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THE NORMALIZED MEAN CURVATURE FLOW FOR
A SMALL BUBBLE IN A RIEMANNIAN MANIFOLD

NICHOLAS D. ALIKAKOS & ALEXANDRE FREIRE

Abstract
The evolution of an embedded surface under the normalized mean curvature
flow is the result of a complicated interaction between the geometry of the
evolving surface and the geometry of the ambient space, and is not well
understood in the context of a general Riemannian manifold. In the present
paper we identify a class of initial conditions, that we call “bubbles”, whose
dynamics is primarily determined by the ambient space. A bubble is an
embedded surface that is close to a small geodesic ball; we find that its shape
is robust along the evolution. Moreover, under a relatively tight condition
relating shape to size, we show that the velocity of the center of the bubble
is given, to principal order, by the gradient of the scalar curvature. Finally
under natural conditions of compactness and nondegeneracy we show that
such solutions converge, as t tends to infinity, to surfaces of constant mean
curvature.

0. Introduction

In this paper we consider the motion of hypersurfaces Σ(t) in a
compact n-dimensional Riemannian manifold M by normalized mean
curvature, that is, with normal velocity given by the equation:

〈Xt, N̂〉 = HΣ −H,(0.1)

where N̂ denotes the unit outward normal, H is the mean curvature of
Σ and HΣ is the average mean curvature:

HΣ =
1

A(Σ)

∫
Σ
Hdσ,
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with A(Σ) =
∫
Σ dσ the (n−1)-dimensional volume of Σ in the metric in-

duced from M . Topologically, our hypersurfaces are embedded spheres,
parametrized by a time-dependent smooth embedding X(t) : S → M
from the (n−1)-sphere to M . It is easily verified that the left-hand side
of (0.1) is, in fact, independent of parametrization.

The basic property of the law of evolution (0.1) is its isoperimetric
nature. The volume V (Σ) of the region enclosed by Σ is preserved:

dV (Σ(t))
dt

=
∫

Σ
〈Xt, N̂〉dσ =

∫
Σ
(HΣ −H)dσ = 0,

while the area A(Σ) ((n−1)-dimensional volume) of Σ strictly decreases,
unless H is constant:

dA(Σ(t))
dt

=
∫

Σ
〈Xt, HN̂〉dσ =

∫
Σ
(HΣ −H)Hdσ(0.2)

= −
∫

Σ
(H −HΣ)2dσ.

In particular, it is natural to expect that the hypersurface will tend to
move towards regions of larger scalar curvature.

The evolution (0.1) was originally considered by M. Gage (n = 2) [6]
and G. Huisken [8] (n ≥ 3), when the ambient manifold M is euclidean
space Rn. Huisken proved that, in this case, if the initial hypersurface
is smooth and uniformly convex, the evolution is defined for all time
and the hypersurface remains convex and converges to a round sphere
as t → ∞. More recently Escher and Simonett [5] were able to prove
this for initial hypersurfaces close to spheres (including some non-convex
ones), by a different method, closer in spirit to ours in the present paper.

Relative to the much better understood evolution by mean curva-
ture, the normalized problem presents several difficulties. The main one
is that, the law being non-local, the maximum principle for parabolic
equations does not apply. One consequence of this is that initially em-
bedded hypersurfaces may develop self-intersections. An example for
curves was described by Owen and Sternberg [13], and considered in
more detail by Mayer and Simonett [12]. Another consequence is that,
for the evolution on manifolds (even of constant curvature), convexity
of the initial hypersurface may not be preserved, as was pointed out
by Huisken. In spite of this difficulty, Huisken and S.-T. Yau [9] were
able to use (0.1) to construct foliations by spheres of constant mean
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curvature — the steady-states of (0.1) — of asymptotically flat ends of
positive mass (for 3-manifolds of positive scalar curvature). Their mo-
tivation was to develop a coordinate-independent definition of ‘center
of mass’ of an isolated gravitational system. The problem of existence
of local foliations by hypersurfaces of constant mean curvature was also
considered by R. Ye [14]. He proved such foliations exist in a neighbor-
hood of any nondegenerate critical point of the scalar curvature; and,
conversely, that such foliations are unique in a certain class, and exist
only in a neighborhood of a critical point.

R. Ye [14] used a perturbation of geodesic spheres of small radius
to construct the local foliation. For the dynamical problem (0.1), this
points to a potential problem when trying to construct solutions by a
perturbation argument: except for special cases (‘harmonic manifolds’,
including constant curvature manifolds), geodesic spheres are not equi-
libria of (0.1); in fact, on a general manifold the existence of time-
independent solutions is a nontrivial issue. Nevertheless, we will show
in this paper that if the initial hypersurface is sufficiently close to a
small geodesic sphere (i.e., is a small ‘bubble’), the evolution is defined
for all time and (under certain conditions) will converge to a leaf of one
of these foliations, as t → ∞. Clearly to obtain such a result one must
be able to track the evolution of the hypersurface ‘in the large’ on the
ambient manifold M , a problem not considered by the authors above.
Our idea is to ‘decouple’ the effect of the ambient from the effect of
the geometry of the interface: while the hypersurfaces start and remain
very close to small geodesic spheres, we can describe how an appro-
priately defined ‘barycenter’ moves on M (at least asymptotically in a
perturbation parameter).

The usual line of argument in studying existence and development
of singularities for the mean-curvature flow proceeds in intrinsic fash-
ion, by studying the evolution of geometric quantities on Σ (such as the
trace-free second fundamental form). This approach is very effective
and geometric; but in order to follow the large-scale motion of Σ on M
we are led, instead, to work directly with the parametrizations X(t),
i.e., to study a motion in a manifold of embeddings. This introduces
some technical difficulties-for example, there is no uniquely defined law
of motion for embeddings corresponding to (0.1)-but, on the other hand,
allows for the introduction of an infinite-dimensional dynamical systems
approach to the problem. At least in the present ‘perturbation’ setting,
we are able to draw on results from semigroup theory (‘maximal reg-
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ularity’) and known results on infinite dimensional systems to give a
fairly non-technical proof. It is our hope that such an approach will
also prove fruitful for other geometric evolution equations.

The evolution we construct takes place in a submanifold of the man-
ifold E of C2+α ‘small quasispherical embeddings’ X : S → M , which
are radial graphs over a small geodesic sphere in M with center ξ ∈M ,
radius R > 0. To define such an embedding, we need a diffeomor-
phism F from S to the unit tangent sphere at ξ and a ‘shape func-
tion’ ψ : C2+α → R, which we take to be a C2+α function on S, with
zero average on S. Introducing two small scale parameters δ ∈ (0, δ0),
ε ∈ (0, ε0), we let E = Eδ0,ε0 be the space of embeddings which can be
written in the form:

X(R,ξ,F,ψ)(u) = expξ[δR(1 + εψ(u))F (u)],

where 0 < R < 1, ψ ∈ C2+α(S) satisfies ‖ψ‖C2+α < 1 and aveS [ψ] = 0
and F is a C2+α diffeomorphism from S to the unit tangent sphere Sξ ⊂
TξM . We take δ0, ε0 small enough that the open set int (X) bounded
by the hypersurface Σ = image(X) (and containing ξ) is contained in a
totally convex normal neighborhood of ξ, and is uniformly convex.

The same embedding X ∈ E can be written in the form X(R,ξ,F,ψ)

in different ways, parametrized by ξ ∈ int(X). We need a choice of ξ
that is as canonical as possible, given X; that is, a ‘barycenter’ for X.
While a general Riemannian notion of ‘barycenter’ exists (see [10]), here
we find it useful to work with the notion of ‘analytic barycenter’, which
appears already in [1]. This is the unique ξ ∈ int (X) for which X may
be written as X(R,ξ,F,ψ) , with ψ taken in the space:

K2+α = C2+α(S) ∩ C0(S),

C0(S) =
{
ψ ∈ C0(S); aveS [ψ] = 0 = aveS [ψui], i = 1, . . . n

}
.

In Section 1 we prove (in Lemma 1.1) that for X in a neighborhood N
of the submanifold of ‘standard parametrizations of geodesic spheres’
E0 ⊂ E , there is a unique ξ = B(X) with this property; N = N (δ1, ε1)
is open in Eδ1,ε1 .

The existence of the analytic barycenter allows us to consider evo-
lution equations on the submanifold Nstd = Nstd(δ1, ε1) ⊂ N , defined
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as the set of embeddings X ∈ N of the form:

X = X(R,ξ,e,ψ) = expξ[R(1 + ψ(·))e(·, ξ)],
ξ = B(X), aveS [ψ] = aveS [ψui] = 0, i = 1, . . . , n,

where e : S → Sξ is an isometry, defined by an orthonornal frame at ξ.
Nstd is the image under a smooth injective map Φ of the manifold:

M0 = M0(δ1, ε1) = (0, δ1) × FM ×K2+α
ε1 ,

where FM denotes the orthonormal frame bundle of M and the last
factor is the ε1-ball in K2+α. The next step is to find an evolution
equation for (R, ξ, e, ψ) ∈ M0, the solutions of which map under Φ
to parametrized solutions of (0.1) in Nstd. Since the barycenter B(X)
depends on the parametrization X (and not just on its image Σ), we
need to fix an equation of motion in the space of embeddings. As a first
attempt, one might expect that the equations on M0 would be induced
by the evolution on N :

Xt = (HΣ −H)N̂ .(0.3)

It turns out, however, that Nstd is not invariant under (0.3), which
therefore does not induce a system on M0. Fortunately it is possible to
compute a ‘tangential correction’ to (0.3) which does preserve Nstd. This
is explained in Section 1, where we find (in Lemma 1.7) a system on M0

whose solutions map to parametrized solutions of (0.1); and conversely,
any motion Σ(t) of ‘small bubbles’ by normalized mean curvature can
be parametrized by X(R,ξ,e,ψ) ∈ Nstd, so that (R, ξ, e, ψ)(t) is a solution
of the system on M0. For each choice of the scale parameters δ, ε, we
obtain the system on M0:

δRt = aveS [vN − E](0.4)
ξt = n aveS [(vN − E)e]
∇ξte = 0
δεRψt = (vN − E)K − (δψ)aveS [vN − E].

Here vN = (HΣ − H)‖N‖ (where N is a particular normal vector to
Σ) and E = E(vN ) corresponds to the tangential correction referred
to above. vN and E are computed at X(δR,ξ,e,εψ). (In particular, e is
simply obtained by parallel transport of e(0) along ξ(t)). It is for this
system on M0 that our main result is proved.
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Given a totally convex open set U ⊂ M and positive numbers δ <
δ1, ε < ε1, define the open subset of M0:

O2+α
δ,ε (U) = {(R, ξ, e, ψ) ∈ M0; 0 < R < δ, (ξ, e) ∈ FU, ‖ψ‖C2+α < ε};

we define analogously the open subset Oα
δ,ε(U) of:

Mα = Mα(δ1, ε1) = (0, δ1) × FM ×Kα
ε1 ,

where Kα = Cα ∩ C0(S). We find local solutions in the open subset:

W T
δ,ε(U) = C0([0, T ],O2+α

δ,ε (U)) ∩ C1((0, T ],Oα
δ,ε(U))

of the space:

W T
δ,ε = C0([0, T ],M0(δ, ε)) ∩ C1((0, T ],Mα(δ, ε)).

In general we denote Nstd(δ, ε) = Φ(M0(δ, ε)). Our main result follows.

Main Theorem.

(i) (Local existence) There exist constants δ2∈(0, δ1/2), ε2 ∈ (0, ε1/2)
depending only on M , and T = T (δ2, ε2) > 0 so that for any
Ψ(0) = (δR(0), ξ(0), e(0), εψ(0))∈M0(δ2, ε2) with ψ(0)∈C∞(S),
there exists a unique solution Ψ(t) = (δR(t), ξ(t), e(t), εψ(t)) of
(0.4)δ,ε in W T

δ2,ε2
(U0) (where U0 is a totally convex neighborhood

of ξ(0)). The solution Ψ(t) is smooth for t > 0. The hypersurfaces
Σ(t) parametrized by X(t) ∈ Nstd:

X(t)(u) = expξ(t)[δR(1 + εψ(t, u))e(t, u)]

are smooth for t ≥ 0 and satisfy Equation (0.1); in particular,
we have smooth local solutions for any initial embedding X(0) ∈
Nstd(δ2, ε2).

(ii) (Global existence) For a given Ψ ∈ M0(δ2, ε2), define T ∗
Ψ as

the supremum of all T > 0 such that the solution Ψ(t) found
in (i) with initial value Ψ is in W T

δ2,ε2
. There exist constants

δ3 > 0, ε3 > 0 depending only on M , so that if Ψ is in M0(δ, ε),
with ψ(0) ∈ C∞(S), δ < δ3, ε < ε3 and δ2 � ε, then T ∗

Ψ = ∞.
Thus, the solution Ψ(t) defines a parametrization X(t) ∈ Nstd of
a global smooth solution Σ(t) of the normalized mean curvature
flow (0.1). In particular, we have a global solution for arbitrary
initial embedding X(0) ∈ Nstd(δ, ε) under the same conditions on
δ, ε, and the solution stays in Nstd(δ2, ε2).
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(iii) (Motion of the barycenter) In addition to the assumptions in (ii),
suppose the scale parameters δ, ε satisfy:

δ2 � ε� δ3/2.

Then the leading term in the equation of motion for ξ in (0.4)δ,ε
is:

ξt = cn∇MScal(ξ)R2δ2 +O(ε2δ−1),

where cn = 2n/3(n + 2). Here ∇MScal denotes the gradient of
scalar curvature.

(iv) (Asymptotic behavior) Any accumulation point along a sequence
tn → ∞ of a solution X(t) of (0.1) in Nstd, X(tn) → X∗ ∈ Nstd,
parametrizes a hypersurface Σ∗ of constant mean curvature. In
addition, assume all critical points of the scalar curvature func-
tion Scal are nondegenerate. Then there are disjoint open neigh-
borhoods Vp ⊂ M of the (finitely many) critical points p of Scal
and constants δ4 > 0, ε4 > 0, so that any global solution Ψ(t) of
(0.4) δ,ε with δ < δ4, ε < ε4, ε � δ3/2, converges as t → ∞ to
some Ψ∗ ∈ M0(δ, ε). The embedding X∗ ∈ Nstd corresponding to
Ψ∗ has barycenter ξ∗ ∈ Vp for some critical point p of Scal, and
parametrizes a hypersurface of constant mean curvature Σ∗ ⊂ Vp,
which is the unique leaf of the local c.m.c foliation ([14]) at p en-
closing the same volume as Σ(0).

In Parts (ii) and (iii) of the statement, δ2 � ε means δ2 = εγ for
some γ > 1; ε� δ3/2 is understood analogously.

Local existence (Part (i)) is well-known for (0.1). We include a
proof for the equivalent system (0.4) in the framework of semigroup
theory, since this leads to the continuation criterion we use for global
existence. In fact, neither the decomposition ϕ = R(1+ψ) of the ‘shape
function’ nor detailed asymptotics are needed, and the proof we give (in
Section 3, Lemma 3.2) works for more general initial data than stated
in (i). We use results from ‘maximal regularity theory’ ([2], [3], [11]);
all that is needed is to verify that the hypothesis of Theorem 2.14 in [3]
are satisfied.

In Section 2 we develop the asymptotic expansions of equations (0.4)
that are needed for global existence. The starting point are standard
Taylor expansions of Jacobi fields in Riemannian normal coordinates,
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from which expansions for the mean curvature and its average (for a
radial graph) follow easily. Another consequence is an a priori estimate
for the radius R(t), which follows from the conservation of the enclosed
volume.

