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ENLARGEABILITY AND INDEX THEORY

B. Hanke & T. Schick

Abstract

Let M be a closed enlargeable spin manifold. We show non-
triviality of the universal index obstruction in the K-theory of the
maximal C∗-algebra of the fundamental group of M . Our proof is
independent of the injectivity of the Baum-Connes assembly map
for π1(M) and relies on the construction of a certain infinite di-
mensional flat vector bundle out of a sequence of finite dimensional
vector bundles on M whose curvatures tend to zero.

Besides the well known fact that M does not carry a metric
with positive scalar curvature, our results imply that the classi-
fying map M → Bπ1(M) sends the fundamental class of M to
a nontrivial homology class in H∗(Bπ1(M); Q). This answers a
question of Burghelea (1983).

1. Introduction

1.1. Enlargeability and the universal index obstruction. For a
closed spin manifold Mn, Rosenberg in [16] constructs an index

αR
max(M) ∈ KOn(C∗

max,Rπ1(M))

in the K-theory of the (maximal) real C∗-algebra of the fundamen-
tal group of M . By the Lichnerowicz-Schrödinger-Weitzenböck formula
this index is zero if M admits a metric of positive scalar curvature. The
Gromov-Lawson-Rosenberg conjecture states that, conversely, the van-
ishing of α(M) implies that M admits such a metric, if n ≥ 5. By a
result of the second named author, this conjecture is known to be false
in general [17] or [4]. But a stable version of this conjecture is true, if
the Baum-Connes assembly map

µ : KO
π1(M)
∗ (Eπ1(M)) → KO∗(C

∗
max,Rπ1(M))

is injective [20]. The proof of this (and related results) is based on the

existence of a natural map D : KO∗(M) → KO
π1(M)
∗ (Eπ1(M)) into the
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equivariant K-homology of the classifying space for π1(M)-actions with
finite isotropy and of a factorization

KOn(M)
D
→ KOπ1(M)

n (Eπ1(M))
µ

−→ KOn(C∗
max,Rπ1(M))

which sends the KO-fundamental class [M ] ∈ KOn(M) to αR
max(M).

Therefore, if αR
max(M) = 0 and µ is injective, one knows that D([M ]) =

0 and this situation can be analyzed by algebraic topological means.
(Actually, Stephan Stolz is using the reduced group C∗-algebra; compare
the discussion in Section 1.4.)

In this paper, we describe a new method to detect non-vanishing of
this universal index obstruction in a nontrivial case. This is indepen-
dent of the injectivity of the Baum-Connes map. For convenience, we
study the complex K-theory index element αmax(M) in the K-theory
of the maximal complex C∗-algebra of π1(M). The usual Lichnerowicz
argument shows that αmax(M) = 0 if M admits a metric of positive
scalar curvature.

In the first part of our paper, we prove a weak converse to this state-
ment. Recall:

Definition 1.1. A closed oriented manifold Mn is called enlargeable
if the following holds: Fix some Riemannian metric g on M . Then, for
all ǫ > 0, there is a finite connected cover M of M and an ǫ-contracting
map (M, g) → (Sn, g0) of non-zero degree, where g is induced by g and
g0 is the standard metric on Sn.

M is called area-enlargeable if in the above definition ǫ-contracting
is replaced by ǫ-area contracting. Here, a map f : M → N between
two n-dimensional Riemannian manifolds is called ǫ-area contracting if∥∥Λ2Txf

∥∥ ≤ ǫ for each x ∈ M , where Λ2Txf : Λ2TxM → Λ2Tf(x)N is
the induced map between the second exterior powers of tangent spaces
viewed as normed spaces via the given Riemannian metrics.

Note that every enlargeable manifold is area-enlargeable, but that
the converse might not be true.

We remark that in contrast to the definition in [6], we do not require
that the covers M necessarily admit spin structures.

Theorem 1.2. Let Mn be an enlargeable or area-enlargeable spin
manifold. Then

αmax(M) 6= 0 ∈ Kn(C∗
maxπ1(M)).

By a result of Gromov and Lawson [6], enlargeable spin manifolds
do not admit metrics of positive scalar curvature. Recall the question
posed in the second paragraph of the introduction to the article [15]:
“Nevertheless, it is not clear, if their results always imply ours or vice
versa.”
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Our paper gives a complete answer in one direction: if M is spin, the
index obstruction αmax(M) completely subsumes the enlargeability (and
area-enlargeability) obstruction to positive scalar curvature of Gromov
and Lawson.

For the applications to positive scalar curvature, we restrict our dis-
cussion to spin manifolds M in order to keep the exposition transparent.
We conjecture that it is possible to extend the results to the case where
only the universal cover of M admits a spin structure.

1.2. Flat bundles of C∗-modules. The idea of our proof can be sum-
marized as follows. We construct a C∗-algebra morphism

φ : C∗
maxπ1(M) → Q

where Q is a (complex) C∗-algebra whose K-theory can be explicitely
calculated, and then we study the image of αmax(M) under the induced
map in K-homology.

The map φ results from the holonomy representation of π1(M) associ-
ated to an infinite dimensional flat bundle on M which is obtained in the
following way: Because M is enlargeable or area-enlargeable, there is a
sequence Ei → M of (finite dimensional) unitary vector bundles with
connections whose curvatures tend to zero, but whose Chern charac-
ters are nontrivial. We construct an infinite dimensional smooth bundle
V → M with connection and with the following property: The fiber over
p ∈ M consists of bounded sequences (v1, v2, . . .) with vi ∈ (Ei)p and
the connection restricts to the given connection of Ei on each “block”.
We denote by W ⊂ V the subbundle consisting of sequences tending to
zero. The End(V )-valued curvature form on V sends V to W by the
asymptotic curvature property of the sequence (Ei). Hence the quotient
bundle V/W → M with the induced connection is flat.

However, this bundle still encodes the asymptotic non-triviality of the
Chern characters of the original bundles in such a way that the index
of the Dirac operator on M twisted with this bundle is nontrivial. This
index can be expressed in terms of the collection of indices of the Dirac
operator twisted with Ei, i ∈ N.

It should be noted that the precise argument in Section 2 needed to
construct the bundle V requires a considerable amount of care.

In this respect, we realize the idea formulated at the end of the in-
troduction to [7]: “Passing to the limit, one might expect to find an
interesting infinite dimensional, flat bundle E0 over the original mani-
fold, so that one could apply the Bochner method directly to the Dirac
operator with coefficients in E0”. In our case, the role of E0 is played
by the bundle V/W → M .

1.3. Almost flat bundles and almost representations. Our con-
struction can be seen in relation to the notions of almost flat bundles as
studied by Connes-Gromov-Moscovici [3] and of almost representations
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as studied by Mishchenko and his coauthors (compare e.g. [14]). Heath
Emerson informed us that he and Jerry Kaminker plan to carry out a
systematic study of these notions in the context of the Baum-Connes
conjecture. Contrary to the definitions used in the mentioned sources,
we do not require the different bundles in the almost flat sequence to de-
fine the same K-theory class or the “not quite representations” induced
by such a sequence to be related in any way. Keeping this flexibility
throughout the argument enables us to prove the general statement of
Theorem 1.2.

1.4. The different C∗-indices. In our paper, we use complex C∗-
algebras, because this avoids some technicalities and is sufficient for the
applications that we have in mind. It should be possible to show real
versions of our theorems in a similar way.

