that Besicovitch’s covering theorem [10, 2.8.14] implies
that ¢ < 1L spt ¢. Indeed let C' C WNANspt ¢ be a compact such that
Y(C) =0, let € > 0, and select a bounded open set V' C U containing

C such that ¢(V) < e. Find disjointed families of balls, By, ..., Br(),

such that C' C Ui;(q) UB;,,UB, cV,i=1,...,I'(n), and each B € B; is

centered in C. Then

I'(n) T'(n)
HO <Y Y oB) =3 Calm™ Y 6(B) < Tn)Ca(m) .
i—1 BeB; i=1 BeB;

The absolute continuity follows from the arbitrariness of € > 0.

Next we will show that W N ANspt¢ = W N A. Suppose instead
that V. =W N A ~ spt ¢ # () and pick x € Bdry V (relative to W N A).
Choose 0 < r < R such that B(z,r) C A and ¢(B(z,r)) = ¢(U(x,1)).
Again referring to Besicovitch’s covering theorem (see e.g., [15, Theorem
2.8]), find a finite or countable disjointed family of closed balls B(x;,7;),
j=1,2,..., contained in U(z,r) and centered in spt ¢, such that

(v Lspt o) (U(z,r) ~ U;‘ilB(:L"j,rj)) =0.
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This implies that

Y(spt ¢ N U(z,r)) =Y v(B(j,1)))

= ¢(U(z,7)).

The last equality follows from the fact that z € A Nspt ¢ and the next
to last from that ¢ < ¥l spt¢. The above relation yields in turn
(VN U(x,r)) = 0. Since VN U(z,r) is open relative to W, and
contained in A, this clearly implies that V NU(z,r) = 0, contradicting
the fact that x € Bdry V.

We now know that W N ANsptyo = W N A and that ¢ < ¢. The
conclusion becomes an easy consequence of the differentiation theory of
Radon measures, [10, 2.9]. q.e.d.

The following is due to D. Preiss; see the argument starting near the
second third of page 541 in [17].

Theorem 4.5.4. Let ¢ be an m uniform and m monotonic Radon
measure in R™ such that 0 € spt¢. Then there exists W € G(n,m)
such that

¢ =a(m) " p(B(0,1))H™ LW.

Proof. We observe that for each z € R™ and r > 0 such that 2|z| < r
one has

69 [Pa(ova )] < tfePutm) 2 [ pallyldaty)
B(0,r)
< 4lePrlu(m)  6(B(0, 1))

as well as

(59) 0 < Py(p,z,7) < |z|'w(m)~'r " 2¢(B(0,r))
< JzPr~'v(m)~'¢(B(0, 1)).

We observe next that for each x € R™ and r > 0,

V(g x,r) —V(p,0,1) <0,
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with equality if € spt ¢. This follows from writing V(qﬁ, x,r) in terms
of ¢(B(z,p)) (as in the proof of Lemma 4.2.3) and the following com-
putation:
¢B(z,p)) _ 6B, p + |2])
p N p

P(B(0,r + |z]))

rm
(1. 21)" 2B+

r (r+ [z))™

o(B(0, p
— oB(0.1)) = 2200
Therefore, referring to Lemma 4.2.1 we see that for every x € R™ and
r > 0 such that 2|z| < r one has

(60)  Pi(¢p,z,7) + Po(pp,z,7) + P3(d,x,7) + Pa(p, x,7)
=V(p,z,r) — Py, z,7)
< ’V(QZS, z, T’) - V(¢7 xz, 7”‘) + ‘7(¢7 z, 7") - V(¢7 07 7’)
< cq.9.1(m)v(m)r™zP¢(B(0,1)).

< limsup
r—00

= lim sup
T—00

If moreover x € spt ¢ then
(61) |PL(¢, @,7) + Po(¢,z,7) + P3(¢,z, 1) + Py, z,7)|
< eq .1 (m)w(m)r™ o (B(0, 1)),

Dividing (60) and (61) by v(m)r™*2 and plugging (58) and (59) into
the resulting inequalities yields
(62) (z,b(o,7)) + Q(p,7)(z) — |z|* < c(¢, m)@ whenever z € R",
and
(63)

|<:U,b(¢,r)> + Q(o,r)(z) — \m|2’ < c(qﬁ,m)@ whenever x € spt ¢,

provided that r > 2|z|, where c(¢,m) = ¢(B(0,1))(cqg 0 1(m) +
5v(m)~1). According to Lemma 4.1.2 we also have that

0 < Q(¢,7)(z) < |z|*trace Q(¢,7) = m|z|?, z € R™

Therefore there exists a sequence r; — oo as j — oo and a quadratic

polynomial Q(¢) on R™ such that Q(¢,7;)(z) — Q(¢)(z) as j — oo,
x € R™. Clearly Q(¢) > 0 and trace Q(¢) < m. It now follows from
(63) that

(2, b(),75)) + Q(¢)() — [[*] — 0 as j — oo
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whenever z € spt ¢. Since clearly b(¢,r;) € spanspt¢, j =1,2,..., we
infer that there exists b(¢) € spt ¢ such that b(¢,r;) — b(¢) as j — oo.
Next we infer from (62) that

(2,b(¢)) < [z]* - Q(¢)(2) < |2]*, z € R".

