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HOLOMORPHIC LINE BUNDLES ON THE LOOP
SPACE OF THE RIEMANN SPHERE

NING ZHANG

Abstract
The loop space LP1 of the Riemann sphere consisting of all Ck or Sobolev
W k,p maps S1 → P1 is an infinite dimensional complex manifold. The loop
group LPGL(2, C) acts on LP1. We prove that the group of LPGL(2, C)-
invariant holomorphic line bundles on LP1 is isomorphic to an infinite di-
mensional Lie group. Further, we prove that the space of holomorphic
sections of any such line bundle is finite dimensional, and compute the di-
mension for a generic bundle.

1. Introduction

Let M be a finite dimensional complex manifold. Its loop space LM
with a specified regularity, for example Ck (1 ≤ k ≤ ∞) or W k,p (1 ≤ k <
∞, 1 ≤ p < ∞), consists of all maps of the circle S1 into M with the given
regularity. LM is an infinite dimensional complex manifold. This paper
studies holomorphic line bundles on the loop space LP1 of the Riemann
sphere.

A direct motivation comes from [9], where Millson and Zombro con-
jecture that there exists a PGL(2, C)-equivariant embedding of LP1 into
a projectivized Banach/Fréchet space. The conjecture arises in connection
with extending Mumford’s geometric invariant theory to an infinite dimen-
sional setting. Another indirect motivation comes from [11], where Witten
suggests to study the geometry and analysis of real and complex manifolds
through their loop spaces. In finite dimensions it is a problem of fundamen-
tal importance to identify the Picard group of holomorphic line bundles on
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a complex manifold and the space of holomorphic sections of these bundles.
Here we address this problem for a class of holomorphic line bundles on
the first interesting loop space: LP1, and in particular make some progress
toward answering the conjecture by Millson and Zombro.

The following are the main results of this paper:
If a group G acts on a set V , let V G denote the G-fixed subset of V .

The loop space of a finite dimensional complex Lie group is a complex Lie
group under pointwise group operation (loop group). Let Pic(LP1) be the
Picard group of LP1. The group PGL(2, C) acts on P1, so the loop group
LPGL(2, C) acts on LP1 and on Pic(LP1). Let LC∗ be the loop group of
C∗ = C \ {0}, and Hom(LC∗, C∗) be the group of holomorphic homomor-
phisms from LC∗ to C∗.

Theorem 1.1. Pic(LP1)LPGL(2,C) ∼= Hom(LC∗, C∗) as groups.

Note that Hom(LC∗, C∗) is a Z-module of infinite rank, while the group
of topological isomorphism classes of line bundles on LP1 is isomorphic to
Z (cf. [8]).

Evaluation of loops in P1 at t ∈ S1 gives rise to a holomorphic map
Et : LP1 → P1. Let Λt ∈ Pic(LP1) be the pull back of the hyperplane
bundle on P1 by Et.

Theorem 1.2. Let Λ ∈ Pic(LP1)LPGL(2,C).

(1) If Λ ∼= Λn1
t1

⊗ · · · ⊗ Λnr
tr , where ni ≥ 0 and ti �= tj for i �= j, then

(n1 + 1) · · · (nr + 1) ≤ dim H0(LP1, Λ) < ∞.

(2) Otherwise H0(LP1, Λ) = 0.

Therefore the sections of no LPGL(2, C)-invariant holomorphic line bun-
dle will give rise to a projective embedding of LP1.

The isomorphism in Theorem 1.1 is gotten by an explicit construction
in Section 2. In Section 3 we prove Theorem 1.2(2). In Section 4 we study
the space of holomorphic sections or the zero order Dolbeault cohomology
group of line bundles defined in Theorem 1.2(1), and in particular prove
Theorem 1.2(1). Any such line bundle obviously has holomorphic sections:
products of pulled back sections by the evaluation maps. We will show that
for a generic bundle of this type these are all sections. Yet there are bundles
which have other sections as well; interestingly, in this case dimH0(LP1, Λϕ)
depends on the regularity of the loops.

It is natural to ask whether Pic(LP1)PGL(2,C) = Pic(LP1)LPGL(2,C). If
so, then the conjecture made by Millson and Zombro is answered in the
negative.
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2. Identification of Pic(LP1)LP GL(2,C)

We fix a regularity class F among Ck (1 ≤ k ≤ ∞) respectively W k,p

(1 ≤ k < ∞, 1 ≤ p < ∞). In this paper we write LM (LkM resp. Lk,pM)
to denote the F (Ck resp. W k,p) loop space of a manifold M . Let M
and N be finite dimensional complex manifolds and φ : M → N be a
holomorphic map. Define Lφ : LM 	 x 
→ φ ◦ x ∈ LN . Then LM and LN
are infinite dimensional complex manifolds locally biholomorphic to open
subsets of complex Banach (Fréchet when F = C∞) spaces, and Lφ is
holomorphic. Thus L is a functor from the category of finite dimensional
complex manifolds to the category of all complex manifolds. Let t ∈ S1.
The evaluation map Et = ELM

t : LM 	 x 
→ x(t) ∈ M is holomorphic. See
Section 2 of [6].

We call constant maps S1 → M point loops in M . They form a sub-
manifold of LM , which we identify with M .

Next we define a map L : Hom(LC∗, C∗) → Pic(LP1)LPGL(2,C). We will
show that L is an isomorphism of groups, which will then prove Theorem 1.1.