Here we want to compare the reduced to the maximal index, and the
real to the complex version. In recent literature on the positive scalar
curvature question, in most cases the real reduced index αR

red(M) ∈
KOn(C∗

red,Rπ1(M)) is used, whereas Rosenberg [15, 16] uses αmax(M)

and αR
max(M).

Note that for any discrete group π, we have canonical maps

C∗
max,Rπ

ωR

−−−−→ C∗
red,Rπ

y
y

C∗
maxπ

ω
−−−−→ C∗

redπ

and a commutative diagram

(1.3)

KOπ
∗ (Eπ)

µR
max−−−−→ KO∗(C

∗
max,Rπ)

ωR

−−−−→ KO∗(C
∗
red,Rπ)

y
y

y

Kπ
∗ (Eπ)

µmax
−−−−→ K∗(C

∗
maxπ)

ω
−−−−→ K∗(C

∗
redπ)

where the vertical maps are given by complexification and the horizon-
tal compositions are the reduced analytic assembly maps µ or µR. If
π = π1(M), the map ω?

∗ sends α?
max(M) to α?

red(M) (this is true for
the real and the complex version), and the complexification maps send
αR

? (M) to α?(M) (for the max and red version). In particular, van-

ishing of αR
max(M) implies vanishing of all the other index invariants.

Consequently, following Rosenberg, one should formulate the Gromov-
Lawson-Rosenberg conjecture using αR

max. We point out that this con-
jecture holds stably by the result of Stephan Stolz cited above, if the
Baum-Connes map µR

max is injective. It could possibly happen that
αR

max(M) 6= 0 whereas αR

red(M) = 0. However, this would imply that
a number of important conjectures are wrong, most notably that the
(reduced) Baum-Connes assembly map is not always injective.



ENLARGEABILITY AND INDEX THEORY 297

The maximal C∗-algebra has much better functorial properties than
the reduced one, a fact that we are using in the construction of the
homomorphism φ alluded to in (1.2).

In view of these considerations and the results presented in this paper,
we propose to always use the obstruction αR

max(M) to the existence of
positive scalar curvature metrics, instead of αR

red(M). Note that the
two obstructions are equivalent, if the Baum-Connes map is injective.
Note also that the two obstructions coincide if the fundamental group π
is K-amenable (in particular if it is amenable) because in this case the
map K∗(C

∗
maxπ) → K∗(C

∗
redπ) is an isomorphism.

In this paper, we show non-vanishing of the complex version αmax(M)
under an enlargeability assumption. The diagram (1.3) implies non-
vanishing of αR

max(M), as well.

1.5. Enlargeability and the fundamental class. Turning to an-
other application of our methods, we show

Theorem 1.4. Let M be an enlargeable or area-enlargeable mani-
fold, f : M → Bπ1(M) classify the universal cover of M and [M ] ∈
Hn(M ; Q) be the fundamental class. Then

f∗([M ]) 6= 0 ∈ Hn(Bπ1(M); Q).

This theorem implies an affirmative answer to a question of Burghelea
[19, Problem 11.1]. We emphasize that contrary to the original formu-
lation of Burghelea’s question, no spin assumption on M or its universal
cover is required. It is somewhat remarkable that we prove Theorem
1.4 by making a detour through the K-theory of C∗-algebras and an
assembly map.

For (length)-enlargeable manifolds, one may use coarse geometry
methods to get a shorter proof of this result. We will address this
elsewhere. It would be interesting to extend these coarse methods to
the area-enlargeable case.

For n ≥ 4, we will construct closed oriented manifolds Mn (that may
be chosen to be spin) whose fundamental classes are sent to nontrivial
classes in Hn(Bπ1(M); Q), but which are not area-enlargeable. In this
respect, a converse of Theorem 1.4 does not hold to be true.

Because the proof of Theorem 1.4 is based on an analysis of general
Dirac type operators on M , the necessary index theory in Section 3 will
be developed in the required generality.

Theorem 1.4 implies

Corollary 1.5. Every (area)-enlargeable manifold M is essential in
the sense of Gromov [5], and therefore its 1-systole satisfies Gromov’s
main inequality

sys1(M) ≤ c(n) vol(M)1/n.
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Therefore, such an M has a non-contractible closed geodesic of length
at most c(n) vol(M)1/n. Here, n = dim(M) and c(n) > 0 is a constant
which depends only on n.

2. Assembling almost flat bundles

Let M be a closed smooth n-dimensional Riemannian manifold, let
di, 1 ≤ i < ∞, be a sequence of natural numbers and let (Pi,∇i)i∈N

be an almost flat sequence of principal U(di) bundles over M equipped
with U(di)-connections ∇i. By definition, this means that the curvature
2-forms

Ωi ∈ Ω2(M ; u(di))

associated to ∇i vanish asymptotically with respect to the maximum
norm on the unit sphere bundle in Λ2M and the operator norm on each
u(di) ⊂ Mat(di) := Cdi×di , i.e.

lim
i→∞

‖Ωi‖ = 0.

Let K denote the C∗-algebra of compact operators on l2(N). We choose
embeddings of complex C∗-algebras

γi : Mat(C, di) →֒ K.

Hence, each Pi has an associated bundle

Fi := Pi ×U(di) K

consisting of projective right K-modules with one generator and which
is equipped with a K-linear connection

∇i : Γ(Fi) → Γ(T ∗M ⊗ Fi).

Note that, since the map U(di) → K is not unital, the fibers of Fi are not
free, but are isomorphic as right K-modules to qiK, where qi = γi(1).
Because the structure group of Fi is U(di), each bundle Fi has the
structure of a K-Hilbert bundle induced by the inner product

K × K → K, (X, Y ) 7→ X∗Y

on each fiber. The connections ∇i are compatible with these inner prod-
ucts. Let A be the complex (non-unital) C∗-algebra of norm bounded
sequences

(ai)i∈N ∈
∞∏

i=1

K.

For i ∈ N, we denote by Ai ⊂ A the sub-algebra of sequences such that
all but the ith entry vanish. The algebra Ai can be identified with K.
Define the element (being a projection)

q := (qi)i∈N ∈ A; qi = γi(1).
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The following theorem says that the bundles Fi can be assembled to a
smooth bundle of right Hilbert A-modules in a particularly nice way.
For the necessary background concerning Hilbert module bundles, we
refer to [18].

Theorem 2.1. There is a smooth Hilbert A-module bundle V →
M , each fiber of V being a finitely generated projective right A-module,
together with an A-linear metric connection

∇V : Γ(V ) → Γ(T ∗M ⊗ V )

such that the following holds:

• For i ∈ N, let Vi be the subbundle V · Ai ⊂ V . Then Vi (“the ith
block of V ”) is isomorphic to Fi (as a K-Hilbert bundle).

• The connection ∇ preserves the subbundles Vi.
• Let ∇V

i be the connection induced on Vi by ∇V and let ΩV
i be the

corresponding curvature form in Γ(Λ2M ⊗ EndAi
(Vi)). Then

lim
i→∞

‖ΩV
i ‖ = 0 .

The remainder of this section is devoted to the construction of V .
At first, we obtain a Lipschitz-Hilbert-A-module bundle L → M that
will be approximated by a smooth bundle V → M . After this has been
done, the bundle V will be equipped with a connection ∇V as stated in
Theorem 2.1.