Applying this inequality with z = %b(qﬁ) we obtain b(¢) = 0. Inequali-
ties (62) and (63) now read as follows:

(64) Q(¢)(x) < [2*, z € R"

and

(65) Q(¢)(x) = |z[*, = € spt ¢.

Let e1,..., e, be an orthonormal family of eigenvectors of Q(¢) and let

Aly ..., Ay be their corresponding eigenvalues. Recall that 0 < )\; < 1,
i=1,...,n,and define W = span{e; : \; = 1}. Then clearly Q(¢)(x) <
|z|2 whenever 2 € R™ ~ W, whence (65) implies that spt ¢ C W. Now
either ¢ = 0 and the theorem is obviously verified, or else ¢ £ 0 and then
Lemma 4.5.2 implies that dim W > m. The equation trace Q(¢) = m
yields in turn dim W = m and the proof is completed upon reference to
Lemma 4.5.3. q.e.d.

The following two lemmas are taken from [8].

Lemma 4.5.5. For every € > 0 there exists 0 < d455(n,m,e) < 00
such that whenever
(A) U C R" is open, ¢ is a Radon measure in U, 0 € spto, r > 0,
B(0,7) C U, ¢ is a gauge;
(B) ¢ is m concentrated and (&, m) nearly monotonic in U;
(C) ¢(B(0,7)) < (1+6455(n,m,e))a(m)r™;
(D) &(r) < d455(n,m,e);

there exists W € G(n, m) with
dy (spt o N B(0,d84.55(n,m,e)r), W NB(0,d455(n,m,e)r))
< eds55(n,m,e)r.

Proof. Assume if possible that there exists € > 0 and for every j =
1,2,... an open set U; C R", a Radon measure ¢; in U; such that
0 € spt(¢;), a gauge & and r; > 0 with the following properties: ¢;
is m concentrated and (&, m) nearly monotonic in Uj, ¢;(B(0,7;)) <
(L+ 5 Da(m)r, &(r;) <71, yet

disty (spt(é;) VB0, 57 ry), W N B(0,57"ry)) > &5~
for each W € G(n,m).
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We define 9; = jmT‘;mﬂjT_—l#qu T as well as G(r)y=¢&(rjtry), j =
J

1,2,.... We check that: t; is an m concentrated (¢;, m) nearly mono-

tonic measure in U(0, j), 0 € spt(v;), ¥;(U(0,5)) < (1 + j~Ha(m);™

and (;(4) <jY, j=1,2,..., yet

(66) disty (spt(y;) N B(0,1), WNB(0,1)) > ¢

whenever W € G(n,m). We notice that if j > k then
¥ (U0, k) _ ;(U(0,7))

+ exc (15,0, 7)

a(mkn = a(m)jm
so that
(67) $;(U(0,k)) < (142§~ ea(m)k™.
Set ko(j) = 7, j = 1,2,.... Referring to (67) and de la Vallée

Poussin’s compactness theorem we define inductively for [ > 1 a sub-
sequence k;(1), k;(2),. .. of kj_1(1), k—1(2), ... and a Radon measure 9!
in U(0,1) such that ¢y, ;) — P! as j — oo. Observe that ylt = o)l
on U(0,1;) whenever l; < Iy so that, according to Riesz’s representa-
tion theorem, there exists a Radon measure ¢ in R” with ¢ = ¢! on
U(0,1) for each [ =1,2,.... Since (;(r) — 0 as j — oo for every r > 0
we infer from Lemma 3.3.4 that 1 is m concentrated and m mono-
tonic in R™, and that 0 € spt(¢)). Notice that (67) also implies that
P(U(0,k)) = a(m)k™ for every k = 1,2,.... This shows that ¢ is m
uniform: if x € spt(¢)) and r > 0 then

V(B(r.r) _ | é(B(R))
a(m)r™ T R—co a(m)R™
< i UBOELLT) () )

1+
~ R—oo a(m)(|z| + R)™ R
=1.

1<

Theorem 4.5.4 now implies that v = H™ LW for some W € G(n,m).
Finally we see that (67) would be in contradiction with Corollary 3.3.5.
q.e.d.

Lemma 4.5.6. For every € > 0 there exists 0 < d456(n,m,e) < 00
such that if
(A) U C R™ is open, ¢ is a Radon measure in U, 0 € spto, R > 0,
B(0,R) C U, € is a gauge;
(B) ¢ is m concentrated and (£, m) nearly monotonic in U;
(C) ¢(B(0,R)) < (14 d456(n,m,e))a(m)R™;
(D) f(R) < (54.5.6(71,777/,8);

THere and in the remaining part of this paper p(z) =ex.
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then for every x € spt ¢ N B(0,d456(n, m,e)R) and every 0 <r < R/2
there exists W € G(n,m) with

dy (spt o N B(x,0456(n,m,e)r), (x+W)NB(x,d456(n,m,e)r))
< edy5.6(n,m,e)r.
Proof. We first choose n(n, m,e) > 0 sufficiently small for
(L+n(n,m,e))"(1+ by 55(n,m,e)/2) <1+ 845 5(n,m,e).
We claim that the lemma holds with

1 1
04.5.6(n,m,e) = min {454.5.5(?% m,e),n(n,m,e), 2} :

Indeed let x € B(0,d4 5 6(n,m,e)R) Nspt(¢) and 0 < r < R/2. Then
|z| +7 < R and

¢(B(z, ))

IN

a(m)(lz| +r)m

(
9(B(0, R)) ! A%
< (G rerionm) (1+17)
< (14284 5.6(n,m,e))(1+d4.56(n,m,e))"

<1+46y55(n,me),

HBOLLEr) () )"

so that Lemma 4.5.5 applies to the measure 7_,4¢ in the open set
7_5(U), the scale r > 0 and the gauge &. q.e.d.