In Section 6 of [9] Millson and Zombro construct a holomorphic line
bundle on LP1, and a similar idea in fact yields a map from Hom(LC∗, C∗)
to Pic(LP1) as follows. Let p : Q → P1 be the principal C∗-bundle associated
with the hyperplane bundle H → P1. Applying the loop functor we obtain a
principal LC∗-bundle Lp : LQ → LP1. Now a homomorphism ϕ : LC∗ → C∗

determines a representation of LC∗ on C. Recall that, in general, with a
principal G-bundle P → B and a representation ρ of G on a vector space
V , one can functorially associate a vector bundle E → B with typical fiber
V (see Section 12.5 of [4]). If hab are the G-valued transition functions of P
with respect to some trivialization, the corresponding transition functions
of E will be ρ(hab). Accordingly we associate with Lp and ϕ a line bundle
Λϕ. Define the map

L : Hom(LC∗, C∗) → Pic(LP1), ϕ 
→ Λϕ.

Note that the PGL(2, C) action on P1 can be covered by a GL(2, C)
action on Q. One way to see this is to pass to the tautological C∗-bundle
Q−1, whose total space is C2\{0}, on which the GL(2, C) action is standard.
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The GL(2, C) action on Q gives rise to an LGL(2, C) action on LQ. Since
LGL(2, C) → LPGL(2, C) is surjective (as follows from the exact homo-
topy sequence associated with the fibration C∗ → GL(2, C) → PGL(2, C)
and the lifting of homotopies), this LGL(2, C) action will in fact cover the
LPGL(2, C) action on LP1. In particular, γ∗LQ ∼= LQ for γ ∈ LPGL(2, C).
Hence γ∗Λϕ

∼= Λϕ and we have proved the following:

Proposition 2.1. The range of L is in Pic(LP1)LPGL(2,C).

Let U = {Ua = P1 \ {a} : a ∈ P1}. Then

LU = {LUa : a ∈ P1}(2.1)

is an open covering of LP1. Now we introduce a way to construct Čech
cohomology classes in H1(LU,O∗). Let OG denote the sheaf of holomorphic
maps to the complex Lie group G from a complex manifold. So OC∗

= O∗.
If c = (cab) is a Čech 1-cocycle of U with values in the sheaf O∗ and [c] its
cohomology class, then Lc = (Lcab) is a Čech 1-cocycle of LU with values in
OLC∗

. Any ϕ ∈ Hom(LC∗, C∗) induces a sheaf homomorphism OLC∗ → O∗.
Since the cohomology class of ϕ ◦ Lc depends only on [c], we obtain a map

H1(U,O∗) × Hom(LC∗, C∗) → H1(LU,O∗), ([c], ϕ) 
→ [ϕ ◦ Lc],(2.2)

a group homomorphism in both variables.
Fix [c] in (2.2) to be the class [cH ] of the hyperplane bundle H → P1,

where

cH = {gab ∈ O∗(Ua ∩ Ub) : a, b ∈ P1, a �= b},

gab =




z−b
z−a a, b �= ∞
z − b a = ∞

1
z−a b = ∞

, z ∈ Ua ∩ Ub.(2.3)

Then we obtain a homomorphism Hom(LC∗, C∗) → H1(LU,O∗), ϕ 
→ [cϕ],
where

cϕ = {ϕ ◦ Lgab ∈ O∗(LUa ∩ LUb) : a, b ∈ P1, a �= b},(2.4)

which has the same range as the map in (2.2).

Proposition 2.2. The line bundle associated to [cϕ] is Λϕ. In partic-
ular L is a homomorphism.
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Proof. From the definitions it follows that LcH = (Lgab) is a family of
transition functions of Lp, hence cϕ in (2.4) is a family of transition functions
of Λϕ. q.e.d.

Let t ∈ S1 and Λt ∈ Pic(LP1) be the pull back of the hyperplane bundle
on P1 by the evaluation map ELP1

t . Obviously ELC∗
t ∈ Hom(LC∗, C∗), and

by Proposition 2.2 L(ELC∗
t ) = Λt.

To prove Theorem 1.1 we need the following preparations:
Identify LU∞ with LC and let y ∈ LC∗. Define the map Φy : LC×P1 	

(x, λ) 
→ x+λy ∈ LP1, where by Φy(x,∞) we mean the point loop ∞ ∈ LP1.
Since a continuous map h : Ω1 → Ω2 between open subsets of Fréchet spaces
is holomorphic if and only if its restriction to the intersection of Ω1 with any
affine line is holomorphic, see Sections 2.3, 3.1 of [2], one can easily check that
Φy is holomorphic. Clearly Φy(x, ·) : P1 → LP1 is a holomorphic embedding,
whose image we will denote by v(x, y). The existence of subvarieties v(x, y)
immediately implies that any holomorphic function on LP1 is constant.

Let Λ ∈ Pic(LP1). If Λ|P1
∼= Hn, then we say that Λ is of order n, or

ord(Λ) = n; and we claim that Λ|v(x,y)
∼= Hn, x ∈ LC, y ∈ LC∗. This

would imply that the only holomorphic section of Λ is the zero section if
ord(Λ) < 0. To show the claim, let c1 denote the rational first Chern
class of a line bundle. According to the first theorem of [10], the inclusion
P1 → LP1 induces an isomorphism H2(LP1, Q) ∼= H2(P1, Q), so that c1(Λ)
is completely determined by c1(Λ|P1) = n. Hence c1(Λ|v(x,y)) , and therefore
the degree of Λ|v(x,y), is also determined by n. That this degree is itself n
then follows from computing it in the special case Λ = Λn

t .
Let ϕ ∈ Hom(LC∗, C∗). The restriction of ϕ to the subgroup of point

loops must be of the type z 
→ zn, z ∈ C∗, where n ∈ Z. We call this
n the order of ϕ and denote it by ord(ϕ). Proposition 2.2 implies that
ord(Λϕ) = ord(ϕ). Let Fx be the fiber of Λ at x ∈ LP1.