Let
Dn := {(x1, . . . , xn) ∈ Rn | 0 ≤ xi ≤ 1} ⊂ Rn

be the standard n-dimensional cube and let (φj)j∈J be a finite family
of diffeomorphisms 1

M ⊃ Wj
φj
→ Dn

such that

M ⊂
⋃

j∈J

◦

W j .

Identify each of the Wj with Dn, using φj . In order to obtain the bundle
L, we construct trivializations

ψi,j : Fi|Wj
∼= Dn × qiK

for all i ∈ N and j ∈ J as follows: Choose a K-linear unitary isomor-
phism

ψi,j : Fi|(0,0,...,0)
∼= qiK.

The map ψi,j can be extended to a unique isomorphism of smooth K-
module bundles

ψi,j : Fi|[0,1]×0×...×0
∼= ([0, 1] × 0 × . . . × 0) × qiK

1In the sense that each φj extends to a diffeomorphism from an open neighborhood
of Wj ⊂ M to an open neighborhood of Dn

⊂ Rn.
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such that the constant sections

[0, 1] × 0 × . . . × 0 → ([0, 1] × 0 × . . . × 0) × qiK

are parallel with respect to ∇. Inductively, we assume that ψi,j has
already been defined on

Fi|Dk×0×...×0.

Then ψi,j can be extended to a unique isomorphism of smooth K-module
bundles

Fi|Dk+1×0×...×0
∼= Dk+1 × qiK

such that the covariant derivative along the tangent vector field

∂

∂xk+1
∈ Γ(TDk+1)

of each constant section Dk+1 → Dk+1 × qiK vanishes.

Definition 2.2. We denote by

ωi,j ∈ Γ(T ∗Dn ⊗ EndK(qiK)) ∼= Ω1(Dn; qiKqi)

the connection 1-form induced on Dn × qiK by ∇i and ψi,j . Note that
the right K-module endomorphisms of qiK are canonically isomorphic
to the unital C∗-algebra qiKqi.

Furthermore, we denote by ‖ωi,j‖ the L∞-norm of ωi,j induced by the
usual Euclidean metric on Dn and the operator norm on EndK(qiK).

We will show now that the special construction of the trivializations
ψi,j ensures that we have upper bounds for ‖ωi,j‖. Let

ηi,j = dωi,j − ωi,j ∧ ωi,j ∈ Γ(Λ2Dn ⊗ EndK(qiK)) = Ω2(Dn; qiKqi)

be the curvature 2-form on Dn induced by ψi,j and ∇i.

Lemma 2.3. For each i and j, we have

‖ωi,j‖ ≤ n · ‖ηi,j‖.

Proof. For brevity, we drop the indices i and j and abbreviate ∂
∂xν

by ∂ν . By construction of the trivialization ψ, we have

ω(x1,...,xk,0...,0)(∂ν) = 0,

if ν ≥ k. Now, if k > ν, we get

‖ω(x1,...,xk,0,...,0)(∂ν)‖

= ‖ω(x1,...,xk−1,0,...,0)(∂ν) +

∫ xk

0
dω(x1,...,xk−1,t,0,...,0)(∂k, ∂ν) dt‖

≤ ‖ω(x1,...,xk−1,0,...,0)(∂ν)‖ +

∫ xk

0
‖η(x1,...,t,0,...,0)(∂k, ∂ν)‖ dt

≤ ‖ω(x1,...,xk−1,0,...,0)(∂ν)‖ + ‖ηi,j‖ · |xk|.
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The second inequality uses the fact that

(ω ∧ ω)(x1,...,xk−1,t,0,...,0)(∂k, ∂ν) = 0

by construction of the trivialization ψi,j . Because ω(x1,...,xν ,0,...,0)(∂ν) =
0, we see inductively that

‖ω(x1,...,xk,0,...,0)‖ ≤ ‖ηi,j‖ · (|xν+1| + . . . + |xk|) ≤ n · ‖ηi,j‖.

q.e.d.

Remark 2.4. By assumption, the bundles Fi form an almost flat
sequence of bundles. Consequently, the supremum norms ‖ηi,j‖ (which
do not depend on the particular trivializations) have an upper bound,
and by Lemma 2.3 the same is true for the ‖ωi,j‖. The following lemma
shows an application of this fact.

Lemma 2.5. Let l ≥ 0. Then there is a constant C(l) (independent
of i, j) such that if

φ : [0, 1] → Dn × qiK

is a parallel vector field (with respect to ωi,j) along a piecewise smooth
path γ : [0, 1] → Dn of length l(γ) ≤ l (measured with respect to the
usual metric on Dn), then

‖φ(1) − φ(0)‖ ≤ C(l) · ‖ωi,j‖ · l(γ) · ‖φ(0)‖

for all i, j.

Proof. Since the bundle Dn × qiK is trivial, we consider the section
φ as a path [0, 1] → qiK. It satisfies the differential equation

φ′(t) +
(
(ωi,j)γ(t)(γ̇(t))

)
· φ(t) = 0.

It follows that

‖φ(1) − φ(0)‖ ≤ exp (2l(γ) ‖ωi,j‖) · ‖φ(0)‖ .

The function exp: qiKqi → qiKqi is uniformly Lipschitz continuous on
each bounded neighborhood of 0. Hence, the proof is complete. q.e.d.

These estimates allow for the following important implication. For
α, β ∈ J , i ∈ N, we denote by

φα,β : φα(Wα ∩ Wβ) → φβ(Wα ∩ Wβ)

the transition function for the charts φi of our manifold M , and by

ψα,β,i : ψα(Fi|Wα∩Wβ
) → ψβ(Fi|Wα∩Wβ

)

the transition function for the trivializations of the bundles Fi.

Proposition 2.6. There is a constant C∈R such that (independently
of the particular smooth bundle in the almost flat sequence) the following
holds for all α and β: Considering ψα,β,i (i.e., the (smooth) transition
function for the i-th vector bundle) as a function

ψ : Wα ∩ Wβ → qiKqi,
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we have ‖Dψ(x)‖ ≤ C for all x ∈ Wα ∩ Wβ.

Proof. Let

x = (x1, . . . , xn) ∈ φα(Wα ∩ Wβ)∩
◦

Dn

and let 1 ≤ ν ≤ n. We have to study the function

f : (−ǫ, ǫ) → qiKqi

defined by the property that

ψβψ−1
α (x + teν , v) = (φα,β(x + teν), f(t) · v)

for all v ∈ qiK and all t ∈ (−ǫ, ǫ) (where ǫ is sufficiently small). For v ∈
qiK, the element f(t)(v) ∈ qiK can be constructed as follows: Consider
the path

γ : [0, t] → Dn , ξ 7→ x + ξeν .

Now parallel transport the element v along γ−1 using the connection
ωα to get w ∈ qiK and then parallel transport the element f(0)w along
φα,β ◦ γ using the connection ωβ . This works since, in terms of the
bundle Fi, this means we use the same parallel transport (given by ωα

and ωβ in the two trivializations) to transport a given vector in the fiber
of γ(t) to the fiber of γ(0), where, in terms of the trivialization, they
are identified using f(0).

