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C> GENERICITY OF POSITIVE TOPOLOGICAL
ENTROPY FOR GEODESIC FLOWS ON S2

GERHARD KNIEPER & HOWARD WEISS

Abstract

We show that there is a C*° open and dense set of positively curved metrics
on 52 whose geodesic flow has positive topological entropy, and thus exhibits
chaotic behavior. The geodesic flow for each of these metrics possesses a
horseshoe and it follows that these metrics have an exponential growth
rate of hyperbolic closed geodesics. The positive curvature hypothesis is
required to ensure the existence of a global surface of section for the geodesic
flow. Our proof uses a new and general topological criterion for a surface
diffeomorphism to exhibit chaotic behavior.

Very shortly after this manuscript was completed, the authors learned
about remarkable recent work by Hofer, Wysocki, and Zehnder [14, 15] on
three dimensional Reeb flows. In the special case of geodesic flows on S2,
they show that if the geodesic flow has no parabolic closed geodesics (this
holds for an open and C* dense set of Riemannian metrics on S?), then it
possesses either a global surface of section or a heteroclinic orbit. It then
immediately follows from the proof of our main theorem that there is a C'>°
open and dense set of Riemannian metrics on S? whose geodesic flow has
positive topological entropy.

This concludes a program to show that every orientable compact surface
has a C°° open and dense set of Riemannian metrics whose geodesic flow
has positive topological entropy.

Introduction

It has long been known that the geodesic flow for a Riemannian met-
ric of negative curvature possesses chaotic dynamics with the strongest
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possible stochastic behavior. The flow is not only ergodic, but it also
has the Bernoulli property. Thus, the geodesic flow has positive Liou-
ville entropy, and of course, positive topological entropy. Topological
and metric entropies are among the most important global invariants of
smooth dynamical systems. Topological entropy characterizes the to-
tal exponential complexity of the orbit structure with a single number.
Metric entropy with respect to an invariant measure codes the expo-
nential growth rate of the statistically significant orbits. Geodesic flows
in negative curvature are the most interesting example of a uniformly
hyperbolic dynamical system, for which there is a highly developed the-
ory.

The dynamics of geodesic flows for positively curved metrics is quite
different. The Gauss-Bonnet Theorem tells us that a positively curved
surface must be topologically a sphere. The most common examples of
positively curved surfaces are the round sphere (and other surfaces of
revolution) and the tri-axial ellipsoid. Both of these examples possess
simple dynamics (i.e., their geodesic flows are not ergodic and they
have zero entropies.) One might think that the simple topology of the
sphere could be an obstruction for the geodesic flow to have complicated
dynamics. This is not the case. Donnay [10] and Burns and Gerber [5]
have constructed smooth (and real analytic) metrics on the sphere whose
geodesic flows are Bernoulli. However, in these and in all later examples,
the hyperbolicity induced by the negative curvature is the mechanism
that causes the complicated dynamics.

The outstanding open question(s) in the interface of geometry and
ergodic theory is whether such examples exist in positive curvature, i.e.,
does there exist a smooth Riemannian metric on S? with positive cur-
vature whose geodesic flow is ergodic or has positive Liouville entropy?
At present, this problem seems intractable.

In an earlier work [18], the authors constructed the first C* ex-
amples of positively curved surfaces whose geodesic flows have positive
topological entropy. These examples were small perturbations of the tri-
axial ellipsoid and could be obtained arbitrarily C'*° close to the round
metric. A major cause of subtlety in this area is that the perturbations
are made on the surface while the phase space for the geodesic flow is
the unit tangent bundle. Later the second author [28] observed there is
a C'* open and dense set of positively curved metrics with 1/4-pinching
on S? whose geodesic flow has positive topological entropy. The pinch-
ing assumption is required to obtain a non-hyperbolic closed geodesic.

In a recent manuscript [9], Contreras and Paternain prove that the
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set of C™ metrics on S? whose geodesic flow has positive topological
entropy is open and dense in the C? topology. The main contribution in
[9] is to show that for a given metric, if there exists a C? neighborhood
of metrics all of whose closed geodesics are hyperbolic, then the closure
of the set of closed geodesics has a dominated splitting [21] (in the sense
of Mané). They apply techniques developed by Mané and extended by
others, including Contreras, to show that for such metrics the closure
of the set of closed geodesics contains a locally maximal hyperbolic
set, and as a consequence, the geodesic flow has positive topological
entropy. They need to know that every positively curved metric on S?
has infinitely many closed geodesics, which is a deep result of Franks
[12].

