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LEVI DECOMPOSITION FOR SMOOTH POISSON
STRUCTURES

PHILIPPE MONNIER & NGUYEN TIEN ZUNG

Abstract

We prove the existence of a local smooth Levi decomposition
for smooth Poisson structures and Lie algebroids near a singu-
lar point. This Levi decomposition is a kind of normal form or
partial linearization, which was established in the formal case by
Wade [10] and in the analytic case by the second author [15]. In
particular, in the case of smooth Poisson structures with a com-
pact semisimple linear part, we recover Conn’s smooth lineariza-
tion theorem [5], and in the case of smooth Lie algebroids with
a compact semisimple isotropy Lie algebra, our Levi decomposi-
tion result gives a positive answer to a conjecture of Weinstein
[13] on the smooth linearization of such Lie algebroids. In the
appendix of this paper, we show an abstract Nash-Moser normal
form theorem, which generalizes our Levi decomposition result,
and which may be helpful in the study of other smooth normal
form problems.

1. Introduction

In the study of Poisson structures, in particular their local normal
forms, one is led naturally to the problem of finding a semisimple
subalgebra of the (infinite-dimensional) Lie algebra of functions under
the Poisson bracket: such a subalgebra can be viewed as a semisim-
ple Lie algebra of symmetry for the corresponding Poisson structure,
and by linearizing it, one gets a partial linearization of the Poisson
structure, which in some case leads to a full linearization. We call it
the Levi decomposition problem, because it is an infinite-dimensional
analog of the classical Levi decomposition for finite-dimensional Lie
algebras.
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Recall that, if [ is a finite-dimensional Lie algebra and t is the solvable
radical of [, then there is a semisimple subalgebra g of [ such that [ is
a semi-direct product of g with v: [ = g x v. This semidirect product
is called the Levi decomposition of [, and g is called the Levi factor
of [. The classical theorem of Levi and Malcev says that g exists and is
unique up to conjugations in [, see, e.g., [1L].

The Levi-Malcev theorem does not hold for infinite dimensional al-
gebras in general. But a formal version of it holds for filtered pro-finite
Lie algebras: if £ D £1 D ... D £; D ... where £; are ideals of a
Lie algebra £ such that [£;, £;] C £, and dim £/£; are finite, then
the projective limit lim; o, £/£; admits a Levi factor (which is isomor-
phic to the Levi factor for £/£;1). The proof of this formal infinite
dimensional Levi decomposition is absolutely similar to the proof of the
classical Levi-Malcev theorem. And the formal Levi decomposition for
singular foliations [B] and Poisson structures [10] are instances of this
infinite dimensional formal Levi decomposition.

In [i5], the second author obtained the local analytic Levi decompo-
sition theorem for analytic Poisson structures which vanish at a point.
This theorem generalizes Conn’s linearization theorem for analytic Pois-
son structure with a semisimple linear part [4], and is at the base of
some new analytic linearization results for Poisson structures and Lie
algebroids [15, 6.

The aim of this paper is to establish the local smooth Levi decompo-
sition theorem for smooth Poisson structures and Lie algebroids which
vanish at a point. Our main theorem (Theorem i.1) is a generaliza-
tion of Conn’s smooth linearization theorem [§] for Poisson structures
with a compact semisimple linear part, and provides a local smooth
semi-linearization for any smooth Poisson structure whose linear part
(when considered as a Lie algebra) contains a compact semisimple
subalgebra.

Let II be a CP Poisson structure (p € NU {co0}) in a neighborhood
of 0 in R™, which vanishes at the origin. Denote by [ the n-dimensional
Lie algebra of linear functions in R™ under the Lie-Poisson bracket II;
which is the linear part of II at 0, and by g a compact semisimple
subalgebra of [. (Without loss of generality, one can assume that g is
a maximal compact semisimple subalgebra of [[ and we will call g a
compact Levi factor of [). Denote by (1,...,Zm, Y1, -, Yn—m) a linear
basis of [, such that z1,...,x,, span g (dimg = m), and y1,...,Yn—m
span a linear complement t of g in [ which is invariant under the adjoint
action of g. Denote by cfj and afj the structural constants of g and

of the action of g on t respectively: [z;,z;] = >, cfjxk and [z;,y;] =
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>k aijk. We say that IT admits a local C?-smooth Levi decomposition
with respect to g if there exists a local C%-smooth system of coordinates
(@, xed, ye, .y ), with 2° = a;+ higher order terms and
y;° = y;+ higher order terms, such that in this coordinate system, the
Poisson structure has the form

1 AU B
0 0 0 0
k , oo
+> dbyp 5o " By +) Fy 5 " B

where Fj; are some functions in a neighborhood of 0 in R". In other
words, we have

(1.2) {w®,2y =) dhaf® and {7, 45} = ) aljyi,

i.e., the functions z$°,..., x50 span a compact Levi factor (isomorphic
to g) and their Hamiltonian vector fields Xygo, ..., Xyoo are linear in the
coordinate system (x9°,..., 200, Y3, ..., ynl ).

Theorem 1.1. There exists a positive integer | (which depends only
on the dimension n) such that any C?1~'-smooth Poisson structure II in
a neighborhood of 0 in R™ which vanishes at 0, where ¢ € NU{oo}, ¢ > I,
admits a local Cl-smooth Levi decomposition (with respect to any com-
pact semisimple Lie subalgebra g of the Lie algebra | which corresponds
to the linear part of 11 at 0).

A particular case of the above theorem is when g = [, i.e. when
the linear part of II is compact semisimple. In this case, a local Levi
decomposition is nothing but a local linearization of the Poisson struc-
ture, and we recover the smooth linearization theorem of Conn [5] for a
smooth Poisson structure with a compact semisimple linear part. When
[=g®R, a Levi decomposition is still a linearization of II. In general,
one may consider a Levi decomposition (we also call it a Levi normal
form, see [15]) as a partial linearization of II.

Similarly, to the analytic case [I5], an analogue of Theorem .1 holds
for smooth Lie algebroids:

Theorem 1.2. Let A be a local N-dimensional C%1~'-smooth Lie
algebroid over (R™,0) with the anchor map # : A — TR"™, such that
#a =0 for any a € Ag, the fiber of A over point 0, where ¢ = oo or is a
natural number which is large enough (¢ > 1, where [ is a natural number
which depends only on N and n). Denote by | the N-dimensional Lie
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algebra in the linear part of A at 0 (i.e., the isotropy algebra of A at 0),
and by g a compact semisimple Lie subalgebra of [. Then, there exists
a local C9-smooth system of coordinates (z3°,...,x5°) of (R™,0), and a
local C-smooth basis of sections (s3°,55°, ..., 550,07, ..., v%_,,) of A,
where m = dim g, such that we have:

[55°,83°] = 20, ¢f7°,
(1.3) (72, 05°] = 22y agiuc,s
H#s° = Zj,k bfszoa/ax;?o,
k ook pk

where Cij» @y, by are constants, with cfj being the structural constants of
the compact semisimple Lie algebra g.

The meaning of the above theorem is that the algebra of sections of A
admits a Levi factor (Lie isomorphic to g), spanned by s7°,s5°, ..., s,
whose action can be linearized. Theorem i1.2 is called the local smooth
Levi decomposition theorem for smooth Lie algebroids. As a particular
case of this theorem, we obtain the following result, conjectured by A.
Weinstein [13]: any smooth Lie algebroid whose anchor vanishes at a
point and whose corresponding isotropy Lie algebra at that point is
compact semisimple is locally smoothly linearizable.

Remark that, compared to the analytic case, in the smooth case con-
sidered in [§] and in the present paper, we need the additional condi-
tion of compactness on our semisimple Lie (sub)algebra g. In a sense,
this compactness condition is necessary, due to the following result of
Weinstein [12]: any real semisimple Lie algebra of real rank at least 2 is
smoothly degenerate, i.e., there is a smoothly non-linearizable Poisson
structure with a linear part corresponding to it.

We hope that the results of this paper will be useful for finding new
smoothly non-degenerate Lie algebras (and Lie algebroids) in the sense
of Weinstein [11]. In particular, our smooth Levi decomposition is one
of the main steps in the study of smooth linearizability of Poisson struc-
tures whose linear part corresponds to a real semisimple Lie algebra of
real rank 1 (this case was left out by Weinstein [12]). This problem will
be studied in a separate work.

Our proof of Theorem i1 is based on the Nash-Moser fast conver-
gence method (see, e.g., [8]) applied to Fréchet spaces of smooth func-
tions and vector fields. In particular, our algorithm for constructing a
convergent sequence of smooth coordinate transformations, which is a
combination of smoothing operators with the algorithm in [15] for the
analytic case, is inspired by Hamilton’s “near projections” in his proof
of the so-called Nash-Moser theorem for exact sequences [7]. Besides
smoothing operators for tame Fréchet spaces, we will need homotopy
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operators for certain Chevalley-Eilenberg complexes with vanishing first
and second cohomologies. The homotopy operators and the smoothing
operators are both already present in Conn’s paper [5], and in a sense,
the present paper is a further development of [§] and follows more or
less the same organization.

Using the fact that Lie algebroids can be viewed as fiber-wise linear
Poisson structures, one can immediately deduce Theorem .2 from the
proof given below of Theorem (. T, simply by restricting some functional
spaces, in a way absolutely similar to the analytic case (see Section 6 of
[15]). That is why we will mention only briefly the proof of Theorem .2,
after the full proof Theorem il 1.

The rest of this paper, except the appendix, is devoted mainly to the
proof of Theorem il 1}, and is organized as follows. In Sections 2 and &,
we write down important inequalities involving homotopy operators and
smoothing operators that will be used. Then, in Section 4, we present
our algorithm for constructing the required new systems of coordinates,
and give a proof of Theorem il ., modulo some technical lemmas. These
lemmas are proved in Section b. In Section §, we briefly explain how to
modify (in an obvious way) the proof of Theorem i1 to get a proof of
Theorem i 2.

In the appendix, we present an abstract Nash—Moser smooth normal
form theorem, which generalizes Theorems J.1' and il.2. We hope that
this abstract normal form theorem can be used or easily adapted for the
study of other smooth normal form problems (of functions, dynamical
systems, various geometric structures, etc.).

2. Homotopy operators

Similarly, to the analytic case [4, 15], in order to prove Theorem il .1,
we will need a normed version of Whitehead’s lemma about the vanish-
ing of cohomology of the semisimple algebra g, with respect to certain
orthogonal modules of g constructed below. Our modules will be spaces
of real functions or vector fields, equipped with Sobolev norms, and the
action of g will preserve these norms.

Consider a Lie algebra [ of dimension n together with a compact semi-
simple Lie subalgebra g C [ of dimension m. (Our Poisson structure will
live in a neighborhood of 0 in the dual space R™ = [* of [). Denote by G
the simply-connected compact semisimple Lie group whose Lie algebra
is g. Then, G acts on R = [* by the coadjoint action. Since G is com-
pact, we can fix a linear coordinate system (Z1,...,Zm, Y1, Yn—m)
such that the Euclidean metric on R™ with respect to this coordinate
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system is invariant under the action of GG, and the first m coordinates
(z1,...,oy) come from g. In other words, there is a basis (£1,...,&m)
of g such that each &;, considered as an element of [ and viewed as a
linear function on [*, gives rise to the coordinate z;.

For each positive number r > 0, denote by B, the closed ball of
radius 7 in R™ centered at 0. The group G (and hence the algebra g)
acts linearly on the space of functions on B, via its action on B,: for
each function F' and element g € GG, we put

(2.1) g(F)(2) :=F(g '(2)) = F(Ad)-.z) V z € B,.