By Lemmas 2.5 and 2.3, together with the facts that f(0) is an isom-
etry and the curvatures of the bundles Fi are universally bounded, the
norms

‖f(0)v − f(0)w‖ = ‖v − w‖ and ‖f(0)w − f(t)v‖

are bounded up to a universal constant by the length of γ or φα,β ◦ γ,
respectively, and hence are bounded by C ′ · t, where C ′ is a constant
independent of i, α and β (note that ‖Dφα,β‖ is uniformly bounded as
the supremum of finitely many compactly supported continuous func-
tions). This implies the assertion of the proposition with C := 2C ′.

q.e.d.

We call a continuous Banach-space bundle

F →֒ L → M

(where the typical fiber F is a complex Banach space) a Lipschitz bundle
if the following holds: There is an open covering (Uj)j∈J of M and there
are trivializations

L|Uj
∼= Uj × F

so that the associated transition functions

Uα ∩ Uβ → End(F )

are locally Lipschitz continuous, End(F, F ) being equipped with the
operator norm.

In this context, Proposition 2.6 can be summarized as follows:
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Theorem 2.7. The bundles Fi → M can be assembled to a Lipschitz
Hilbert A-module bundle

L → M

with typical fiber qA. The bundles L · Ai all have a smooth structure
compatible with the induced Lipschitz structure and are isomorphic to
Fi.

In the following, we will use results about Hilbert A-module bundles
as explained in [18] where the role of smooth structures of Hilbert A-
module bundles is quite carefully explained. Here, we will frequently use
Lipschitz structures of such bundles (i.e. the transition functions of a
Lipschitz atlas are (locally) Lipschitz continuous). It is straightforward
to check that all the results described in [18] we are using here carry
over immediately to the Lipschitz category.

In order to construct the bundle V described in Theorem 2.1, we use
[18, Theorem 3.14] and write the bundle L → M as a subbundle of a
trivial Hilbert A-module bundle

M × Ak → M.

Hence, L is the image of a projection valued Lipschitz continuous section
φ of this bundle. The section φ can be approximated arbitrarily close (in
the operator norm of HomA(Ak, Ak) = Ak×k and the maximum norm
on M) by a smooth projection valued section. The resulting bundle V
(consisting of the images of these projections) is a smooth Hilbert A-
module bundle. We choose the approximation close enough such that V
is Lipschitz isomorphic as a Hilbert A-module bundle to the bundle L;
in particular, it also has typical fiber isomorphic to qA (cf. [18, Lemma
3.12.]).

By the algebraic structure of A, also V has “blocks” V ·Ai and, being
an A-module bundle isomorphism, the isomorphism between V and L
maps the blocks V ·Ai to L·Ai. By construction of V , this way we obtain
Lipschitz Hilbert Ai-module bundle isomorphisms between the smooth
bundles V · Ai and Fi which are therefore also smoothly isomorphic.

The trivializations ψi,j assemble to Lipschitz continuous trivializa-
tions

L|Wj
∼= Wj × qA.

On the other hand, we can choose smooth Hilbert A-module bundle
trivializations

V |Wj
∼= Wj × qA;

because the Wj are contractible and the typical fiber of V is isomorphic
to qA.

Observe that EndA(qA) ∼= qAq, where EndA(qA) denotes the right
A-module endomorphisms, and qAq acts by left multiplication. The



304 B. HANKE & T. SCHICK

isomorphism L ∼= V can hence be described by a Lipschitz continuous
map

τj : Dn → qAq

with values in the unitary group of qAq.
The desired connection on V is now constructed as follows. Let

(Wj)j∈J be the open covering of M from above and recall the trivi-
alizations

ψi,j : Fi|Wj
∼= Dn × qiK .

For each i and j, the connection ∇i induces a smooth connection 1-form
in Γ(T ∗Dn ⊗ EndK(Fi)) ∼= Ω1(Dn; qiKqi) using the trivialization ψi,j .
Since the connection is a connection of Hilbert K-modules, the values
consist actually of skew-adjoint elements of qiKqi. Using the canonical
chart on Dn, we consider these connections as smooth functions

ωi,j : Dn → (qiKqi)
n

and as such they have C1-norms which are uniformly bounded in i and
j. This follows from Lemma 2.3 and the curvature assumption on the
sequence (∇i). In particular, the functions ωi,j can be assembled to
Lipschitz continuous functions

ωL
j : Dn → (qAq)n.

The above isomorphism L ∼= V gives rise to induced connection forms

ωV
j : Dn → (qAq)n

equal to

((ωV
j )(x))ν = τj(x) ◦ ((ωL

j )(x))ν ◦ τj(x)∗

with ν = 1, . . . , n. Unfortunately, the functions ωV
j need not be smooth.

We choose ǫ > 0 so small that the ǫ-neighborhood of Dn in Rn is still
mapped diffeomorphically to an open subset of M by φj . Now, define
a smooth function ω̃V

j : Dn → (qAq)n by

ω̃V
j (x) :=

∫

Dn

δǫ(x − t)ωV
j (t)dt

using the Bochner integral and a smooth nonnegative bump function
δǫ : Dn → R of total integral 1 whose support is contained in the ǫ-
ball around 0. We consider ωV

j as a smooth connection 1-form in

Γ(T ∗Dn; EndA(V )) = Ω1(Dn; qAq) and hence as a smooth A-linear con-
nection

∇V,j ∈ Ω1(Wj ; qAq).

Let ρj : M → R be a smooth partition of unity subordinate to the
covering (Wj) and set

∇V :=
∑

j∈J

ρj · ∇
V,j .
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Then ∇V is a Hilbert A-module connection on V , since the forms ω̃V
j

are still skew-adjoint. Since it preserves the A-module structure, it
also preserves the blocks V · Ai. We claim that it has the asymptotic
curvature properties stated in Theorem 2.1. We denote by

ωL
i,j : Dn → (qiKqi)

n, ωV
i,j : Dn → (qiKqi)

n , ω̃V
i,j : Dn → (qiKqi)

n

the connection forms that are induced by the projection pi : A → Ai =
K, i.e., ωL

i,j = piω
L
j pi, etc. By construction,

ωL
i,j = ωi,j .

Because L and V are Lipschitz isomorphic with a global Lipschitz con-
stant on M (with respect to the covering of M by the subsets Wj), there
is a constant C such that we have an estimate of L1-norms

‖ωV
i,j‖1 ≤ C · ‖ωL

i,j‖1 = C · ‖ωi,j‖1.

Furthermore,

ω̃V
i,j =

∫

Dn

δǫ(x − t)ωV
i,j(t)dt.

The formula shows that we get pointwise bounds on ω̃V
i,j and its deriva-

tives up to order d in terms of the sup-norm of the fixed function δǫ

and its derivatives up to order d and of the L1-norm of ωV
i,j . Since the

curvature of ω̃V
i,j is in local coordinates given by certain derivatives up to

order 1 of ω̃V
i,j and because the derivatives of the functions ρj , the deriva-

tives of the transition functions for the bundle V , and the derivatives
of the chart transition functions (with respect to the cover M ⊂

⋃
Wj)

are globally bounded, the claim about the asymptotic behavior of the
connection ∇V follows.

Remark 2.8. An alternative construction of ∇V consists of assem-
bling the given connections ∇i to a Lipschitz connection on L inducing
a Lipschitz connection on V . This is then smoothed to yield the de-
sired connection ∇V . Our argument given before avoids the discussion
of Lipschitz connections.