After giving a proof of local existence (Lemma 3.2), we prove global
existence in Section 3 by an argument involving the variation of con-
stants representation formula and maximal regularity estimates. Here
the scale parameters and asymptotics are needed, and the restriction
δ2 � ε is required. It guarantees that, in the equation for ψt, the
‘euclidean’ term δ−2R−2Aψ (where A is the linearized operator for eu-
clidean ambient, Aψ = ∆Sψ + (n − 1)ψ) dominates the largest Rie-
mannian term, which is of order ε−1. The fact that the spectrum of A
is bounded above by a negative constant is crucial, and motivates our
definition of analytic barycenter. A similar argument was used in [1].

We conclude in Section 4 with the proof of asymptotic convergence
to a geodesic sphere. Since we assume the critical points of the scalar
curvature function are nondegenerate, a small constant mean curvature
sphere near a critical point must be a leaf of the local foliation at that
critical point ([14]), and there is only one of those enclosing a given
volume. We may then appeal to general results on infinite-dimensional
dynamical gradient systems to conclude.

We close the introduction with a few heuristic remarks. If we con-
sider the motion of small geodesic spheres on M as ‘approximate so-
lutions’ of the flow, it is not hard to understand the leading term in
the equation of motion for the barycenter from isoperimetric consider-
ations. The (n-1)-dimensional area (‘perimeter’) A(ξ,R) of a geodesic
sphere with center ξ, radius R, is given by the classical Riemannian
formula:

A(ξ,R) = Rn−1

∫
S

[
1 − 1

6
Ric (ξ, u)R2 +O(R3)

]
du,

where Ric (ξ, u) denotes the Ricci curvature of M at ξ in the direction
u, if we identify S with the unit tangent sphere at ξ. (This is just the
Gauss curvature at ξ when n = 2.) Differentiating in ξ for fixed R, we
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obtain:

∂ξ(A(ξ,R)) = −Rn−1

(∫
S

[
1
6
∇uRic (ξ, u)uiR2 +O(R3)

]
du

)
ei(0.6)

= − 2ωn−1

3(n+ 2)
Rn+1∇MScal(ξ) + · · · ,

by the calculation in [14] (ωn−1 = vol (Sn−1)).
Consider the space of embeddings H of Sn−1 into M , endowed

with the Hilbert manifold structure defined by the L2 inner product
on TXH = {vector fields along X}. From (0.2), we see that for the
perimeter functional A(X):

gradHA(X) = HN̂,

and for the enclosed volume functional V (X):

gradHV (X) = N̂ .

Denoting by H0 the ‘submanifold’ of embeddings enclosing a fixed vol-
ume, it follows formally that:

gradH0
A(X) = (H −HΣ)N̂ ,

so that the evolution law (0.1) may be written as:

∂X

∂t
= −gradH0

A(X).(0.7)

Consider now an approximate solution given by moving (parame-
trized) geodesic spheres Xξ(t),R(t). The volume preservation condition
implies R(t) is approximately constant, so the projection of ∂RX on
TXH0 is small, and may be ignored to lowest order. Thus, to lowest
order, Equation (0.7) takes the form:

ξt∂ξX ∼ −gradH0
A(X).

Denoting by ξTt (u) = ξt − 〈ξt, u〉u the ‘tangential ’ component of ξt, we
have:

〈ξt∂ξX, ∂ξX〉H0 ∼ Rn−1

∫
S
ξTt (u)du.

With 〈gradH0
A(X), ∂ξX〉H0 = ∂ξA(ξ,R), this implies:

ωn−1aveS [ξTt ]Rn−1 ∼ −∂ξA(ξ,R).
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Noting that ξt = n aveS [ξTt ], this combines with (0.6) to yield:

ξt ∼ 2n
3(n+ 2)

R2∇MScal(ξ) + · · · ,

as claimed in Part (iii) of the main theorem.
This formal argument also suggests that our main result enjoys a

certain universality, and is probably valid for a large class of geometric
evolution laws that preserve the enclosed volume and reduce perimeter,
and may be realized as the gradient of the perimeter functional in an
appropriate Hilbert manifold H. For the flow considered in this paper,
the asymptotic behavior of ‘quasi-spherical’ solutions is controlled by
the finite-dimensional gradient flow:

ξt = cn∇MScal (ξ).

The scalar curvature increases along solutions; ξ(t) ‘climbs’ towards
peaks of maximal scalar curvature. The ω-limit sets of orbits consist
of critical points of Scal, with stable equilibria corresponding to local
maxima. If all critical points of Scal are nondegenerate (or if M is
real-analytic), solutions converge to a critical point as t → ∞, and
most orbits (in a topological sense) converge to stable equilibria. This
behavior is reflected in the claim of Part (iv) in the main theorem.
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1. The manifold of small bubbles and the barycentric system

1.1 Existence of the analytic barycenter

Let M be a compact smooth oriented n-dimensional Riemannian man-
ifold without boundary, S ⊂ Rn the unit sphere. In this paper we
consider the motion by normalized mean curvature flow in the manifold
E2+α of ‘small, strictly convex, C2+α embeddings’ X, defined by the
conditions:
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(i) X : S →M is an embedding of class C2+α;

(ii) The image Σ = im (X) lies in a geodesically convex neighborhood
of any point in int (X), the ‘small’ open subset of M bounded by
Σ;

(iii) Σ = im (X) is a strictly convex hypersurface in M ; in particular
(given (ii)), int (X) is a geodesically convex subset of M .

E2+α is an open subset in the Banach manifold of C2+α embeddings
S →M .

Any ξ ∈ int (X) determines a C2+α function ϕξ : S → R+ and a
C2+α diffeomorphism F (·, ξ) : S → Sξ (the unit sphere in the tangent
space TξM) such that Σ = im(X) admits the parametrization:

Xξ(u) = expξ[ϕξ(u)F (u, ξ)].

Conversely (by compactness of M), there exists a constant δ0 > 0 de-
pending only on M so that, for any ξ ∈ M , F (·, ξ) ∈ Diff2+α(S;Sξ)
and ϕξ ∈ C2+α(S; R+) such that ‖ϕξ‖C0 < δ0, the embedding Xξ

defined by this formula satisfies (i) and (ii). Moreover, there exists
ε0 ∈ (0, 1/10) depending only on M so that if we write ϕξ = Rξ(1 +ψξ)
with 0 < Rξ < δ0, ‖ψξ‖C2+α < ε0 and

∫
S ψξ = 0, then (iii) also holds

and Xξ ∈ E2+α

The set of C2+α embeddings S → M which can be written in this
form is an open subset of E2+α, which we will denote by E2+α

δ0,ε0
. From

now on we let E = E2+α = E2+α
δ0,ε0

.

Consider a motion Σ(t) of hypersurfaces by normalized mean curva-
ture flow, parametrized by X(t) ∈ E2+α. To follow the motion globally
on M , we need a notion of ‘barycenter’ of Σ(t). While a geometric no-
tion of barycenter of sets in Riemannian manifolds exists (see [10]), we
will need a different one; our ‘analytic barycenter’ will be defined only
for small convex hypersurfaces which are sufficiently C2+α close to a
geodesic sphere.

We denote by E0 the manifold of standard parametrizations of small
geodesic spheres:

E0 = {X : S →M ;X(u) = expξ[Ru
iei], ξ ∈M,R ∈ [0, δ0/2], e ∈ FξM},

where FξM denotes the space of oriented orthonormal frames of TξM .
(We do not exclude embeddings which degenerate to a point.) E0 is a
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submanifold of E2+α, diffeomorphic to the orthonormal frame bundle
of M cross an interval, FM × [0, δ0/2]. We will sometimes identify
X ∈ E0 with the ordered triple (ξ,R, e), and identify the frame e with
the isometry e(·, ξ) : S → Sξ it defines via e(u, ξ) = uiei (written e(u)
if ξ is understood).

If X̄ = (ξ̄, R̄, ē) ∈ E0, a basis of neighborhoods of X̄ in E2+α is given
by sets of the form:

N 2+α
δ,ε (X̄) =

{
X ∈ E2+α; ξ̄ ∈ int (X),

‖ψξ̄‖C2+α < ε, |R̄−Rξ̄| < δ, ‖F (·, ξ̄) − e(·, ξ̄)‖C2+α < ε
}
.

For X in a neighborhood N 2+α
δM ,εM

of E0 in E2+α, we wish to define a
unique ‘analytic barycenter’. Let U2+α ⊂ E2+α×M be the open subset
defined by:

U2+α = {(X, ξ); ξ ∈ int (X)}.
We define a smooth map P : U2+α → Rn by:

P i(X, ξ) =
∫
S
ϕξ(u)uidu =

∫
S
dξ(X(u))uidu, i = 1, . . . , n,

where dξ(x) = distM (ξ, x).

Lemma 1.1. There exist δM ∈ (0, δ0/2), εM ∈ (0, ε0/2) such that,
defining:

N 2+α
δM ,εM

=
{
X ∈ Eα;∃X̄ = (ξ̄, R̄, e) ∈ E0 with X ∈ N 2+α

δM ,εM
(X̄)

}
,

one has a smooth map B : N 2+α
δM ,εM

→M with the properties:

(i) P(X,B(X)) = 0, X ∈ N 2+α
δM ,εM

.

(ii) B(X) is the only solution of P(X, ·) = 0 in the ball with center
B(X), radius εM .

Proof.
Step (i). In the first step we work in E2+α′

, for a fixed 0 < α′ < α.
Fix X̄ ∈ E0 parametrizing SR̄(ξ̄). Clearly P(X̄, ξ̄) = 0. By the Implicit
Function Theorem (in the Banach manifold E2+α′

), to solve the problem
locally near (X̄, ξ̄), it is enough to show that the partial differential
(DξP)(X̄, ξ̄) : Tξ̄M → Rn is an isomorphism.
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Writing X̄(u) = expξ̄[R̄e(u, ξ̄)] as above, this follows from the cal-
culation:

(DξP i)(X̄, ξ̄)v =
∫
S

〈(
∇dX̄(u)

)
(ξ̄), v

〉
uidu

= −
∫
S
〈e(u, ξ̄), v〉uidu

= −
∫
S
ujvjuidu = −vol (S)

n
vi,

for each v ∈ Tξ̄M , where v = vjej .
Thus we obtain a neighborhood of (X̄, ξ̄) in U2+α′

(which we may
assume to have the form N 2+α′

δ̄,ε̄
(X̄) × Bε̄/2(ξ̄), with ε̄ < ε0/2 < 0.1,

δ < δ0/2 < 0.1), and a smooth map

BX̄ : N 2+α′
δ̄,ε̄

(X̄) → Bε̄/2(ξ̄)

such that P(X,BX̄) = 0. Furthermore, by reducing ε̄ if needed we may
arrange that, for each X ∈ N 2+α′

δ̄,ε̄
(X̄), BX̄(X) is the only solution of

P(X, ·) = 0 in Bε̄(ξ̄).

Step (ii). To define B globally, we use a standard covering argument.
By compactness of E0 we find X̄i = (ξ̄i, R̄i, ē(·, ξ̄i)), i = 1, . . . , N , and
δ̄ ∈ (0, δ0/2)ε̄i ∈ (0, ε0/2) so that:

E0 =
N⋃
i=1

N 2+α′
δ̄i/L,ε̄i/L

(X̄i) ∩ E0

and maps Bi = BX̄i : N 2+α′
δ̄i,ε̄i

(X̄i) → Bε̄i/2(ξ̄i) as in Step (i). Here
L > 0 is defined by L−1 = min{1/10, (10C0)−1}, with C0 > 0 a constant
depending only on M , defined below, in Step (iii) of this proof. We need
to check compatibility: Bi(X) = Bj(X) if X ∈ N 2+α′

δ̄i,ε̄i
(X̄i)∩N 2+α′

δ̄j ,ε̄j
(X̄j).

It is easy to show that:

max{d(ξi, ξj), |R̄i − R̄j |} ≤ ε̄iR̄i + ε̄jR̄j <
1
10

(ε̄i + ε̄j),

since maxi{R̄i} < iM/2 < 1/10. In particular (choosing the indices so
that ε̄i < ε̄j):

Bi(X) ∈ B ε̄i
2
(ξ̄i) ⊂ B ε̄i

2
+ 1

10
(ε̄i+ε̄j)

(ξ̄j) ⊂ Bε̄j (ξ̄j).
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By the uniqueness in Step (i), we must have Bi(X) = Bj(X). Thus,
letting:

W2+α′
=

N⋃
i=1

N 2+α′
δ̄i,ε̄i

(X̄i) ⊂ E2+α′
,

we have a smooth map:

B : W2+α′ →M, B(X) ∈ int (X),

such that P(X,B(X)) = 0. Furthermore, letting εmin = 1
4 min{ε̄i;

1 ≤ i ≤ N}, B(X) is the unique solution to P(X, ξ) = 0 in the ball
Bεmin(B(X)).

Step (iii). We still need to show that, for some εM > 0 depending
only on M and {ε̄1, . . . , ε̄N}, W2+α′

contains a subset N 2+α
δM ,εM

as in the
statement of the lemma. That is, assuming X ∈ E2+α satisfies, for some
(ξ̄, R̄, ē) ∈ E0:

ξ̄ ∈ int (X), |Rξ̄ − R̄| < δM ,

‖ϕξ̄ − R̄‖C2+α < εM R̄, ‖F (·, ξ̄) − ē(·, ξ̄)‖C2+α < εM ,

we must show that for some i ∈ {1, . . . , N}:
ξ̄i ∈ int (X), |Rξ̄i − R̄i| < δ̄i,

‖ϕξ̄i − R̄i‖C2+α′ < ε̄iR̄i, ‖F (·, ξ̄) − ē(·, ξ̄i)‖C2+α′ < ε̄i.

For some i (say i = 1) we have:

|d(x, ξ̄1) − R̄1| ≤ ε̄1
L
R̄1 ≤ ε̄1

10
R̄1 ∀x ∈ SR̄(ξ̄),

‖e(·, ξ̄) − ē(·, ξ̄1)‖C2+α′ ≤ ε̄1
L

≤ ε̄1
10
.