4.6. Finding orthogonal families in Reifenberg flat sets.

Lemma 4.6.1. Let g : B(0,1) — B(0,1) and 0 < p < 1. Assume
that

(A) g is continuous;
(B) |g(z) — x| <1 — p whenever x € Bdry B(0,1).
Then B(0, p) C img.

Proof. We let ¢ : Bdry B(0,1) — B(0,1) be the canonical injection
and P : B(0,1) ~ {0} — Bdry B(0,1) be defined by P(z) = z|z|~!. We
first claim that P o g o is homotopic to the identity of Bdry B(0,1). It
follows indeed from hypothesis (B) that tz+ (1 —t)g(x) € B(0,1) ~ {0}
whenever 0 < t < 1 and = € BdryB(0,1), whence H(t,z) = P(tx +
(1 —1t)g(z)) is a homotopy witnessing our claim. Therefore the induced
homomorphism in m — 1 dimensional homology (m is the dimension of
the ball B(0,1)), H,,—1(P o g o), is the identity of Z.

On the other hand |g(x)—xz| < 1—p—e, x € Bdry B(0, 1), for some 0 <
e < 1—p. If the conclusion were not true there would exist xg € B(0, 1)
such that z¢p € img. On letting r : B(0,1) ~ {9} — BdryB(0,1) be
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a retraction with the property that r(z) = P(z) if p+¢ < |z| < 1, one
would infer that rogoi = Pogoiand, in turn,

idz = Hp—1(Pogoi) = Hp-1(r) 0 Hpn-1(g) © Hp-1(7)
in contradiction with the equation H,,_1(g) = 0. q.e.d.

Proposition 4.6.2. Let n > 0 be an integer. There exists a constant

0 < g4.6.2(n) < oo with the following property. Assume that

(A) 0 <m < n is an integer, S C R" is closed, xy € S and ro > 0;

(C) for every x € S N B(xp,2ro) and every 0 < r < 2rg, S is

(84.6.2<n>7m) flat at (z,7);

D) 0<p< 3.

Then there exists an orthonormal family e1,...,en of R™ such that
ro+pe;, €8,i=1,...,m

Proof. We set

(n) = mi ! (n) .
€ n)=miny ———, € s 1006 = () [

In order to keep the notation short we abbreviate

n=c9510n)eq62(n).

It readily suffices to prove the proposition under the additional as-
sumption xg = 0, 79 = 1. We start with the case p = 1/2. Let
Wy € G(S,0,1,e4 g2(n)) and let 7 be associated with S as in The-
orem 2.5.10. First we claim that

SN Bdry B(0,1/2) # 0.

We notice indeed that Z = RN {|z| : € im7} is connected, and that
ZN[0,n] #0aswellas ZN[1 —n,1+n] # 0. Since n < 1/4 and since
im7 C S it becomes obvious that S N Bdry B(0,1/2) # 0.

Pick z; € SN BdryB(0,1/2), so that if m = 1 the proof of the
case p = 1/2 is completed; we will subsequently assume that m > 2.

Put 7 = Py, (z1), and observe that ] # 0. Let e5,...,e;, € R"™ be
such that x7, €3, ..., ey, is an orthogonal family spanning Wy, and define
Wi = span{zi, e}, ..., e, }. It is easily checked that

dr(WonB(0,1), W1 N B(0,1)) < 2ey ¢.2(n).

We will define inductively a family of pairs (z1, W1), ..., (Zm, W)
verifying the following conditions. For each j =1,...,m:
(1) z; € SNBdryB (0,1/2);
(2) (xj,z;) =0 for every i =0,...,j — 1;
(3) z1,...,2; € W; € G(n,m);
(1) dr Wyt N B(0,1),W; N B(0, 1)) < 2.3 ey 6 5(n).
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The pair (z1, W) defined above clearly verifies these conditions for j =
1. Assume that (x1,W1),..., (x;, W;) have been defined for some j =
1,...,m—1. We set E; = span{zy,...,2;} and we aim to show that
(68) SN E; NBdryB(0,1/2) # 0.