Proposition 2.3. Let Λ ∈ Pic(LP1), ord(Λ) = 0 and y ∈ LC∗. For
any ζ ∈ F∞ \{0} there exists a unique non-vanishing section σ = σy,ζ ∈
H0(LU∞, Λ) such that limλ→∞ σ(x + λy) = ζ, x ∈ LU∞. In particular,
Λ|LU∞ is holomorphically trivial.

Proof. Since Λ|v(x,y) is trivial, uniqueness is obvious. As to existence,
let H be a hyperplane in LC such that y /∈ H and consider the line bundle
Λ̃ = Φ∗

yΛ|H×P1 . Since Φy ≡ ∞ on H×{∞}, s = Φ∗
yζ is a non-vanishing holo-

morphic section of Λ̃|H×{∞}. In turn s determines a section σ̃ of Λ̃|H×P1 such
that σ̃|{x}×P1

is the unique non-vanishing holomorphic section of Λ̃|{x}×P1

with σ̃(x,∞) = s(x,∞), for all x ∈ H. Next we show that σ̃ is holomor-
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phic. Let x0 ∈ H. By Proposition 5.1 of [5] there exist a neighborhood
x0 ∈ U ⊂ H and a section v ∈ C∞(U × P1, Λ̃) such that v is holomorphic
on {x} × P1 for all x ∈ U , and v|{x0}×P1

= σ̃|{x0}×P1
�= 0. By choosing

a sufficiently small U we can assume v �= 0. The function σ̃/v is C∞ on
U × {∞} and is constant on {x} × P1, x ∈ U , hence is C∞ on U × P1. So
it follows that σ̃ ∈ C∞(H× P1). Since ∂σ̃|H×{∞} = 0 and ∂σ̃|{x}×P1

= 0 for
all x ∈ H, by Proposition 5.2(ii) of [5] we obtain that indeed ∂σ̃ = 0. Then
the desired σ is the pull back of σ̃ by (Φy|H×C)−1. q.e.d.

Since H|U∞ is trivial, so is Λt|LU∞ . In general, let Λ ∈ Pic(LP1),
ord(Λ) = n. As

Λ = Λn
t ⊗ (Λ−n

t ⊗ Λ), where ord(Λ−n
t ⊗ Λ) = 0,(2.5)

Proposition 2.3 implies that Λ|LU∞ is also trivial. More generally, Λ|LUa is
trivial, a ∈ P1, which means

Corollary 2.4. Pic(LP1) ∼= H1(LU,O∗).

If Λ ∈ Pic(LP1)LPGL(2,C), then Proposition 2.3 can be improved: σ there
is essentially independent of y, and so is a canonical section of Λ|LU∞ .

Proposition 2.5. Let Λ ∈ Pic(LP1)LPGL(2,C), ord(Λ) ≥ 0. Then
there exists a non-vanishing section σ∞ ∈ H0 (LU∞, Λ) such that
limλ→∞ σ∞(x + λy) exists for all x ∈ LU∞ and y ∈ LC∗. Such a section is
unique up to a multiplicative constant.

Proof. Suppose σ∞ exists. For any y ∈ LC∗, Λ|v(0,y)
∼= Hord(Λ) has

a unique holomorphic section which does not vanish on v(0, y)\{∞} and
assumes σ∞(0) at 0; clearly σ∞ agrees with this section on v(0, y)\{∞}. In
particular, σ∞(y) is uniquely determined by σ∞(0), y ∈ LC∗. Since LC∗

is dense in LC = LU∞, σ∞ is completely determined by its value at 0, or
unique up to a multiplicative constant. Next we show the existence.

First assume ord(Λ) = 0. Let ζ ∈ F∞\{0}, y1, y2 ∈ LC∗, and σy1,ζ , σy2,ζ ∈
H0(LU∞, Λ) as in Proposition 2.3. Define

h = hy1,y2 =
σy1,ζ

σy2,ζ
∈ O∗(LU∞),

which is independent of the choice of ζ ∈ F∞\{0}. For fixed x1 ∈ LC let
µ ∈ LPGL(2, C) be the translation x 
→ x + x1, x ∈ LP1. Clearly µ∗σyi,ζ ∈
H0(LU∞, µ∗Λ), i = 1, 2, is a section of the type as in Proposition 2.3.
With a fixed isomorphism µ∗Λ ∼= Λ, µ∗σyi,ζ corresponds to σyi,ζ′ , where
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ζ ′ ∈ F∞\{0}. Therefore

h(x + x1) = µ∗h(x) =
µ∗σy1,ζ

µ∗σy2,ζ
(x) =

σy1,ζ′

σy2,ζ′
(x) = h(x).

Thus h = hy1,y2 is a nonzero constant. From the definition of σy2,ζ it follows
that σy1,ζ = hσy2,ζ extends to be a section of Λ|v(x,y2) for all x ∈ LC, where
y2 ∈ LC∗ is arbitrary. The upshot is σ∞ = σy1,ζ with arbitrary y1, ζ will do.

Second assume Λ = Λn
t , n ≥ 0. If s is a section of Hn, nonzero on

P1 \ {∞}, take σ∞ = (ELP1
t )∗s. Finally, these two special cases and (2.5)

imply the general case. q.e.d.

Theorem 1.1 follows from:

Theorem 2.6. L : Hom(LC∗, C∗) → Pic(LP1)LPGL(2,C) is a group
isomorphism.