From this it is not hard to show that:

d(ξ̄, ξ̄1) ≤ ε̄1
L
R̄1 ≤ ε̄1

10
R̄1 and |R̄− R̄1| ≤ 2ε̄1

L
R̄1 ≤ ε̄1

5
R̄1,

which easily implies |Rξ̄− R̄1| < δ̄1, if δM is chosen small enough. Since
d(X(u), ξ̄) ≥ R̄(1 − εM ) for all u ∈ S, we have ξ̄1 ∈ int(X) provided
R̄(1− εM ) > (ε̄1/10)R̄1, which holds if εM < 1− ε̄1/(10− 2ε̄1). We also
have the estimate:

‖F (·, ξ̄) − ē(·, ξ̄1)‖C2+α′

≤ ‖F (·, ξ̄) − e(·, ξ̄)‖C2+α′ + ‖e(·, ξ̄) − ē(·, ξ̄1)‖C2+α′

≤ εM + ε̄1/10 < ε̄1.
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To show ‖ϕξ̄ − R̄1‖C2+α′ is small, we use:

‖ϕξ̄1 − R̄1‖C2+α′ < |R̄1 − R̄| + ‖R̄− ϕξ̄‖C2+α′ + ‖ϕξ̄ − ϕξ̄1‖C2+α′

and the following fact:

C0 := sup
{
‖F (·, ξ)‖C2+α′ ;X ∈ E2+α and

∃X̄ = (ξ̄, R̄, ē) s.t. X ∈ N 2+α
1/10,1/10(X̄), d(ξ, ξ̄) <

1
4
R̄

}
<∞,

and C0 depends only on M . This follows from compactness of the
inclusion C2+α ⊂ C2+α′

, by a short argument which will be omitted.
Given this bound, one has:

‖ϕξ̄ − ϕξ̄1‖C2+α′ =
∥∥∥∥∫ t

0

d

ds
distM (X(·), ξ(s))ds

∥∥∥∥
C2+α′

≤
∥∥∥∥∫ t

0
〈∇MdX(u)(ξ(s)), ξ

′(s)〉ds
∥∥∥∥
C2+α′

≤ sup
s∈[0,t]

‖∇MdX(u)(ξ(s))‖C2+α′d(ξ̄, ξ̄1)

= sup
s∈[0,t]

‖F (·, ξ(s))‖C2+α′d(ξ̄, ξ̄1)

≤ C0
ε̄1
L
R̄1 ≤ ε̄1

10
R̄1,

since d(ξ̄, ξ̄1) ≤ ε̄1
L R̄1 ≤ 1

4R̄. Thus we have (bearing in mind that
R̄ ≤ R̄1 + (ε̄1/5)R̄1):

‖ϕξ̄1 − R̄1‖C2+α′ <
ε1
5
R̄1 + εM R̄+

ε̄1
10
R̄1 < ε̄1R̄1

for εM sufficiently small, depending only on {ε̄1, . . . , ε̄N}. This concludes
the proof.

Since α is fixed throughout the paper, from now on we will often
omit the superscript in the notation for E2+α and N 2+α

δM ,εM
.

Definition. For X ∈ NδM ,εM , we refer to ξX = B(X) ∈ int (X)
as the analytic barycenter of X. The global motion we construct will
exist in the open subset NδM ,εM ⊂ Eδ0,ε0 , the manifold of small, almost-
spherical embeddings, or parametrized ‘bubbles’.

It is important to note that the analytic barycenter B(X) depends
on the parametrization X, and not just on the image Σ. In particular,
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if we wish to find an equation of motion for the barycenter, we must
fix an evolution equation for the parametrization X(t); the geometric
evolution law (0.1), however, does not fix such an equation (only up to a
tangential component). We take up these issues in the next subsection.

1.2 Equations of motion for the barycentric system

From this point on we set δ1 = δM , ε1 = εM and introduce the notations:

C2+α
δ1,ε1

= {ϕ ∈ C2+α(S); 0 < aveS [ϕ] < δ1, ‖ϕ− aveS [ϕ]‖C2+α < ε1};
Ck+γ0 = {ϕ ∈ Ck+γ(S); aveS [ϕui] = 0, i = 1, . . . , n} (k∈ N, γ ∈ (0, 1));

B2+α
δ1,ε1

= C2+α
δ1,ε1

∩ C2+α
0 .

For parametrized motions X̄(t) in Nδ1,ε1 , the barycenter map makes
it possible to choose a parametrization X(t) of Σ(t) = im (X̄(t)) in the
space (a submanifold of N ):

Nstd = Nstd(δ1, ε1) = {X ∈ N ;X = expξ[ϕe(·, ξ)], ϕ ∈ B2+α
δ1,ε1

}.

X ∈ Nstd is ‘standard’ in two ways: ξ is the barycenter of X and
Fξ : S → Sξ is given by an isometry. Any X ∈ N can be reparametrized
into Nstd (with ξ = B(X)). In this subsection we derive equations of
motion on a ‘simpler’ manifold M0, the solutions of which correspond
precisely to solutions of normalized mean curvature flow parametrized
by maps in Nstd.

Definition 1.2.

M = M(δ1, ε1) = FM × C2+α
δ1,ε1

, M0 = M0(δ1, ε1) = FM ×B2+α
δ1,ε1

.

The standard connection on the frame bundle FM allows one to identify
the tangent space to M0 at (ξ, e, ϕ) ∈ M0 with the vector space:

T(ξ,e,ϕ)M0 =
{

(w, z, χ);

w ∈ TξM, z ∈ C2+α(S, TξM) e-skew-symmetric , χ ∈ C2+α
0

}
(where e-skew-symmetric means: 〈z(u), e(u′)〉 = −〈z(u′), e(u)〉, for all
u, u′ ∈ S). There is a natural smooth map Φ : M → N , mapping M0

onto Nstd:
Φ(ξ, e, ϕ) = X, X(u) = expξ[ϕ(u)e(u)].
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In the following lemma we compute the differential of Φ. This of course
maps T(ξ,e,ϕ)M0 to the tangent space TXN , the space of C2+α vector
fields Z on S along X (Z(u) ∈ TX(u)M); but we’ll also need to consider
the space of Cα vector fields along X:

T̃XN :=
{

Z : S → TM ;

Z(u) ∈ TX(u)M,u �→ exp−1
ξ [Z(u)] ∈ Cα(S, TξM) ∀ξ ∈ int (X)

}
,

as well as T̃(ξ,e,ϕ)M0, defined as T(ξ,e,ϕ)M0 but with z and χ in Cα.

In the statement of the next lemma, for v ∈ Sξ Yv(s), s ≥ 0, denotes
the Jacobi operator with initial conditions Yv(0) = ITξM , Ẏv(0) = 0
(covariant derivative) along the geodesic γv(s) = expξ[sv]; so Yv(s)w ∈
Tγv(s)M is the value at s of the Jacobi field along γv with initial value
w, initial covariant derivative 0. Jv(s) is the Jacobi operator along the
same geodesic with initial conditions Jv(0) = 0, J̇v(0) = ITξM . Both
Yv(s) and Jv(s) preserve the direction spanned by the tangent vector
γ′v(s) (and its orthogonal complement) along the geodesic γv. We have
Yv(s)v = γ′v(s), Jv(s)v = 0.

Lemma 1.3. The differential of Φ is given by:

dΦ(ξ, e, ϕ)[w, z, χ] = Ye(ϕ)w + χγ′e(ϕ) + Je(ϕ)z.

Here we identify the orthonormal frame e at ξ with the isometry e : S →
Sξ it defines, and for simplicity omit u ∈ S from the notation.

Proof. Since Φ(ξ, e, ϕ) = expξ[ϕe],we have:

dΦ(ξ, e, ϕ)[w, z, χ] = dξ(expξ[sv])|s=ϕ,v=ew

+ ds(expξ[sv])|s=ϕ,v=eχ+ dv(expξ[sv])|s=ϕ,v=ez.

Since dξ(expξ[sv])w = Yv(s)w, ds(expξ[sv])= γ′v(s) and dv(expξ[sv])z =
Jv(s)z, the lemma follows.

The operators Yu(s) are invertible for s sufficiently small (say, s ∈
(0, δ0/2)). It is often convenient to work with vectors in TξM (or maps
S → TξM); so in general for vectors Z(u) ∈ TX(u)M (where X ∈
Nstd, X = expξ[ϕe]), we set:

z(u) = Ye(u)(ϕ)−1
Z(u) ∈ TξM.
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For a given frame e : S → Sξ and z ∈ TξM (possibly depending on
u ∈ S), we introduce the orthogonal decomposition:

z = 〈z, e〉e+ z⊥, z⊥ : S → TξM.

As a final bit of notation, we denote by ν(u) ∈ TξM the vector defined
by the property:

〈w, ν(u)〉=〈Ye(u)(ϕ)w,N(u)〉 ∀w : S → TξM,

where N(u) is the normal vector to Σ defined from X by:

N(u) = γ′e(u)(ϕ) − ϕk(hklJl) ◦X,

with Ji the Jacobi fields defined in Section 2, (2.0). Since 〈γ′e(u)(ϕ), N〉 =
1, it follows that 〈e, ν〉 ≡ 1 on S.

We now observe a geometric constraint on the velocity vector of a
curve in Nstd.

Lemma 1.4. Let X(t), t ∈ [0, T ) be a curve in Nstd, X(t) = Φ(ξ(t),
e(t), ϕ(t)). Assume ξ(t) is a C1 curve on M , e(t) is parallel along ξ(t)
and ϕt ∈ C([0, T ), Cα0 (S)) satisfies aveS [ϕtui] = 0, i = 1, . . . , n. Then
the velocity vector Z(t) = Xt ∈ T̃X(t)N satisfies:

z⊥ = (aveS [z])⊥.

(Note both sides of this equation depend on t and on u.)

Proof. From Lemma 1.3, we have:

Z(t) = Xt = dΦ(ξ(t), e(t), ϕ(t))(ξt,∇ξte, ϕt)
= Ye(ϕ)ξt + ϕtγ

′
e(ϕ),

since ∇ξte ≡ 0. Pulling back to TξM via Ye(ϕ)−1, this gives:

z(t) = ξt + ϕte.

Thus z⊥ = ξ⊥t . Since aveS [ϕte] = aveS [ϕtui]ei = 0 we obtain (aveS [z])⊥

= (aveS [ξt])⊥ = ξ⊥t , proving the claim.
This lemma motivates the definition (for X = Φ(ξ, e, ϕ) ∈ Nstd):

T̃XNstd = {Z ∈ T̃XN ; z⊥ = (aveSz)⊥, z = Y
−1
e (ϕ)Z}.
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Lemmas 1.3 and 1.4 show dΦ maps the subspace of T̃(ξ,e,ϕ)M0 defined
by z = 0 into T̃XNstd.

We face the following problem: if we attempt to solve the parame-
trized normalized mean curvature flow in Nstd by setting Xt = Z(X) =
(HΣ − H)N̂ ∈ T̃XN , in general we should not expect that Z(X) ∈
T̃XNstd. Thus we will not find X(t) in Nstd solving Xt = (HΣ −H)N̂ .

Fortunately for ‘radial vector fields’ Z(X) ∈ T̃XN it is possible to
correct this by adding a ‘tangential component’. Precisely, given X ∈
Nstd, X = expξ[ϕe], define the linear map:

S : TξM → TξM, Sw := n(w − aveS [wT ]), wT := w − 〈w, ν〉e.

The notation wT is justified by the fact that Ye(ϕ)wT is tangential to
Σ: with W = Ye(ϕ)w,

〈Ye(ϕ)wT , N〉 = 〈W, N〉 − 〈w, ν〉〈γ′e(ϕ), N〉 = 0,

since 〈w, ν〉 = 〈W, N〉 and 〈γ′e(ϕ), N〉 = 1.
The map S is invertible, provided δ1, ε1 are small enough: since

wT = w⊥ − 〈w, ν − e〉e and aveS [w⊥] = n−1
n w for w ∈ TξM , we have:

Sw = w + aveS [n〈w, ν − e〉e].

Since 〈w, ν − e〉 = 〈Ye(ϕ)w,N − γ′e(ϕ)〉 and:

‖Ye(ϕ)w‖‖γ′e(ϕ) −N‖ < (1/2n)‖w‖

for all w ∈ TξM (for sufficiently small ε1, δ1), it follows that S = I +E,
with E ∈ L(TξM), ‖E‖ < 1/2.

We use S to define for X ∈ Nstd a linear map PX on vector fields
Z ∈ T̃XN of the form:

Z = aγ′e(ϕ), a ∈ Cα(S),

by setting:

PX(Z) = Z + T,

T = Ye(ϕ)w − 〈Ye(ϕ)w,N〉γ′e(ϕ),

w = nS−1(aveS [z]), z = ae ∈ Cα(S, TξM).
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Lemma 1.5. Let X ∈ Nstd, X = expξ[ϕe]. Let Z = aγ′e(ϕ) ∈ T̃XN .
Then:

(i) Z̃ := PX(Z) = Z + T ∈ T̃XNstd.

(ii) Conversely, assume Z̃ = Z + T ∈ T̃XNstd (with T(u) ∈ TX(u)Σ)
has the form:

Z̃ = Ye(ϕ)w + χγ′e(ϕ),

for some w ∈ TξM and χ ∈ Cα0 . Then w = nS−1(aveS [z]) (with
z = ae), χ = 〈z, e〉 − 〈w, ν〉 and Z̃ = PX(Z).

Proof.
(i) Let z̃ = z + w − 〈w, ν〉e = z + wT . Then z̃⊥ = w⊥ and:

aveS [z̃] = aveS [z] + aveS [wT ] = aveS [z] − 1
n
Sw + w = w,

since (1/n)Sw = aveS [z]. Thus (aveS [z̃])⊥ = z̃⊥, showing Z̃ ∈ T̃XNstd.
(ii) We have:

w + χe = z̃ = z + t,

where t := Ye(ϕ)−1
T, aveS [χe] = aveS [χui]ei = 0 and z = ae,

and must show:

t = w − 〈w, ν〉e, χ = 〈z, e〉 − 〈w, ν〉 and

n(w − aveS [wT ]) = naveS [z].

The observation that 〈t, ν〉 = 〈T, N〉 = 0 implies 〈w, ν〉+ χ = a = 〈z, e〉
and the first equality: t = w + χe− ae = w − 〈w, ν〉e = wT . But then:

w − aveS [wT ] = aveS [w − t] = aveS [z − χe] = aveS [z],

as desired.

We use this lemma to define a motion on M0 which corresponds to
parametrized solutions of normalized mean curvature flow in Nstd.

Definition 1.6. The barycentric system on M0 is defined by the
equations of motion:

ξt = n aveS [(HΣ −H)‖N‖e] − n aveS [〈w, ν − e〉e](1.1)
∇ξte = 0

ϕt = (HΣ −H)‖N‖ − n〈aveS [(HΣ −H)‖N‖e], e〉
− 〈w, ν − e〉 + n〈aveS [〈w, ν − e〉e], e〉,
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where:

w = nS−1(aveS [(HΣ −H)‖N‖e]), with
S := I + n aveS [〈., ν − e〉e] ∈ L(TξM).

(Here HΣ −H,N, ν, are computed at the embedding Φ(ξ, e, ϕ).)

Lemma 1.7.

(i) Let (ξ(t), e(t), ϕ(t)) ∈ M0 be a solution of the barycentric system
(1.1) in [0, T ). Then X(t) = Φ(ξ(t), e(t), ϕ(t)) ∈ Nstd is a solution
of 〈Xt, N̂〉 = HΣ −H in [0, T ).

(ii) Conversely, let X(t) ∈ N be a solution of the geometric equa-
tion 〈Xt, N̂〉 = HΣ − H in [0, T ), with X(0) ∈ Nstd. Then by
reparametrizing X(t) we may obtain X̄(t) ∈ Nstd, solution of:

X̄t = Z(X̄) + T1, Z(X̄) := (HΣ −H)‖N‖γ′e(ϕ),

where Z(X̄) + T1 = PX̄(Z(X̄)) ∈ T̃X̄Nstd. In particular, writing
X̄(t) = Φ(ξ(t), e(t), ϕ̄(t)) with ξ = B(X̄) and e(t) parallel along
ξ(t), we obtain a solution of the barycentric system (1.1) in M0.

Remarks.

(i) ν − e ≡ 0 for geodesic spheres, so the terms containing ν − e will
be treated as ‘error terms’.

(ii) The factors of n in the equation for ϕt in (1.1) can be understood
as follows: if f satisfies ft = f−n〈aveS [fe], e〉 = f−naveS [fui]ui,
we have:

(aveS [fuj ])t = aveS [ftuj ]

= aveS [fuj ] − naveS [fui]aveS [uiuj ] = 0,

since aveS [uiuj ] = δij/n. Thus the condition aveS [fuj ] = 0 is
preserved.