For this purpose we define f; : B(0,1) N B (W;,1/4) — B(0,1) N W; by
the following formula:

1‘

fj(IE _ |PW 2) \/‘PW | “l"PWi ’ |PW D ifPWj(a;);«éO

0 if Py, () = 0
where x : [0,1] — [0,1] is given by x(t) = 4t/V/3 if 0 < t < /3/4
and x(t) = 1if v/3/4 < ¢ < 1. It is not too hard to check that f; is
continuous and that
(69)
£ (Wj N E} N Bdry B (0, 1/2)) — B(W},1/4)NE}NBdry B (0,1/2).
It follows from the choice of W and condition (D) above that

j—1

+ ZdH (Wi N B(O, 1), W11 N B(0, 1))
k=0

(1—’_223)5462 n)

= 3eq.6.2(n)-
Therefore our choice of €4 g o(n) readily implies that S N B(0,1) C
B(W;,1/4). This means that a map g; : W; N B(0,1) — W;NB(0, 1) is
well-defined by the relation g; = fjoToho Py, where h : WoNB(0,1) —
Wy N B(0,1 —n) is given by h(x) = (1 —n)z, z € Wy N B(0,1). It is
obvious that g; is continuous. If (68) were not valid then there would
exist z; € W; N Bdry B(0,1/2) such that z; ¢ img;. This, however,
would be in contradiction with Lemma 4.6.1, provided we show that
(71) 19;(¢) = ¢l <1/2
whenever ( € W; N BdryB(0,1). We now turn to establishing this
inequality for such (. We first notice that

€ = Pwyo (O < [|1Pwy — Pw; || <1/8

(recall (70) and the definition of 4 g 9(m, k)), that

[Py (€) — h(Pwy (Q)) <1
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and that

[h(Pwy, (€)) — 7(h(Pwy ()] < 7.
Therefore
(72) ¢ = m(h(Pw, (0)))] < 1/8+ 2
and in turn |7(h(Pw,(¢)))| > v/3/4. Notice that
sup{|;(2) — 2| : = € W; A B(W;,1/4) N B(0, 1) ~ B(0,v/3/4)} < %
Therefore 1

|7 (h(Pwy, (€))) — fi (7 (h(Piw, ()] < 7
and (72) yields (recall that n < 1/100)
1 1 1 1
¢ = g;(Q) S§+%+%<§

so that (71) is proved and (68) follows at once from Lemma 4.6.1 as
explained above.

Now pick zj41 € SN EJL N Bdry B(0,1/2), so that conditions (A)
and (B) are verified. In order to define W11 we put z7,, = Pw, (z;+1)
and we choose €], ... ey, so that x1,..., 25,27, 1,€59,... €5 Is an
orthogonal family spanning W}, and we define

W1 = span{®1,..., %), Tj+1,€5 49, Em -
Condition (C) is now trivially verified, whereas (D) is easy to check with
help of (70). The validity of (A) and (B) when j = m completes the
proof in case p = 1/2.
If p < 1/2 we check that the previous case applies to the set (2p) LS.
q.e.d.

4.7. Controlling the mean squared distance to flat.

Definition 4.7.1. Let U C R" be open, let x € U and r > 0 be such
that B(z,r) C U, let ¢ be a Radon measure in U, let Z C R"™ be closed
and 1 < g < co. We define

By(d 2,1, Z) = (/T‘m_q /B( )distq(y —x, Z)do(y)

as well as
Boo (2,7, Z) = 1~ sup {dist(y — 2, Z) : y € spt(6) N B(z,1)}
Lemma 4.7.2. There exists a constant 0 < cq47.2(m) < oo with the
following property. Assume that
(A) UcCR"isopen, x €U, r>0,B(x,r) CU, ¢ is a Radon measure
i U, £ is a gauge, Z C R" is closed;
(B) ¢ is m concentrated and (£, m) nearly monotonic in U;
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(C) &(r) < 3.
Then . .
/600 (¢7:U7 §7Z) S C4.7.2(m),3q(¢,$,7“, Z)m

Proof. In order to keep the notations short we set pg ., = m(m+q)~ L.
Notice that 1 — pgm = g(m + ¢)~*. We define

ci(m) =14+ Y4a(m)=*t,

and

as well as
c47.2(m) = max {cl(m), 5(1,#} = max {c1(m),2(ci(m) — 1)} .

We abbreviate
6= By(d, 2,1, 7).
Avoiding a triviality, we may assume that § > 0. If § > 84, then
Boo(pyx,r, Z) <1< (5;71716)#*1 < 04.7,2(m)6mL+q;
therefore we will subsequently assume that 6 < 4. Define
B =spt(¢) NB(z,r) N {y : dist(y — z, Z) > §'Parmr}
and observe that

- r_m_q/ dist(y — , Z)d¢(y)
B(z,r)

> = 4g(B) I Pam) pd

whence

(73) ¢(B) < rM§aPam

Now assume that there exists y € spt(¢) N B (af, g) such that
(74) dist(y — x, Z) > ¢y (m)dtPamy.,

Put p = (c1(m) — 1)6'7Pamr and notice that the choice of c1(m), &,
and the relation 6 < d,, implies p < §, so that B(y, p) C B(z,r). This
in turn implies that

spt(¢) N B(y,p) C B

and, according to (73),
(

(75) ¢(B(y, p)) < ¢(B) < §%emr™.
Hypotheses (B) and (C) yield

¢BW,p) - om 1
(76) “a(m)pm >0 (¢a@/)—§(ﬁ’)2§-
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Combining (75) and (76) we obtain

a(Q_m )(Cl(m) — 1)mem=Pam) e < §aPamgm

Since the choice of pgr, is so that m(1 —pym) = qpgm, this is in contra-
diction with the definition of cq(m). This shows that (74) cannot hold
for y € spt(¢) N B ( ) and therefore

’800 <¢7 €, 57 Z) < Cl(m)lgq(¢7 z,T, Z)lqu,m'
q.e.d.