Proof. i) Injectivity: If L(ϕ) = Λϕ is trivial, then ord(ϕ) = 0; and by
Proposition 2.2 and (2.4) we can find fa ∈ O∗(LUa), a ∈ P1, such that
fa = (ϕ ◦ Lgab)fb on LUa ∩ LUb. In particular, f∞ = ϕf0 on LC∗ ⊂ LP1.
For any y ∈ LC∗ we have

lim
C�λ→∞

f∞(λy) = lim
λ→∞

ϕ(λy)f0(λy) = ϕ(y)f0(∞),

since ϕ(λy) = ϕ(λ)ϕ(y) = ϕ(y). Thus f∞|v(0,y)\{∞} extends to all of v(0, y),
and so must be constant. In particular, f∞(y) = f∞(0) and f∞ itself is a
constant. Similarly f0 is also a constant. Then ϕ is a constant which can
only be 1.

ii) Surjectivity: Since Λn
t is in the range of L, by (2.5) we only need to

show that any Λ ∈ Pic(LP1)LPGL(2,C) with ord(Λ) = 0 is in the range of L.
Let ε(x) = 1/x, x ∈ LP1. The induced bundle ε∗Λ is isomorphic to Λ,

so Proposition 2.5 applies to produce a non-vanishing σ̃∞ ∈ H0(LU∞, ε∗Λ).
Then σ0 = σ̃∞ ◦ ε ∈ H0(LU0, Λ) is characterized, up to a multiplicative
constant, by the fact that limλ→∞ σ0

(
(x + λy)−1

)
exists, for all x ∈ LU∞,

y ∈ LC∗. To get rid of the ambiguity in the choice of the constant, fix a
nonzero s ∈ H0(P1, Λ) and choose σ0 and σ∞ (as in Proposition 2.5) to
agree with s on point loops. Set φ = σ0/σ∞ : LC∗ → C∗. Note that on
point loops φ = 1. We will show that φ is a homomorphism and Λ = Λφ.

For this purpose fix y1 ∈ LC∗ and define γ(x) = y1x, x ∈ LP1. It
is straightforward that the non-vanishing section γ∗σ∞ ∈ H0(LU∞, γ∗Λ)
satisfies the conditions in Proposition 2.5. Hence under an isomorphism
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γ∗Λ ∼= Λ, γ∗σ∞ corresponds to a constant multiple of σ∞. Similarly, under
this isomorphism γ∗σ0 corresponds to a constant multiple of σ0. Therefore

φ(y1y) = (γ∗φ) (y) =
γ∗σ0

γ∗σ∞
(y) = c

σ0

σ∞
(y) = cφ(y).

Letting y = 1 we get c = φ(y1), so φ is indeed a homomorphism.
Finally with a ∈ C let µa(x) = x + a, x ∈ LP1. For the bundle Λ′ = µ∗

aΛ
one can construct corresponding sections σ′∞ and σ′

0; for the normalization,
use s′ = µ∗

as ∈ H0(P1, Λ′). As Λ′ ∼= Λ, σ′
0/σ′∞ = φ. Since (µ−1

a )∗σ′∞ ∈
H0(LU∞, Λ) satisfies the conditions in Proposition 2.5 and agrees with s on
point loops, (µ−1

a )∗σ′∞ = σ∞. Let σa = (µ−1
a )∗σ′

0 ∈ H0(LUa, Λ). Since

σa

σ∞
=

(
µ−1

a

)∗ σ′
0

σ′∞
= φ ◦ µ−1

a ,

it is straightforward to check that the transition functions σb/σa ∈ O∗(LUa∩
LUb) of Λ agree with those of Λφ given in (2.4); therefore Λ = Λφ is indeed
in the range of L. q.e.d.

Let (LC)∗ be the space of continuous linear functionals on LC, let ϕ̃ ∈
(LC)∗ be the Lie algebra homomorphism induced by ϕ ∈ Hom(LC∗, C∗),
and x0 ∈ LC∗ be a fixed loop whose winding number with respect to 0 is 1.
The reader can check that the map

Hom(LC∗, C∗) → {φ ∈ (LC)∗ : φ(1) ∈ Z} × C∗, ϕ 
→ (ϕ̃, ϕ(x0))

is an isomorphism of groups. Therefore Hom(LC∗, C∗) is a Z-module of
infinite rank.

The proof of Theorem 2.6 implies the following:

Proposition 2.7. Let ϕ ∈ Hom(LC∗, C∗), ord(ϕ) ≥ 0. There is
a family of non-vanishing sections {σa ∈ H0(LUa, Λϕ) : a ∈ P1}, unique
up to an overall multiplicative constant, that satisfies σb/σa = ϕ ◦ Lgab on
LUa ∩ LUb. Furthermore, σ∞ satisfies the conditions in Proposition 2.5.

Proof. Uniqueness is obvious: if {σ′
a} is another family then {σ′

a/σa}
defines a holomorphic function on LP1, which, as we have said, must be a
constant. When ord(Λ) = 0, the family {σa} is constructed in the proof
of Theorem 2.6. When Λ = Λn

t , take sections τa of the hyperplane bundle
H → P1 such that τb/τa = gab (see (2.3)), then σa = (ELP1

t )∗τn
a |LUa will do.

The case of a general Λ now follows from (2.5). q.e.d.
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3. Proof of Theorem 1.2(2)

We start with two results concerning polynomials on LC. For simplicity
let Et denote both ELC

t ∈ (LC)∗ and ELC∗
t ∈ Hom(LC∗, C∗) till the end of

this paper.

Lemma 3.1. If a homogeneous polynomial h ∈ O(LC) of degree n ≥ 1
does not vanish on LC∗, then h = cEt1 · · ·Etn, where t1, . . . , tn ∈ S1, and
c �= 0 is a constant.

Proof. Since L∞C is embedded into LC with a dense image, we only
need to show the lemma for the case of C∞ loops.