Proof. Throughout the proof we let vN (X) = (HΣ−H)‖N‖,H(X) =
(HΣ −H)N̂ .

(i) Let z = vNe, z̃ = z +w− 〈w, ν〉e. Since 〈z̃, e〉 = vN − 〈w, ν − e〉,
the barycentric system can be written as:

ξt = n aveS [〈z̃, e〉e], ϕt = 〈z̃, e〉 − n〈aveS [〈z̃, e〉e], e〉.
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As shown in Lemma 1.5(i), z̃ satisfies z̃⊥ = (aveS [z̃])⊥. This implies:

aveS [z̃⊥] = aveS [(aveS [z̃])⊥]

=
n− 1
n

aveS [z̃] and aveS [〈z̃, e〉e] = (1/n)aveS [z̃].

Thus, we have:

ξt + ϕte = n aveS [〈z̃, e〉e] + 〈z̃, e〉e− n〈aveS [〈z̃, e〉e], e〉e
= n(aveS [〈z̃, e〉e])⊥ + 〈z̃, e〉e = (aveS [z̃])⊥ + 〈z̃, e〉e
= z̃⊥ + 〈z̃, e〉e = z̃.

Thus X(t) satisfies the equation:

Xt = Ye(ϕ)(ξt + ϕte) = Ye(ϕ)z̃
= vNγ

′
e(ϕ) + T ( with T = Ye(ϕ)(w − 〈w, ν〉e))

= (HΣ −H)N̂ + T1,

where T1 = T+(HΣ−H)‖N‖γ′e(ϕ)− (HΣ−H)N̂ satisfies 〈T1, N〉 ≡ 0.

Remark. Note that the condition z̃⊥ = (aveS [z̃])⊥ is used essen-
tially in the proof.

(ii) X(t) satisfies, for some tangential vector T(t, u):

Xt = H(X) + T.

Leting ξ(t) = B(X(t)) and e(t) be the parallel transport of the frame
e(0) along ξ(t), we may reparametrize Σ in the form:

X̄(t, ū) = expξ(t)[ϕ(t, ū)e(t, ū)],

via a diffeomorphism G(t, ·) ∈Diff2+α(S), so u = G(t, ū) and X̄(t, ū) =
X(t, G(t, ū)). For the velocity vector:

X̄t(t, ū) = Xt(t, G(t, ū)) +Xu(t, G(t, ū))Gt(t, ū)
= H(X̄) + T(t, G(t, ū)) + T̄(t, ū)
= vN (X̄)γ′e(ϕ) + T2(t, ū)
= Z(X̄) + T2(t, ū),

where:

T2(t, ū) = T(t, G(t, ū)) + T̄(t, ū) + H(X̄)(t, ū)
− vN (X̄)(t, ū)γ′e(ϕ) ∈ TX̄(t,ū)Σ
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and we used the fact that H is ‘geometric’:

H(X)(t, G(t, ū)) = H(X̄)(t, ū).

Since we also have:

X̄t = Ye(ϕ)w + χγ′e(ϕ) with w = ξt ∈ TξM and χ = ϕt ∈ C2+α
0 (S),

we may apply Lemma 1.5(ii) to conclude Z(X̄) + T2 = PX̄(Z(X̄)) and:

ξt = nS−1(aveS [z]) with z = vN (X̄)e, ϕt = vN (X̄) − 〈ξt, ν〉.
From n aveS [z] = Sξt = ξt + n aveS [〈w, ν − e〉e] (where w = ξt), we
obtain:

ξt = n aveS [v(X̄)e] − n aveS [〈w, ν − e〉e]
ϕt = vN (X̄) − 〈ξt, e〉 − 〈w, ν − e〉,

which is the barycentric system.

Summary. For f ∈ C2+α(S), denote by ◦ the L2 projection on the
subspace C2+α

0 defined by aveS [fui] = 0:

f◦ = f − n〈aveS [fe], e〉 = f − aveS [nfui]ui.

Then the barycenter system has the structure:

ξt = n aveS [(vN − E)e](1.2)
∇ξte = 0
ϕt = (vN − E)◦;

here E = E(vN ) is uniquely defined so that:

z̃ := ξt + ϕte = satisfies 〈z̃, ν〉 = vN ,

or equivalently for X(t) = Φ(ξ(t), e(t), ϕ(t)) ∈ Nstd:

Xt = Yez̃ = vNγ
′
e(ϕ) + T = (HΣ −H)N̂ + T1.

Since z̃ is a ‘tangential correction’ of vNe: z̃ = vNe + w − 〈w, ν〉e =
vNe + w⊥ − Ee, we see that 〈z̃, e〉 = vN − E, and the system can be
written in the alternative form:

ξt = aveS [z̃]
ϕt = 〈z̃, e〉◦;
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note aveS [z̃] = n aveS [〈z̃, e〉e]. From the point of view of the system on
M0, the reason for the correction is that we want to prescribe 〈z̃, ν〉,
not 〈z̃, e〉. In fact we have:

〈z̃, ν〉 = vN ⇔ 〈z̃, e〉 = vN − E.

In the proof of global existence, we use a slightly different form of
the barycentric system. Any 0 ≤ ϕ ∈ C2+α

0 (S) can be written in the
form ϕ = R(1 + ψ), where R = aveS [ϕ] ≥ 0 and ψ = (1/R)(ϕ − R)
(ψ ≡ 0 if ϕ ≡ 0) is in the subspace K2+α of C2+α

0 , where we denote:

K2+α : = {ψ ∈ C2+α
0 (S); aveS [ψ] = 0},

K2+α
ε1 = {ψ ∈ K2+α; ‖ψ‖C2+α < ε1}.

Thus we may write:

M0 = M0(δ1, ε1) = (0, δ1) × FM ×K2+α
ε1 ,

and derive differential equations for R and ψ via:

ϕt = (1 + ψ)Rt +Rψt, Rt = aveS [ϕt], Rψt = ϕt − (1 + ψ)aveS [ϕt].

Denoting by f �→ (f)K the L2 projection C2+α → K2+α, the R,ψ
equations may be written in the form:

Rt = aveS [vN − E]
Rψt = (vN − E)K − ψ aveS [vN − E]

Thus the equations of motion take the form:

Rt = aveS [vN − E](1.3)
ξt = aveS [n(vN − E)e]
∇ξte = 0
Rψt = (vN − E)K − ψ aveS [vN − E].
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2. Asymptotics in Riemannian normal coordinates

2.1 Second fundamental form and mean curvature

In this section we apply some classical expansions in Riemannian normal
coordinates to obtain the leading terms in the barycentric system on
M0(δ0, ε0). The main results are the asymptotics of the normal velocity
v = HΣ −H (Lemma 2.1), an a priori estimate for R(t) (Lemma 2.2),
the asymptotics of the tangential correction E (Lemma 2.4), and, finally,
of the barycentric system (Lemma 2.5). Only the statements of these
lemmas are needed in Section 3; the expansions themselves are obtained
in a completely standard way.

Ultimately we would like to identify the terms of order up to R2,
and up to first order jointly in (ψ,∇Sψ,D2

Sψ) explicitly. Intermediate
expansions will be obtained to varying orders; for instance, since v is
of order R−1, in Lemma 2.1 we actually state the asymptotics of Rv to
order 3 in R.

We begin by considering the second fundamental form and mean
curvature of a hypersurface Σ = im(X) in a Riemannian n-manifold M ,
parametrized by a ‘radial embedding’:

X : S →M, X(u) = expξ[ϕ(u)uξ],

where ξ ∈M is fixed and u �→ uξ is a fixed isometry from S to the unit
tangent sphere Sξ ⊂ TξM . We assume Σ ⊂ C∗

ξ := Cξ − {ξ}, where Cξ
is a totally convex open neighborhood of ξ in M . (In other sections of
the paper uξ is denoted e(u, ξ) or e(u); but in this section-except for
Subsection 2.4, when we estimate E- we will not keep track of the frame
e explicitly.)

It is easy to describe a local basis of tangent vectors and an outward
normal vector for Σ. Let (ei) be a local orthonormal frame on S, (ēi)
the corresponding (under the isometry fixed above) local frame of Sξ.
We assume (ēi) is extended to an open sector Uξ ⊂ C∗

ξ by parallel trans-
lation along radial geodesics from ξ. Denoting by (ρ, ω) polar normal
coordinates in C∗

ξ (ρ > 0, ω ∈ Sξ), and by γω(ρ) the unit speed geodesic
from ξ with initial tangent vector ω, we define n vector fields in Uξ:

e0(ρ, ω) = d expξ(ρω)ω = γ′ω(ρ);

Ji(ρ, ω) = d expξ(ρω)[ρēi],
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the Jacobi field along γω(ρ) with initial conditions Ji(0, ω) = 0, J ′
i(0, ω)

= ēi(ω) ∈ TωSξ. By the Gauss lemma < Ji, e0 >≡ 0 in Uξ. A basis of
tangent vector fields to Σ is given by:

Ei = dXei = d expξ(ϕuξ)[ϕiuξ] + d expξ(ϕuξ)[ϕēi]

= ϕi(e0 ◦X) + Ji ◦X,
where we have set ϕi = (dSϕ)ei (differential on S). The Ei are ‘vector
fields on M along X’, in the sense that Ei(u) ∈ TX(u)M, i = 1, . . . n− 1.
Setting hij = 〈Ji, Jj〉 : Uξ → R, we obtain an outward normal vector to
Σ:

N = e0 ◦X − ϕk(hklJl) ◦X,(2.0)

‖N‖2 = 1 + (hij ◦X)ϕiϕj : Uξ → R
+.

N is also a vector field along X, and it is easy to check that it is
orthogonal to the Ei.

The second fundamental form of Σ with respect to N is defined by:

AN (Ei, Ej) = 〈∇EiN,Ej〉.
Using the above definitions for N and Ei, one easily obtains the expres-
sion:

AN (Ei, Ej) = H(Ji, Jj) + hkl(H(Ji, Jl)ϕj +H(Jj , Jl)ϕi)ϕk
− Ji(ϕ̃j) + hkl〈∇JiJj , Jl〉,

where:
H(X,Y ) = 〈∇Xe0, Y 〉 is the Hessian of the distance function dξ

(∇dξ = e0);
ϕ̃j is the function on Uξ defined by:

ϕ̃j(ρ, uξ) = ϕj(u), or ϕ̃j(expξ[ρuξ]) = ϕj(u).

A little more precisely, the functions H(Ji, Jj), hkl and 〈∇JiJj , Jl〉
on Uξ define by composition with the embedding X the functions ANij
on S:

ANij = H(Ji, Jj) ◦X + ϕkϕj [hklH(Ji, Jk)] ◦X(2.1)

+ ϕkϕi[hklH(Ji, Jl)] ◦X + ϕk[hkl〈∇JiJj , Jl〉] ◦X
− 〈∇S

eiej , ϕkek〉S − (HSϕ)(ei, ej),
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where HS denotes the Hessian on S:

(HSϕ)(ei, ej) = (dSϕj)ei − 〈∇S
eiej , ϕkek〉S .

We also used the fact that:

(dSϕj)ei = dϕ̃j ◦ d expξ(ρuξ)[ρēi] = Ji(ϕ̃j).

We also need an expression for the induced metric on Σ:

gij = 〈Ei, Ej〉 = ϕiϕj + hij(2.2)

= ϕiϕj + ϕ2

[
δij − 1

3
Rijϕ

2 − 1
12
R′
ijϕ

3

]
+O(|ϕ|6),

using the expression for hij given below.
The functions on Uξ ⊂ M defined above have well-known Taylor

expansions in normal polar coodinates; in order to state them, we in-
troduce the notation:

Rij(ω) = 〈RmM (ξ)(ω, ēi)ω, ēj〉, R′
ij(ω) = 〈(∇ωRmM )(ξ)(ω, ēi)ω, ēj〉.

The following Taylor expansions in ρ, at a fixed ω ∈ Sξ and ρ = 0,
are easily obtained from the Jacobi equation:

Ji(ρ, ω) = ρēi − 1
6
ρ3RmM (ξ)(ω, ēi)ω

− 1
24
ρ4(∇ωRmM (ξ))(ω, ēi)ω +O(ρ5);

H(Ji, Jj)(ρ, ω) = δijρ− 2
3
Rij(ω)ρ3 − 5

12
R′
ij(ω)ρ4 +O(ρ5).

RmM denotes the (3, 1) Riemann curvature tensor of M . (Here we used:

H(Ji, Jj) = 〈∇Jie0, Jj〉 = 〈J ′
i , Jj〉 + 〈[Ji, e0], Jj〉 = 〈J ′

i , Jj〉,

since for the geodesic variation f(ρ, τ) := expξ(ρφiτ (ω)), with φiτ the
local flow of ēi on Sξ:

[e0, Ji] = [d expξ(ρω)ω, d expξ(ρω)ēi]

=
[
∂f

∂ρ
,
∂f

∂τ

]
|τ=0

= df

[
∂

∂ρ
,
∂

∂τ

]
|τ=0

= 0.

)
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hij(ρ, ω) = ρ2

[
δij − 1

3
Rij(ω)ρ2 − 1

12
R′
ij(ω)ρ3

]
+O(ρ6);

hij(ρ, ω) = ρ−2

[
δij +

1
3
Rij(ω)ρ2 +

1
12
R′
ij(ω)ρ3

]
+O(ρ2);

〈∇JiJj , Jl〉(ρ, ω) = Γ̄ijl(ω)ρ2 + T4ijl(ω)ρ4 + T5ijl(ω)ρ5 +O(ρ6),

where in the last line we set:

Γ̄ijl(ω) = 〈∇Sξ
ēi ēj , ēl〉Sξ(ω), so 〈∇S

eiej , el〉S(u) = Γ̄ijl(uξ).

These are the only expansions in normal coordinates we’ll need; all other
expansions obtained below follow from these and algebraic computation.

Introducing the decomposition ϕ = R(1 + ψ) with
∫
S ψ = 0, we

define smooth functions on SM × [0, δ0) × [0, ε0) × Rn × Sym2(Rn):

Aij(ξ, ω, r, z, p, q), gij(ξ, ω, r, z, p), N (ξ, ω, r, z, p),

so that the second fundamental form and induced metric of Σ =
im(X(ξ,R, ψ)) and the length squared of N are given by:

AN (Ei, Ej) = Aij(ξ, uξ, R, ψ,∇Sψ,HSψ)

gij = gij(ξ, uξ, R, ψ,∇Sψ), ‖N‖2 = N (ξ, uξ, R, ψ,∇Sψ).

In terms of the Riemannian functions defined above:

Aij = H(Ji, Jj)(r(1 + z), ω) + r2pkpj [hklH(Ji, Jk)](r(1 + z), ω)

+ r2pkpi[hklH(Jj , Jk)](r(1 + z), ω)

+ rpk〈hkl∇JiJj , Jl〉(r(1 + z), ω) − rpkΓ̄ijk(ω) − rq(ei, ej),

gij = r2pipj + hij(r(1 + z), ω),

N = 1 + r2pipjh
ij(r(1 + z), ω).

The functions Aij , gij , gij and N have Taylor expansions (at fixed
(ξ, ω) and (r, z, p, q) = (0, 0, 0, 0)) given as follows.