Proposition 4.7.3. There exist constants 0 < d4.73(n,m) < 1 and
0 < c4.7.3(m) < oo with the following property. Assume that

(A) UCR"is open, 0 €U, 0< R<27% B(0,R) CU, ¢ is a Radon
measure in U, 0 € spt ¢, £ is a continuous gauge;
(B) for every x € spt(¢) NB(0, R), ©™(¢,x) = 1;
(C) ¢ is (§,m) nearly monotonic in U and (§,m) epiperimetric in
(spt(6) N B(0, R), U);
(D) (B0, R)) < (1+847.5(n, m))a(m)R™ and €(VF) < 84.75(n,m).
Then for every 0 < r < d473(n,m)R there exists W € G(n,m) such
that

Ba(6.0.5 W) < eazaom) max { 7, {f€ (2F) |
Proof. We let

847.3(n,m) = min {27, 84 5. 6(n,m,e4,6.2(n))-}
It follows from Lemma 4.5.5 and Proposition 4.6.2 that with each 0 <
r < d473(n,m)R we can associate an orthogonal family xi,...,x,, €
spt ¢ with |z;| = rn(r), i =1,...,m, where we have put
alr) = max { 97, {fe (2 | < 3

We define W = span{z1,...,x,,} and we observe that

/ dist2(y, W)do(y)
B(0,r)

[ wldsw) - [ (P do)

B(0,r) B(Oﬂ")
. 2 T -2 Ti 2
_/( )|y\ dé(y Z! il / (y, zi)"do(y)

0,r 0,r

= trace Q(¢, 1) Z ||~ 2@ (&, 7) (i)
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Dividing by v(m)r™*? and referring to Lemma 4.1.2 and Proposition
4.4.1 we obtain

p(m) 2 /B \ )disﬂy,vv)dqs(y)

= trace Q(¢,7) Z E (s)

m
<m+&(r)(m+4) =Y (1—cqgq1(m)n(r))
i=1
< (m+4+mey 4.1(m))n(r).
q.e.d.
4.8. A regularity theorem.
Lemma 4.8.1. There exist 0 < d4.81(n,m) < oo, 0 < cg81(n,m) <
o0 and 0 < y451(n,m) < oo with the following property. Whenever

(A) U C R" is open, ¢ is a Radon measure in U, x € spt¢, r > 0,
B(z,r) C U, & is a gauge;

(B) ¢ is m concentrated and (£, m) nearly monotonic in U;

(C) ¢(B(z,7)) < (1+ dsg1(n,m))a(m)r™;

(D) £(r) < dag1(n,m);

(E) W e G(n,m) and B (¢, x,r, W) < d481(n,m);

the following holds:

disty (spt(¢) N B(z, v48.1(n,m)r), (x + W) N B(z,v45.1(n, m)r))
< c18.1(n,m)Boo (@, 2,7, W)y g1 (n, m)r
as well as
W NB(0,v,51(n,m)r) C Py [‘r_x(spt ¢) N B(0, r)] .

Proof. First notice that it suffices to prove the lemma for x = 0 and
r = 1. We define
1 1

. 1

¢ = mn {352.5.10(”)7 ma 2—5}
and .

d4.8.1(n,m) = 5 min{dy 5,6(n, m.e), 1}.
We also let rg = 3 min{d 5 g(n,m,e),1}. Our first goal is to prove
that
(77) W € G(spt(9), 0, 2r, 3¢).
For that purpose we select Wy € G(spt(¢),0,2rg,e) (the existence of

such Wy follows from Lemma 4.5.6). Let wy € Wy N B(0,1). There
exists x € spt(¢) N B(0,2rg) such that

(78) |z — 2rowo| < e2ry.
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According to hypothesis (D) there exists w € W with
(79) |t —w| < 4.8 1(n,m) < e2r.
Now (78) and (79) yield |wg — (2r9) "1 (2rowp)| < 2¢ and, in turn,
sup {dist(wo, W) : wg € Wy NB(0,1)} < 2e.
According to Lemma 2.5.6 this implies
disty(Wo N B(0,1), WNB(0,1)) < 2¢.
We infer from the triangle inequality for the Hausdorff distance that

disty (spt(¢) N B(0,2r), W N B(0, 2r))
< disty(spt(¢) N B(0, 2ro), Wo N B(0, 2r))
+ diStH(W() N B(O, 27“0), W N B(0, 27"0))
< 3e2ry;
this completes the proof of (77).
Now we observe that G(spt(¢),x,r,e) # (0 whenever z € spt(¢) N
B(0,2ry) and 0 < r < 2rg, according to Lemma 4.5.6. Therefore Theo-

rem 2.5.10 applies: our choice of € and relation (77) ensure the existence
of a continuous map 7 : W NB(0,79) — spt(¢) such that

(80) IT(y) — y| < c9.5.10(n)3er0
< (1/8)ro.

We claim that
(81) Py (spt(¢) NB(0,79)) D W N B(0,r9/2).