Remark 2.9. We have been careful to write down the rather explicit
connection ∇V with its curvature properties, because this is used in
Proposition 3.4 to show that a suitable quotient bundle is flat, which is
the main ingredient in the proof of our main result Theorem 3.8.

Alternatively, one could use a different argument to show directly
that this quotient bundle admits a flat connection. We thank Ulrich
Bunke for pointing out that this could be done by studying the parallel
transport on the path groupoid of our manifold.
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3. Almost flat bundles and index theory

This section provides a link between the construction from the last
section and the index theory for Dirac operators.

Let M2n be a closed oriented Riemannian manifold of even dimension
and let S → M be a complex Dirac bundle equipped with a hermitian
metric and a compatible connection (cf. [13, Definition 5.2]). As usual,
Clifford multiplication with the complex volume element inωC induces
a splitting S± → M into ±1 eigenspaces. The corresponding Dirac type
operator

D : Γ(S+) → Γ(S−)

has an index in K0(C) ∼= Z. Denoting the universal cover of M by

M̃ and using the usual representation of π1(M) on C∗
maxπ1(M), the

maximal real C∗-algebra of π1(M), we obtain the flat Mishchenko line
bundle

E := M̃ ×π1(M) C∗
maxπ1(M) → M.

The twisted Dirac type operator

D ⊗ id : Γ(S+ ⊗ E) → Γ(S− ⊗ E)

has an index (cf. [16])

αS(M) ∈ K0(C
∗
maxπ1(M)).

In order to detect the non-triviality of αS(M) in certain cases, we use
a C∗-algebra morphism

C∗
max(π1(M)) → Q

where Q is another C∗-algebra whose K-theory can be understood ex-
plicitly and study the image of αS(M) under the induced map in K-
theory.

First, we recall the following universal property of C∗
maxπ for a discrete

group π: Each involutive multiplicative map

π → C

with values in the unitaries of some unital C∗-algebra C can be extended
to a unique C∗-algebra morphism

C∗
max(π) → C.

We now prove a naturality property of indices of twisted Dirac oper-
ators. In the following, we always use the maximal tensor product.

Lemma 3.1. Let M be a compact oriented manifold of even dimen-
sion, S → M be a Dirac bundle, F and G be C∗-algebras and ψ : F → G
be a C∗-algebra morphism. Further, let X be a Hilbert F -module bundle
on M . We define the Hilbert G-module bundle

Y := X ⊗ψ G.
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Let [DX ] ∈ K0(F ) and [DY ] ∈ K0(G) be the indices of the twisted Dirac
type operators

DX : Γ(S+ ⊗ X) → Γ(S− ⊗ X)

DY : Γ(S+ ⊗ Y ) → Γ(S− ⊗ Y )

(with an arbitrary F -module connection on X and G-module connection
on Y ). Then we have

[DY ] = ψ∗([DX ]).

Proof. This follows from the functoriality of Kasparov’s KK-machin-
ery. We denote by [D] ∈ KK(C(M), C) the KK-element defined by the
Dirac operator D : Γ(S+) → Γ(S−) and by

[X] ∈ KK(C, C(M) ⊗ F )

the KK-element given by the Kasparov triple (Γ(X), µX , 0), where
µX : C(M) ⊗ F → B(Γ(X)) is the map induced by the right F -module
structure on X. Using the Kasparov intersection product, we get

[DX ] = [X] ⊗C(M) [D] ∈ KK(C, F )

and [DY ] ∈ KK(C, G) is equal to

[(Γ(X ⊗ψ G), µY , 0)] ⊗C(M) [D] = [(Γ(X) ⊗ψ G, µY , 0)] ⊗C(M) [D].

By definition,

ψ∗[(Γ(X), µF , 0)] = [Γ(X) ⊗ψ G, µY , 0]

and our claim follows from the naturality of the Kasparov intersec-
tion product. For more details on the connection between the KK-
description of the index and the usual definition in terms of kernel and
cokernel, compare e.g., [18]. q.e.d.

Remark 3.2. Of course, in the situation of Lemma 3.1 there is also
a corresponding index for odd dimensional manifolds, taking values in
K1(F ), with the corresponding properties.

Corollary 3.3. Let

π1(M) → U(d)

be a finite dimensional and unitary representation with induced C∗-
morphism ψ : C∗

maxπ1(M) → Mat(C, d). Let

ψ∗ : K0(C
∗
maxπ1(M)) → K0(Mat(C, d)) ∼= K0(C) = Z

be the map induced by ψ. Then ψ∗(αS(M)) coincides with the index of
the Dirac type operator D twisted by the bundle

M̃ ×π1(M) Cd → M.
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Here we used the following well known instance of Morita equivalence:
The index of D twisted with the Hilbert C-module bundle (i.e., vector

bundle) M̃ ×π1(M) Cd is equal to the Mat(C, d)-index of D twisted with

the Hilbert Mat(C, d)-module bundle M̃ ×π1(M) Mat(C, d).
Unfortunately, because the higher Chern classes of finite dimensional

flat bundles vanish (using Chern-Weil theory), the element ψ(αS(M))
is simply equal to d · ind(D).

We will now use the construction of Section 2 in order to get a useful
infinite dimensional holonomy representation of π1(M).

Let (Pi,∇i)i∈N be a sequence of almost flat vector bundles on M and
let V → M be the smooth Hilbert A-module bundle constructed in
Theorem 2.1. Let

A′ =
∞⊕

i=1

K ⊂ A

be the closed two sided ideal consisting of sequences of elements in K

that converge to 0 and let

Q := A/A′

be the quotient C∗-algebra. The bundle

W := V/(V · A′) → M

is a smooth Hilbert Q-module bundle with fiber qQ. Here q is the image
of the projection q ∈ A in Q. The connection ∇V induces a connection
on W . The following fact follows immediately from the construction of
the bundle V .

Proposition 3.4. The curvature form

ΩV ∈ Γ(Λ2M ⊗ EndA(V ))

can be considered as a form in

Γ(Λ2(M) ⊗ HomA(V, V · A′)).

As a consequence, the induced connection on W is flat.

Fixing a base point x ∈ M and an isomorphism of the fiber Wx
∼= qQ,

the holonomy around loops based at x gives rise to a multiplicative
involutive map

π1(M, x) → HomQ(Wx, Wx) ∼= HomQ(qQ, qQ) = qQq

with values in the unitaries of the subalgebra qQq of Q and hence to a
map of C∗-algebras

φ1 : C∗
maxπ1(M) → qQq → Q.
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Let φ2 : C∗
maxπ1(M) → Q be the homomorphism obtained by the same

construction, but now applied to the sequence P ′
i := M×U(di) of trivial

bundles, with trivial (and hence flat) connections. Define

(3.5) φ∗ := (φ1)∗ − (φ2)∗ : K0(C
∗
maxπ1(M)) → K0(Q).

It is not difficult to compute the K-theory of A and Q. Throughout
the following argument, we work with the usual fixed isomorphism

Z = K0(K).

Recall also that K1(K) = 0. Since K-theory commutes with direct
limits, we obtain an isomorphism K0(A

′) ∼=
⊕

∞

i=1 Z and K1(A
′) = 0

(recall that A′ is the ideal
⊕

∞

i=1 K in A).