Aij(r, z, p, q) = δijr − 2
3
Rijr

3 − 5
12
R′
ijr

4 + δijrz − 2Rijr3z − 5
3
R′
ijr

4z

+
(
T4ijk +

1
3
RklΓijl

)
r3pk +

(
T5ijk +

1
6
R′
klΓijl

)
r4pk

− rq +Bij(u, r, z, p),
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where Bij satisfies the estimate:

|Bij(u, r, z, p)| ≤ C[r5 + |z|2 + |p|2],

provided r ∈ (0, δ0) and |z| + |p| < ε0, for a constant C depending only
on M .

gij(r, z, p) = r2
(
δij − 1

3
Rijr

2 − 1
12
R′
ijr

3

)
+

[
2δij − 4

3
Rijr

2 − 5
12
R′
ijr

3

]
r2z + bij ,

where we have the estimate:

|bij(u, r, z, p)| ≤ Cr2(r4 + |z|2 + |p|2),

for r ∈ (0, δ0) and |z| + |p| < ε0, with C depending only on M . For the
inverse metric tensor gij , we have:

gij(r, z, p)

= r−2

[
δij +

1
3
Rijr

2 +
1
12
R′
ijr

3 − 2δijz +
4
3
Rijr

2z +
5
12
R′
ijr

3z

]
+ bij ,

|bij(r, z, p)| ≤ C(r4 + |z|2 + |p|2),

for C, r, z, p as before.

N (r, z, p) = 1 + pipj

(
δij +

1
3
Rijr

2 +
1
6
R′
ijr

3 +B′
N (r, z)

)
(2.2′)

= 1 +BN (r, z, p),

where |B′
N | ≤ C(r4 + |z|), |BN | ≤ C|p|2 for C, r, z, p as before. (In

particular, we see that for expansions up to first order in (z, p), the
superscript N in AN may be supressed.)

The mean curvature of Σ with respect to the unit normal vector N̂
is the trace:

H =
1

‖N‖g
ijAN (Ei, Ej).

As before, we use this expression to define a smooth function H : SM ×
[0, δ0) × [0, ε0) × Rn × Sym2(Rn) → R so that:

(RH)|X=X(R,ξ,ψ)
= H(ξ, uξ, R, ψ,∇Sψ,HSψ).
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H is linear in q and admits the Taylor expansion at (ξ, ω, 0, 0, 0, 0) (to
third order in r and first order jointly in (z, p, q):

H(ξ, ω, r, z, p, q) = n− 1 − [(n− 1)z + tr (q)]

(2.3)

− 1
3
(Ric )r2 + (Ric )r2z + 〈T ′

4, p〉r2 −
1
3
〈Ric , q〉r2

− 1
3
(Ric ′)r3 − 1

3
(Ric ′)r3z + 〈T ′

5, p〉r3 −
1
12

〈Ric ′, q〉r3

+B(ξ, ω, r, z, p) + 〈C(ξ, ω, r, z, p), q〉
:= h0 + h2r

2 + h3r
3 +B + 〈C, q〉,

where qij = q(ei, ej) and we have set:

trRij = Ric (ξ)(ω, ω) = Ric
trR′

ij = (∇ωRic )(ξ)(ω, ω) = Ric ′,

〈T ′
4, p〉 = (T4iik +

1
3
RklΓiil)pk,

〈T ′
5, p〉 = (T5iik +

1
6
R′
klΓiil)pk

〈Ric , q〉 = 〈RmM (ξ)(ω, ēi)ω, ēj〉q(ei, ej),
〈Ric ′, q〉 = 〈(∇ωRmM )(ξ)(ω, ēi)ω, ēj〉q(ei, ej).

Here Ric (ξ)(ω, ω) denotes the Ricci curvature of M at ξ in the di-
rection ω.

The remainder terms satisfy the estimates (for r ∈ (0, δ0), |z|+ |p| <
ε0):

|B(ξ, ω, r, z, p)| ≤ C(r4 + |z|2 + |p|2),
|Cij(ξ, ω, r, z, p)| ≤ C(r4 + |z| + |p|).

|dzB| + |dpB| ≤ C(r4 + |z| + |p|),(2.3′)

|dzCij | + |dpCij | ≤ C(r4 + 1).

We record the lowest order contribution (in R) to the linear term in
ψ in H(ξ, uξ, R, ψ,∇Sψ,HSψ), the linear operator in C2+α:

Aψ = ∆Sψ + (n− 1)ψ,

where ∆S is the Laplace-Beltrami operator in S.
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Remark. In the case M = Rn, we have the exact expression for
H:

H = [(1 + z)2 + |p|2]−1/2[(1 + z)2δij + pipj ]−1

· [(1 + z)2δij + 2pipj − (1 + z)qij ]

= n− 1 − [(n− 1)z + tr(q)] +O(|p|2 + |z|2 + |p‖q| + |z‖q|),
where the remainder term is independent of r.

2.2 The Jacobian of X and the average mean curvature

The Jacobian of the embedding X = X(ξ,R, ψ) : S → M is given in
terms of the induced metric by:

Jac(X) = [det(gij)]1/2.

As before, there is a smooth function J : SM×[0, δ0)×[0, ε0)×Rn → R+

so that:
J (ξ, uξ, R, ψ,∇Sψ) = Jac(X(R,ξ,ψ)).

We are interested in the Taylor expansion of J at (r, z, p) = (0, 0, 0),
for fixed (ξ, ω) ∈ SM , to third order in r and first order jointly in (z, p).
From (2.2), it is easy to see that we may write:

det(gij) = r2(n−1)[det(I + h̃) +O(|p|2)],
where:

h̃ij = −1
3
Rijr

2 − 1
12
R′
ijr

3 +
[
2δij − 4

3
Rijr

2 − 5
12
R′
ijr

3

]
z + b̃ij ,

|̃bij | ≤ C(r4 + |z|2).
From the well-known formula:

d

dz
det(I + h̃)|z=0 = det(I + h̃)|z=0 tr

(
d

dz
h̃

)
|z=0

,

one easily computes:

J
rn−1

= 1 + (n− 1)z −
[
1
6
(Ric ) +

2
3
(Ric )z

]
r2(2.4)

−
[

1
24

(Ric ′) +
5
24

(Ric ′)z
]
r3 +B1(ξ, ω, r, z, p)

: = J0 + J2r
2 + J3r

3 +B1,
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where the estimate:

|B1| ≤ C(r4 + |z|2 + |p|2)

holds whenever r ∈ (0, δ0), |z|+ |p| ≤ ε0 (with C depending only on M).
We now use (2.4) to compute the average mean curvature:

HΣ =
1

vol (Σ)

∫
Σ
Hdσ =

aveS [HJac(X)]
aveS [Jac(X)]

,

or equivalently:

(RHΣ)|X(R,ξ,ψ)
=

aveS [(HJ )(ξ, uξ, R, ψ,∇Sψ,HSψ)]
aveS [J (ξ, uξ, R, ψ,∇Sψ,HSψ)]

=
aveS [HJ ]/Rn−1

aveS [J ]/Rn−1
.

From now on when evaluating averages on S (denoted by bar) we
always assume (ξ, uξ, R, ψ,∇Sψ,HSψ) as the argument of J ,JH, etc;
and we also assume ψ ∈ K2+α(S). From (2.4) we compute:

1
Rn−1

aveS [J ] = 1 − 1
6n

Scal(ξ)R2 − 2
3
aveS [Ric (uξ)ψ(u)]R2

− 5
24

aveS [Ric ′(uξ)ψ(u)]R3 + B̄1

:= J̄0 + J̄2(ξ)R2 + J̄3(ξ)R3 + B̄1,

where Scal(ξ) denotes the scalar curvature at ξ and we used the easily
verified fact: aveS [Ric ′(uξ)] = 0.

Similarly, for H we have:

aveS [H] = h̄0 + h̄2R
2 + h̄3R

3 + aveS [B + 〈C, q〉],

where:

h̄0 = n− 1

h̄2 = − 1
3n

Scal(ξ)

+ aveS [(Ric (uξ)ψ(u)] + aveS [〈T ′
4,∇Sψ〉] − 1

3
aveS [〈Rij , HS

ijψ〉]

h̄3 = −1
3
aveS [(Ric ′(uξ)ψ] + aveS [〈T ′

5,∇Sψ〉] − 1
12

aveS [〈R′
ij , H

S
ijψ〉].
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We are interested in the difference:

aveS

[ HJ
Rn−1

]
− aveS

[ J
Rn−1

]
aveS [H]

= ( ¯h0J2 − h̄0J̄2 + ¯h2J0 − h̄2J̄0)R2

+ ( ¯h0J3 − h̄0J̄3 + ¯h3J0 − h̄3J̄0)R3 + B̄2

:= C + B̄2.

A straightforward computation yields for the ‘correction’ C:

C = aveS [(Ric )∆ψ]
R2

6
+ aveS [(Ric ′)(−3(n− 1)ψ + ∆ψ)]

R3

24
(2.5)

:= C1[ψ]R2 + C2[ψ]R3,

while B̄2 satisfies the estimate:

|B̄2| ≤ C(R4 + ‖ψ‖C1‖ψ‖C2).

For the average mean curvature we obtain the expression:

RHΣ = aveS [H] + C +B2,(2.6)

where B2 = B̄2R
n−1/aveS [J ] satisfies the same estimate as B̄2.

Evaluated at (R,ψ,∇Sψ,HSψ), the expression (2.3) for H may be
written as:

(2.6′) H = n− 1 − 1
3
(Ric )R2 − 1

3
(Ric ′)R3 −Aψ

+ L1[ψ]R2 + L2[ψ]R3 +B + 〈C, q〉,

where:

L1[ψ] := (Ric )ψ + 〈∇ψ, T ′
4〉 −

1
3
〈Rij , Hijψ〉

L2[ψ] := −1
3
(Ric ′)ψ + 〈∇ψ, T ′

5〉 −
1
12

〈R′
ij , Hijψ〉.

Combining the above (and using ψ ∈ K2+α), we obtain for the
average mean curvature the expansion:

RHΣ = n− 1 − 1
3n

Scal(ξ)R2 + L̄1[ψ]R2 + L̄2[ψ]R3 +B3,(2.7)
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where L̄1, L̄2 denote averages over S of L1, L2 and B3 satisfies the esti-
mate:

|B3| ≤ C(R4 + ‖ψ‖2
C1) + C(R4 + ‖ψ‖C1)‖D2ψ‖C0 ,(2.7′)

provided 0 < R < δ0 and ‖ψ‖C1 < ε0.
Combining (2.3) and (2.7), we obtain an expansion for the ‘speed’

HΣ −H, which we state as a lemma:

Lemma 2.1. There exist constants δ0, ε0 depending only on M with
the following property. The expression Rv = R(HΣ −H) evaluated for
the embedding X(R,ξ,e,ψ) defines a continuous (in fact, smooth) nonlinear
map:

R(HΣ −H) : M0(δ0, ε0) → Cα(S),

which admits the expression:

Rv = R(HΣ −H) = Aψ +
1
3
(Ric 0)R2 +

1
3
(Ric ′)R3

(2.8)

+ (L̄1 − L1)[ψ]R2 + (L̄2 − L2)[ψ]R3 + C +Bv,

where C is given in (2.5), L1, L2 are given in (2.6′) and Ric 0 denotes
the trace-free Ricci tensor: Ric 0(ξ, uξ) = Ric (ξ, uξ) − 1

nScal(ξ).
The term Bv satisfies the estimates:

‖Bv‖C0 ≤ C(R4 + ‖ψ‖2
C1) + C(R4 + ‖ψ‖C1)‖D2ψ‖C0 ,

[Bv]Cα ≤ C(R4 + ‖ψ‖C2‖ψ‖C1+α) + C(R4 + ‖ψ‖C1)[D2ψ]Cα ,(2.8′)

provided 0 < R < δ0 and ‖ψ‖C1 < ε0.

Proof. Only the Cα estimate remains to be shown. We have:

Bv = B3 −B − Cij(HS
ijψ),

where B(ψ,∇Sψ), Cij(ψ,∇Sψ) are functions on S and B3 is a real num-
ber satisfying the desired estimate (2.7). For B we have:

|B(ψ,∇Sψ)(u) −B(ψ,∇Sψ)(ū)|
≤ sup

|z|+|p|≤ε0
(|dzB| + |dpB|)‖ψ‖C1+α |u− ū|α,

so from (2.3′):

[B(ψ,∇Sψ)]Cα ≤ C(R4 + ‖ψ‖C1)‖ψ‖C1+α .
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The estimate of the remaining term is similar, again using (2.3′):

|Cij(ψ,∇Sψ)(u)HS
ijψ(u) − Cij(ψ,∇Sψ)HS

ijψ(ū)|
≤ sup

|z|+|p|≤ε0
(|dzCij | + |dpCij |)‖ψ‖C1+α‖D2ψ‖C0 |u− ū|α

+ (sup
S

|Cij |)|HSψ(u) −HSψ(ū)|

≤ {C(1 +R4)‖D2ψ‖C0‖ψ‖C1+α + C(R4 + ‖ψ‖C1)[D2ψ]Cα}|u− ū|α.

We conclude:

[CijHS
ijψ]Cα ≤ C‖ψ‖C1+α‖D2ψ‖C0 + C(R4 + ‖ψ‖C1)[D2ψ]Cα ,

as desired.

Remark. We have the bounds:

R‖v‖C0 ≤ C(R2 + ‖Aψ‖C0 +R2‖ψ‖C2 + ‖Bv‖C0),(2.9)

R[v]Cα ≤ C(R2 + [Aψ]Cα +R2‖ψ‖C2+α + [Bv]Cα)

2.3 The enclosed volume and an ‘a priori estimate’ for
R.

The volume enclosed by Σ = im(X(R,ξ,e,ψ)) may be computed from the
expression:

V (Σ) := voln(int (X)) =
∫ R

0

∫
S

Jac(X)(ξ, τ, ψ)dudτ

= ωn−1

∫ R

0
aveS [

J
τn−1

(τ, ψ,∇Sψ)]τn−1dτ,

where ωn−1 = vol (S). From (2.4), we have:

V (Σ)
ωn−1

=
∫ R

0
(1 + J̄2τ

2 + J̄3τ
3 + B̄1)τn−1dτ

= Rn
(

1
n

+
1

n+ 1
J̄2R

2 +
1

n+ 2
J̄3R

3

)
+RnB̄5,

where B̄5 satisfies the estimate:

Rn|B̄5| =
∣∣∣∣∫ R

0
B̄1τ

n−1dτ

∣∣∣∣ ≤ C(Rn+4 + ‖ψ‖2
C1R

n).
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This gives the expansion for V (Σ):

V (Σ)
Rnωn−1/n

= 1 − 1
6n(n+ 1)

Scal(ξ)R2 − 1
3
aveS [Ric (uξ)ψ(u)]R2

− 2n+ 3
12(n+ 2)

aveS [Ric ′(uξ)ψ(u)]R3 + B̄5

= 1 + B̄6,

where |B̄6| ≤ CR2 if R < δ0, ‖ψ‖C1 < ε0. Thus, assuming we have
V (Σ) = V (Σ0) for two such hypersurfaces, we obtain:

Rn(1 + B̄6(R)) = Rn0 (1 + B̄6(R0)).

This easily implies the following lemma.