In order to prove this we let 7 : W — W NB(0,ry) be the nearest point
projection on W N B(0,79) and we define a continuous map

g:WnB(0,79) — WNB(0,rp)

by the relation g = m o Py o 7. Let y € W N Bdry B(0, 7). We infer
from (80) that

(82) 7)) < (L +1/8)ro,
therefore | Py (7(y))| < (1 +1/8)r¢ as well. Hence
(83) 7 (Pw (7)) — Pw (T(y)] < (1/8)ro.

It also follows from (82) that 7(y) € spt(¢) N B(0,2ry), and in turn we
deduce from (77) that

(84) [Pw (7(y)) — 7(y)| < 3e2r0.
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Putting together (80), (83) and (84) we obtain
l9(y) —yl < |7 (Pw (7(y))) — P (7(y))]

+ [ Pw (7(y) — 7(y)]
+17(y) — vl
< (1/8)r¢ + 6erg + (1/8)r9
< ry/2,

according to our choice of . It now follows from Lemma 4.6.1 that
W NB(0,79/2) C img. Therefore

85) W AB(0,70/2) C Py (im7) C P (spt(e) N B(0,9r0/8)).

Notice our choices of d4 g 1(n,m) and ¢ together with hypothesis (D)
imply that B.(¢,0,1,W) < 79/2. Choose 0 < s < 1 such that
Boo(0,0,1, W) = srg/2 and define t = /1 — s. Pick y € WNB(0,ry/2)
and refer to (85) to choose x € spt(¢) N B(0,97¢/8) such that Py (z) =
ty. Notice that |z| < 1. We observe that

dist(ty, spt(¢)) < [ty — =
= [Py ()]
< dist(x, W)
< Boo(9,0,1, W),
and
|2 = [Py (2)]* + [P ()]
< dist(z, W)? + |ty
< Boo(,0,1, W) + #2(r0/2)"
= (57 +1%)(r0/2)?,
so that in fact x € spt(¢) N B(0,79/2). On the other hand,
ly —tyl < (1 —=1)ro/2 < s70/2 = Boo(4,0,1,W).
We conclude that
sup{dist(y, spt(¢)NB(0,70/2)) : y € WNB(0,70/2)} < 28,,(¢,0,1,W).

We see that the conclusion of the proposition holds with v4 g 1(n,m) =
ro/2 and c4 g 1(n,m) = rq. q.e.d.

Next we recall a (very) classical method for producing Lipschitz
graphs.

Definition 4.8.2. Let SC R",r >0, 0 >0 and W € G(n,m). We
define

G(S,r,0,W) =5nB(0,7/2)N{z: SNB(z,p) C B(z+ W,op)
for every 0 < p < r}.
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Lemma 4.8.3. Assume that S CR", r > 0,0< o <1 and W €
G(n,m). Then there exists a Lipschitzian map

u: PW(g(Sa r, o, W)) - WL
such that Lipu < o/v/1 — o2 and graph(u) = G(S,r,o, W).

Proof. We abbreviate G = G(S,r,0,W). Let z,y € G and put p =
| —y|, so that p < r. Therefore y € SNB(z, p) C B(z+ W, op), which
means that

(86) |Pwo(y — )| <op=oly -z
Since also |y — z|? = | Py (y — )| + | Py. (y — x)[%, (86) becomes
(87) (1=0*)|Pyo(y — o)l < o* |Pw(y — ).

Observe that (87) implies that the restriction Py : G — Py (G) is
injective. Let f : Py (G) — G be its inverse and u = Py,1 o f. Clearly
graph(u) = G and (87) readily yields the claimed estimate of Lip u.
q.e.d.

We are now ready to prove the first version of our main result.

Theorem 4.8.4. For every 0 < a < 1 and every 0 < m < n there
exist 0 < d4.84(n,m) < 00, 0 < 3 g4(n,m,a) < 00, 0 < vyg4(n,m) <
oo and 0 < c484(n,m,a) < oo with the following property. Assume
that

(A) U C R™ is open, ¢ is a Radon measure in U, 0 € spto, C > 1,

§(t) = Ct%;

) 0< R < & g4(n,m,a)C~2/* B(0,R) C U;

) ¢ is (&, m) nearly monotonic in U;

) ¢ is (&, m) epiperimetric in (U Nspt(¢),U);

) O™ (p,x) =1 for every x € spt(p) NU;

) G(B(0, R)) < (1+b1.84(n, m))a(m)R™;

) €(VR) < d484(n,m);

) W e G(n,m) and By (9,0, R, W) < d484(n,m).

Then there exists a map u: W N B(0,7,54(n,m)R) — W such that

(I) w is continuously differentiable and

(&3

[Du(z1) — Du(z2)|| < casa(n,m,a)Clzy — 22|30n+2)

whenever z1,z2 € WNB(0,v454(n,m)R);
(J) Spt(¢) N B(O) 74.8‘4(77’7 m)R) = graph(u) a B(Oa Y4.8.4 (n7 m)R) :

Proof. We start by defining all the necessary constants. For further
reference in Claims 2 and 3 below we put

Cg(n, m) = 2C4‘7'2(n, m)C4'7_3(n, m)
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and

cs(nm) i 2¢a(n,m)eq g 1(n, m)

- :
Y4.8.1(1,m) ¥+
Next we choose 0 < n(n,m) < 278 small enough for

1
(1 + 554.7.3(7% m)) (1+2n(n,m))™ <14 d4.7.3(n,m)
as well as
1
(14 50a8200m) ) 1+ 2000 m)™ < 14 84500,