For each non-negative integer £k > 0 and each pair of real-valued
functions Fi, F5 on B,, we will define the Sobolev inner product of Fj
with F5 with respect to the Sobolev Hy-norm as follows:

o o o
(2.2) (P, R, = Z/ <| “) <%(z)) <88252(z)) dp(z),

|a| <k

where dp is the standard Lebesgue measure on R™. The Sobolev Hy-
norm of a function F' on B, is

(2.3) I, = £/ (F F) g

We will denote by C, the subspace of the space C*°(B,.) of C*°-smooth
real-valued functions on B,, which consists of functions vanishing at 0
whose first derivatives also vanish at 0. Then, the action of G on C,
defined by (2.1) preserves the Sobolev inner products (2.2).

Denote by ), the space of C"*°-smooth vector fields on B, of the type

(2.4) uw=> ud/0y

i=1

such that u; vanish at 0 and their first derivatives also vanish at 0.
Recall that (&1,...,&,) is the basis of g which correspond to the

coordinates (x1,...,zy,) on R™ = [*. The space ), is a g-module under
the following action:
(2.5)
& - Zuj(?/ayj = xk— + Zawyk Zuja/c?yj ,
J Jk
where X; =3, Uzckﬁ/@x] +> ik amyka/@y] are the linear vector fields

which generate the linear orthogonal coadjoint action of g on R™.
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Equip Y, with Sobolev inner products:

n—m
(26) <u7 v>kH,r = Z <ui7 vi>k,r7
=1

and denote by y,f{r the completion of ), with respect to the correspond-

ing Hy ,-norm. Then, y,fr is a separable real Hilbert space on which g
and G act orthogonally.

The following infinite dimensional normed version of Whitehead’s
lemma is taken from Proposition 2.1 of [:'5]

Lemma 2.1 (Conn). For any given positive number r, and W = C,
or Y, with the above action of g, consider the (truncated) Chevalley—
Eilenberg complex

Wl wWealg L Wealst 2 W e Al
Then there is a chain of operators

W2 WeAlg & WeA2gt 2 W e Adg*
such that

dpohg+ hiod = IdW®/\1g*>

(27) 010oh1+ hgody = IdW®/\29*.

Moreover, there exists a constant C' > 0, which is independent of the
radius v of B,., such that

(2.8) 1hs (W)l < Clluliky, §=0,1,2

forallk >0, andu e W ® /\j“g*. If uw vanishes to an order | > 0 at
the origin, then so does hj(u).

Proof. Strictly speaking, Conn [§] only proved the above lemma in
the case when g = [ and for the module C,., but his proof is quite general
and works perfectly in our situation without any modification. Here, we
will just recall the main idea of this proof. The action of g on W can be
extended to the completion W}, of W with respect to the Hy, ,-norm (this
is the Sobolev space Hy(B,) when W = C, and y,fr when W =),). We
can decompose W}, as an orthogonal direct sum of g-modules W,g S5) Wk}
where W,? is a trivial g-module and Wkl can be decomposed as a Hilbert
direct sum of finite dimensional irreducible g-invariant subspaces. This
decomposition induces a decomposition W = W% @ W!. We can con-
struct a homotopy operator k. : W% ® AtTlg — WO ® Alg by tensoring
the identity mapping of W with a homotopy operator for the trivial
g-module R. To construct the homotopy operator h/ on Wl @ Attlg,
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we can restrict to the case when W' is irreducible. Then, we define the
hi by

ho (w (Z &k - w(&k >
By (w 25 ® (F ! (Zik"w(ii/\ﬁk)>>
K
h (w Zéz NE® < : <Z§k'w(§iA§j/\§k))>
k

where {£} is the dual basis of {¢;} and I' is the Casimir element of g.
Then, one can show that

H H
177 (W)l < Cllwll,,

with C' = m(minyes ||7]])~!, where J is the weight lattice of g. q.e.d.

For simplicity, in the sequel, we will denote the homotopy operators
h; in the above lemma simply by h. Relation (2.7) will be rewritten
simply as follows:

(2.9) Id—doh="hod.

The meaning of the last equality is as follows: if w is an 1-cocycle or
2-cocycle, then it is also a coboundary, and h(u) is an explicit primitive
of u: 0(h(u)) = w. If uis a “near cocycle”, then h(u) is also a “near
primitive” for u.

For convenience, in the sequel, instead of Sobolev norms, we will use
the following absolute forms:

(2.10) || F||k,r := sup sup |[DF(z)|
la|<k zEB;

for F' € C,, where the sup runs over all partial derivatives of degree |«
at most k. More generally, if FF = (F},...,F,,) is a smooth mapping
from B, to R™, we can define

(2.11) | Pl i= sup sup sup [DFi(2)].
i |o|<kzEB,

Similarly, for v = """ u;0/dy; € Yy, we put

(2.12) |u||g,r := sup sup sup |D%u;(2)|.
i ‘Ol|<kZ€Br



LEVI DECOMPOSITION FOR SMOOTH POISSON STRUCTURES 355

The absolute norms ||.||,, are related to the Sobolev norms ||.[|H ~as
follows:

(2.13) [F Nl < CLlIF|If s and | FIIF. < Co(n+ 1)F(| |y,

for any F"in C, or ), and any k > 0, where s = [§]+1 and C and C; are
positive constants which do not depend on k. A priori, the constants C
and Cy depend continuously on r (and on the dimension n), but later
on we will always assume that 1 < r < 2, and so may assume C; and
C5 to be independent of r. The first inequality above is a version of
the classical Sobolev’s lemma for Sobolev spaces. The second inequality
follows directly from the definitions of the norms. Combining it with
Inequality (2.8), we obtain the following estimate for the homotopy
operators h with respect to absolute norms:

(2.14) 1h(@)llkr < Cln+ 1M |lullrs,

for all k > 0 and u € W ® AMtlg* (j = 0,1,2), where W = C, or ).
Here, s = [§] 4 1, C'is a positive constant which does not depend on k
(and on r, provided that 1 < r < 2).

3. Smoothing operators and some useful inequalities

We will refer to [8] for the theory of tame Fréchet spaces used here.
It is well-known that the space C*°(B,.) with absolute norms (2.10) is a
tame Fréchet space. Since C, is a tame direct summand of C*°(B,), it
is also a tame Fréchet space. Similarly, ). with absolute norms (2.12) is
a tame Fréchet space as well. In particular, C, and ), admit smoothing
operators and interpolation inequalities:

For each ¢t > 1, there is a linear operator S(¢) = S,(¢) from C, to
itself, with the following properties:

(3.1) ISt Fllp.r < Cp gt V| F g
and
(3.2) (I = S@)Fllgr < Cp gt TP || [

for any F' € C,, where p, ¢ are any non-negative integers such that p > ¢,
I denotes the identity map, and C), , denotes a constant which depends
on p and q.

The second inequality means that S(¢) is close to identity and tends
to identity when t — oco. The first inequality means that I’ becomes
“smoother” when we apply S(t) to it. For these reasons, S(t) is called
the smoothing operator.
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Remark. Some authors write e/~9 and e'(9=?) instead of t?’~9) and
@) in the above inequalities. The two conventions are related by a
simple rescaling ¢t = e”.

There is a similar smoothing operator from ), to itself, which by
abuse of language, we will also denote by S(t) or S,(t). We will assume
that inequalities (3.1) and (3.2) are still satisfied when F' is replaced by
an element of ).

For any F' in C, or )., and non-negative integers p; > ps > p3, we
have the following interpolation estimate:

(3.3) 1 [lp,r )P < Cpy po s (1E llpy )P P2 ([ F llps )72
where C), p, p, is a positive constant which may depend on py, p2, p3.

Remark. A priori, the constants C), 4 and Cp, j, p; also depend on
the radius r. But later on, we will always have 1 < r < 2 and so, we
may choose them to be independent of 7.

In the proof of Theorem il T, we will use local diffeomorphisms of R™
of type Id + x where x(0) = 0, and Id denotes the identity map from
R™ to itself. The following lemmas allow to control operations on this
kind of diffeomorphisms as the composition with a map or the inverse.

Lemma 3.1. Let r and n < 1 be two strictly positive real numbers.
Consider a smooth map ® : B, — R™ of the type Id + x with x(0) = 0.
Suppose that ||x||1,» <n. Then, we have

(3.4) Br(l—n) C @(Br) C Br(l-i—n)'

Proof. According to the hypotheses, we have || x(z)|| < n||z| for every
x in B,. Therefore, we can write | ®(z)| < (1 4+ n)r and so, ®(B,) C
Br(14n)- .

Now, we consider the map @ : B,.(;,) — B, (14, which is ® on B,
and is defined on B,(14,) \ B, as follows.

Let x be such that ||z|| = r. We consider z; = ZJFT":C and xo = (14n)x.
If 2= Az 4 (1 — M)z with 0 < A < 1, then ®(z) = A®(z) + (1 — N)z. If
z=Axy + (1 — N)zg, then &(2) = Az + (1 — N)zo.

This map is continuous and is the identity on the boundary of B.(14.).

According to Brouwer’s theorem, the image of d is B, (147)-
Now, note that if z = Az + (1 — A)x; with 0 < A < 1 then, we have

1@(2)] = Iz + Ax(@)[| = [l2]l = Allx()]-
Therefore, ||®(2)|| > (1 —n).



LEVI DECOMPOSITION FOR SMOOTH POISSON STRUCTURES 357

Moreover, if z = Az1 + (1 — X\)zy with 0 < A <1 then, we have
19(2)]| = Az + (1= \)(1+ )| = r(1+n(1 = X)) > 7.
We deduce that if y is in B,.(;_,) then we have y = @(z) where z is,

a priori, in By(14,), but according to the previous inequalities, z must
belong to B,.. Consequently, y is in ®(B,;.). q.e.d.

Lemma 3.2 ([§]). Let r >0 and 1 > n > 0 be two positive numbers.
Consider two smooth maps

[ Braqy = RY and x:B, - R"

(where the closed balls B, and By 1) are in R", and q is a natural
number) such that x(0) = 0 and ||x|1, < 1. Then, the composition
fo(id+ x) is a smooth map from B, to R™ which satisfies the following
inequalities:

(3.5) 1f o (Gd 4+ ) ke < 11 lkr (T + Pelllxle,r))
(3.6) [f o (id+x) = fllrr < Qullxlr ) flkr4n)
+ M| xlo,r 1 [1k+1,r(14)

where M is a positive constant and Py(t),Qk(t) are polynomials of degree
k with vanishing constant term (and which are independent of f and x).

The proof of the above lemma, which can be found in [3], is straight-
forward and is based solely on the Leibniz rule of derivation. We will call
inequalities such as in the above lemma Leibniz-type inequalities. Sim-
ilarly, we have another Leibniz-type inequality, given in the following
lemma.