Let W = LC \ LC∗, Zh ⊂ W be the zero locus of h, and Emb(S1, C)
⊂ L∞C be the open subset of embedded loops. Then Zh ∩Emb(S1, C) �= ∅.
Otherwise for any x ∈ Emb(S1, C), the polynomial h(x+λ) in λ ∈ C has no
zero, hence is constant. In particular, h(x + 1) = h(x) on Emb(S1, C) and
therefore on L∞C. So h(1) = h(0) = 0. But 1 ∈ LC∗, contradiction.

Let x1 ∈ W ∩Emb(S1, C). Next we show that W is a submanifold of real
codimension one near x1. Let t1 be the unique element of S1 = R/Z such
that x1(t1) = 0. We can assume that x′

1(t1) is not real, otherwise replace x1

by ix1. Consider the equation

Im x(s) = 0, x ∈ L∞C, s ∈ S1.(3.1)

This equation can also be considered on the Ck loop space LkC, 1 ≤ k < ∞.
Note that Im x′

1(t1) �= 0. Apply the Implicit Function Theorem on Banach
spaces (see Theorem 2.5.7 of [1]) to the Ck map LkC × S1 → R, (x, t) 
→
Im x(t) near (x1, t1). When k = 1 we obtain a neighborhood U1 ⊂ L1C of
x1 consisting of embedded loops, a neighborhood V ⊂ S1 of t1, and a C1

map φ : U → V such that for any x ∈ U , s = φ(x) is the unique solution of
(3.1) in V . We can shrink U1 and V if necessary to ensure that Im x′(t) �= 0
for all (x, t) ∈ U1 × V . For arbitrary k < ∞ we obtain that φ is Ck on
Uk = U1 ∩ LkC by the Implicit Function Theorem at any (x, φ(x)), x ∈ Uk.
This implies that φ is C∞ on U = U1 ∩ L∞C. We can choose sufficiently
small U so that x(t) �= 0 if x ∈ U and t �∈ V ; then

x (φ(x)) = 0, x ∈ U ∩ W.(3.2)

Let Y be the real hyperplane {y ∈ L∞C : Im y(t1) = 0} of L∞C. Define
the C∞ map τ : S1 × Y → L∞C, (s, x(t)) 
→ x(t − s). The C∞ map
ρ : U → S1 × Y , x(t) 
→ (φ(x) − t1, x(t + φ(x) − t1)) is the local inverse
of τ near (t1, x1). Let Ht be the kernel of Et. Note that Ht1 ⊂ Y . Since
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τ(S1×Ht1) = W and by (3.2) ρ(W ∩U) ⊂ S1×Ht1 , W ∩U is a submanifold
of real codimension one of U . Its tangent space is

TWx = Hφ(x) ⊕ {x′R}, x ∈ W ∩ U,(3.3)

if we identify the tangent space of L∞C at x with L∞C.
Now assume x1 ∈ Emb(S1, C) ∩ Zh. Let v ∈ Ht1 and v0 �∈ W . Consider

the restriction of h to the 2-dimensional affine subspace E = {x1 + λ1v +
λ2v0 : λ1, λ2 ∈ C}. Let δ : ∆ → Zh ∩ E ∩ U ⊂ W be a holomorphic arc
such that δ(0) = x1 and 0 �= δ′(0) ∈ TWx1 . As for all λ ∈ ∆ δ′(λ) is in
the maximal complex subspace of Tδ(λ)W , δ′(λ) ∈ Hφ(δ(λ)) by (3.3). Since
φ is constant on Hφ(δ(λ)) ∩ U , the derivative of φ in the direction of δ′(λ)
is zero, hence φ ◦ δ ≡ t1. In view of (3.2) δ(∆) ⊂ Ht1 ∩ E. It follows that
{x1 + λ1v} ⊂ Zh and Ht1 ⊂ Zh.

The local ring O(L∞C)x, x ∈ L∞C, is a unique factorization domain,
see Proposition 5.15 of [7]. The germ of Et1 at any x ∈ Ht1 is prime, for
the functions e(λ) = Et1(x + λy) vanish to first order at λ = 0 if y(t1) �=
0. Applying the Nullstellensatz in Theorem 5.14 of [7] to the prime ideals
((Et1)x), x ∈ Ht1 , we obtain that h = Et1 h̃, h̃ ∈ O(L∞C). On any affine
line h̃ is a polynomial of degree ≤ n − 1, so it is a polynomial of degree
≤ n− 1 on L∞C, see Section 2.2 of [2]. The zero locus of h̃ is still in W , so
that repeating the above process we obtain the conclusion of the lemma.

q.e.d.

Let Pn(LC) be the space of holomorphic polynomials of degree ≤ n on
LC.

Proposition 3.2. Let h1, h2 ∈ O(LC) and ϕ ∈ O(LC∗) such that
ϕ(λy) = λnϕ(y), λ ∈ C∗, y ∈ LC∗, n ∈ N ∪ {0}. If h1(y) = ϕ(y)h2(y−1),
y ∈ LC∗, then h1, h2 ∈ Pn(LC). Let hi

j be the i-th order homogeneous
component of hj, j = 1, 2, i = 0, . . . , n. Then hi

1(y) = ϕ(y)hn−i
2 (y−1).

Proof. If x ∈ LC, y ∈ LC∗, then

lim
λ→∞

h1(x + λy)
λn

= lim
λ→∞

ϕ(xλ−1 + y)h2((x + λy)−1) = ϕ(y)h2(0).