In order to keep the notations short we also set

«Q
=Sty

We claim that the theorem holds with 84 g 4(n,m), 6} g 4(n,m, ),
c4.8.4(n,m) and v, g 4(n,m) defined as follows:

(1
04.8.4(n,m) = min {154.7.3(7% m),

1
154.8.1 (nv ’ITL),

04.7.3(n,m)n(n, m)
4cy g.1(n,m)

1 }
8 )
160481(n7 m) (1 + 54.7.3(n,m)n(n,m)>

671

1 }
16C3(n7 m) (1 + 54 7 3(n78m)"7(n7m))
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and
256¢3(n, m)
c48.4(n.m,a) = ———5=,

as well as

d4.7.3(n,m)n(n,m)vy 8 1(n, m)*
3 .
The proof is subdivided into several claims as follows.

’74.8.4(7% m) =

Claim 1. For every z € spt(¢) N B(0,n(n, m)R) and every 0 < r <
d4.7.3(n,m)n(n, m)R there exists W, € G(n, m) such that

®|Q

Ba(d,m,r, W,)* < 204.7,3(n,m)05r .
Since
max{\%_“, VA3 (2\/7_“)} —20urs
we need only to check that Proposition 4.7.3 applies to 7_, 4¢ at the
scale R/2. Observe that hypothesis (D) of this proposition is verified:
¢(B(z, R/2)) _ ¢(B(0, 2| + R/2))
a(m)(R/2)™ = a(m)(|z| + R/2)™

4(B(0. B)) -
< (TS () ) (1 -+ 2n(m,m)

<1+ 64.7'3(n, m)

(1 +2n(n, m))™

Claim 2. For every z € spt(¢) N B(0,n(n, m)R) and every 0 < r <
64.7.3(n,m)n(n, m)R one has

1 B
Beo (6,2, 5. W2, ) < o, m)Cina (1)
This is a straightforward consequence of Claim 1 and Lemma 4.7.2.
Claim 3. For every z € spt(¢) N B(0,n(n, m)R) and every 0 < r <
04.7.3(n,m)n(n,m)R/2 one has
disty [spt(¢)NB(0,74.8.1(n, m)r/2), (x+ W, )NB(0,74.8.1(n, m)r/2)]
n, m)r) 1+5

< cy(n, m)CTmTD (%

This follows from Claim 2 together with Lemma 4.8.1. One checks
that hypothesis (C) of this lemma is verified as in the proof of Claim 1.
Regarding hypothesis (E) of this lemma we infer from Claim 2 that

Boo(®,x,m, W, ) < ca(n, 7”'%)04“"1*2> r? < 8y.8.1(n,m);

the latter holds because r < R is sufficiently small according to hypoth-
esis (B) of the present theorem.
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In order to keep the notations short in the remainder of this proof we
put

_ 04730, m)n(n,m)vy8.1(n,mR

To 4 3

as well as
ri=2"7rg, j=1,2,....
We also set

W»TJ‘ = ;,2r/’y4.8‘1(n,m)

whenever the right member is defined.

Claim 4. For every z € spt(¢)NB(0,n(n,m)R) and every 0 < r < rg
one has

disty [spt(¢) N B(z,7), (z + Wp,) N B(z,7)] < cs(n, m)C4(ml+2>r1+ﬂ.
This is merely a reformulation of Claim 3.

Claim 5. For every z € spt(¢)NB(0,n(n,m)R), every j =0,1,2,...
and every rjy1 <7 <r; one has

1
diSt(Wx’r, Wl‘ﬂ‘j) S 5C3 (n,’ m)c’4(m+2) 7’]@.

This is a consequence of Lemma 2.5.8 applied with R (there) equal to

1
r;j (here) and € = c3(n, m)C*m+2) 7“3.8. One checks that £ < 1/2 because
rj <rg < R is sufficiently small.
We infer from Claim 5 that for such z and k > j the following holds:

1 o0
(88) dist(Wa,ry, War,) < 5eg(n, m)Cim? Z r’
I=j
1
< 5¢3(n, m)CHm+2) (1 — 27[3)717"]@.

Therefore Wy o, Wy ry, - - . is a Cauchy sequence in G(n, m). We let W,
denote its limit.

Claim 6. For every x € spt(¢)NB(0,n(n,m)R), every j =0,1,2,...
and every rjy1 < r < r; one has
dist(Wa, Wa) < 10c3(n, m)C T (1 — 270) 715,
This readily follows from (88) and Claim 5.

Claim 7. For every x € spt(¢) NB(0,79/2) and every 0 < r < 7 one
has

dist (W, ., Wo) <

o |
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In order to prove this we first apply Lemma 2.5.9 to the points 0
and z, with R (there) equal to ro (here), A = 1/2, v = 4 and ¢ =
1
c3(n, m)Cim+2) rg (recall Claim 4). Notice that ro < R has been chosen
so small that ¢ < 1/384. It now follows from Lemma 2.5.9 that
. 1
dist(Wa v Worg) < 6
This, together with three applications of Claim 6, yields
dist(Wy,», Wo) < dist(Wy,, W) + dist(Wy, Wy 1)
+ diSt(meO, WO,TO) + diSt(WomO, W())
1 1
<16 + 30c3(n, m)C4m+2) (1 — Q*ﬂ)*lrg
1
< Rl
— 4
where the last inequality is again a consequence of 7y being small enough.