Lemma 3.3. With the same hypotheses as in the previous lemma,
we have

B7) o (d+20)llar—1,r < [ l2k—1,r(14m Prlixlk.r)

+ Ixl2e—10 L ke (1 4m) @ue Ul X )
where Py(t) and Qk(t) are polynomials (which are independent of f and
X)-

Proof. Denote by 6 the map Id + x. If I is a multiindex such that
|I| <2k —1 (|I| denotes the sum of the components of I), it is easy to
show, by induction on |I|, that

oMl(fob oled
8(5'” - > (axéfo >AO‘(9)’

1<]a| <[]
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where A, (0) is of the type

. A, (0) = ” LR to
(3 8) ( ) Z ag 901 Pl
1<u; <n, |Bi|>1
|14 +Bal =11

where 0,, is the uj-component of ¢ and the ag, are non-negative inte-
gers.
We may write

l(fo |al |ov]
’ éff—e) = > @xcfoﬁ) AaO)+ > <%xf°9) Aa(6).

k<|al<|1] 1<]a|<k

When k < |a| < |I] < 2k—1, all the |3;] in the sum (3.8) defining A, ()
are smaller than k. This gives the first term of the right-hand side of
Inequality (8.7). On the other hand, when 1 < |a| < k, then in each
product in the expression (3.8) of A, (6) there is at most one factor %
with || > k (the others have |3| < k. This gives the second term of the

right-hand side term of inequality (3.7), and the lemma follows. q.e.d.

Lemma 3.4. Letr > 0 be a real number and k > 1 a positive integer.
There exists a positive real number n < 1 and a polynomial Py(t) such
that if ® : B, — R"™ is a smooth map of the type Id+x with x(0) = 0 and
lIxllo,r <n, then ® is a smooth local diffeomorphism which possesses an
inverse U = ®~1 of the type Id + & with £(0) = 0, which is defined on
(a set containing) B,n_y and satisfies the following inequality:

(3.9) €ll2k—1,r(1—n) < lIXI2k—1,0Pr(lIX k)

Proof. We choose the constant 1 such that for every smooth map
Id+x : B, — R" such that ||x||1,» <7, the Jacobian matrix of Id+y is
invertible at each point of B,.

If ® is a smooth map as in the theorem, according to the inverse
function theorem, it is a local diffeomorphism and has an inverse ¥ =
Id + ¢ which is smooth on B4, (see Lemma 3.1).

Since ® o U =Id, denoting ¥ = (¥y,...,¥,,) (and the same thing for
), we can write

ou;  Pol({2k})

= v
Ox;j Jacd °
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where Jac® is the Jacobian determinant of ® and Pol({%‘i: 1) is a

homogeneous polynomial in the {%q;;‘ bup of degree n — 1.

By induction, we can see that for all o € Z" with |a| = > a; > 0,
we can write (trying to simplify the writing)

ol _ Z agp 8|ﬂ1|qpul a\ﬁkhl)uk

X .
Ox® (Jac ®)p Iz Dz
1<|B1|<al, p<|al+1

> (Bl-1)=[al-1

where the ag , are non-negative integers. In this formula, the term Jac ®
is bounded on B,, for instance, 0 < b < |Jac®(z)| < ¢ < 1 for all z
in B,.. This formula is not very explicit, but it is sufficient to estimate

SUp,ep, 2°1(©) (2)| like in (8.9) for |a| > 1 (note that in this case, we

Ox™
lal(p, lal (g, .
have 2 (%(;I”) = 8(%(51) ). Now, we have to study the case |a| = 1. In this

case, writing the Jacobian matrix, we have

o ax\ "
1+8x_<1+8x> o®d.

Denoting by || || the standard norm of linear operators on a finite dimen-

sional vector space, we can assume that |||g_xm < 1. Then, since (1 +

X
Ox\— I5) .
=) L—14 Zqzl (a—?g)q, we obtain

o6 !
%_ Z<%> o ®.

q>1
We then get
98N~ sl 2x
ox|| — ox
where M is a positive constant and we conclude using the equivalence
of the norms. q.e.d.

4. Proof of Theorem {.1

In order to prove Theorem il.I, we will construct by recurrence a
sequence of local smooth coordinate systems

(xd’ yd) = (x(li7 s 7x;in7 y‘f, s 7yg—m)7

where (2%, 9°) = (21,...,Zm, Y1, - -, Yn_m) is the original linear coordi-
nate system as chosen in Section 2, which converges to a local coordinate
system (z*°,y>) = (29°,..., 250, y1°,...,ys2,,), in which the Poisson
structure II has the required form.



360 PH. MONNIER & N.T. ZUNG

For simplicity of exposition, we will assume that II is C"*°-smooth.
However, in every step of the proof of Theorem i1, we will only use dif-
ferentiability of IT up to some finite order, and that is why our proof will
also work for finitely (sufficiently highly) differentiable Poisson struc-
tures.

We will denote by 04 the local diffeomorphisms of (R",0) such that

(41) (xdvyd)(z) = (:C0>y0) ° @d(z)>
where z denotes a point of (R",0).
Denote by II% the Poisson structure obtained from II by the action
of @d:
(4.2) 4 = (0,),I1.

Of course, ITIY = II. Denote by {.,.}4 the Poisson bracket with respect
to the Poisson structure II?. Then, we have

(4.3) {F1, Fy}4(2) = {F1 00y, Fy 0 04} (0471(2)).
Assume that we have constructed (z¢,y?) = (z,y) o ©4. Let us
now construct (z4!,y1) = (z,y) 0 ©441. This construction con-

sists of two steps : 1) find an “almost Levi factor”, i.e., coordinates
28 such that the error terms {xf“,:c?“} - >k cfjxg“ are small,
and 2) “almost linearize” it, i.e., find the remaining coordinates y@*!
such that in the coordinate system (z%*1,39t1) the Hamiltonian vec-
tor fields of the functions xf“ are very close to linear ones. In fact,
we will define a local diffeomorphism 641 of (R™,0) and then put
Our1 = 0441 0 O4. In particular, we will have 1! = (04,1),I1¢ and
(@ y™ ) = (2%, y?) 0 (04) " 0 041 © O,

We write the current error terms (that we want to make smaller by
going from (z?,3%) to (x4!,y%1)) as follows:

m
(4.4) Z-dj(:v,y) ={zi,x5ta — Z ij””fv
k=1
and
n—m
(4.5) g (@, y) = {z,yata — Y ahys.
B=1

Consider the 2-cochain

(4.6) =) fiegag
ij
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of the Chevalley—Eilenberg complex associated to the g-module C,., where
r = rqg depends on d and is chosen as follows:

1

(4.7) rd—1+d+1.

In particular, 7o = 2, rq/rqgi1 ~ 1+ d%, and limg_,., g = 1 is positive.
This choice of radii r4 means, in particular, that we will be able to
arrange so that the Poisson structure II? = (0,),II is defined in the
closed ball of radius r4. (For this to hold, we will have to assume that
IT is defined in the closed ball of radius 2, and show by recurrence that
B, C 04(By, ,) for all d € N).

Put

(4.8) ! = Z eIt @ & = —S(ta) (h(f)),

where h is the homotopy operator as given in Lemma 2.1, S is the
smoothing operator and the parameter ¢4 is chosen as follows: take a
real constant to > 1 (which later on will be assumed to be large enough)

/

and define the sequence (tq)q>0 by tgy1 = tz % In other words, we have

d
(4.9) tg = exp <<g) lnto) , Intg > 0.

The above choice of smoothing parameter ¢4 is a standard one in prob-
lems involving the Nash-Moser method, see, e.g., [, &]. The number
% in the above formula is just a convenient choice. The main point is
that this number is greater than 1 (so, we have a very fast increasing se-
quence) and smaller than 2 (where 2 corresponds to the fact that we have
a fast convergence algorithm which “quadratizes” the error term at each
step, i.e., go from an “e-small” error term to an “c2-small” error term).

According to Inequality (2.14), in order to control the C*-norm of
h(f?%), we need to control the C***-norm of f9, i.e., we face a “loss of
differentiability”. That is why, in the above definition of ¢¥*!, we have
to use the smoothing operator S, which will allow us to compensate for
this loss of differentiability. This is a standard trick in the Nash—Moser
method.

Next, consider the 1-cochains

(4.10) 9= (; 9%%) ®&,

7

(4.11) =g =y (Z{h(fd)i,ya}d(%a) ® &

i



362 PH. MONNIER & N.T. ZUNG

of the differential of the Chevalley—Eilenberg complex associated to the
g-module V,., where r =ry =1+ Wll, and put
0

4.12 a1l .— drl__—_ — _S(tg)(h(g?
(112) $ = 3 = =S ()
where h is the homotopy operator as given in Lemma 2.1, and S(t,) is
the smoothing operator (with the same ¢4 as in the definition of ¢@+1).

Now, define 6411 to be a local diffeomorphism of R" given by

(4.13) Ogi1 := Id+ ™! = Id + (o1, 01,
where (™!, 1) now means (¢, ... @&t pdt ydtL Y This
d+1

finishes our construction of © 4,1 = 04,1004 and (z ,de) = (z,y)o

O4+1. This construction is very similar to the analytic case [ﬂ:ﬂ], except
mainly for the use of the smoothing operator. Another difference is that,
for technical reasons, in the smooth case considered in this paper, we
use the original coordinate system and the transformed Poisson struc-
tures I1? for determining the error terms, while in the analytic case, the
original Poisson structure and the transformed coordinate systems are
used. (In particular, the closed balls used in this paper are always balls
with respect to the original coordinate system — this allows us to eas-
ily compare the Sobolev norms of functions on them, i.e., bigger balls
correspond to bigger norms).

In order to show that the sequence of diffeomorphisms defined above
converges to a smooth local diffeomorphism O, and that the limit Pois-
son structure (O )4l is in Levi normal form, we will have to control
the norms of §f and 6G%, where § denotes the differential of the corre-
sponding Chevalley-Eilenberg complexes. This will be done with the
help of the following two simple lemmas:

Lemma 4.1. For every i,j and k, we have

afd
warengne - f (S sadh)

where § denotes the cyclic sum.

Lemma 4.2. For everyi,j and «, the coefficient of % in the vector

field 6% (& N &) is
g’ dgs g4
d ja Jo d gza d 99ia
zu a - Z 2,3 a Z Zgﬂﬁ )
; Tu g ys

a{h 7ya}d a{h 7ya}d
d YU gy Jagd d J
Z 0%y * Z 0yg
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Z d 8{h zyya}d Z d a{h 27ya}d

Ju 0z,

+ {h(fd)lv gja}d - {h( )j’ gioz}d

On(f?);
{Q,wa me &C }
+ Yo Z Zﬁ ay Z Jﬂ a

B
~ (Y A(SSY)ij )

The first lemma is just a direct consequence of the Jacobi identity
{i{xj, zi}ata + {zj, {zr, itata + {zk, {zi,zj}ata = 0. The second
one follows from the Jacobi identity {z; —h(f%);, {x; — h(f%);, Yo ta}a +

{2 =h(f)j, {ar xi = h(f)iYata+ {ya: {zi = h(f)isx;—1(f?);}ata = 0
and the homotopy relation (2.9). q.e.d.

Roughly speaking, the above lemmas say that 6 f¢ and 6§¢ are “qua-
dratic functions” in f¢, ¢? and their first derivatives, so if f¢ and g? are
“c—small”, then ¢ f¢ and 5% are “c2-small”.