Lemma 2.2. Assume that for hypersurfaces Σ = im(X),Σ0 =
im(X0) as above we have equality of the enclosed volumes: V (Σ) =
V (Σ0). Then:

R

R0
= 1 +B7(R,R0),

assuming max{R,R0} < δ0, where |B7| ≤ C(R2
0 +R2), for C depending

only on M . Moreover, there exist functions R̄min(V0, ε0) < R̄max(V0),
taking values in (0, δ0) and defined for V0 ∈ {vol (X);X = X(R,ξ,e,ψ), 0 <
R < δ0, ‖ψ‖C0 < ε0} so that if V (X) = V0, X = X(R,ξ,e,ψ) ∈ Eδ0,ε0, then:

R̄min(V0, ε0) ≤ R ≤ R̄max(V0).

Proof. Only the last claim remains to be shown. Since the volume
enclosed by geodesic spheres V (Sξ(ρ)) is a monotone increasing function
of ρ (for fixed ξ), for each 0 < v ≤ max{V (Sξ(ρ)); 0 < ρ ≤ δ0} there
exists a unique ρ = ρ(v, ξ) ≤ δ0 such that V (Sξ(ρ)) = v. In particular,
we may define Rmin(V0, ε, ξ) < Rmax(V0, ε, ξ) by:

(1 + ε)Rmin = ρ(V0, ξ), (1 − ε)Rmax = ρ(V0, ξ),

and then minimize Rmin and maximize Rmax over ξ and ε to obtain:

R̄min = (1 + ε0)−1 min
ξ∈M

ρ(V0, ξ) > 0, R̄max = max
ξ∈M

ρ(V0, ξ) < δ0.
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2.4 The ‘tangential correction’

In this subsection we estimate the ‘correction term’ in the barycenter
system. Recall from Section 2.1 that, given (ξ, e, ϕ) ∈ M0, we define:

N(u) = γ′e(u)(ϕ) − hklϕkJl(ϕ),

where ϕk are components of the gradient ∇Sϕ with respect to a local
orthonormal frame (ēi) on S (defined in a neighborhood of u) and the
Jl are Jacobi fields along the geodesic γe(u), orthogonal to γ′e(u). We
then set:

E = 〈w, ν − e〉, w = nS−1(aveS [vNe]), vN = v‖N‖,

where v = HΣ −H and S is the linear map:

S := I + aveS [n〈·, ν − e〉e] : TξM → TξM.

Define the functions of u ∈ S:

wj = 〈Ye(ϕ)w,Ye(ϕ)ej〉, yij = 〈Ye(ϕ)ei,Ye(ϕ)ej〉;

Here (ei) is the o.n. frame on Sξ, image of (ēi) under the isometry
e : S → Sξ. With (yij) the inverse matrix, we have:

w = yklwlek, Ye(ϕ)w = yklwlYe(ϕ)ek.

Then, from:

〈YeSw,Yeej〉 = n aveS [vNui]〈Yeei,Yeej〉

and:

〈YeSw,Yeej〉 = 〈Yew,Yeej〉 + aveS [n〈Yew,N − γ′e〉ui]〈Yeei,Yeej〉
= wj + aveS [n〈Yeek, N − γ′e〉uiyklwl]yij ,

we obtain:

wj + aveS [nEkuiyklwl]yij = aveS [nvNui]yij ,

where:
Ek := 〈Yeek, N − γ′e〉.
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Thus, defining wm = yjmwj and ṽm = aveS [vNum], we conclude (wm)
is independent of u ∈ S, and is a solution of the linear system:

wm + aveS [nEkum]wk = nṽm.

We are interested in:

E = 〈Yew,N − γ′e〉 = wkEk.

Note that N − γ′e(ϕ) = −hklϕkJl(ϕ). This motivates the definition
in the following lemma.

Lemma 2.3. Given a frame (ei) on SξM , defined in a neighborhood
of ω ∈ Sξ, let Ei(ξ, ω, r, z, p) := −〈Yω(ρ)ei, hklpkJl(ρ)〉|ρ=r(1+z). We have
the Taylor expansion:

−Ei = pi − Rik
3
pkr

2 − R′
ik

24
pkr

3 + βi

:= p̃i + βi,

where |βi| ≤ C(r4 + |z|2 + |p|2) for r < δ0, |z| + |p| < ε0.

Proof. With Yi = Yωei, we have the expansion:

Yi(ρ, ω) = ρei − 1
2
ρ2RmM (ω, ei)ω − 1

6
ρ3(∇ωRmM )(ω, ei)ω +O(ρ4).

Combining this with the previously obtained expansions of hkl and Jl,
we easily obtain:

hkl〈Yi(ρ), Jl(ρ)〉 =
δik

r(1 + z)
− Rik

3
r(1 + z) − R′

ik

24
r2(1 + z)2 +O(r3).

Since −Ei = rpkh
kl〈Yi(ρ), Jl(ρ)〉, this yields the result.

Remark. For the evolution in euclidean space (M = Rn), we have:

−Ei =
pi

1 + z

(in particular, Ei is independent of r).
The lemma implies:

|Ei| < C|p|(1 + r3) +O(r4 + |z|2 + |p|2).
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In particular, for a given (ξ, e, R, ψ) and evaluating Ei at (ξ, e(u), R, ψ,
∇Sψ), we have n|Ei| < 1/2 for ε0, δ0 small enough, and the system for
(wm) is uniquely solvable:

wk = (δmk − aveS [nEkum])nṽm + ṽmBmk,

where Bmk is independent of u and |Bmk| < C(R4 + ‖ψ‖2
C1).

For the expression E, evaluated at (ξ, e, R, ψ), we obtain:

E = wkEk = −n(δmk − aveS [nEkum])ṽm(ψ̃k + βk)

= −nṽkψ̃k + B̃E ,

where:

ψ̃i = ψk

(
δik − Rik

3
R2 − R′

ik

24
R3

)
and:

B̃E = −nṽkβk − n aveS [n(ψ̃k + βk)um]ṽm(ψ̃k + βk) ∈ Cα(S)

satisfies:

‖B̃E‖C0 ≤ C‖v‖C0(‖ψ‖2
C1 +R4)

‖B̃E‖Cα ≤ C‖v‖C0(‖ψ‖2
C1+α +R4).

From the expression (2.12) for aveS [vuk] obtained in the next sub-
section, we obtain for ṽk = aveS [vNuk]:

ṽk =
2

3(n+ 2)
ek(Scal)R2 +RaveS [L1u

k] +R2aveS [L2u
k]

+
1
R

aveS [B4u
k] + aveS [vBNuk].

Thus we have our final expression for E, which we state as a lemma.

Lemma 2.4. E = −SkψkR2 + BE, where Sk = 2n
3(n+2)ek(Scal)(ξ)

and BE, defined as:

BE =
2nR2

3(n+ 2)
ek(Scal)

(
Rik
3
R2ψi +

R′
ik

24
R3ψi

)
− nψ̃k(ave[L1u

k]R+ ave[L2u
k]R2)

− (nψ̃k)
1
R

aveS [B4u
k] − nψ̃kaveS [vB̃Nuk] + B̃E
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satisfies:

‖BE‖C0 ≤ C(R4‖ψ‖C1 + ‖ψ‖C1‖ψ‖C2R+ ‖v‖C0(‖ψ‖2
C1 +R4)

+R−1‖ψ‖C1‖Bv‖C0),

‖BE‖Cα ≤ C(R4 + ‖ψ‖C1+α‖ψ‖C2R+ ‖v‖C0(‖ψ‖2
C1+α +R4)

+R−1‖ψ‖C1+α‖Bv‖C0).

2.5 Asymptotics for the barycenter system

Using ‖N‖ = 1 +BN , we recall the barycenter system (1.3):

ξt = n aveS [vui]ei − aveS [nEui]ei + n aveS [vBNui]ei(2.10)
∇ξte = 0
Rt = aveS [v] − aveS [E] + aveS [vBN ]
Rψt = (v − E + vBN )K − ψaveS [v − E + vBN ],

where f �→ (f)K is the L2 projection C2+α → K2+α. Our goal in this
subsection is to identify the main terms in the asymptotics of (2.10),
with estimates for the error terms.

From (2.9) it follows easily that:

Rt = CR−1 + aveS [Skψk]R+BR(2.11)

= C1[ψ]R+ aveS [Skψk]R+ C2[ψ]R2 +BR

where Sk := 2n
3(n+2)ek(Scal)(ξ) and BR, given by:

BR = R−1B̄v − aveS [BE ] + aveS [vBN ]

satisfies the estimate:

|BR| ≤ CR−1‖Bv‖C0 + C‖v‖C0(‖ψ‖2
C1 +R4)(2.11′)

+ C‖ψ‖C1‖ψ‖C2R+ CR4‖ψ‖C1 .

Furthermore, we have the estimate:

|Rt| < C‖ψ‖C2R+ |BR|.
Turning to ξt, we consider the average (using (2.8′)):

aveS [vui] =
R

3
aveS [Ric 0u

i] +
R2

3
aveS [Ric ′ui] +

1
R

aveS [(Aψ)ui]

(2.12)

−RaveS [L1[ψ]ui] −R2aveS [L2[ψ]ui] +
1
R

aveS [B4u
i].
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It is easy to see that the first term vanishes (since it is the average
of an odd function of u), and so does the third (since ψ ∈ K2+α). For
the second term we use:

aveS [Ric ′ul] =
1

ωn−1

∫
S
〈∇uξ(RiemM )(uξ, ēi)uξ, ēi〉uldu

=
1

ωn−1
Rjimi;n(ξ)

∫
S
unujumuldu

=
2

n+ 2
ēl(Scal)(ξ),

by the calculation in Lemma 1.2 in [14].
We conclude:

(2.13) ξt =
2n

3(n+ 2)
∇MScal(ξ)R2 − nRaveS [L1[ψ]ui]ei

− nR2aveS [L2[ψ]ui]ei +R2aveS [nSkψkui]ei +Bξ,

where Bξ = naveS [vBNui]ei− aveS [nBEui]ei +nR−1aveS [Bvui]ei satis-
fies the bound:

(2.13′) |Bξ| ≤ C‖v‖C0(‖ψ‖2
C1 +R4) + CR−1‖Bv‖C0

+ C‖ψ‖C1‖ψ‖C2R+ CR4‖ψ‖C1 .

With (2.11) and (2.12) we obtain the equation for ψt:

Rψt =
1
R
Aψ +

1
3
Ric 0(ξ, u)R+

1
3
Ric ′(ξ, u)R2 − Sku

kR2(2.14)

− (L1[ψ])KR− (L2[ψ])KR2 + (Skψk)KR2 +Bψ,

with Bψ given by:

Bψ = R−1(Bv)K − (BE)K + (vBN )K − ψaveS [v − E + vBN ].

From this definition, (2.2′), (2.8′) and Lemma 2.4 one sees easily
that:

‖Bψ‖C0 ≤ C‖v‖C0(‖ψ‖2
C1 +R4) + CR−1‖Bv‖C0

+ CR‖ψ‖C1‖ψ‖C2 + CR4‖ψ‖C1 ;

‖Bψ‖Cα ≤ C‖v‖Cα(‖ψ‖2
C1+α +R4) + CR−1‖Bv‖Cα(2.14′)

+ CR‖ψ‖C1+α‖ψ‖C2 + CR4‖ψ‖C1+α ,
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(still under the assumptions R < δ0, ‖ψ‖C1+α < ε0).
Combining (2.11′), (2.13′) and (2.14′) with the estimates (2.8) and

(2.8′) for v and Bv, we obtain a more useful estimate for the remainder
terms, stated in the final lemma of this section.

Lemma 2.5. The barycentric system (2.10) in M0(δ0, ε0) may be
written in the form (2.11), (2.13), (2.14), plus the parallel transport equa-
tion for the frame e. The remainder terms satisfy the estimates:

|BR| + |Bξ| + ‖Bψ‖C0 ≤ cR3 + cR−1‖ψ‖C1‖ψ‖C2 + cR3‖D2ψ‖C0 ,

(2.15)

‖Bψ‖Cα ≤ cR3 + cR−1‖ψ‖C1+α‖ψ‖C2+α + cR3‖D2ψ‖Cα .

3. Local and global existence

3.1 Local existence via maximal regularity

Our goal in this subsection is to prove local existence for the barycenter
system on M0:

ξt = aveS [n(vN − E)e](3.1)
∇ξte = 0
ϕt = (vN − E)◦,

where vN = (HΣ −H)‖N‖ and f �→ f◦ is the L2 projection Cα → Cα0 .
In Section 2 we derived the expression for HN = ‖N‖H:

HN = −P (ϕ,∇Sϕ)[ϕ] +B(ϕ,∇Sϕ),

where:
P (ϕ,∇Sϕ)[χ] = gij(HSχ)(ei, ej),

gij = ϕiϕj + hij is the induced metric on Σ and HS is the Hessian on
S. Defining:

PΣ[χ] :=
‖N‖

vol (Σ)

∫
Σ
‖N‖−1P [χ]dσ, BΣ :=

‖N‖
vol (Σ)

∫
Σ
‖N‖−1Bdσ,

we may write:
vN = P [ϕ] − PΣ[ϕ] −B +BΣ.
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To apply the results in [3] on local existence, we introduce appropri-
ate function spaces. We denote by hk+γ(S) (for an integer k ≥ 0
and γ ∈ (0, 1)) the closure of smooth functions in Ck+γ(S), with the
standard Ck+γ norm. hk+γ0 (S) denotes the corresponding subspace of
Ck+γ0 (S). We also introduce local coordinates on the manifold FM , lo-
cally modelled on Rn × so(n). For fixed 0 < α < β < β0 < 1, define the
Banach spaces:

E1 = R
n × so(n) × h2+α

0 (S), E0 = R
n × so(n) × hα0 (S)

Eθ = R
n × so(n) × h1+β

0 (S), Eσ = R
n × so(n) × h1+β0

0 (S).

In the notation of [3], we seek a solution in the space:

W T (Rn) = C([0, T ], Eσ) ∩ Cσ([0, T ], E1) ∩ C1
σ((0, T ], E0).

The initial data (ξ(0), e(0), ϕ(0)) will be taken in the open subset of Eσ:

O1+β0

δ2,ε2
(U0) =

{
(x,A, ϕ) ∈Eσ;x ∈U0, e(x) = eAx ∈ Fg(U0), ϕ ∈ B1+β0

δ2,ε2

}
.

Here U0 ⊂ Rn is the image of a normal coordinate neighborhood of ξ(0)
in M , and we identify U0 and this neighborhood in the notation. FgU0

is the orthonormal frame bundle of U0, with respect to the metric g
pulled back from M via the coordinate chart. We also use the fact that
any 0 ≤ ϕ ∈ C0(S) may be written uniquely in the form ϕ = R(1 + ψ)
with aveS [ψ] = 0.

Prior to proving the local existence lemma, we need an observation
regarding the term E.

Lemma 3.1. The linear assignment vN �→ E defines a smooth map:

E : O1+β
δ1,ε1

(U) → L(Cα, h1+β).

Proof. Given (ξ, e, ϕ) ∈ O1+β
δ1,ε1

(U), the map Eξ,e,ϕ is the composition
E = Y ◦ S of:

vN �→ S[vN ] ∈ TξM,(i)

where S[w] = nS−1
ξ,e,ϕ(aveS [we]) defines a smooth map O1+β

δ1,ε1
(U) →

L(Cα, TM), preserving ξ ∈M ;

Y(ξ,e,ϕ) : η �→ 〈Ye(ϕ)η,N − γ′e(ϕ)〉,(ii)
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which defines a smooth map O1+β
ε1,δ1

(U) → L(TξM,h1+β(S)). These ob-
servations prove the lemma.