A

Claim 8. One has dist(W, W) < % (recall W is as in hypothesis
(H))-
Hypothesis (H) and Lemma 4.8.1 yield

W € G(spt(¢),0,74.8.1(n, m)R, £1)
where
€1 =1c4.81(n,m)d4g4(n,m).
On the other hand we infer from Claim 4 that Wy ,, € G(spt(¢), 0,70, €2)
where )
g9 = c3(n, m)C4m+2) rg.

Let e= max{ey, ez} and apply Lemma 2.5.8 at scale 19 <74 g 1(n,m)R.
Notice that our choice of §4 g 4(n,m) and the smallness of 79 implied
by hypothesis (B) guarantee that ey, g 1(n,m)R < ro as well as

8 1
el 1+ ) < —.
( d4.7.3(n,m)n(n,m)) ~ 16
Therefore it follows from Lemma 2.5.8 that
. 1
dlSt(W, WO,T()) < E
On the other hand Claim 6 implies that
1 1
dist (Wo, Wory) < 10c3(n, m)Cimi2 (1 — 2-%) =18 < G
again because rq is small enough. The proof of Claim 8 is complete.
Claim 9. For every x € spt(¢) NB(0,79/2) and every 0 < r < r( one

has
spt(¢) N B(z,r) C B(x + W, r/2).
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We first infer from Claim 4 and the smallness of r¢ that
disty [spt(¢) NB(z,r), (x + Wy,) NB(z, 7’)] < c3(n, m)c‘z;(m‘lfz) rgr
<l
-8
Furthermore, we deduce from Claims 7 and 8 that

disty[(z + W) NB(z,r), (z + Wa,) NB(z,r)] < =7

| w

The conclusion follows from the triangle inequality for the Hausdorff
distance.

Claim 10. There exists a Lipschitzian map
w: WNB(0,748.1(n,m)ro/2) — W+
such that Lipu <1 and
graph(u) N B(0,v4.8.1(n,m)ro/2) = spt(¢) N B(0,7v4.8.1(n,m)ro/2).

On letting G = G(spt(¢), 0, 1/2, W) we infer from Lemma 4.8.3 that
there exists a Lipschitzian map

@: Py(G) — Wt
so that graph(a) = G. It also follows from Claim 9 that G = spt(¢) N
B(0,7/2). Next we apply Lemma 4.8.1 at the scale ry/2 and we obtain
W N B(0,74.8.1(n,m)ro/2) C Pw(spt(¢) NB(0,70/2))
= P (9).

Therefore, on letting u = @ [ B(0,7v4.8.1(n, m)ro/2) we see our conclu-
sion holds.

Claim 11. Let z1, 22 € WNB(0,7v4.8.1(n,m)ro/2) be such that u is
differentiable at z; and z3. Then

||Du(z1) — Du(z2)|| < 256¢3(n, m)C4<m1+2) (1 -2z — )5

Set x; = u(z;), 1= 1,2, and r = 2|x; — 23] < ro. We infer from Claim
6 that

dist(Way, Way ) < 20c3(n,m) 0305 (1 — 277) 715,
Next we apply Lemma 2.5.9 at the scale r with A\ = 1/2, v = 4 and
€= c;;(n,m)Cm P < 1/4 (recall Claim 4). We obtain
dist(Wa, o Way ) < 24c3(n, m) T3 15,
Adding these inequalities yields
dist(Wi,, Wa,) < 6dcs(n, m)CTm7 (1 — 278) 10

1
< 64cz(n, m)C T2 (1 — 2797z — 27
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It is not hard to check that Wy, = im(iw + tyy0 o Du(z;)), i = 1,2, so
that our conclusion becomes a consequence of Lemma 2.1.1(B).
According to Rademacher’s theorem, [10, 3.1.6], u is differentiable
H™ almost everywhere. Therefore the estimate of Claim 11 remains
valid with the smoothing u * ®. replacing u. This implies in turn that
D(u * ®.) converges uniformly so that u is differentiable everywhere.
The proof of the theorem is now complete. q.e.d.

The following immediate consequence of Theorem 4.8.4 is perhaps
more user-friendly.

Corollary 4.8.5. Let S € R"™ and 0 < m < n an integer. The
following conditions are equivalent.

(1) S is an m dimensional Hélder continuously differentiable subman-
ifold.
(2) S =spt(H™LS) and each x € S has a neighborhood U verifying
the following conditions:
(A) H™ LS is (&, m) epiperimetric in (UNS,U);
(B) H™ LS is (¢, m) nearly monotonic in U;
for some gauge & of the type £(t) = Ct*, 0 < a <1, C > 1.

Proof. That (1) implies (2) is the content of Proposition 3.6.1. With
regard to the reverse implication we infer from Theorem 4.8.4 that one
needs only to check that @™ (H™ LS, x) =1 for every x € SNU. This
readily follows from the (£, m) epiperimetry of H™ LS on SNU together
with [10, 3.2.19]. q.e.d.
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