Let us now give some expressions for the new error terms, which will
allow us to estimate their norms. Recall that the new error terms after
Step d are

(4.15) ffj“(d:,y) ={@i, x5} a1 — Zcfjxk7
k

(4.16) gfjl(:v,y) = {2, Yatdr1 — Zafayﬁ‘
B

We can also write, for instance,

(4.17)

Fi @, y) = Ui+ o oy + oM g = ci(ae + o]0 (2, ).
k

A simple direct computation shows that

(4.18) FEE =06y + 15+ QF) 0 (Bayr) ™,
(4.19) gt = [(0 Y )ia + 9 + T + U] 0 (0441) ",
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where ij and Tz‘é are “quadratic functions”, namely
d+1 d+1
ox 0y
d _ d 2 d
d+1

dpdtt
d d d
+ E <gzﬂ 8y,8 g]ﬂ 3;/,g ) + {90 +17S0j+1}d7

and
ot Onpd+1
(4.21) = Z d e nglﬂ 5 [ty
B
and UZ is defined by
(4.22) Uy = {h(f )i = S(t)h(£)i> ya Yo
Putting

=) QL& g,
ij

oy (zz;ij e

we can write

(4.23) fH = (0™ + fd + Q% o (0at1) ",

(4.24) gt = (T + g+ T+ U o (fa41) "

d+1

Equality (2.9) allows us to give another expression for f41 and g
which will be more convenient:

(4.25)  fH = [6(" + R(fY) + hOFT) + Q%Y o (Bar1) Y,
(4.26) g™ = [6(v™ + h(g) + h(65") + T+ U o (0ar1) "

The following two technical lemmas about the norms will be the key
points of the proof of Theorem i.I. In order to formulate them, we
need to introduce some positive constants A,l and L. Recall that we
denote s = [§] 41 (this number s appears in the Sobolev inequality and
measures the “loss of differentiability” in our algorithm). Put A = 6s+9.
We will use the fact that

(4.27) A> 6s+8.
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Choose an auxiliary positive constant € < 1 such that

3
Choose an integer [ > s such that
3545
4.29
(4.29) 1

(this is the number [ which appears in the formulation of Theorem il 1),
and put

(4.30) L=20-1.

Recall also that tg > 1, tg = exp((3/2)?Intg) and rq = 1 + d—}rl (note
that we have rgq1 = rq(1 — ﬁ)) By choosing t( large enough, we
can assume that t;l/Q < ﬁ for every d.

Lemma 4.3. Suppose that II is defined on B,, and satisfies the fol-
lowing inequalities:

_ — A
(4.31) 1m0 <t 9™ lere < 5 M| rg < to,

1w < tgs and  Ng°Ls <1,

where tg > 1 is a sufficiently large number. Then, for every non-
negative integer d, 11¢ is well-defined on B,., and we have the following
estimates:

(1a) X 1wy < ;2 (recall that = —(pfH1 . T y)

(20) [T, < 1

(3a) 1091, < C%, where C' is a positive constant independent of d.
(4a) 1F Ny < i and llg®|lLr, <t

(5a) 1/ < tg" and gl < 3"

Roughly speaking, Inequality (14) is the one which ensures the con-
vergence of ©4 when d — oo in C'-topology. Inequality (34) says that
|T14||; stays bounded. Inequality (5;) means that the error terms con-
verge to 0 very fast in C'-topology, while Inequalities (24) and (44) mean
that things do not “get bad” too fast in C*-topology.

Lemma 4.4. Suppose that for an integer k > I, there exists a con-
stant Cx > 0 and an integer dp > 0 such that for any d > dy, the
following inequalities are satisfied:

(4.32) 1 F kg < Crtg's 9% kg < City's 1f k-1, < Crtd,
1

9ty <Ot 10k, <Catdy My <Ca (1= 5 ).
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Then, there exists a constant Cry1 > 0 and an integer di+1 > dj, such
that, for any d > di41, we have

. —1/2

) X lktry < Chaty 1

i) [0 kg1,ry < Crar(l = 755)

i) /¥ty < Craaty” and [lg¥|ks1,ry < Chpaty’
iv)

V) 1f ¥ okg1,rg < Ck+1tf14; 9% |2k41,rg < Ck+1t214
and HHdHQk-I—LTd < C]H_ltzlq

The above two technical lemmas will be proved in Section 5. Let us
now finish the proof of Theorem il.I modulo them.

Proof of Theorem il 1. Assume for the moment that II is sufficiently
close to its linear part, more precisely, that the conditions of Lemma 4.3
are satisfied. Let p be a natural number greater or equal to [ such that II
is at least C*’~1-smooth. Applying Lemma .3 to II, and then applying
Lemma 4.4 repetitively, we get the following inequality: there exist an
integer d, and a positive constant C), such that for every d > d,,, we have

_ 1 d
(4.33) X lpirg < Cpt;? = Cpexp <_§ @) lnto) .

The right-hand side of the above inequality tends to 0 exponentially fast
when d — oo. This, together with Lemmas 3.2 and 3.4, implies that

(4.34) (©g) L =(01)"to...0(0g)7",

where 0; = Id+ x%, converges in CP-topology on the ball B; of radius 1,
(we show in Lemma 4.3 that (©4)~! is well-defined on the ball of radius
rq > 1). The fact that Oy, = limg_., O4 is a local CP-diffeomorphism
should now be obvious. It is also clear that II*® = (©4),II is in Levi
normal form. (Inequalities in (54) of Lemma 4.3 measure how far is I1¢
from a Levi normal form; these estimates tend to 0 when d — o).

If 1T does not satisfy the conditions of Lemmas 4.3 and 4.4, then we
may use the following homothety trick: replace II by II! = %G(t)*H
where G(t) : z — tz is a homothety, t > 0. The limit lim;_ II* is
equal to the linear part of II. So, by choosing ¢ high enough, we may
assume that II¢ satisfies the conditions of Lemmas %.3 and {.4. If ® is a
required local diffeomorphism (coordinate transformation) for IT¢, then
G(1/t) o ® o G(t) will be a required local smooth coordinate transfor-
mation for II. q.e.d.
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5. Proof of the technical lemmas

Proof of Lemma §.3. We prove this lemma by induction on d. The main
tools used are Leibniz-type inequalities, and interpolation inequalities
(Inequality (8.3)) involving C'-norms, C*-norms and the norms in be-
tween. Roughly speaking, (24) and (44) will follow from Leibniz-type
inequalities. The proof of (1) and (54) will make substantial use of
interpolation inequalities. Point (34) will follow from an analog of (1)
and Leibniz-type inequalities.

In order to simplify the notations, we will use the letter M to denote a
constant, which does not depend on d, but which varies from inequality
to inequality (i.e., it depends on the line where it appears).

We begin the reduction at d = 0. For d = 0, the only point to
be checked is (1p). We will use a property of the smoothing operator
(equation (8.1), the estimate of the homotopy operator (2.14) and the
interpolation relation (8.3).

Recall that o' = —S(to)(h(f°)). We then have

9 11 < MR e by B.1)
< MHfO||l+s 0 (:_2--12":)

l—s—1

< MHfOleol HfOIILT0 V(B

—s—1

A=
l l
< Mt, Tt I

|w,
ot

)

On the other hand, we have ' = —S(to)(h(g")), then

9 1o < MG 145, by BE) and (2.14)
< MHgO + {h(f0)7 y}OHH—S,rO
< M| ll145.m0 4 T 155 1B 4 55100 )3

note that since the definition of §° involves the first derivatives of h(f°),
we have to estimate by [|h(f%)|i+s+1. Now, using (2.12) and the inter-
polation relation (3.3), we get

19" I
<M (HgOHlJrs ro + ||H0Hl+s ronOHlJrZerl ro)

,5, —s—1 17 72 2s5+1
<M(ug T T |\ e s HfOHLm)

s
-1

l—s—1 s 1—2s—2 2541
+AS +AZ
< 7‘[ <t0 -1 1—1 to -1 1—1
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: s 2s+1 _l=s—1 s _1—-2s5—2 25+1 s
Since 27 < 47, we have —27= + A%y < o AT + AP
Therefore, we obtain

172572+A357+11

X ey < Mt =00

By assumptions (1.29), we see that 221 and 3£l are strictly smaller

than e. Therefore, —l_l%—sl_z—i—A% is strictly smaller than —(1—¢)+ Ae.
Then, according to inequality (4.28), we have ||x'|li,, < Mt," with
—u < —=3/4 < —1/2. We may choose t sufficiently large such that
Mt " < tal/Z, which gives

—1/2
(5.1) I e <t /.

Now, by induction, we suppose that for some d > 0, II% is well defined
on B,, and that the inequalities (14),...,(5q) are true. We will show
that they still hold when we replace d by d+ 1. To simplify the writing,
we will omit the index 74 in the norms, unless the radius in question is
different from rg.

Since 1441 = rd(l—ﬁ), according to Inequality (14) (|[x@ 1, <

t;l/ % which is, by assumption, strictly smaller than ﬁ for every d)

is included in 0441(B;,) and so

and Lemma 8.1 we know that B
1%+ will be well defined on B, ,.
e Proof of (1441): absolutely similar to the proof of (1p) given above.
e Proof of (2441): Recall that, due to the fact that I = (©4,1).I1
= (0441)+I1%, we have

Td+1

{zi, 2 am = {zi + oz + 00 a0 (Ba1) ™"

and similar formulas for {z;,ya},1 and {ya,ys} ;-
Applying Lemmas 3.3 and 3.4, we obtain
{4, $j}d+1 ||L,Td+1
< i + @ 25+ 0 Y all L PUX T ry)

+ 1z + o a0 g X 2 QU ),
where P and @) are polynomials functions which do not depend on d. By
the Leibniz rule of derivation, the term |[{z; + %™, x; + @?H}dHl may
be estimated by M ||T1%]|;(1+ |94 1)? and, using the same technique

(2

as in the proof of (1p), we can write ||p?+! ;11 < tgl/Q. Therefore, using

(3d), we can write H{ﬂﬁi + s0{i+1

S+ go‘j“}dHl < M. Consequently, we
have

||{.1‘Z, xj}d+1||L77'd+1 < MH{'TZ + (pgl-i_lv Tj+ (P?+1}d||L,Td + MHXdJrlHL,Td'
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We first study the term y4*!. Actually, we will estimate |[x**!| 41
rather than || x%*!||z because it will be useful for the estimate of ||{z; +
Py + T ). We first write L1 < M [R(F)| - by
the property (3.1') of the smoothing operator. Using the estimate (2.14)
for the homotopy operator, we obtain
A
o™l < MG Ol < Mg

Now, we have

[l < METH2 RGN L-55-1 by (B0

< Mtg 2| | p-2s-1 by (213)

Then, the definition of gd,_t_h_e Leibniz rule of derivation (recall that
L =21 — 1) and Inequality (2.14) give
[T L1 < MEPT2()lg) | IR (fD)]
0 o < Mt (llg% | —2s—1 + L—2s—1[A(f*)l1—s—141
+ 10— s IR | L-2s-141)
< M2l + 0Ll + 1Tl £ )
A+4-3s542
< Mty TevTE,
Therefore, we can write
I g < MEGH.