Proposition 3.6. Let

J ⊂
∏

i∈N

Z

be the subgroup consisting of sequences with only finitely many nonzero
elements, i.e., J =

⊕
∞

i=1 Z. Then we have

K0(A) ∼=
∏

i∈N

Z,

K0(Q) ∼=
(∏

Z

)
/J.

Under the above isomorphisms, the natural map K0(A) → K0(Q) cor-
responds to the projection

∏
Z →

(∏
Z

)
/J.

Proof. Observe that the projections {(pni
)i∈N | ni ∈ N} form an

(uncountable) approximate unit of A, where pn ∈ K is the standard
projection of rank n. Consequently, A is stably unital in the sense of
[2, Definition 5.5.4]. By [2, Proposition 5.5.5], elements in K0(A) are
represented by formal differences of projections in

Mat∞(A) = Mat∞

(∏
K

)
,

where Mat∞ is the union of all the Matr. The main point of this stable
unitality is that we don’t have to adjoin a unit to A in order to compute
K0. By projecting to the different “coefficients” Ai we get an induced
map

χ : K0(A) →
∞∏

i=1

K0(K) =
∏

Z.

Writing down appropriate projections, we see that χ is surjective. For
the injectivity of χ, consider two projections P, Q ∈ Matr(A) such that
for all i ∈ N the components Pi, Qi ∈ Matr(K) are equivalent, where the
subscript i indicates application of the projection A =

∏
i K → Ai = K
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onto the ith factor. We get a family of partial isometries Vi ∈ Matr(K)
such that

ViV
∗
i = Pi V ∗

i Vi = Qi.

Because all the matrices Vi have norm 1, they can be assembled to a
partial isometry V ∈ Matr(A) such that V V ∗ = P and V ∗V = Q.

The calculation of K0(Q) uses the exact sequence

K0(A
′)

ι∗→ K0(A)
π∗→ K0(Q) → K1(A

′)

induced by the short exact sequence

0 → A′ ι
−→ A

π
−→ Q → 0,

where ι : A′ → A and π : A → Q are the obvious maps. Since K1(A
′) =

0, π∗ is surjective.
The inclusion of the first k summands

K ⊕ . . . ⊕ K → A

induces an injective map

K0(K ⊕ . . . ⊕ K) → K0(A)

that can be identified with the inclusion

Z ⊕ . . . ⊕ Z →
∏

Z

onto the first k factors. The map ι∗ is now given by passing to the direct
limit of the last map, and this finishes our calculation of K0(Q). q.e.d.

Remark 3.7. In a similar way, it can be shown that

K1(A) = K1(Q) = 0.

Now we can formulate the following important fact which shows that
the asymptotic index theoretic information of the sequence of almost
flat bundles (Pi) is completely contained in αS(M).

Theorem 3.8. For all i ∈ Z, define

zi := ind(DEi
) − di ind(D) ∈ K0(C) = Z,

the index of the Dirac type operator D twisted by the virtual bundle
Ei−Cdi where Ei → M is the di-dimensional unitary vector bundle with
connection induced by the connection ∇i on Pi, S±⊗Ei is equipped with
the product connection and C is the trivial bundle. Then the element

φ∗(αS(M)) ∈ K0(Q)

is represented by

(zi) ∈
∏

Z.
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Proof. The idea of the proof is to study the image of a (computable)
index of the Dirac operator twisted with a non-flat bundle of A-modules
over M under the canonical map

K0(A) → K0(Q).

Using Lemma 3.1, this index turns out to be equal to the index of
D twisted with a flat bundle which is induced by the given holonomy
representation of π1(M) on Q. Therefore it is equal to φ∗(αS(M)).

In order to make this idea precise, we consider the bundle of A-Hilbert
modules V → M constructed in Theorem 2.1 and the element

[DV ] ∈ KK(C, A) ∼= K0(A) =
∏

Z

represented by the Dirac operator

DV : Γ(S+ ⊗ V ) → Γ(S− ⊗ V )

on M . For i ∈ N let

p : A → K

be the projection onto the ith factor. By Lemma 3.1, the induced map

p∗ : K0(A) → K0(K) ∼= Z

sends [DV ] to the index of DPi×U(di)
K. Hence,

p∗([DV ]) = ind(DEi
).

If we carry out the same construction with the trivial U(di)-bundle P ′
i

we obtain

p∗([DV ′ ]) = di ind(D),

and it follows that

[DV ] − [DV ′ ] = (z1, z2, z3, . . .).

Under the canonical map

K0(A) → K0(Q),

the element [DV ] is mapped to the element represented by the index of
the Dirac operator D twisted with the flat bundle

W = M̃ ×π1(M) Q

using the holonomy representation φ1 constructed from the (Pi) of
π1(M) on Q. This element coincides with (φ1)∗(αS(M)). In a simi-
lar way, (φ2)∗(αS(M)) is the image of [DV ′ ] under the canonical map
K0(A) → K0(Q) and it remains to take the difference in order to finish
the proof of Theorem 3.8. q.e.d.

The reason for using the virtual bundles Ei−Cdi will become apparent
in the applications described in the next sections.
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4. Enlargeability and universal index

For a closed spin manifold M2n of even dimension, we consider the
Dirac bundle S → M given by the complex spinor bundle on M . In this
case, we define

αmax(M) ∈ K2n(C∗
maxπ1(M)) = K0(C

∗
maxπ1(M))

to be equal to αS(M) ∈ K0(C
∗
maxπ1(M)) (cf. Section 3). If the dimen-

sion of M is odd, note that

K0(C
∗
max(π1(M) × Z)) = K0(C

∗
maxπ1(M)) ⊗ 1 ⊕ K1(C

∗
maxπ1(M)) ⊗ e,

using the exterior Kasparov product

K∗(C
∗
maxπ1(M)) ⊗ K∗(C

∗Z) → K∗(C
∗
max(π1(M) × Z))

with the canonical generators 1 ∈ K0(C
∗Z) and e ∈ K1(C

∗Z). Using
this splitting, we define αmax(M) ∈ K1(C

∗
maxπ1(M)) by requiring that

αmax(M) ⊗ e = αmax(M × S1).

This is consistent with the direct definition of αmax(M) alluded to in
Remark 3.2 and the product formula [21, Theorem 9.20]

αmax(M × S1) = αmax(M) ⊗ e, with e = αmax(S
1).

The following fact is well known and can be proven in the usual way
by an appropriate Weitzenböck formula.

Proposition 4.1. Let M be a closed spin manifold. If M admits a
metric of positive scalar curvature, then

αmax(M) = 0.

Theorem 4.2. Let Mm be an enlargeable or area-enlargeable spin
manifold. Then

αmax(M) 6= 0 ∈ Km(C∗
max(π1(M))).

Proof. We first show how we can reduce to the case that M has even
dimension. If not, consider the commutative diagram

Km(M)
×[S1]
−−−−→ Km+1(M × S1)

y
y

Km(Bπ1(M))
×[S1]
−−−−→ Km+1(Bπ1(M) × BZ)

y
y

Km(C∗
maxπ1(M))

×αmax(S1)
−−−−−−−→ Km+1(C

∗
max(π1(M) × Z)).