Thus h1(x + λy) is a polynomial of degree ≤ n in λ. As LC∗ is dense in
LC, the same holds for all y ∈ LC. Since a continuous function on a Fréchet
space is a polynomial of degree ≤ n if its restriction to any affine line is such a
polynomial, see Section 2.2 of [2], we conclude that h1 ∈ Pn(LC). Similarly
h2 ∈ Pn(LC). Comparing homogeneous components of same order on both
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sides of the equation h1(y) = ϕ(y)h2(y−1), we get hi
1(y) = ϕ(y)hn−i

2 (y−1),
i = 0, . . . , n. q.e.d.

Let σ ∈ H0(LP1, Λϕ), ord(ϕ) ≥ 0. With sections σa ∈ H0(LUa, Λϕ),
a ∈ P1, in Proposition 2.7, the functions Ha = σ/σa ∈ O(LUa) satisfy

Ha(x) = ϕ ◦ Lgab(x)Hb(x), x ∈ LUa ∩ LUb.(3.4)

Note that Lgab maps LUa to LC biholomorphically, and let hab = Ha ◦
Lg−1

ab ∈ O(LC). Then (3.4) implies that

hab(y) = ϕ(y)hba(y−1), y ∈ LC∗.(3.5)

From Proposition 3.2 it follows that hab ∈ Pn(LC); also

H∞ = h∞0 ∈ Pn(LC).(3.6)

Proof of Theorem 1.2(2).
By Theorem 2.6 each element of Pic(LP1)LPGL(2,C) is of the type Λϕ,

ϕ ∈ Hom(LC∗, C∗). Suppose Λϕ has a nonzero holomorphic section σ. We
can assume that σ(∞) �= 0; this can be arranged by pulling σ back by
a suitable element of LPGL(2, C). Then Λϕ|P1

∼= Hn also has a nonzero
section, so ord(ϕ) = n ≥ 0. Note that h0∞(0) = H0(∞) �= 0. By (3.5),
applied with ab = ∞0, and Proposition 3.2

hn
∞0(y) = ϕ(y)h0∞(0) �= 0, y ∈ LC∗.(3.7)

Hence h = hn∞0 ∈ O(LC) satisfies the condition in Lemma 3.1, so hn∞0 =
cEt1 · · ·Etn . By (3.7) ϕ = Et1 · · ·Etn , and Λϕ is of the type as in Theo-
rem 1.2(1). q.e.d.

4. The space of holomorphic sections

In this section we shall study the space H0(LP1, Λ), where Λ is as in
Theorem 1.2(1), and we shall prove Theorem 1.2(1). Since dimH0(LP1,
Λ) = 1 if Λ is trivial, we fix Λ = Λϕ nontrivial, where

ϕ = En1
t1

· · ·Enr
tr , ni > 0, ti �= tj if i �= j.(4.1)

With σa ∈ H0(LUa, Λϕ) as in Proposition 2.7 and σ ∈ H0(LP1, Λϕ), we
have seen that σ/σ∞ = H∞ ∈ Pn(LC), cf. (3.6). Define a monomorphism

Hϕ : H0(LP1, Λϕ) → Pn(LC), σ 
→ σ/σ∞,
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where n = ord(ϕ) ≥ 0. Let R(Hϕ) ⊂ Pn(LC) be the range of Hϕ. We shall
study H0(LP1, Λϕ) through R(Hϕ).

The bundle Λϕ, where ϕ is as in (4.1), has nontrivial holomorphic sec-
tions: products of pull back sections by evaluation maps on LP1.

Proposition 4.1. The linearly independent functions Em1
t1

· · ·Emr
tr are

in R(Hϕ), 0 ≤ mi ≤ ni, 1 ≤ i ≤ r. In particular, (n1 + 1) · · · (nr + 1) ≤
dim H0(LP1, Λϕ).

Proof. Choose a basis {τ̃j : j = 0, . . . , n1} of H0(P1, H
n1), where τ̃0 has

a zero of order n1 at ∞ ∈ P1 and τ̃j = zj τ̃0, z ∈ P1. Let τj = (ELP1
t1

)∗τ̃j ∈
H0(LP1, Λn1

t1
). The section τ0|LU∞ satisfies the conditions in Proposition 2.5.

Therefore
Hϕ(τj) = τj/τ0 = E∗

t1z
j = Ej

t1
.

Similarly we have pull back sections of Λni
ti

, i = 1, . . . , r. By taking products
of such sections we obtain sections of Λϕ, hence Em1

t1
· · ·Emr

tr ∈ R(Hϕ), 0 ≤
mi ≤ ni, 1 ≤ i ≤ r. Another way of obtaining these functions is to pull
back monomials on Cr by the surjective map (Et1 , ..., Etr) : LC → Cr, which
interpretation proves the claim of linear independence. q.e.d.

The elements of R(Hϕ) identified in Proposition 4.1 are in the subalge-
bra of Pn(LC) generated by evaluation functions. In other words they are
polynomials in finitely many linear functionals. The next proposition shows
that this is true in general. For convenience, in Propositions 4.2 and 4.3
we shall restrict our discussion to Ck (1 ≤ k ≤ ∞) loop spaces LkP1. Let
x(ν)(t) denote the ν-th derivative of x ∈ LkC at t ∈ S1 = R/Z, ν ≤ k. Note
that the function x → x(ν)(t) is in (LkC)∗.

Proposition 4.2. If σ ∈ H0(LkP1, Λϕ) and P = Hϕ(σ), then P (x) is
a polynomial in finitely many derivatives x(ν)(ti), 0 ≤ ν ≤ k, 1 ≤ i ≤ r.

Proof. Let A = {t1, . . . , tr} ⊂ S1, x0 ∈ LkU∞, and denote the k-jet of
x ∈ LkP1 by jkx. Define

Z = Z(k, A, x0) = {x ∈ LkP1 : jkx|A = jkx0|A}.