Note that in the same way as in the proof of (1¢), one can show that

X g1y < t;l/Q and then, using once more the Leibniz formula of
the derivation of a product, we get

s + o 2+ o5 Yall
< M (0|1 + [l li4)?
T+ ™ ) (T + ™ 2s1))
< ML + o™ + 1)
< M(|TIY|, + t435+2 4 1)
< Mty T2,

Exactly in the same way, we can estimate the terms |[{z; + ¢ y, +

Sl Ly and [[{ya + 02, yg + 08 YallLr, by M52 To con-
clude, since by our choice A = 6s + 9, we have A 4+ 3s + 2 < 3A4/2,
these estimates lead to |[II*™| .., < Mt} where D is a positive
constant such that D < 3A/2. Therefore, we may choose ty large
enough (in a way which does not depend on d) in order to obtain

3A/2
I s < 57 =t
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e Proof of (344+1): Recall again that we have

{J:Zu x]}d-ﬁ-l = {sz + 90d+1 Tj+ 30?+1}d © (9d+1)717

and similar formulas 1nv01v1ng also y;-components.
The estimates in Lemmas 8.2 and 8.4 give

(5:2) T gy < ATy (14 POUX T )

where p is a polynomial (which does not depend on d) with vanishing
constant term, and

0
( Ad+1 Z{le +§0d+1 x; +§0d+1}d 8
Ly
8
d+1
gy 0D
+ 3 {ya + Iy + U ba50m " G5

Notice that ATt is equal to II? plus terms which involve y¢*! and
the IT%bracket. Hence, by the Leibniz formula, we can write

(5.4) AT gy < T g (14 DX 1,r,)°,
which implies that
(5:5) T oy < Ty (1 MIX 41,0021+ DX ) -

Similar to the proof of (1441), it is easy to bound ||x4™!(|;11., by

t;l/ 2, which is exponentially small when d — oo. By choosing the
constant tg large enough, we may assume that

5.6) (14 M| 110,20 M) <1+ =gy
(5:6) (14 MIDT )" (E 2N Mera)) < 1+ Gy g)

Together with the induction hypothesis ||T1%]; ., < %, we get

C(d+1) <1 1 )_C(d+2)
(d+2) (d+1)(d+3))  (d+3) "
e Proof of (44+1): Recall that

ffljﬂ ={z;,xj}at1 — Zcf]xk

k

G.7) Iy, <

It is easy to check that for every i and j,

k

ij Lk < B||HH1,T¢1+1 < B||HHLJ“d+17

k Lyrgiq
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where B is a positive constant which only depends on the dimension n.
This implies immediately that

d d
1 N Eraen < (B + DT |z, -

In Point (2441), we showed that [|[II"||, . . < Mt} where D is a pos-
itive constant such that D < 3A4/2. Therefore, replacing to by a larger
real number (which of course does not depend on d), if necessary, we
have || f5 L, < tzA/Q = t4,,- The estimate of ||g**!||L,,, can be
done in the same way.

e Proof of (5441):

Recall the formula (f.25)

FEE=[0(e™ "+ h(fh) + (S FT) + Q7 o (Bag1) ™"
We then have, using lemmas 3.2 and 3.4
(5.8)

1 s < MIS(* + () + RS + Qg (1 + P25 %)),

where P is a polynomial function.

Thus, we only have to estimate [|6(¢®™ + h(f9)) + h(5 %) + Q|i.r,-
To do that, we use the second property of the smoothing operator (3.2),
the estimate of the homotopy operator (2.14) and the interpolation in-
equality.

We first write

16(™ + h(F) e < MR = SR i1
< Mtz R(f D)2 by B:2)

< Mt fiaes by (213)
s5+2
1

l—s—3
_ di =1 1| pdy 1=
< Mg

by (8.3).

Then, we have

_q_l=s5=-3 As+2
(5.9) 16 (™ + h(FY) | < Mty T T

Next, we write
IRl < M6 f|is by (B.1)
< M(Hfd||l+s”fd”l+s+1 + HgdHlJrstdHlJrerl) by Lemma :ffi

d d d
<M f N srr + g s [ Fssn)

42T ) pdy 2T
<M (12

s+1

d l—s—2 d s+ d l—s—2 d s+1
1— - 1— 1—
it 72| P 7 1 PR 1P 1)-
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Thus,

_2l—s—2 2As+1
(5.10) R Fh, < Mty T UL

Finally, by the definition (£.20) of Q¢ , we have

d d d d d d d
Qe < ML ele™ s + Nglelle™ llir + 1T Nl IE ).

In the same way as in the proof of the point (1y), we can easily show
l—23—3+A3s+3

that || X ip1 < Mt, ™7 =1 Therefore, we can write
_1_l=2s-3 43s+3 _9l=2s-8 1o 43543
(5'11) HQdHl S M <td -1 -1 +td -1 1—1 ) ]

Combining (5.9), (p.10) and (5.11) we obtain

—2ipert 232
HfdJrlHlﬂ“dH <Mtd -1 1 T

Now, by (1.29), 2:2 and 33 are strictly smaller than e, and then
—21_12751_3 + 243543 s strictly smaller than —2(1 — &) + 24e. To finish,
the inequality (4.28) gives || f4™,,,,, < Mt;* where —a < —3. We
may choose ty large enough (in a way which depends on « but not on

_3
d) in order to obtain || ¥ ,,,, <t,? = tgil.
Now, we apply the same technique to estimate ||g*™(|;,,,. Recall
the formula ({.28)

gd+1 _ [5(wd+l +h(gd)) + h((sgd) +Td + Udj| o (9d+1)71'

In the same way as above, according to Lemmas 3.2 and 3.4, we just
have to estimate [|§(¢%™! + h(g?)) + h(6g%) + T¢ 4 U?|;. We first write

15 (™ + ()l < M| = S(ta)h(G") + h(§") 141
< Mt (G g2 by (812
< Mt51‘|§d‘|l+s+2 by (2-_1_21{)
< Mtz g + {h(f), v allirsse
< Mt (1914512 + T g o2 IR [14-613)

< Mtgl(||gd”l+s+2 + i st2 /| ¥ 1 2548)-
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Using the interpolation inequality (8.3), we obtain

l—s—3 s+2
J8(w™ + (a) I < ez (Ilg?l, " llg?lly
s+2 1—2s—4 2543

l—s—3
d = d| 1= d - di| =
a1 S 1P ¥ e R 1)

o <td1%513+Ai+f + td“z%l“M?ff)
and then, since ff—f < QIS_JES,

_l_l—25—4+AM
(5.12) 16 (™t +h(gh) e < Mt, T

We also have, by the estimate of the homotopy operator (2.14),
1R (8g) I < M 166 11+,

and using Lemma .2 and the interpolation inequality (8.3), we obtain

1h(65M)I: < M(”fd”lJrSHQd”lJrerl + 119 et sllg it o0
T s | NN D g sra
T g1 [l s IO g2
+ T s N sl g s
AT sl s N s
+ T s g o s 1A 4542
1 i (B 1 )

d d d
< M1 sasrallg?lesases + g rasro
d d d d d
Sl LT S AR T

0[O £ 1)

_2l—2_s—3+2A2k_+2+Asi—1
<Mty T T O£ ).

In the same way as in the proof of (p.10), one can show that

1—25—3 2542
—2l2sm8 g g 22

RS D issr1 < Mty T
This gives, applying the interpolation inequality to ||TI%(|;4.s,

R 72172573 +2A25+2 +A5+1
(5.13) 1A (65Tl < Mt~ o




374 PH. MONNIER & N.T. ZUNG

Now, recalling the definition of T' (#.21)), we have

d d d d d d
TN < MAF+ g e+ 1T e llo™ ) 1 e,

and using the estimate of ||x?*!||;11,., given above, we can show that

_1—1=2s-3 43s+3 _9l=25-3 4 9 43543
(5.14) ||Td||l<M(td P )

Finally, by the definition of U? (1.22), we can write

U < MIT|o[IR(F7) = S E)R(f )l
< Mt A ) e by (B2)

< MG S sz by (30) and (213)

1y pdy T pdy T oo
< Mg {4l e by (83)-

We then obtain

1—
1-=

s—3 s+2
1 +A -1

(5.15) Ul < Mt

Combining (5.12), (2.13), (2.14) and (.17), we obtain

—gl=2s—4 4 5 A 354D
||gd+1Hl,Td+1 < Mtd -t -t 5

and we can conclude in the same way as for the estimate of || f* . .
Lemma #.3 is proved. q.e.d.

Proof of Lemma .4. The main tools used in the proof of this lemma
are the same as in the previous lemma: Leibniz-type inequalities and
interpolation inequalities. To simplify the notations, we will denote by
M, a positive constant which depends on k but not on d and which
varies from inequality to inequality.

e Proof of (i): If d > dj, we have

o™ srirg = ISE)AF) k1 < Myl fllksse1 by B.L) and (213)
s+1
k—1 %

k—s—2 s+1 _
< Ml T 1S, by B33)

k—s—2 s+1
— = +A -
< Mt, "0
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In the same way, we get

I lrg1rg = 1S (E) PG 111
< Micl|g 5t 541
< Myllg* + {n(f%), Yt allk+s+1
< Mi(lg® ks 1+ 1T ks 1A rrsi2)

d d d
< Me(l9% |k ts1 + 1T ks 1l f rt2542)

k—s—2 s+1 s+1 k—2s5—3 2542
- +A At +A
S Mk; (td k—1 k—1 + td k—1 k—1 k—1 > .

Therefore, we have

hgpay gons
D iy < Myt *
According to the inequality (4.29), the terms 232 and 352 are strictly
=49, k—1 E—1
smaller than €. Then, —k_kal_ 3 4 A?;fj'f’ is strictly smaller than —(1 —
) + Ae. Therefore, by (4.28), we can write ||x*||pq1., < Mt " with
Y &4 X +1,7q d

—p < =3/4 < —1/2. We conclude that there exists a positive integer
—-1/2

diy1 > dy, such that Vd > diy1, X er1r, < t,7

Moreover, in the same way, we can prove that

d+1 AR AR
IXT k2 < Mity ;
and we can assume (replacing diq1 by a higher integer if necessary),

that ||x ks, < t;l/Q for every d > dj. 1.
e Proof of (ii): Let d > diy1. Proceeding in the same way as in the
proof of Point (3;) of the previous lemma, we get

(5.16) [T et < T g (1 Mgl ™ le2) (1 + (X 1),

where p is a polynomial with vanishing constant term. Now, since
x4 g4 1 and || x¥H! |2 are strictly smaller than t51/2, replacing dj 1
by a higher integer if necessary, we can assume that Vd > dj1, we have
1

(5.17) (L4 Millx™ lr42)* (1 +p(Ix*Hlkg1)) < 1+ drDd12)

We choose a positive constant ék+1 such that

dpt1 + 1>

Tty < Gy (D051
I s < G (95255



376 PH. MONNIER & N.T. ZUNG

and we can conclude by induction, as in the previous lemma, that for
all d > djq,

~ 1
d
(5.18) I k1,rg < Chgr (1 — m)

Note that the constant C’k+1 is not the Cj41 of the lemma. Later, we will
choose Ci41 to be greater than C~’k+1 and satisfying other conditions.

e Proof of (iii): The idea is exactly the same as in the previous lemma,
using the interpolation inequality (3.3) with k and 2k—1. Let d > dj41—
1 > dj. By Lemmas 8.2 and 8.4, in order to estimate || f4 (|11, ,, we
just have to estimate [|§(o%™ +h(f?)) + h(6f%) + Q%|k41,r,- As above,
we write

16 (™ + AN g1 < Mil|h(F7) = SEa)h(fD)]l 2
< Myt R(f D) lkes by B.2)
< Mkt§1\|fd||k+s+3 by ?-129
<Mkt51\|fd||kk T Hdezk . by 33).

Then, since || f¢|;, < Cyt;" and || f4||lax—1 < Cyt{}, we have

_k—s—4 s+3
1 +Ak—1

—1
16 (™ + h(f)) k1 < Myt

In the same way as in Point (54) of the previous lemma, we can esti-
2k 5— 3+2A s+2
mate ||2(5f%)| k1 by Myt . Now, we just have to estimate

4| 441. By the definition of Q%, we have
||Q + y )

d d d d d d
Q% k1 < My(]|f ||k+1 + g ||k+1 + ||III ||k+1||90 +1||k+1)H<P Al |
d d
<Mk(”f H Hf ||21€ L+ 1lg? H HQ sz 1

d d d
T o™l ) e e

We saw in (ii) that HHdeH < Cry1. Moreover, we saw in (i) that
5

k—2s—4 3s+
+AT
I 2y < Mit, *7° . Since 25 < 22 we obtain

2k 25— 4+2A35+5
1Q% k41 < Myt .