Here we use the fact that the α-index is multiplicative with respect to the
exterior Kasparov product (note that BZ = S1 and C∗

max(π1(M)×Z) =
C∗

maxπ1(M) ⊗ C∗Z, compare [21, Theorem 9.20]). Since M × S1 is
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(area)-enlargeable if M is, and the image of αmax(M) under the bottom
horizontal arrow is αmax(M × S1), it suffices to treat non-vanishing of
this invariant for even dimensional area-enlargeable spin manifolds.

Therefore, we assume that M has even dimension 2n so that αmax(M)
can be considered as an element in K0(C

∗
maxπ1(M)).

Because M is area-enlargeable, there is a sequence of almost flat
principal unitary bundles (Pi) on M such that the Chern classes in
H∗(M ; Z) of the associated (finite dimensional) complex vector bundles
Ei satisfy

cν(Ei) = 0, if 0 < ν < n

〈cn(Ei), [M ]〉 6= 0, if ν = n.

Such a sequence can be constructed as follows: Because the Chern char-
acter

K0(S2n) ⊗ Q → Heven(S2n; Q)

is an isomorphism, there is a vector bundle

E → S2n

with

cn(E) 6= 0 ∈ H2n(S2n; Z).

Pick a connection on E. Now let i ∈ N and choose a finite covering
M → M with covering group G such that there is a 1

i -area contracting

map ψ : M → S2n of nonzero degree. Passing to a finite cover of M if
necessary, we can assume without loss of generality that the covering
M → M is regular. The G-action on M can be extended to an action
of this group on ⊕

g∈G

g∗(ψ∗(E))

by vector bundle automorphisms. Note that the norm of the curvature
of this direct sum of bundles is equal to the norm of the curvature of
ψ∗(E) and this is bounded by 1

i times the norm of the curvature of E

as ψ is 1
i -area contracting. (If the map was 1

i -contracting, we would get

a factor 1
i2

). Let Ei → M be the quotient vector bundle. By naturality
of Chern classes we have cn(Ei) 6= 0 and cν(Ei) = 0, if 0 < ν < n. The
last statement is true, because the canonical map

H∗(M ; Q) → H∗(M ; Q)

is injective, transfer followed by division by n giving a splitting.
By construction, the Chern character of the virtual vector bundle

Ei − Cdi is

ch(Ei − Cdi) = C · cn(Ei) 6= 0

with some non-zero constant C (dependent of n). In particular, ch(Ei−
Cdi) is concentrated in degree 2n.
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The Atiyah-Singer index formula implies that the integer valued index
in K0(C) ∼= Z of the Dirac operator

DEi−C
di : Γ(S+ ⊗ (Ei − Cdi)) → Γ(S− ⊗ (Ei − Cdi))

is equal to

〈Â(TM) ∪ ch(Ei − Cdi), [M ]〉 = C · 〈cn(Ei), [M ]〉 6= 0

where Â denotes the total Â-class. Now, Theorem 3.8 implies our as-
sertion. q.e.d.

5. On a question by Burghelea

Question ([19, Problem 11.1]). “If Mn is an enlargeable manifold and

f : M → Bπ1(M)

induces an isomorphism on the fundamental groups, does f∗ map the
fundamental class of Hn(M ; Q) non-trivially? Is the converse statement
true?”

The next theorem answers the first question affirmatively. We can
even drop any spin assumption on M or its universal cover. At the end of
this section, we will show by an example that the converse of Burghelea’s
question in its stated form must be answered in the negative.

Theorem 5.1. Let M be an enlargeable or area-enlargeable manifold
of dimension m. Then

f∗([M ]) 6= 0 ∈ Hm(Bπ1(M); Q).

We first reduce to the case that M has even dimension 2n. Else,
observe that M × S1 also is enlargeable and we have the commutative
diagram

Hm(M ; Q)
×[S1]
−−−−→ Hm+1(M × S1; Q)

y
y

Hm(Bπ1(M); Q)
×[S1]
−−−−→ Hm+1(B(π1(M) × Z); Q) ,

where the image of the fundamental class of M is mapped to the image
of the fundamental class of M × S1 under the bottom horizontal map.

Given M of dimension 2n, we choose a sequence of almost flat bundles
(Ei) as in the proof of Theorem 4.2. Now consider the commutative
diagram

(5.2)

K0(M) ⊗ Q
f∗

−−−−→ K0(Bπ1(M)) ⊗ Q
β

−−−−→ K0(Q) ⊗ Q

ch

y ch

y =

y

Heven(M ; Q)
f∗

−−−−→ Heven(Bπ1(M); Q) −−−−→ K0(Q) ⊗ Q
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In this diagram, the map β is induced by the composition of the assem-
bly map

µ : K0(Bπ1(M)) → K0(C
∗
maxπ1(M))

with the map φ∗ : K0(C
∗
maxπ1(M)) → K0(Q) which was defined in equa-

tion (3.5). Furthermore, ch denotes the homological Chern character.
We need the following description of the K-homology K0(M) from

[12], Definition 2.6 and Lemma 2.8.

Proposition 5.3. Let X be a connected CW -complex. Elements in
K0(X) are represented by triples (N, S, u), where N is a closed oriented
Riemannian manifold of even dimension (consisting of components of
possibly different dimension), S → M is a Dirac bundle on M and
u : N → X is a continuous map. Two such triples are identified, if
they are equivalent under the equivalence relation generated by direct
sum/disjoint union, bordism and vector bundle modification.

Using vector bundle modification and the bordism relation introduced
above, we can assume that in the triple (N, S, u) above, the manifold N
is connected.

Now let M be the given manifold and let (N, S, u) represent an ele-
ment k ∈ K0(M). Let D : Γ(S+) → Γ(S−) be the Dirac type operator
associated to the Dirac bundle S.

Lemma 5.4. The element β ◦ f∗(k) (compare (5.2)) is represented
by

(z1, z2, . . .) ∈
∏

Z = K0(A)

where

zi = ind(Du∗(Ei)−C
di )

is the index of D twisted by the virtual bundle u∗(Ei) − Cdi.

The proof of this statement is analogous to the proof of Theorem 4.2.
Note that the Kasparov KK-theory element in K0(M) represented by
(N, S, u) is equal to

u∗([D])

where [D] ∈ KK(C(N), C) is the KK-element induced by D (cf. the
explanations before Example 2.9 in [12]). In particular, the element

µ ◦ f∗(k) ∈ K0(C
∗
maxπ1(M))

is given as the index of the Dirac operator D twisted by u∗(E), where
E → M is the Mishchenko-Fomenko line bundle with fiber C∗

maxπ1(M).

Lemma 5.5. The element ch(k) ∈ Heven(M ; Q) is equal to

(−1)n · u∗

((
p! ch(σ(D)) ∪ T (TN ⊗ C)

)
∩ [N ]

)
,
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where σ(D) is the K-theoretic symbol class, T is the total Todd class
and

p! : H∗
c (TN ; Q) → H∗−dim(N)(N ; Q)

is the Gysin map induced by the canonical projection p : TN → N .

Proof. In a first step, one shows that the assignment

ω : (N, S, u) 7→ (−1)n · u∗

((
p! ch(σ(D)) ∪ T (TN ⊗ C)

)
∩ [N ]

)

is compatible with the equivalence relation on the set of triples (N, S, u)
used in the definition of K0(M). For disjoint union and bordism, this
is straightforward. The invariance under vector bundle modification
uses the same calculation as in Section 7 of [8], p. 64. Consequently, ω
induces an additive map

K0(M) ⊗ Q → Heven(M ; Q).