Denoting P(ξ,e,ϕ)[χ] = (P − PΣ)[χ], B(ξ, e, ϕ) = B − BΣ, we may
write:

vN − E = (vN − E)1[ϕ] + (vN − E)2,

where

(vN − E)1[χ] = (P(ξ,e,ϕ) − E(ξ,e,ϕ) ◦ P(ξ,e,ϕ))[χ],

(vN − E)2(ξ, e, ϕ) = −B(ξ, e, ϕ) + E(ξ,e,ϕ)(B(ξ, e, ϕ)).

In local coordinates (xa, eai , ϕ) ∈ U ×Rn2 ×h2+α
0 (S), ei = eai

∂
∂xa , the

barycentric system is written:

xat = aveS [n(vN − E)ui]eai
(eai )t = −Γabc(x)aveS [n(vN − E)uj ]ebje

c
i

ϕt = (vN − E)◦,

where Γabc(x) are the Christoffel symbols of the Riemannian connection.
We may write this as the quasilinear system in U × Rn2 × h2+α

0 (S):

(xa, eai , ϕ)t = P(x,ei,ϕ)[ϕ] + B(x, eai , ϕ),(3.2)

with:

P(x,e,ϕ)[χ] :=
(
aveS [n(vN − E)1[χ]ui]eai ,

− Γabc(x)aveS [n(vN − E)1[χ]uj ]ebje
c
i , (vN − E)◦1[χ]

)
and:

B(x, eai , ϕ) =
(
aveS [n(vN − E)2ui]eai ,

− ΓabcaveS [n(vN − E)2uj ]ebje
c
i , (vN − E)◦2

)
.

(Since parallel translation preserves orthonormality, it is harmless to
consider Rn2

instead of so(n).)

To state the local and global existence results for (3.1), we introduce
the space:

W T
δ1,ε1 = C0([0, T ],M0(δ1, ε1)) ∩ C1((0, T ],Mα(δ1, ε1))

and the open subset:

W T
δ1,ε1(U) = C0([0, T ],O2+α

δ1,ε1
(U)) ∩ C1((0, T ],Oα

δ1,ε1(U)).
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Lemma 3.2. Let 0 < α < β0 < 1.

(i) There exist constants δ2 ∈ (0, δ1/2), ε2 ∈ (0, ε1/2) depending only
on M and T = T (δ2, ε2) > 0 so that for any (ξ(0), e(0), ϕ(0)) ∈
M1+β0

0 (δ2, ε2) such that ϕ(0) ∈ C∞(S), there exists a unique solu-
tion (ξ(t), e(t), ϕ(t)) of (3.1) in W T

δ1,ε1
(U0) (where U0 is a normal

coordinate neighborhood of ξ(0)).

(ii) ϕ(t, ·) ∈ C∞(S) and (ξ(t), e(t)) is a smooth curve in FgU0 for
t ∈ [0, T ].

(iii) The hypersurfaces Σ(t), t ∈ [0, T ] parametrized by X(t) ∈
Nstd(δ1, ε1):

X(t, u) = expξ0 [ϕ(t, u)e(t, u)]

are smooth for t > 0 and satisfy:

Xt = (HΣ −H)N̂ + T,

where T(t, u) is tangent to Σ(t) at X(t, u). Thus Σ(t) is a motion
by normalized mean curvature.

Proof.
(i) We apply Theorem 2.11 in [3] to the quasilinear system (3.2).

There are three conditions to verify.
Claim (a): P defines a smooth map O1+β

δ2,ε2
(U0) → L(E1, E0).

In Section 2 we showed that:

gij(ϕ,∇Sϕ) = ϕ2

(
δij +

ϕiϕj
ϕ2

+ h̃ij(ϕ)
)
, ‖N‖ = (1 + hijϕiϕj)1/2,

where h̃ij , the smooth function of τ > 0 defined by:

hij = 〈Ji(τ), Jj(τ)〉 = τ2(δij + h̃ij)

satisfies |h̃ij(ϕ)| ≤ c|ϕ|2 for |ϕ| < δ2, for some c > 0 depending only on
M . From the definitions of P and PΣ, it is clear that for δ1 > 0 suf-
ficiently small, P defines a smooth map P : O1+β

δ2,ε2
(U0) → L(h2+α

0 , hα0 ).

From Lemma 3.1, E defines a smooth map O1+β
δ2,ε2

(U) → L(hα0 , h
1+β(S)).

This shows (vN −E)1 = P −E◦P defines a smooth map from the same
set to L(h2+α

0 , hα). It is then clear that P defines a smooth map into
L(h2+α

0 , E0), which may be regarded as a map into L(E1, E0).

Claim (b): B defines a smooth map O1+β
δ2,ε2

→ E0.
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Since Hdξ0(τ)(Ji(τ), Jj(τ)) (where Hdξ0 denotes the Hessian of the
distance function to ξ0) is a smooth function of τ satisfying:

|Hdξ0(ϕ)(Ji(ϕ), Jj(ϕ))| ≤ c|ϕ| for |ϕ| < δ0,

with c depending only on M , the expression for B(ϕ,∇Sϕ) (see Sec-
tion 2):

B = gij
[
Hdξ0(Ji, Jj) + hklϕk(ϕjHdξ0(Ji, Jl) + ϕiHdξ0(Jj , Jl))

+ hklϕk〈∇JiJj , Jl〉
]

and the expressions above for gij immediately imply that B = B − BΣ

defines a smooth map B : O1+β
δ2,ε2

→ hα, for δ2 ∈ (0, δ0) sufficiently
small. Given that E is smooth into L(hα0 , h

1+β) (Lemma 3.1), this shows
(vN − E)2 is smooth in hα, and hence B is smooth from the same set
into E0.

Claim (c): P(ξ,e,ϕ) ∈ Mσ(E1, E0) for (ξ, e, ϕ) ∈ O1+β0

δ2,ε2
(U).

It follows from theorem (2.14) in [3] (which generalizes [4]) that
P(ξ,e,ϕ) ∈ Mσ(h2+α, hα), provided we can verify that P(ξ,e,ϕ) generates
an analytic semigroup in (F1, F0), where we set F1 = h2+α0 , F0 = hα0

(for some α0 ∈ (0, α)):

P(ϕ,∇Sϕ) ∈ Hol(h2+α0 , hα0), for all ϕ ∈ O1+β0

δ1
.

This follows from the fact that, for such ϕ, P (ϕ,∇Sϕ)[.] is a second
order, uniformly elliptic operator in S, and PΣ defines a perturbation
with zero relative norm: since PΣ[χ] ∈ R with |PΣ[χ]| ≤ ‖χ‖C2 , we
have for each ε > 0:

‖PΣ[χ]‖hα0 = |PΣ[χ]| < ε‖χ‖h2+α0 + Cε‖χ‖hα0 .

Since, in the notation of Lemma 3.1 above:

‖E ◦ P[χ]‖h1+β ≤ c‖(Y ◦ S)[Pχ]‖h1+β

≤ c|S[Pχ]|TM ≤ c‖Pχ‖C0 ≤ ‖χ‖C2 ,

the same argument shows:

(vN − E)1 = P − E ◦ P ∈ Mσ(h2+α, hα).
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Likewise, since:

|aveS [n(vN − E)1[χ]ui]eai | + |Γabc(x)aveS [n(vN − E)[χ]uj ]ebje
c
i |

≤ c(x, e, ϕ)‖χ‖C2 ,

P(x,e,ϕ) may be regarded as a ‘lower order perturbation’ of (0, 0, (vN −
E)1) ∈ Mσ(E1, E0), which suffices for the claim.

(ii) (Higher regularity.) This follows from a standard ‘bootstrapping’
argument. From Part (i), ϕ(t) ∈ h2+α for each t > 0. Fix s > 0
and apply Theorem 2.11 in [3] with initial data Ψ(s) and spaces E =
E0, Eσ, Eθ, E1 defined as E = R × so(n) × h, where h = h1+α

0 for E0,
h = h2+α

0 for Eσ, h = h2+α0
0 for Eθ, h = h3+α

0 for E1. It follows as
above that P(ϕ,∇Sϕ) ∈ Hol(F1;F0), where F1 = h3+α0 , F0 ∈ h1+α0 .
We obtain a local solution Ψ1:

Ψ1 ∈ C0([s, T1];M2+α
0 ) ∩ C0((s, T1];M3+α

0 ) ∩ C1((s, T1];M1+α
0 ),

which must coincide with Ψ on some interval (s, s1). Since s ∈ (0, T ) is
arbitrary, this shows Ψ ∈ C0((0, T );M3+α

0 )∩C1((0, T );M1+α
0 ). Iterat-

ing this argument yields the conclusion of (ii).

(iii) This follows directly from Lemma 1.7.

The same argument yields local existence in a slightly different space.

Lemma 3.3. There exist constants δ2 ∈ (0, δ1/2), ε2 ∈ (0, ε1/2) de-
pending only on M , and T = T (δ2, ε2) > 0 so that if (ξ(0), e(0), ϕ(0) ∈
M0(δ2, ε2) with ϕ(0) smooth, there exists a unique solution of (3.1) in
W T
δ1,ε1

(U0), where U0 is a normal coordinate neighborhood of ξ(0). State-
ments (ii) and (iii) of Lemma 3.2 still hold.

Proof. Identical to Lemma 3.2. Since no ‘smoothing effect’ is needed,
Theorem 2.7 in [3] could also be used.

3.2 Global existence for the scaled system

Prior to establishing global existence, we introduce two small scale pa-
rameters ε ∈ (0, ε1), δ ∈ (0, δ1) and write a general X ∈ Nstd in the
form:

X = Φ(δR, ξ, e, εψ), X(u) = expξ[δR(1 + εψ(u))e(u)],

where we always assume 0 < R < 1, ψ ∈ K2+α, ‖ψ‖C2+α < 1. (Thus δ
measures the ‘size’ of the bubble and ε the ‘deviation from sphericity
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relative to size’.) With these scale parameters, the equations of motion
take the form:

δRt = aveS [vN − E](3.3)δ,ε
ξt = aveS [n(vN − E)e]
∇ξte = 0
δεRψt = (vN − E)K − δψ aveS [vN − E],

with vN and E computed at (δR, ξ, e, εψ) ∈ M0.
To prove global existence, we use the expansions obtained in Sec-

tion 2 (Lemma 2.5) to write the system in the form:

δRt = C1[ψ]δεR+ C2[ψ]δ2εR2 + aveS [Skψk]δεR+BR(ξ, e, δR, εψ)

(3.4)

ξt = cn∇MScal(ξ)δ2R2 − aveS [nL1[ψ]e]δεR− aveS [nL2[ψ]e]δ2εR2

+ aveS [nSkψke]δ2εR2 +Bξ(ξ, e, δR, εψ)
∇ξte = 0

δεRψt = δ−1R−1εAψ +
1
3
(Ric 0)δR+

1
3
(Ric ′)δ2R2 + Sku

kδ2R2

− (L1[ψ])KεδR− (L2[ψ])Kεδ2R2 +Bψ(ξ, e, δR, εψ).

For the remainder terms, we have the estimates:

|BR| + |Bξ| + ‖Bψ‖C0 ≤ cδ3R3 + cδ−1R−1‖ψ‖C1‖ψ‖C2ε2

+ cR3δ3ε‖D2ψ‖C0 ,

‖Bψ‖Cα ≤ cδ3R3 + cδ−1R−1‖ψ‖C1+α‖ψ‖C2+αε2 + cR3δ3ε‖D2ψ‖Cα .

Remark. The traceless Ricci curvature Ric 0 vanishes identically
on surfaces, so the δR term is not present in the equation for ψt when
n = 2.

We re-state Lemma 3.3 as follows:

Lemma 3.4. There exist δ2 > 0, ε2 > 0 depending only on M
and T = T (δ2, ε2) > 0, with the following property. For each Ψ(0) =
(δR(0), ξ(0), e(0), εψ(0)) in M0(δ2, ε2) with ε < ε2, δ < δ2, there exists a
unique solution Ψ(t) = (δR(t), ξ(t), e(t), εψ(t)) ∈ M0(δ2, ε2) to (3.3)δ,ε
in the space W T

δ1,ε1
(U0), where U0 is a normal coordinate neighborhood

of ξ0. In particular, we have ‖ψ(t)‖C1+α(S) < 1 in [0, T ].
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From Lemma 2.2, the following estimates hold for R(t), t ∈ [0, T ].

δRmin ≤ δR(t) ≤ δRmax,(3.4′)

where Rmax and Rmin, given by:

Rmax = R̄max(vol (X(0))) ≤ R̄max(vol (X(δ2,ξ(0),e(0),ε2))

Rmin = R̄min(vol (X(0)), ε2) ≥ R̄min(vol (X(δ2,ξ(0),e(0),ε2))

may be taken to depend only on M .

For t ∈ [0, Tδ,ε), we have the estimates for remainder terms (using
the bound ‖ψ‖C1+α < 1):

|BR| + |Bξ| + ‖Bψ‖C0 ≤ cδ3R3
max(1 + ε‖D2ψ‖C0)

+ cδ−1R−1
min(ε

2 + ε2‖D2ψ‖C0),

‖Bψ‖Cα ≤ R3
maxδ

3(1 + ε‖D2ψ‖Cα)

+ cδ−1R−1
min(ε

2 + ε2‖D2ψ‖Cα).

We will need some facts from semigroup theory. Consider the oper-
ator Aψ = ∆Sψ + (n− 1)ψ on the Hilbert space:

X = {ψ ∈ L2(S); aveS [ψ] = 0 = aveS [ψui], i = 1, . . . , n}.

A is self-adjoint on X with eigenvalues λn < λmax < 0. A ∈ M1(h2+α
0 ,

hα0 ), i.e., A has the maximal regularity property in the Banach cou-
ple (h2+α

0 , hα0 ) (see [3]). Denote by esA, s > 0, the analytic semigroup
generated by A.

Lemma 3.5. There exist constants µ > 0,M0 > 0 such that the
semigroup generated by A in h2+α

0 satisfies the estimates:

‖esAφ‖C2+α ≤M0e
−µs‖φ‖C2+α , φ ∈ h2+α

0 ;(1)

‖esAφ‖C2+α ≤ M0

s
e−µs‖φ‖Cα , φ ∈ hα0 ;(2)

sup
0<s≤s̄

∥∥∥∥∫ s

0
e(s−σ)Aφ(σ)dσ

∥∥∥∥
C2+α(S)

≤M0 sup
0<s≤s̄

‖φ(s)‖Cα(S),(3)

if φ : (0, s̄] → hα0 is continuous (where M0 is independent of s̄).



296 n.d. alikakos & a. freire

Proof. The first two estimates are well-known consequences of the
fact that A generates an analytic semigroup on h2+α

0 . Estimate (3)
is equivalent to the statement A ∈ M1(h2+α

0 , hα0 ). The fact that M0

may be taken independent of s̄ uses the negative upper bound on the
spectrum of A.

We may now state and prove the global existence lemma. For Ψ ∈
M0(δ2, ε2), define T ∗

δ,ε(Ψ) as the supremum (possibly infinite) of all
T > 0 such that the solution of (3.3)δ,ε found in Lemma 3.4, with initial
condition Ψ, is in W T

δ2,ε2
.

Lemma 3.6. There exist δ3 ∈ (0, δ2), ε3 ∈ (0, ε2) so that if 0 < δ <
δ3, 0 < ε < ε3 and δ2 � ε, we have T ∗

δ,ε(Ψ) = ∞, for any Ψ ∈ M0(δ3, ε3).
In addition, ‖εψ(t)‖C2+α < ε2, for all t ≥ 0.