We then obtain

2k 25— 4+2A39+5
HfdJr ||k+1 Td+1 < Mkt ’
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and we deduce, in the same way as in the proof of Point (54) of the
previous lemma that for all d > dg11 — 1,

||fd+1||k+177’d+1 < Mk‘t;u7

where —pu < —3/2. Therefore, replacing di,1 by a greater integer if
necessary, we have for every d > dy4q1 — 1

-3/2 _ ,_
(5.19) 1 s < 2™ = 13y
In the same way, we can show that
d —
(5.20) g™ iy <ty

e Proof of (iv): First, recall that we have
idj ={zj,z;}q— Zcfjaju
u
g'ida = {x’iu ya}d - Z a’fay,@
B

and as in the proof of Point (4441) of the previous lemma, we can write
1 lors1,rg < VI |2k 41,0y

(5.21) ) .
9% 21,00 < VI 264174

where V' > 1 is a positive constant independent of d and k.
Now, we estimate ||[TI%™||o41,,,, for d > djiq. Recall that we have

d+1 d+1 —1
{wiszjba ={zi+ 9+ 07} 000,

and the same type of equality for {z;,ya}y,; and {ya,yst, ;-
Applying Lemmas 3.3 and 3.4, we obtain
‘|{xi7xj}d+1‘|2k+177"d+l
< i + ot 2+ 0f Y allokr,
- P k1)
+ e + ot 2+ o Fallkrnra X ok,
- Qr(IX T ket 1)
where P, and () are polynomials functions which do not depend on d.

In the same way as in the proof of (24), since ||1%(|x41.,, < C~’k+1%
/2

and X" [k12,, < tgl , we can show that the term ||{x; + @™, z; +
QO?H}dH ko1 is bounded. Therefore, we can write

@i 25} g lors 1o, < Mi({zi + @ 25+ 07 Yall2 1,

+ ||Xd+1\|2k+1,rd)-
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As in the proof of (24) of the previous lemma, we first study the term
x4 Actually, we will estimate ||x4*!||oxro rather than || x4 |opr1
because it will be used to estimate the terms of type |{z; + ¢, 2; +
¢?+1}d||2k+1- We first write || |opro < Myt 3 ||h(f9)||25—1—5 by the
property (3.I) of the smoothing operator. Using the estimate of the
homotopy operator (2.14), we obtain

o™ larre < Mt (| £l 2e-1 < MktdA+S+3-
Now, we have
)

[ g2 < Mit3 4 R(57) 2k—35—2 Dy (.1
< Mit3 | g% |og—2—25 by (2.14).

Then, the definition of §¢, the Leibniz rule of derivation and (2.14) give

[T oy < Mktzs+4(”9d||2k72723 + 10 ok —2—2s | A(FD) | k—s—141
+ 1| — st [|CF D) |2k —2—2541)
< Mit3 (1l llar—1 + 1T 22 £k A+ 1T k1 F |26 -1)
< My tA+3st,
Therefore, we can write
X |akge < Mty T34

Now, in the same way as in the proof of Point (24) of the previous
lemma, using the Leibniz formula of the derivation of a product and the

estimate || X |gs2,, < t;l/Z, we get
I{zi + {25 + ¢?+1}d||2k+1,rd < My (|10 gy 1 (1 A+ 0™ [rr2)?
T (1 (o™ lr42)
(1 o™ l2ks2))
< My (10 2k 11 + [l |2kt + 1)
< My (1T 21 + 575574,

Consequently, we have

d A 4
i b g llotstnnn < Me( | +£575H).

In the same way, we can estimate the terms |[{z, Yo fat1l2k+1,g,1
and |[{Ya, Y5 ar1ll2k+1,r0ss BY Mip(| %241 + t52T), which implies

I oty € M ey ).
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Finally, since A > 6s + 8, we can assume, replacing d41 by a higher
integer if necessary, that M tA+3S+4 < 2V 3A/ for every d > dii1
(which also implies that M < Ve tA/ 2) We then obtain, Vd > di1,

d+1 A2 17 1 3472
(5.22) (hat ||2k+1,rd+1f2vd I o4 1ma + 57780

To conclude, if we choose a positive constant Cj4; such that

~ HHdk+l ||2]€+1,7‘d
Ck+1 > Max <1, Ck‘-i—la ) k41 7

di41

we then obtain, using (5.22) and an induction,

Cr+1,4

t4 < Chiats,
Ty k+1td

1T o1,y <

for all d > djy1.
Finally, the estimates in (p.21) give, for all d > dg1,

[ lokt1,ry < Chgrty
||gd||2k+1,rd < Ck+1t:14'

Moreover, the definition of Cjy1 completes the proof of the points
(i), (ii) and (iii).

Lemma {£.2 is proved. q.e.d.

6. The case of Lie algebroids

In this section, we briefly mention the proof of Theorem i.2. Simi-
larly, to the analytic case (see [15]), it is almost the same as the proof
of Theorem [ T.

Let A be a local N-dimensional smooth Lie algebroid (or C24~1-
smooth) over (R",0). We suppose that the anchor map # : A — TR",
vanishes on Ap, the fiber of A over point 0. It is well-known (see for
instance [2]) that the Lie algebroid A induces and is, in fact, deter-
mined by a fiber-wise linear Poisson structure on the dual bundle A*.
More precisely, if (z1,...,2,) is a local coordinate system on R"™ and
(e1,...,en) is a local basis of sections, then (z1,...,zy,,€1,...,eN) can
be seen as a coordinate system for A*, which is linear on the fibers. The
Poisson structure on A* is given by

{ei,ej} = leis e,
(6.1) {ei,xjt = #eilzj),
{xivxj} =0
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This Poisson structure is fiber-wise linear in the sense that the bracket
of two fiber-wise linear functions is again a fiber-wise linear function,
the bracket of a fiber-wise linear function with a base function is a base
function and the bracket of two base functions is zero.

As in the statement of Theorem 1.2, we denote by I the N-dimensional
Lie algebra in the linear part of A at 0 (i.e., the isotropy algebra of A at
0), and by g a compact semisimple Lie subalgebra of . We can rewrite
the basis of sections (e1,...,en) as (S1,...,8m,V1,--.,SN—m) (M is the
dimension of g) where (s1, ..., $) span g and (v1,...,VN_y,) span a lin-
ear complement of g in [ which is invariant under the adjoint action of g.

To prove Theorem 1.2, it suffices to find a Levi factor for the dual
Lie—Poisson structure which consists of fiber-wise linear functions. The
existence of a Levi factor is given by Theorem il.1' and we only have to
make sure that this Levi factor can be chosen so that it consists of fiber-
wise linear functions. Actually, the proof is the same as for Theorem il .1
with few modifications :

The symbol C, denotes now the subspace of the space C*°(B,.) of C'°*°-
smooth real-valued functions on B, (where B, C B x RY is the closed
ball centered at 0 and of radius 7 in R**» = R" x RV), which consists
of fiber-wise linear functions vanishing at 0 whose first derivatives also
vanish at 0.

The symbol ), denotes now the space of C'*°-smooth vector fields on

B, of the type
N—m n
0 0
> i 5o T > B
=1 =1

such that p; and ¢; vanish at 0 and their first derivatives also vanish at
0 and p; are fiber-wise linear functions and ¢; are base functions.

One can check that these spaces are tame Fréchet spaces and g-
modules with the same actions as defined in Section 2. We then still
have the homotopy operators and all the properties we saw in Sections 2
and 3. The algorithm of construction of the sequence of diffeomorphisms
is the same as for Theorem il I' and one can check that if the Poisson
structure {, }4 is fiber-wise linear then {, }44; is fiber-wise linear too.

7. Appendix: a Nash—Moser normal form theorem

In this appendix, we will generalize Theorem il.I' into an abstract
smooth normal form theorem, which we call a Nash—Moser normal form
theorem, because its proof is similar to the proof of Theorem il . I and is
based on the Nash—Moser fast convergence method. Of course, Conn’s
smooth linearization theorem [§], as well as our smooth Levi decomposi-
tion theorems, can be viewed as particular cases of this abstract smooth
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normal form theorem, modulo Lemma 2.1 about the norm of homotopy
operators. It is hoped that our abstract Nash—Moser normal form theo-
rem can be used or easily adapted for the study of other smooth normal
form problems as well.

7.1. The setting. Grosso modo, the situation is as follows: we have a
group G (say of diffeomorphisms) which acts on a set F (of structures).
Inside F, there is a subset N (of structures in normal form). We want
to show that, under some appropriate conditions, each structure can be
put into normal form, i.e., for each element f € F, there is an element
® € G such that ®.f € . We will assume that F is a subset of a linear
space H (a space of tensors) on which G acts, and A is the intersection
of F with a linear subspace V of H. To formalize the situation involving
smooth local structures (defined in a neighborhood of something), let
us introduce the following notions of SCI-spaces and SCI-groups. Here,
SCI stands for scaled C* type. Our aim here is not to create a very
general setting, but just a setting which works and which can hopefully
be adjusted to various situations. So, our definitions below (especially
the inequalities appearing in them) are probably not “optimal”, and can
be improved, relaxed, etc.

SCI-spaces. An SCIl-space H is a collection of Banach spaces
(Hips || lk,p) with 0 < p < 1 and k € Zy = {0,1,2,...} (p is called
the radius parameter, k is called the smoothness parameter; we say
that f € H if f € Hy,, for some k and p, and in that case, we say
that f is k-smooth and defined in radius p) which satisfies the following
properties:

o If k < K/, then for any 0 < p < 1, Hy, is a linear subspace of
Hipr Hirp C Hip-

e If 0 < p < p/ <1, then for each k € Z,, there is a given linear
map, called the projection map, or radius restriction map,

Tpp - Hipr = Hip-

These projections do not depend on k£ and satisfy the natural com-
mutativity condition m, v =7, y 0wy . If f € Hy, and p' < p,
then by abuse of language, we will still denote by f its projection
to Hy,, (when this notation does not lead to confusions).

e For any f in ‘H, we have

(7.1) ko = W fllipr VB =K p=p.

In the above inequality, if f is not in Hy, ,, then we put || f|r,, =
+oo, and if f is in Hy, ,, then the right hand side means the norm
of the projection of f to Hy v, of course.
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e There is a smoothing operator for each p, which depends contin-
uously on p. More precisely, for each 0 < p < 1 and each t > 1
there is a linear map, called the smoothing operator,

(7.2) Sp(t) : Ho,p — Hoop = m Hie,p
k=0
which satisfies the following inequalities: for any p,q € Z,, p > ¢
we have
(7.3) 15p@) fllp.p < Copat® N fllap
(74) 15 = So®F o < Copat' I I

where C,, 4 is a positive constant (which does not depend on f
nor on t) and which is continuous with respect to p.

In the same way, as for the Fréchet spaces (see for instance [9]),
the two properties (i.3) and (7.4) of the smoothing operator imply the
following inequality called interpolation inequality: for any positive in-
tegers p, ¢ and r with p > ¢ > r, we have

(7.5) I llg.p)”™" < Cpgur (1 llrp)* = (NS o)

where C), 4, is a positive constant which is continuous with respect to
p and does not depend on f.