This is a connected complex submanifold of LkP1 and any holomorphic
function on it is a constant, see Sections 3, 4 of [6]. Consider the sections
σa of Proposition 2.7. In the proof of that proposition we have shown that,
when Λ = Λn

t , σa can be taken to be the pullback by ELP1
t of sections τa

of the hyperplane bundle H → P1, τa �= 0 on Ua. When Λ = ⊗Λni
ti

, σa can
be taken as the product of such sections. Then σa(x) = 0 only if x(ti) = a
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for some i; in particular σ∞ �= 0 on Z. It follows that σ/σ∞|Z ∈ O(Z) is
constant, i.e., P is constant on any affine subspace

{x ∈ LkC : jkx|A = jkx0|A}, x0 ∈ LkC.(4.2)

When k < ∞, the continuous linear functionals x → x(ν)(ti), 0 ≤ ν ≤ k,
1 ≤ i ≤ r, give rise to a surjective linear map J : LkC → C(k+1)r, whose
fibers are the affine subspaces in (4.2). What we have shown above implies
that P = J∗f , where f is a function on C(k+1)r. In fact f is a holomorphic
polynomial of degree ≤ n, for with a linear right inverse I to J we have
f = P ◦ I.

Consider the case when k = ∞. Let P j be the j-th order homoge-
neous component of P ∈ Pn(L∞C), j = 1, . . . , n. These components are
also constant on any affine subspace in (4.2). By the definition of a homo-
geneous polynomial we can find a continuous symmetric j-linear mapping
Ψj : (L∞C)j → C such that P j(x) = Ψj(x, . . . , x). Applying the Schwartz
Kernel Theorem (see Theorem 5.2.1 of [3]) one can show that there exists a
distribution Kj in the j dimensional torus T j such that

Ψj(x1, . . . , xj) = Kj(x1(s1) · · ·xj(sj)), (s1, . . . , sj) ∈ T j .

So P j(x) = Kj(x(s1) · · ·x(sj)). The Polarization Formula (see (2) in Sec-
tion 2.2 of [2])

Kj (x1(s1) · · ·xj(sj)) =
1

2jj!

∑
ε1,...,εj=±1

ε1 · · · εjP
j(ε1x1 + · · · + εjxj)

and the fact that P j depends only on j∞x|A imply that Kj is supported in
Aj ⊂ T j . Therefore Kj is a (finite) linear combination of partial derivatives
at points in Aj , see Theorem 2.3.4 of [3]. Hence P j and P are polynomials
in finitely many x(ν)(ti), x ∈ L∞C. q.e.d.

For each i let Ni be the order of the highest derivative x(ν)(ti) that P (x)
depends on, see Proposition 4.2, and mi the degree of P (x) as a polynomial
of x(Ni)(ti). Our next task is to estimate Ni, mi.

Proposition 4.3. mi (Ni + 1) ≤ ni, where ni is defined in (4.1).

Proof. Fix i. At first assume P = Hϕ(σ) contains the monomial

c1 x(Ni)(ti)mi ,(4.3)
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where c1 �= 0 is a constant. By (3.6) and (3.5) P = h∞0 satisfies h0∞(y) =
ϕ(y)h∞0(y−1) so that Proposition 3.2 implies that

hn−mi
0∞ (x) = ϕ(x)

[
Pmi(x−1)

]
, x ∈ LkC∗,(4.4)

where superscripts indicate homogeneous components of the given order.
Since Pmi is a polynomial in x(ν)(tj), Pmi(x−1) is a sum of rational expres-
sions, where the denominators are monomials in x(tj), 1 ≤ j ≤ r, and the
numerators are monomials in x(ν)(tj), ν ≥ 1. In this sum the monomial in
(4.3) gives rise to the term

c1(−1)miNi(Ni!)mi
x(1)(ti)miNi

x(ti)mi(Ni+1)
,

which is the only term in Pmi(x−1) with this high or higher power of x(ti)
in the denominator. Hence taking

x(t) = xs(t) = e2πi(t−ti) − 1 + s, s ∈ (−1, 0),

in (4.4) and noting that ϕ(xs) =
∏

j xs(tj)nj , we obtain

hn−mi
0∞ (xs) = sni−mi(Ni+1)

∏
j �=i

xs(tj)nj (c2 + sg(s)) ,(4.5)

where c2 �= 0 is a constant, g(s) is a rational function in s which is bounded
on the interval (−1, 0). In order that the limit of right-hand side of (4.5)
exist as s → 0− we must have mi(Ni + 1) ≤ ni.

The proof is finished if we can show that for any σ ∈ H0(LkP1, Λϕ) there
exists σ′ ∈ H0(LkP1, Λϕ) such that the corresponding N ′

i = Ni, m′
i = mi,

and Hϕ(σ′) contains the monomial (4.3).
We write P in the form

P (x) = x(Ni)(ti)mif1(x) + f2(x), x ∈ LkC,

where f1(x), f2(x) are polynomials in x(ν)(tj), f1 �= 0 is independent of
x(Ni)(ti) and the degree of f2 in x(Ni)(ti) is strictly less than mi. Let y ∈
LkC∗, and γ ∈ LkPSL(2, C) be the map x 
→ y(x + 1), x ∈ LkP1. Let
P ′ denote Hϕ(γ∗σ). From Propositions 2.7 and 2.5 we obtain that γ∗σ∞ =
c3σ∞ (with a fixed isomorphism γ∗Λϕ

∼= Λϕ), where c3 �= 0 is a constant.
Therefore

P ′(x) = c3
γ∗σ

γ∗σ∞
(x) = c3γ

∗P (x) = c3P (y(x + 1)) , x ∈ LkC.(4.6)
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Computing the right-hand side of (4.6) by the product rule, we find that it
contains the monomial

c3 y(ti)mif1(y)
(
x(Ni)(ti)

)mi

.