In order to prove that this map is indeed equal to the homological Chern
character, it is enough to consider triples (N, S, u), where N is a Spinc-
manifold and S is the canonical spinor bundle on N (cf. [12, 2.3]). But
in this special case an explicit calculation shows that

(−1)n · p! ch(σ(D)
)
∪ T (TN ⊗ C) = e

1
2
c · Â(TN)

where c ∈ H2(N ; Q) is the first Chern class of the complex line bundle
associated to the Spinc-structure on N . Now one uses the calculation
of the homological Chern character in [11, 4.2]. q.e.d.

We continue the proof of Theorem 5.1. Let (N, S, u) be a triple
(with connected N) representing an element in K0(M)⊗Q which under
the homological Chern character is mapped to q · [M ] ∈ H2n(M ; Q).
Here, q denotes an appropriate nonzero rational number. As before,
let D : Γ(S+) → Γ(S−) be the associated Dirac type operator. We will
show that

β ◦ f∗([N, S, u]) 6= 0 ∈ K0(Q)

which implies the assertion of Theorem 5.1 by the commutativity of
diagram (5.2).

Using Lemma 5.4,

β ◦ f∗([N, S, u]) ∈
∏

Z
/⊕

Z = K0(Q)

is represented by the sequence (z1, z2, . . .) ∈
∏

Z where

zi = ind(Du∗(Ei)−C
di ).

By the Atiyah-Singer index theorem, this index is given by the zero
dimensional component of the homology class

(−1)n
(
p! ch(σ(D))∪T (TN ⊗C)∪ ch(u∗(Ei)−Cdi)

)
∩ [N ] ∈ H∗(N ; Q).
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On the other hand, because

u∗ : H∗(N ; Q) → H∗(M ; Q)

induces an isomorphism in degree 0, the number zi is equal to the zero
dimensional component of

u∗

(
(−1)n

(
p! ch(σ(D)) ∪ T (TN ⊗ C) ∪ ch

(
u∗(Ei) − Cdi

))
∩ [N ]

)

= ch(Ei − Cdi) ∩ u∗

(
(−1)n

(
p! ch(σ(D)) ∪ T (TN ⊗ C)

)
∩ [N ]

)

= q ·
(
ch(Ei − Cdi) ∩ [M ]

)
.

The last equality uses Lemma 5.5. Hence,

zi = q · C · 〈cn(Ei), [M ]〉 ∈ q · (Z \ {0})

by the construction of the sequence Ei (the constant C was introduced
at the end of Section 4). It follows that β ◦ f∗([N, S, u]) 6= 0 and the
proof of Theorem 5.1 is complete.

The following lemma prepares the construction of an example show-
ing that the converse of Burghelea’s question must be answered in the
negative.

Lemma 5.6. For every natural number n > 0, there is a finitely
presented group G without proper subgroups of finite index and such
that

Hn(G; Q) 6= 0.

Proof. The proof is modeled on a similar construction in [1] (cf. The-
orem 6.1 and the following remarks in this reference). Let

K1 := 〈a, b, c, d | a−1ba = b2, b−1cb = c2, c−1dc = d2, d−1ad = a2〉

be the Higman group [10]. This is a finitely presented infinite group
without nontrivial finite quotients (and hence without proper subgroups
of finite index). By [1], K1 is acyclic and in particular

H̃∗(K1; Q) = 0.

There is an element z ∈ K1 generating a subgroup G1 < K1 of infinite
order. The amalgamated product

G2 := K1 ∗G1 K1

is finitely presented and still has no nontrivial finite quotients as one
checks directly with help of the universal property of push-outs. The
Mayer-Vietoris sequence shows that

H∗(G2; Q) ∼= H∗(S
2; Q).
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By [1, Theorem 6.1] the group G2 embeds in the rationally acyclic group
without nontrivial finite quotients

K2 := (K1 × G1) ∗G1 K1.

Here we identify G1 on the left with the second factor of K1 × G1. We
set

G3 := K2 ∗G2 K2.

Again using the Meyer-Vietoris sequence,

H∗(G3; Q) ∼= H∗(S
3; Q).

This process is now carried out inductively by embedding Gi in the
rationally acyclic finitely presented group without nontrivial finite quo-
tients

Ki := (Ki−1 × Gi−1) ∗Gi−1 Ki−1

and defining

Gi+1 := Ki ∗Gi
Ki.

The group G := Gn then has the desired properties. q.e.d.

The following theorem provides a negative answer to the converse of
the question by Burghelea.

Theorem 5.7. Let n ≥ 4 be a natural number. Then there exists
a closed connected n-dimensional spin manifold M which is not area-
enlargeable, but whose classifying map M → Bπ1(M) sends the funda-
mental class of M to a nonzero class in Hn(Bπ1(M); Q).

Proof. Let G be the group constructed in Lemma 5.6 for the number
n. The Atiyah-Hirzebruch spectral sequence computing the rational
spin bordism of BG (or any other space) collapses at E2, and hence
there is a closed n-dimensional spin manifold N together with a map
f : N → BG such that

f∗([N ]) 6= 0 ∈ Hn(BG, Q).

Because n ≥ 4 and because G is finitely presented, there is also an
n-dimensional closed spin manifold A with fundamental group G. Let
g : A → BG denote the classifying map and consider the map

N♯A
f♯g
−→ BG.

This map is surjective on π1 and sends the fundamental class of N♯A
to a nontrivial class in Hn(BG; Q) (if this is not the case, simply take
the connected sum with more copies of A). Carrying out spin surgery
on N♯A over BG in order to kill the kernel of π1(f♯g), we obtain a spin
manifold M with fundamental group G and such that the classifying
map M → BG sends the fundamental class of M to a nontrivial class
in Hn(BG; Q). However, G does not have any proper subgroups of
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finite index and therefore M does not have any nontrivial finite covers
whatsoever. Consequently, M is not area-enlargeable. q.e.d.

Remark 5.8. It is not clear if the converse of Burghelea’s question
has an affirmative answer when working with a notion of enlargeability
allowing infinite covers.

We address the relation between the corresponding Gromov-Lawson
obstruction to positive scalar curvature [6] and αmax at [9].

6. Concluding remarks

In [6], it is shown that enlargeability is a homotopy invariant and
is preserved under some natural geometric constructions such as tak-
ing connected sums or taking the Cartesian product of two enlargeable
manifolds. If all manifolds under consideration are spin, then using
the universal property of C∗

max, one can show by purely formal argu-
ments that the manifolds resulting from these constructions have non-
vanishing αmax. On the other hand, this reasoning can be used to prove
the non-vanishing of αmax in some cases that do not seem to be acces-
sible to the classical geometric arguments by Gromov and Lawson. For
example, using the methods developed in this paper, one can show

Proposition 6.1. Let F and M be connected enlargeable spin man-
ifolds of even dimension. Let

F →֒ E → M

be a smooth fiber bundle admitting a spin structure and inducing a split
short exact sequence

1 → π1(F ) → π1(E) → π1(M) → 1

which is equivalent to the canonical split sequence

1 → π1(F ) → π1(F ) × π1(M) → π1(M) → 1.

Then αmax(E) 6= 0 and in particular E does not admit a metric of
positive scalar curvature.
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