Of course, if H is an SCl-space, then each H, , is a tame Fréchet
space. The main example that we have in mind is the space of functions
in a neighborhood of 0 in the Euclidean space R™: here, p is the radius
and k is the smoothness class, i.e., Hy , is the space of C*-functions on
the closed ball of radius p and centered at 0 in R", together with the
maximal norm (of each function and its partial derivatives up to order
k); the projections are restrictions of functions to balls of smaller radii.

By an SCI-subspace of an SCl-space H, we mean a collection V of
subspaces Vy, , of H, ,, which themselves form an SCl-space (under the
induced norms, induced smoothing operators, induced inclusion and ra-
dius restriction operators from H — it is understood that these structural
operators preserve V).

By a subset of an SCI-space H, we mean a collection F of subsets Fy, ,
of Hy,p, which are invariant under the inclusion and radius restriction
maps of H.

Remark. The above notion of SCl-spaces generalizes at the same
time the notion of tame Fréchet spaces and the notion of scales of Ba-
nach spaces [14]. Evidently, the scale parameter is introduced to treat
local problems. When things are globally defined (say on a compact
manifold), then the scale parameter is not needed, i.e., Hj , does not
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depend on p, and we get back to the situation of tame Fréchet spaces,
as studied by Sergeraert [§] and Hamilton 7, §].

SCI-groups. An SCI-group G consists of elements ® which are writ-
ten as a (formal) sum

(7.6) ¢ =TId+ x,

where x belongs to an SCl-space W, together with scaled group laws to
be made more precise below. We will say that G is modelled on W, if
X € Wi p, then we say that ® = Id+ x € Gy, , and x = ® — Id (so, as a
space, G is the same as W, but shifted by Id), Id = Id+0 is the neutral
element of G.

Scaled composition (product) law. There is a positive constant C
(which does not depend on p or k) such that if 0 < p' < p <1, k > 1,
and ® = Id+ x € Gip and ¥ = Id + £ € G, , such that

(7.7) plp<1=Clélh,

then we can compose ® and ¥ to get an element ® o W of G with
|®oW —Id|,,y < oco,ie., oW can be considered as an element of Gy,
(if p” < p', then of course, ® o ¥ can also be considered as an element
of Gy v, by the restriction of radius from p’ to p”). Of course, we
require the composition to be associative (after appropriate restrictions
of radii).

Scaled inversion law. There is a positive constant C' (for simplicity,
take it to be the same constant as in Inequality (7.7)) such that if
¢ € Gy, such that

(7.8) |® - 1d],,, < 1/C

then we can define an element, denoted by ®~! and called the inversion
of ®, in Gy, v, where p/ = (1 — 3C||® — Id||1,,)p, which satisfies the
following condition: the compositions ® o ®~1 and &~ o & are well-
defined in radius p” = (1—C||® —Id||1,,)p and coincide with the neutral
element Id there.

Continuity conditions. We require that the above scaled group laws
satisfy the following continuity conditions (i), (ii) and (iii) in order for
G to be called an SCI-group.

i) For each k > 1, there is a polynomial P = P} (of one variable),

such that for any x € Way_1, with [|x]}1,, < 1/C, we have

(7.9) 1(Zd +x)7" = Tdllk < [IX1koPIXlkp)

where g/ = (1 - Cllx|[1,)p-
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ii) If (®,,)m>0 is a sequence in Gy, , which converges (with respect to
| 1l£,p) to @, then the sequence (®,,!);,>0 also converges to @' in
Gk, where p/ = (1 — C||® — Id||1,5)p.

iii) For each k > 1, there are polynomials P and @ (of one variable)
with vanishing constant term such that if ® = Id + xy and ¥ =
Id + ¢ are in Gy, and if p' and p satisfy Relation (7.7), then we
have

(7.10) [@ 0¥ =Pk < P(Ellk,0) + [XNk4+1,,QUIIENk.0) -

Remark. As a consequence of the last condition we have, with the
same notations, the following inequality:

(711 @ oW —Tdlgy < P([€llr.p) + [IXlle+1,,(1 + QUIENk,p))-

SCI-actions. We will say that there is a linear left SCI-action of an
SCI-group G on an SCl-space H if there is a positive integer v (and a
positive constant C) such that, for each ® = Id+x € Gy , and f € Hy,
with p' = (1 — C||x||1,p)p, the element ®.f (the image of the action of
® on f) is well-defined in H}, v, the usual axioms of a left group action
modulo appropriate restrictions of radii (so, we have scaled action laws)
are satisfied, and the following three inequalities (i), (ii), (iii) expressing
some continuity conditions are also satisfied:

i) For each k, there is a polynomial function P = P, with vanishing

constant term such that

(7.12) I(Zd+x) - ik < M llko (X4 P kA,0))-

ii) For each k, there are polynomials ) and R (which depend on k)
such that

(713)  [[Td+x) - fllae—1,00 < | fll2r-1,0Q(lIx]lk+7.p)
+ [Ixllor—14,p 1 £ 1 p B 1) -

iii) There is a polynomial function O of 2 variables such that

(7.14) (@ +x) - f—2 fllgp
< ||X||k+%prHk+%pO(H(I) - Ide:+%p7 HXHk‘+%p)'

In the above inequalities, p’ is related to p by a formula of the type
pr=01—=C(xlh,p+ | —Id]1,)) p. (P = Id in the first two inequali-
ties).

The main example of a (linear left) SCI-action that we have in mind
is the push-forward action of the SCI-group of local diffeomorphisms of
(R™,0) on the SCI-space of local tensors of a given type (e.g., 2-vector
fields) on (R",0).
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7.2. Normal form theorem. Roughly speaking, the following theo-
rem says that whenever we have a “fast normalizing algorithm” in an
SCI setting, then it will lead to the existence of a smooth normalization.
“Fast” means putting loss of differentiability aside, one can “quadratize”
the error term at each step (going from “c-small” error to “c2-small”
error).

In the statement of the following theorem, the polynomials Py, Qp,
R, and T}, depend on k and may depend on p continuously, but do not
depend on f.

Theorem 7.1. Let H be a SCl-space, V a SCI-subspace of H, and
F a subset of H, F 3 0. Denote N = FNYV. Assume that there is a
projection m : H — V (compatible with restriction and inclusion maps)
such that for every f in Hy,, the element ((f) = f — w(f) satisfies

(7.15) IO < ILF e p T CllF W1 /21,0)

for all k € N (or at least for all k sufficiently large), where [ | is the
integer part and Ty a polynomial. Let G be an SCI-group acting on H
by a linear left SCIl-action which preserves F. Assume that there is
s € N such that for every f in F and 0 < p < 1, there is an element
®r = Id+ xy € G (which may depend on p but does not depend on k)
such that for all k in N (or at least for all k sufficiently large),

(716)  lIxsllro < NS Nkts.p P (1 f k41 /21 45,0)
+ 1 k5,0 IS CO M er1)/2)4-5,0 @ F [ (h1) /2] 45,0)
and that the element f':= ®; - f € F satisfies the inequality

(717) NS e < NS5, 0B ts,0 13 s, 1 1)

(p and p' verify Relation (i.7)) where Py and Qy (resp. Ry) are some
polynomials of 1 variable (resp. 3 variables) and the degree in the first
variable of the polynomial Ry, does not depend on k. Then, there exist
I € N and two positive constants o and (3 with the following property:
for all p € NU {oco},p > I, and for all f € Fop_1, with | flla-1, < a
and ||f —0ll;, < B, there exists U € G, , /5 such that V- f € N, ;5.

Proof. We construct, by induction, a sequence (¥4) ;~, in G, and then
a sequence f%:= W, . f in F, which converges to ¥ € Gp,p/2 and such
that > :=W-feN, ,po.

In order to simplify, we can assume that the constant s of the theorem
is the same as the integer « defined by the SCl-action of G on H (see
(7.12), (7.12) and (7.12)). We first fix some parameters. Let A = 6s+5
(actually, A just have to be strictly larger than 6s + 4). We denote by
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7 the degree in the first variable of the polynomials Ry introduced in
Theorem .1 We consider a positive real number € < 1 such that

3
(7.18) —(1—5)+A<1+%)5<—1.
Finally, we fix a positive integer [ > 3s + 3 which satisfies
2s + 2
(7.19) zs—+1 <e

The construction of the sequences is the following: Let {5 > 1 be a
real constant; this constant is still not really fixed and will be chosen
according to Lemmai7.2. We then define the sequence (t4) 51 by tat1 =

tz/ ?. We also define the sequence 74 := (1+ﬁ) p/2. This is a decreasing
sequence such that p/2 < ry < p for all d. Note that we have rg. 1 =
'rd(l — ﬁ)

Let p > [ and f in Fop_1,. We start with fo := f € Fop_1,. Now,
assume that we have constructed fd € Fop—1,y for d > 0. We put
Dgy1 :=Ppa = Id + x™ and @4y := S(tg)Par1 = Id + X', Then,

41 is defined by

= By f
Roughly speaking, the idea is that the sequence (%) 40 Will be such that

IS M prars < ISR -

For every d > 1, we put ¥y = dgo...00,. We then have to show that
we can choose two positive constants o and 3 such that if || f{|2—1, < «
and ||f —0||;, < /8 then, the sequence (V4),-, converges with respect
to || |lp,p/2- It will follow from these two technical lemmas that we will
prove later:

Lemma 7.2. There exists a real number ty > 1 such that for any
f € Fop_1,p satisfying the conditions 02110 < te, HC(fO)Hzl—l,ro <
t and ||C(fO)||1ry < to! then, with the construction above, we have for
all d >0,
/2

. -1
La) IR sy < g7
24 HdeMd < C% where C' is a positive constant,
3¢) N lar-1,ry <t3

4a) IS Nar-1,ms < 1,

1Dy < 5"

A~ N N /S A/

ot
QU
— — — —
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Lemma 7.3. Suppose that for an integer k > I, there exists a con-
stant Cy and an integer dp > 0 such that for any d > di, we have

1F 21,4 < thA; IS D lok-100 < Citds 1 Nnry < Crfis and

||<(fd)‘|k,rd < thd . Then, there exists a positive constant Cyy1 and
an integer diy1 > di such that for any d > dyy1, we have

(D) IR es1arg < Crpaty 2,
(i) N k1, < Crr1 53,
(i) [ 2rt1rg < Crsatd,
(i) <O Dloks1,my < Crprtd,
)

(V HC(fd)HkJrl,rd < C]ngltC?l.

End of the proof of Theorem i.1. We choose t( as in Lemma.2. Then
we fix two positive constants « "and ﬂ such that tA > o and tO "1 > 0.
Now, if f € Fop_1,, satisfies || f||1—1,, < aand || f — OHIp < (3 then, since
1C(f )Hl » < |If = 0ll;, using Lemma ¥.2 and then applying Lemma 7.3
repetitively, there exists a positive integer d,, such that for all d > d,,,

~d —1/2
1R e < Gty 2.