Our main result is Theorem 1, which states that the set of positively
curved C™ metrics on S? whose geodesic flow has positive topological
entropy is open and dense in the C*° topology. These geodesic flows
exhibit chaotic behavior. We require positively curved metrics to insure
the existence of a global surface of section for the geodesic flow. Our
approach is heavily topological, and most of our contribution entails
studying topological properties of diffeomorphisms of an annulus. Our
proof does not require Franks’ theorem. Thus our approach is quite
different from that of Contreras and Paternain, and we believe it is
conceptually quite a bit simpler.

On the one hand, our proof applies only to positively curved metrics,
while the proof by Contreras and Paternain applies to all metrics on
S2. On the other hand, we prove denseness of metrics with positive
topological entropy in the C* topology, and not just in the C? topology.
Furthermore, given a positively curved metric whose geodesic flow has
zero topological entropy, we can find an arbitrarily small perturbation of
the Riemannian metric supported in an arbitrarily small neighborhood
of a point on a closed geodesic, to obtain a metric whose geodesic flow
has positive topological entropy. Contreras and Paternain must use non-
local perturbations (in this sense) to obtain their C? denseness result.

Very shortly after this manuscript was completed, the authors learn-
ed about remarkable recent work by Hofer, Wysocki, and Zehnder [14,
15] on three dimensional Reeb flows.

In the special case of geodesic flows on 52, they show that if the
geodesic flow has no parabolic closed geodesics (this holds for an open
and C™ dense set of Riemannian metrics on S?), then it possesses ei-
ther a global surface of section or a heteroclinic orbit. Hence, if there is
no global surface of section we can use the method of Donnay [11] de-
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scribed below to obtain a transversal intersection of stable and unstable
manifolds and therefore positive topological entropy.

If there exists a global surface of section, it immediately follows from
the proof of our main theorem that there is a C*° open and dense set
of Riemannian metrics on S? whose geodesic flow has positive topolog-
ical entropy. More precisely, given a Riemannian metric on S? whose
geodesic flow has zero topological entropy, one can find an arbitrar-
ily small perturbation of the metric in the C'*° topology such that the
geodesic flow for the perturbed metric has positive topological entropy.
Unlike the locally supported perturbations we make to positively curved
metrics, these small perturbations need not be locally supported. We
state this result at the end of the manuscript as Theorem 7. The pos-
sibility of using modern techniques in symplectic topology to obtain a
global surface of section was also mentioned to us by G. Contreras.

Our main result is the following theorem.

Theorem 1. There is a C*° open and dense set of positively curved
Riemannian metrics on S? whose geodesic flow has positive topological
entropy. More precisely, given a positively curved Riemannian metric
on S? whose geodesic flow has zero topological entropy, one can find an
arbitrarily small perturbation of the metric in the C*° topology which is
supported in an arbitrarily small neighborhood of a point on some closed
geodesic, such that the geodesic flow for the perturbed metric has positive
topological entropy.

Proof of the main theorem

From the structural stability of hyperbolic sets [3] we know that
the metrics whose geodesic flow has positive topological entropy form
an open set. We now prove such metrics form a dense set in the C*
topology.

The starting point of our proof is a theorem of Birkhoff [4], which
guarantees the existence of a global surface of section for the geodesic
flow for a positively curved metric on S?. He proved that for every
simple closed geodesic 7 there exists an symplectic diffeomorphism P,
of the annulus A = x [0, 7] which is a global Poincaré section for the
geodesic flow. By the classical theorem of Lyusternik and Schnirelmann,
we know that P, must have at least two periodic points. In fact, by a
theorem of Franks, there exists even infinitely many periodic orbits, but
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we do not make use of this deep result.

We can assume that at least one of the periodic points is hyperbolic.
If this is not the case, we choose a closed geodesic corresponding to
one of the periodic points and perturb the Riemannian metric in a
neighborhood of a point on this closed geodesic which is disjoint from
~. By Lemma 2 below this can be done such that the new metric is C*°
close to the given one and has a hyperbolic closed geodesic. Choosing
the support of the perturbation small enough, we can guarantee that
is not effected by the perturbation, and the global Poincaré section for
the perturbed metric is defined on the same set and has a hyperbolic
periodic point. The proof, which we provide in the Appendix, combines
a perturbation result by Klingenberg and Takens with some standard
facts from the theory of twist maps.

Lemma 2. Let (M,g) be a Riemannian surface, ¢ : I — M
a closed geodesic, and R a C* neighborhood of Riemannian metrics
containing g. Then for any open neighborhood V. C M of a point p €
c(I), there exists a Riemannian metric ¢ € R such that the support of
g — g is contained in V, and such that there exists a hyperbolic closed
geodesic ' for g’ which intersects the set V' nontrivially.