Since f1 �= 0, we can find y such that f1(y) �= 0; then we can choose σ′ = γ∗σ.
q.e.d.

Proof of Theorem 1.2(1). The lower bound is given in Proposition 4.1.
For the case of C∞ loops Propositions 4.2 and 4.3 imply that R(Hϕ)) con-
sists of polynomials of degree ≤ ord(Λϕ) in x(ν)(tj), 0 ≤ ν ≤ nj − 1,
1 ≤ j ≤ r, therefore dimH0(L∞P1, Λϕ) < ∞. Since in general L∞P1 is
continuously embedded into LP1 with a dense image, so that the restric-
tion map H0(LP1, Λϕ) → H0(L∞P1, Λϕ) is monomorphic, we conclude that
dim H0(LP1, Λϕ) < ∞. q.e.d.

An immediate application of Proposition 4.3 is to identify all holomor-
phic sections of a “generic” bundle of the type considered in Theorem 1.2(1).

Corollary 4.4. If n1 = · · · = nr = 1 in (4.1), then dim H0(LP1, Λϕ)
= 2r.

Proof. Proposition 4.3 gives that R(Hϕ) only contains polynomials in
evaluation maps Et1 , . . . , Etr , of degree ≤ 1 in each variable, and all such
polynomials are indeed in R(Hϕ) by Proposition 4.1. q.e.d.

There are bundles as in Theorem 1.2(1) which have holomorphic sections
other than those identified in Proposition 4.1. We shall show this by an
explicit construction.

Proposition 4.5. Let h ∈ O(LC) and ϕ ∈ Hom(LC∗, C∗). Then
h ∈ R(Hϕ) if and only if there exists a family {fa ∈ O(LC) : a ∈ C} such
that

h(x + a) = ϕ(x)fa(x−1), x ∈ LC∗.(4.7)

Proof. With σa of Proposition 2.7 (4.7) is equivalent to

h(x)σ∞(x) = fa

(
(x − a)−1

)
σa(x), x ∈ LUa ∩ LU∞, a ∈ C,

which defines a section σ ∈ H0(LP1, Λϕ) such that Hϕ(σ) = h and vice
versa. q.e.d.

From now on, until the last paragraph, we shall work with the space of
Ck loops. Let h ∈ O(LkC∗) be a rational function of finitely many x(ν)(tj),
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0 ≤ ν ≤ k, 1 ≤ j ≤ r. Letting each tj vary in S1, h induces a function
χ ∈ C(LkC∗×(S1)r). If h does not depend on the highest derivative x(k)(ti)
for some i (this is automatically satisfied if k = ∞), then χ is differentiable
in ti, and we define

hti(x) =
∂

∂ti
χ(x, t1, . . . , tr).

Thus hti ∈ O(LkC∗) is also a rational function in x(ν)(tj), 0 ≤ ν ≤ k,
1 ≤ j ≤ r. If h was a polynomial, so will be hti . The linear map T i : h 
→ hti

satisfies T i(h1h2) = T i(h1)h2 + h1T
i(h2), T i(h(x−1)) = (T ih)(x−1), and

T i(h(x + a)) = (T ih)(x + a) if h ∈ O(LkC).

Proposition 4.6. Let ϕi = ϕEti, and assume that h ∈ R(Hϕ) does
not depend on x(k)(ti) for some i. Then hti ∈ R(Hϕi).

Proof. If fa is defined as in Proposition 4.5, Proposition 3.2 implies
fa ∈ Pn(LC). Since h and ϕ depend only on x(ν)(tj), so does fa: it is in
fact a polynomial in x(ν)(tj) (ν < k if j = i, ν ≤ k for all other j). Applying
T i to (4.7) we obtain

hti(x + a) = T i
(
h(x + a)

)
= niϕ(x)x(ti)−1x(1)(ti)fa(x−1) + ϕ(x)f ti

a (x−1)

= ϕi(x)f̃a(x−1),

where f̃a(x) = −nix
(1)(ti)fa(x)+x(ti)f ti

a (x), so that hti ∈ R(Hϕi) by Propo-
sition 4.5. q.e.d.

Finally we shall discuss the order Ni of the highest derivative x(ν)(ti)
that Hϕ(σ) can depend on, in the case of the Ck loop space LkP1. Recall
from Propositions 4.2, 4.3 that Ni ≤ min(k, ni − 1). It turns out that this
estimate is sharp:

Theorem 4.7. There exists a section of Λϕ for which

Ni = min(k, ni − 1).

Proof. With µi = min(k, ni−1) and 0 ≤ ν ≤ µi let ϕν = ϕEν−µi
ti

. Propo-
sition 4.1 gives that Eti ∈ R(Hϕ0). Repeatedly applying Proposition 4.6 we
obtain that the functions hν(x) = x(ν)(ti) are in R(Hϕν ) for ν ≤ µi. Thus
hµi(x) = x(µi)(ti) is in the range of Hϕ, and Ni = µi if σ = H−1

ϕ hµi . q.e.d.

A similar reasoning would apply to the space of W k,p loops, where the
largest value for Ni turns out to be min(k − 1, ni − 1). A remarkable con-
sequence of this is that while for generic bundles Λϕ, as we have seen in
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Corollary 4.4, dimH0(LP1, Λϕ) does not vary with the regularity of loops,
when at least one ni > 1, this dimension will depend on the regularity class
Ck, W k,p considered.
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