Proof. By contradiction, suppose T ∗
δ,ε is finite. Let ξ∞ ∈ M be a

limit point of ξ(t) as t ↗ T ∗
δ,ε; choose a normal coordinate neighbor-

hood U∞ = Bξ∞(d∞) of ξ∞ in M (identified with the open set U∞ in
Rn). Now take τδ,ε ∈ (0, T ∗

δ,ε) so that ξ(τδ,ε) ∈ U∞. Our goal is to show
that Ψ(·) extends continuously to [τδ,ε, T ∗

δ,ε], taking values in O2+α
δ2,ε2

(U∞).
Then local existence and continuity (Lemma 3.4) contradict the maxi-
mality of T ∗

δ,ε (note that in particular we would have ψ(T ∗
δ,ε) ∈ h2+α

0 ).
Thus, we must show:

(i) R(t) extends to a C1 function [τδ,ε, T ∗
δ,ε] → (0, δ2).

(ii) (ξ(t), e(t)) extends continuously to a C1 curve [τδ,ε, T ∗
δ,ε]→ FgU∞;

(by standard results in differential geometry, it is enough to show
this for ξ(t)).

(iii) ψ(t) extends to a C0 map [τδ,ε, T ∗
δ,ε] → O2+α

δ2,ε2
.

We begin by re-scaling time, setting

ds

dt
= δ−2R−2(t).

Since R(t) is uniformly bounded from above and from below, if we
let S∗

δ,ε < ∞ correspond to T ∗
δ,ε (and σδ,ε correspond to τδ,ε), we are

assuming S∗
δ,ε < ∞, and must show (i)-(iii) for Ψ(t(s)) and [σδ,ε, S∗

δ,ε].
We abuse notation by writing ψ(s) = ψ(t(s)),etc. Omitting the parallel
transport equation for the frame from now on, we write the system in
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the s variable as:

Rs = ρ(R(s), ξ(s), e(s), ψ(s))
ξs = α(R(s), ξ(s), e(s), ψ(s))
ψs = Aψ + φ(R(s), ξ(s), e(s), ψ(s)),

where:

ρ = C1[ψ]δ2ε2R3 + C2[ψ]δ3εR4 + aveS [Skψk]δ2εR3 + δR2BR

α = cn∇MScal(ξ)δ4R4 − aveS [nL1[ψ]e]δ3εR3 − aveS [nL2[ψ]e]δ4εR4

+ aveS [nSkψk]δ4εR4 + δ2R2Bξ

φ =
1
3
(Ric 0)δ2R2ε−1 +

1
3
(Ric ′)δ3ε−1R3 − Skukδ3ε−1R3

− (L1[ψ])Kδ2R2 − (L2[ψ])Kδ3R3 + (Skψk)Kδ3R3 + δε−1RBψ.

The main step in showing (i)-(iii) consists of estimating:

Zδ,ε := sup
s∈[0,S∗

δ,ε)
‖ψ(s)‖C2+α .

(This supremum may in principle be infinite.) Choosing local coordi-
nates x on U∞, with ξ∞ corresponding to x = 0, we have the represen-
tation formulas for the solution:

R(s) = R(0) +
∫ s

0
ρ(σ)dσ, s ∈ [0, S∗

δ,ε);

x(s) = x(σδ,ε) +
∫ s

σδ,ε

α(σ)dσ, as long as x(s) ∈ U∞;

ψ(s) = esAψ(0) +
∫ s

0
e(s−σ)Aφ(σ)dσ, s ∈ [0, S∗

δ,ε).

Claim 3.7. sups∈[0,S∗
δ,ε)

‖φ‖Cα ≤ C(δ, ε)(1+Zδ,ε), where C(δ, ε) → 0
for δ → 0+, ε,→ 0+.

Assuming the claim, from Lemma 3.5(1) and (3) we obtain, for all
0 ≤ s < S∗

δ,ε:

‖ψ(s)‖C2+α ≤M0e
−µs‖ψ(0)‖C2+α +M0 sup

s∈0,S∗
δ,ε)

‖φ(s)‖Cα

≤M0‖ψ(0)‖C2+α +M0C(δ, ε)(1 + Zδ,ε).
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Thus:
Zδ,ε ≤M0C(δ, ε)(Zδ,ε + 1) +M0‖ψ(0)‖C2+α .

If δ, ε are chosen small enough that C(δ, ε) < 1 and C(δ, ε) < ε2/4M0 <
1/2M0, we have:

Zδ,ε ≤ 2M0‖ψ(0)‖C2+α +
ε2
2
.(3.5)

Thus Zδ,ε < ∞. This and the bound on φ (from the claim) easily
imply (iii). In particular, one sees immediately from the expressions for
α, ρ,BR and Bξ (and still assuming ε2 � δ) that:

sup
s∈(σδ,ε,S

∗
δ,ε)

(|ρ| + |α|Rn) < cδ,ε,(3.5′)

where cδ,ε depends only on the manifold M , the constants M0, Rmin and
Rmax, and on ‖ψ(0)‖C2+α . Thus we may choose σ̃δ,ε ∈ (σδ,ε, Sδ,ε) so that
x(σ̃δ,ε) < d∞/3 and

|x(s) − x(σ̃δ,ε)| =

∣∣∣∣∣
∫ s

σ̃δ,ε

α(σ)dσ

∣∣∣∣∣ < d∞/3,

as long as x(s) ∈ U∞. In particular x(s) ∈ U∞ for all s ∈ [σ̃δ,ε, S∗
δ,ε).

This bound on |x(s)|, the bound Rmin < R(s) < Rmax < δ2 and the
estimates (3.5), (3.5′) easily imply (i) and (ii).

In addition, assume ψ(0) satisfies:

2M0‖ψ(0)‖C2+α < ε2/2.

Then (reverting to the original time variable t) ‖ψ(T ∗
δ,ε)‖C2+α < ε2. By

the local existence Lemma 3.4, this contradicts the maximality of T ∗
δ,ε

(and also implies the last claim in the lemma).
Proof of Claim 3.7.
The claim follows directly from the estimate:

‖φ‖Cα ≤ cδ2ε−1R2
max + cδ3ε−1R3

max + c‖ψ‖C2+αδ2R2
max

(3.6)

+ c‖ψ‖C2+αδ3R3
max

+ cδ2ε−1Rmax[R3
maxδ

3(1+ε‖ψ‖C2+α)+δ−1R−1
minε

2(1+‖ψ‖C2+α)]

≤ cδ2ε−1R2
max + cδ2R2

max‖ψ‖C2+α

+ cδ4ε−1R4
max + cδ4R4

max‖ψ‖C2+α + cδε(1 + ‖ψ‖C2+α)

≤ cδ2ε−1R2
max + cδε+ c(δ2R2

max + δε)‖ψ‖C2+α

≤ c(δ, ε)(1 + ‖ψ‖C2+α) ≤ c(δ, ε)(1 + Z(δ, ε)),
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assuming (on the last step) δ2 � ε.

Remark. One can easily trace the origin of the condition δ2 � ε to
the equation for ψt: it is needed so that the (euclidean) linear operator
term 1

δ2R2Aψ dominates the largest Riemannian term 1
3εRic 0.

Motion of the analytic barycenter.
Under the assumption δ2 � ε, the largest terms in the equation for

ξt are:

(a) the ψ-independent Riemannian term cn∇MScal(ξ)δ2R2;

(b) the Riemannian term linear in ψ: −aveS [nL1[ψ]e]δεR;

(c) the Euclidean term R−1‖ψ‖C1‖ψ‖C2δ−1ε2.

We may choose the relative scales so that the term (a) dominates the
euclidean term (c) by imposing δ−1ε2 � δ2. This also implies (a) dom-
inates (b). Thus we have the lemma (Part (iii) of the main theorem):

Lemma 3.8. Assume the scale parameters ε and δ satisfy:

δ2 � ε� δ3/2.

Then the leading terms in the equations of motion for ξ and ψ are:

ξt = cn∇MScal(ξ)R2δ2 +O(ε2δ−1),

ψt = δ−2R−2Aψ +O(ε−1).

4. Asymptotic behavior

In this section we discuss the asymptotic behavior of a global so-
lution of (0.1), and prove Part (iv) of the main theorem, asserting the
convergence of solutions to parametrized hypersurfaces of constant mean
curvature.

It is simpler to argue subconvergence of solutions, based on the fact
that (0.4) is a gradient system on M0, satisfying (0.2):

dA(Σ(t))
dt

= −
∫

Σ
(H −HΣ)2dσ ≤ 0.
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By parabolic regularity the solution curves of (0.4) are relatively
compact in C2+α(S) (cf. the last statement in Lemma 3.6), and so by
the Invariance Principle ([7]) the ω−limit set of a complete orbit is
contained in the maximal invariant set of:

Ω =
{
(R, ξ, e, ψ) ∈ M0;H ≡ HΣ,Σ = im(X(R,ξ,e,ψ))

}
.(4.1)

Thus, for any initial embeddingX0 for which a global solution exists, the
ω−limit set ω(X0) is contained in the set of hypersurfaces (topological
spheres) in M with constant mean curvature.

In the proof of convergence we will need a lemma contained in R.
Ye’s paper [14]. We need to point out a slight difference between Ye’s
parametrization of quasi-spherical hypersurfaces and ours. Fix p ∈ M
and a totally convex neighborhood Up ⊂M . For τ ∈ Up, χ ∈ C2(S) and
0 < r < δ0, consider the embedding:

Y(r,τ,χ) : S →M, Y(r,τ,χ)(u) = expτ [r(1 − χ)ē(u, τ)],

Σ(r,τ,χ) = im(Y(r,τ,χ)),

where the frame ē(·, τ) is defined by radial parallel translation of a fixed
frame at p. (In contrast with the notation in the present paper, it is
not assumed that aveS [χ] = 0.) To obtain a local foliation by constant
mean curvature spheres, R. Ye considers the function:

H(r, τ, χ) = r × (mean curvature of Σ(r,τ,χ)),

defined on an open subset of (0, δ0)×Up×K⊥, taking values in Cα(S);
here K = C2+α

0 ⊂ C2+α(S) denotes the kernel of A = ∆ + (n− 1), and
K⊥ its L2 orthogonal complement.

Lemma 4.1 ([14]).

(i) If p ∈ M is a nondegenerate critical point of scalar curvature,
there exists δ̄ > 0 and smooth functions (τ, χ) : [0, δ̄) → Up × K⊥

with τ(0) = p, such that H(r, τ(r), r2χ(r)) ≡ n− 1 for 0 ≤ r < δ̄.
The family F = (Σr)r∈(0,δ̄),Σr = Σ(r,τ(r),r2χ(r)) defines a foliation
of a deleted neighborhood of p by hypersurfaces of constant mean
curvature (n− 1)/r.

(ii) Conversely, there is a neighborhood Vp ⊂ Up of p and δ̂ ∈ (0, δ̄)
so that if Σ = im(X), X = X(R,ξ,ψ) ∈ Nstd(δ1, ε1), ξ ∈ Vp, is a
hypersurface of constant mean curvature (n− 1)/r with r ∈ (0, δ̂),
then Σ = Σr is a leaf of the local foliation at p.
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Proof. R. Ye [14] uses the implicit function theorem to argue the
existence of functions τ(r), χ(r) such that H(r, τ(r), r2χ(r)) ≡ n − 1.
Conversely (as observed in the ‘intermediate remark’ on p. 389 and in
the proof of Theorem 2.1 in [14]), there exist δ̄ > 0, Vp ⊂ Up so that if,
for some fixed r0 ∈ (0, δ̄) and some ξ ∈ Vp we have Σ = Σ(r0,τ,r20χ) with
constant mean curvature (n − 1)/r0 contained in Up, then χ = χ(r0)
and ξ = τ(r0), and Σ is a leaf of the local foliation at p.

Switching to our parametrization, we observe that if

Σ = im(X(R,ξ,e,ψ)) = im(Y(r0,ξ,r20χ)),

we have: R(1 + ψ) = r0(1 + r20χ). To conclude (ii), we just have to
observe that r0 ∈ (0, δ̄) (defined as (n − 1) times the reciprocal of the
mean curvature of Σ) satisfies r0 → 0 as R → 0 (uniformly for ξ and χ
varying in compact sets). This follows immediately from the expression
R = r0(1 + r20aveS [χ]).

We now conclude the proof of Part (iv) of the main theorem

Lemma 4.2. There exist constants δ4 > 0, ε4 > 0 depending only
on M so that any limit point:

lim Ψ(ti) = Ψ∗ = (δR∗, ξ∗, e∗, εψ∗), ti → ∞,

of (3.3)δ,ε with ε < ε4, δ < δ4, ε
2 � δ3 corresponds to X∗ ∈ Nstd(δ4, ε4)

parametrizing a hypersurface Σ∗ of constant mean curvature, which is
contained in some Vp as in Lemma 4.1 (with p a critical point of Scal)
and is a leaf of the local c.m.c. foliation at p.

In particular, since the set of leaves of local c.m.c. foliations enclos-
ing a given volume is finite (with at most one in each Vp, p a critical
point of Scal), we must have convergence Ψ(t) → Ψ∗, where Ψ∗ corre-
sponds to X∗ parametrizing a c.m.c hypersurface Σ∗ enclosing the same
volume as X(0) — as claimed in Part (iv) of the main theorem.

Proof. We first argue that ξ∗ ∈ ⋃
p Vp if δ4, ε4 are small enough

and ε24 � δ34 . Otherwise we can find sequences δk → 0, εk → 0 with
ε2k � δ3k, and solutions Ψk(t) of (3.3)(δk,εk) admitting a limit point Ψk∗ =
(δkRk∗ , ξk∗ , ek∗, εkψk∗ ) as t→ ∞, where ξ∗ �∈

⋃
p∈Crit(Scal) Vp for any k ≥ 1.

The corresponding embedding Xk∗ parametrizes a hypersurface of
constant mean curvature- a stationary solution of (0.1). From (3.3) we
see that aveS [n(vN − E)e] = 0 (evaluated at Ψ∗ ∈ M0.) From (3.4)
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(after division by δ2k), we obtain:

cn∇MScal(ξk∗ ) = aveS [nL1[ψk∗ ]e
k
∗]
εk
δk
Rk∗ + aveS [nL2[ψk∗ ]e

k
∗]εk(R

k
∗)

2

+ aveS [nS∗jψk∗je
k
∗]εk(R

k
∗)

2

+ (δk)−2Bψ(ξk∗ , e
k
∗, δkR

k
∗ , εkψ

k
∗ ).

Since ε2k � δ3k (in particular also εk � δk) and ‖ψk∗‖C2+α , |Rk∗ | are
bounded independently of k, we see that ξk∗ �∈ ⋃

p∈Crit(Scal) would lead
to a contradiction for k large enough.

In particular, for δ4, ε4 sufficiently small, given the estimate (3.5) we
obtain ξ ∈ Vp and Σ∗ ⊂ Vp for some p ∈ Crit(Scal). It then follows from
Lemma 4.1.(ii) that Σ∗ is a leaf of the local c.m.c. foliation at p.

Remark. We expect a stronger result linking the dynamics of (0.4)
to the gradient flow of scalar curvature on M , namely that there exists
an n-dimensional attracting invariant submanifold of M0 on which (3.3)
is conjugate to the gradient flow of Scal via a time-preserving homeo-
morphism (for δ, ε small enough).
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