Actually, it is more convenient to prove the convergence of the se-
quence (V) 4>1- The point (ii) of the continuity conditions in the
definition of SCI-group will then give the convergence of (¥4),~,. For
all positive integers d, we have \Ifgl = @fl 0...0 @;1 and if we denote
&' = Id + &4, the axiom (7.9) implies

—1/2
1€y < Mt 2,

for all d > d,,, where M, is a positive constant independent of d. Now,
by the inequality (7.11), the sequence (V' — Id)
(7.10) gives then the || ||, ,/o-convergence of (¥

a1 is bounded and

1
d )dZI'

Proof of Lemma 7.2. In this proof, M denotes a positive constant which
does not depend on d and which varies from inequality to inequality. As
in the case of Poisson structures, we prove this lemma by induction.
At the step d = 0, the only thing we have to verify is the point (1¢) (for
the point (3p). We just choose the constant C' such that C > 2|/ f°]|;.,,)-
We have [ lissre = 10X isom < MIX itsr, by (7.3): There

fore, using (7.16) with the relation I > 3s + 3, and the interpolation
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inequality (7.5), we obtain (P and @Q are polynomial functions):

X 5,70 < MIUCCO) 25,70 P UL llr0)
+M\|follz+2sm\|C( Mo QUL o)

< MICUOLET IO
Tl 1r0||<<f°>||no

- 29 1
1—2s5—1 29 29
+AZ —1+A=
< M< - L+t )

+ M| Ol
Then, by (7.19) and (7.18), we obtain ||{ |15, < Mty" with —p <

—3/4 < —1/2 and, replacing ty by a larger number if necessary (inde-
1/2

pendently of f and d), we have X im0 < to /- Note that we also

proved that HX1||I+S,T0 < tO
Now, we suppose that the conditions (14)...(54) are satisfied, and
we study the step d + 1. The point (1441) can be proved as above.
Proof of (2441) : According to (7.12), we have

F g < 1 Nra (4 PART  lirs,ra))

where P is a polynomial with vanishing constant term.

. ~ —1/2
Since HXdJrlHlJrs,rd < td /

that PIX" li4sr,)

, we can assume, choosing t( large enough,
1
S m, and we get
d+1 d+2
<C

1
d+2< +(d+1)(d+3)> d+3
Proof of (3441) : We have f&t1 = &y, - f¢ with
Dy = Id+ X = Id + S(tg)x*™
thus, (7.13) gives
17 ot 1raps < 17 N2 1, PURT l5,r0)
IR ot 1s, gl Mg P IR i)
where Py and P are two polynomials. This gives, by (14) and (24),
17 a1 < MU 2ty + IR l2t-146,m0)-
Now, we have
X o116 < MEP X 21260, by (7.3)
< Mg (IS =15, P31 i)
L o151 D g PaCl fNarg)) - By (F

d
Hf +1Hl,7’d+1 <C

"ﬂl
HI
o

)
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where Py and Py are polynomials. We get || ||a—14s,, < Mt5T5

and, consequently,

21—1,7’d 1 d N
Hfd-HH . <MtA+3s

To finish, since A = 6s 4+ 5, we have that HdeHZlﬂ,rdH < Mtf with

0 < B < 3A/2. Thus, replacing tg by a larger number if necessary, we

3A/2
get | S5 latm1rgny < £33 = 4.

Proof of (4441) : We have

d d d
IS D 2=t < I M 2= TUFE )

where T is a polynomial (see (7.15)). Using the estimate of (3441) and
(24+1), we obtain HC(de)HmeTdH < MtZ?JrSS, and we conclude as
above. .
Proof of (54.1) : Recall that we have ®4,1 = Id + x**! and 4,1 =
Id+ S(tq)x?*!'. We can write
‘|C(fd+1)||l,7“d+1 = HC((i)d-i-l : fd)Hlﬂ’gH-l
< HC((I)d-i-l : fd - (I)d-i-l : fd)||l,7“d+1 + HC((I)d-H : fd)Hlﬂ’gH-l
On the one hand, by (7.17) and using the interpolation inequality (i.5),
Point (2,4) and the estimate || x|, 15, < t;l/Q (see the proof of (1p)),
we have
HC((I)d-H ’ fd)Hl,TgH-l
S NCFNE g RS Mt s X g 1)

217571 2%
<MD ISyt

l—s—1 s
d = d|| =1 d d
- Ry <||f i 1Nt X sy 1 ||l,m>

7217571

S Mtd -1

245 AT

recall that 7 is the degree in the first variable of R;. Then, by (7.19)

and (:_7-_-1_8:)7 we have Hg(q)dJrl 'fd)||l,rd+1 < Mt;“ where - < _3/2

and, replacing tg by a larger number if necessary, we can then write
-3/2

16(®@as1 - £l < 3257

On the other hand, by (7.15),

1C( g - f* — P - fd)Hl,rglJrl <@y - fE— Dy - F oy
CT(|@asr - f = Parr - fNirg,s)
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and since ®qy1 = Pgpq + (X1 — x?*1), we have by (71%),

H(I)dJrl ’ fd - (I)dJrl ’ delﬂ"dJrl < H)A(d—i_l - d+1||l+s TdHdel+S rq

d od d
OUIX ™ s, IR = X H i)

where O is a polynomial of 2 variables. Since || ™[5, and

X% Y145, are both majored by tgl/Q

H(i)dJrl : fd - (I)dJrl : fd||l,1“d+1 < M‘|)2d+1 - XdJrlHlJrs,rdHdelJrs,rd‘

, We can write

By the interpolation inequality, we can write || f;4s.r, < M||fd||21 Ly

Moreover, using the property (7.4), the estimate (7.14) with the inequal-
ity [ > 3s + 3, and then the interpolation inequality (7.1), we get

IR = X igsrg < MEZHXT is41,g
< Mt5" (16Ul 2sr1ra P i)
d d d
s QA1 )

291

th;(Hq >||l Dl
T Vi kg SO

1—2s—2 2541 2s+1
_ +A — —14+A —
<Mtd1<td —1 -1 +td l1>‘

Consequently, we have

. As
1Par1 - £ = Pagr - f gy, < Mty IR = X M ligsr,

_2+A3s+1
< Mt ,

which implies

A~ +A39+1 2+A39+1
1C@a - f4 = @y - [y, < Mty T (md ) .

As above, we can conclude that
< 1,3 2
16 (@ars - S = Ba - L s < 517"
Finally, we obtain

IS M e SN Raga - f1 = Pagr - Frasy + 1 ®ars - F D rars
1,372 1 3/

<5t + 5t
Lemma 7.2 is proved. q.e.d.

_ 1
- td-{—l
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Proof of Lemma 7.3. As in the proof of the previous lemma, the letter
My, is a positive constant which does not depend on d and which varies
from inequality to inequality.

Proof of (i): In the same way, as in the proof of the point (1y) of the
previous lemma, we can show that for all d > dj, we have

IR k150 < MENCUD k126, P g

+ Mkufd||k+1+gs e ICE ks QU )

2s5+1

< MkHC(fd)llk HC(fd)HQk; Lrg

dy|~ * d d
+ M| f IIk Hf sz mIIC(f Mk
k=252 42541 14 A2stl
S Mk (td k—1 + k—1 + td 1+ k—1>
< Myt "

where —p < —1/2. Thus, there exists dpi1 > dj such that for all

1/2

d > dgy1, we have [R5 pp14sr, <t Note that we also have

~1/2.
X g < g
Proof of (ii): For d 2 di+1, we have by (7.12)

d d d
L 1m0 < W k1, (04 PUART et 14,0a))

where P is a polynomial with vanishing constant term. In Point (i), we

. —1/2
saw that [|[X9|pg 148,y < ty /

by a larger integer if necessary, that P(||[X*|kr11sr,) <

. Then, we can assume, replacing dj1

1
v (@) (d+3)
Now, we choose a positive constant Cy1 (independent on d) such that

LF e, Tdpy, < CngI;“iQ We then obtain, as in the proof of

Point (2) of the previous lemma, that ||f%(|1,,,, < Ck+1d for any

d > dj;1. Note that Cj,1 is a priori not the constant of statement of
the lemma. Later in the proof (see the proof of the point (iii)), we will
replace it by a larger one.
Proof of (v): The proof follows the same idea as the proof of Point (5)
in the previous lemma. Let d be an integer such that d > dx11—1 > dj.
We have

I M s trass < NP - f4— Par - F ks tmae

+11C(Pat1 - F D)kt 1m0
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Writing (7.17) with Point (i) and the estimate ||f%|x+1., < Crs1, and
the interpolation inequality (7.3), we get
d
1C(@ar1 - ) rt1,mgen
S Hg(fd)H%—i—l—f—s,rd

d d d
* R et st X i tsras 1 Nerrg)
+1

< ML ET H<<fd>||2£

k 5— 2
d d d d
Ry (nf T 1 I s I ||k+1,rd)

72]{3 5— 2+2A5+1+A7_s+1
< Mkt

(7 is the degree in the first variable of the polynomials Ry introduced
in Theorem 7.11). Then, by (7.19) and ({.18), we can bound the term
1C(@ay1 - fY ks, by Mity" where —pu < —3/2 and, YeplaCiﬂg dit1

by a larger integer if necessary, we have ||¢(®gy1 - f9) ka1 rasn < =t 32,

On the other hand, exactly in the same way as in the previous lemma
(using the interpolation inequality with k& and 2k — 1), we can show that

1Par1 f7= Part f ks 1rass

< Mk||fd||k+1+s,rd\|>2d+1 — X bt 145
< Mk||fd||2k; 17~dHXd+1 d+1Hk+1+s,rd

5+1 k—2s5—3 25+2 2542
—1,-1 k—1 +A —1+4 k—1
< Mktd td <td Y td

< Mkt;M

with —p < —3/2. Then, using (7.I5) and replacing dj4q by a larger
integer if necessary, we can write
- 1 32
16 (@ast - £ = @art - Flestirars < 5ta">
We then obtain for all d > dj 41 — 1
d —
(40 | ST i
Proof of (iii) and (iv): We first write, using the inequality (7.15), for

all d > dyy1, [ICCFD 2k 1,rg < 1 N2kt 1,ra Lo (LF ¥ t1,0y) Where T
is a polynomial. Putting V41 := max(1,T;4+1(Cks1)), we obtain by

Point (ii),
(7.20) IS D N2t 1ma < Vierr I 2ks 1,
We will use this inequality at the end of the proof.
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In the same way, as in the proof of (3;) of the previous lemma, we
can show that for all d > dj1, we have

1T 2k 1, < MiC ¥ Noktmg + IR okttt F Nt 1,mg)
< Mi(1f Norsrrg + 1T lorsr1s,g) by (i)
By (i7.3) and (7.16), we write
X 2kt 14smg < Mrts 2 Il 2k—1-26mg

< Mt (F D lok—1-s5.ra PULF Nlkra)
+ 11 21— s I kg QUL 1)

< Mt P2 D 2k -1mg + 12k 1,2 1D )

< Mkt9+35+2.

Now, since A = 6s +5 > 65 + 4, replacing di41 by a larger integer if
necessary, we can assume that for any d > dg41, we have the bound

MktdA+3S+2 < QVth?’A/Q (note that it also implies M} < 2Vk+1tA/2)'
This gives

T a2 4 1 342
7.21 1 o < t Ty
(7.21) I okt 1rasr < Wi 1/l 2k+1,rg + Wi

We choose a positive constant Ck.+1 such that

= g,
Cl+1 > max (1, Cl+1, . "kt .

d41

We then have ||fd’““H2k+1,rkorl < Ck+1tzi4k+1 and, using (7.21)), we ob-
tain by induction :

C
||fd||2k+1,7‘d < Vk+1td < Ck+1td7
k+1
for all d > dj41
Now, by ('_7:2(]) we have
Ck
ICCFD2k+1,mg < Viera v +1td ,
k+1

for all d > dj41.

Moreover, the definition of Cj41 completes the proof of the point (i),
(i) and (v).

Lemma 7.3 is proved. q.e.d.
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