Let us first assume that the global Poincaré section has a hyperbolic
periodic point that is part of a heteroclinic connection. Then the corre-
sponding hyperbolic closed geodesic is part of a heteroclinic connection.
One can break this heteroclinic connection using a perturbation method
of Donnay [11] (see also [25] for a higher dimensional version). Donnay
showed how to effect an arbitrarily small local perturbation of the met-
ric to obtain a new metric whose geodesic flow has a hyperbolic closed
geodesic for which the stable and unstable manifolds have a transversal
intersection. It follows that the geodesic flow for this perturbed metric
has positive topological entropy. Donnay states his result in the C?
topology, but it can be easily extended to the C*° topology.

Donnay’s idea is to slightly increase the Gaussian curvature in an
arbitrarily small neighborhood of some point ¢ along the connecting
geodesic, while preserving the connecting geodesic. This increase in
curvature changes the unstable manifold but preserves the stable man-
ifold. Properly chosen, the increase in curvature forces a transverse
intersection of the new stable and unstable manifolds at a unit vector
having a foot point q. The perturbation of the 2-jet of the metric is
explicitly written using Fermi coordinates adapted to the connecting
geodesic. One can break the connection using a perturbation method
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of Donnay with an arbitrarily small local C'*® perturbation of the met-
ric to obtain a new metric whose geodesic flow has a hyperbolic closed
geodesic for which the stable and unstable manifolds have a transversal
intersection. It follows that the geodesic flow for this perturbed metric
has positive topological entropy.

We can now assume that the global Poincaré section has a hyperbolic
periodic point that is not part of any heteroclinic connection. In this
case we apply a beautiful result of Mather (Theorem 3), whose proof uses
the theory of prime ends (see [22] and also [8] for further applications of
the theory of prime ends). Mather proves that for such a Poincaré map,
either the hyperbolic periodic point is part of a heteroclinic connection
or all branches of the stable and unstable manifolds have the same
closure.

Theorem 3 (Mather). Let f be an symplectic C* diffeomorphism
of an open subset U of S? onto an open subset f(U) of S?. Assume that
f has a hyperbolic fized point p such that the closure in S? of the four
stable and unstable branches are contained in U. Then either p is part of
a heteroclinic connection or the four branches of the stable and unstable
manifold for p have the same closure.

We apply Mather’s theorem to an iterate f = P$ of P,, chosen such
that f has a hyperbolic fixed point p. The positive curvature hypothesis
ensures that P, has an extension to an symplectic diffeomorphism of an
open neighborhood of the closed annulus. By assumption, p is not part
of a heteroclinic connection between hyperbolic periodic points. We now
show that a stable branch and an unstable branch for the hyperbolic
fixed point must intersect with a topological (2-sided) crossing, even
without perturbation. It follows from [6, 18] that the map f and the
Poincaré map P, have positive topological entropy and by Abramov’s
theorem [2], the geodesic flow for this metric must also have positive
topological entropy.

The result will be a consequence of the following general proposition,
which also applies to surface diffeomorphisms which are not necessarily
symplectic. It says that if the closures of a stable and unstable branch
for a hyperbolic periodic point coincide, then the map must exhibit
chaotic behavior.

Proposition 4. Let M be a surface for which the Jordan curve
theorem is valid, and let f: M — M be a diffeomorphism. Assume that
p € M is a hyperbolic fized point such that the closure of an unstable
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and stable branch coincide. Then the two branches will intersect with a
topological (2-sided) crossing. It follows that f has positive topological
entropy.

Proof. Let us assume that f: M — M be a C* diffeomorphism on
a surface M and that f has a hyperbolic fixed point p € M . Choose
a coordinate system in a small neighborhood N of p obtained from the
Hartman-Grobman C? linearization theorem [24], where f restricted
to N is linear and of the form L: (x,y) — (pz,Ay), where 0 < A <
1 < p (see Figure 1). The boundary of N has eight sides: four sides,
labeled hi, ho, hs, hy are segments of hyperbolas and four sides, labeled
s1, 82, 83, 4 are straight line segments parallel to the axes. We denote
by Ri, Rs, R, R4 four rectangles, whose boundary consists of sides sg,
Lo‘(k)(sk), and the two hyperbolic subarcs in hi_; and hy (where k is
considered mod 4, and a(k) is 1 if k is odd and —1 if k is even).

From the construction it follows for i € {1,2}

FHQi\ R2) C Qi
and for 7 € {3,4}

F7HQi\ Ra) C Qi
Similarly, for i € {1,4}:

f«gi\]%O C‘Qh

and for i € {2, 3}

f(Qi\ Ry) C Qi
Denote by u! = {(z,0) € N | z > 0} and u;,, = {(z,0) € N | z > 0}
the local unstable and stable branches and by st . = {(0,y) € N |y > 0}
and s,_. = {(0,y) € N | y > 0} the local unstable and stable branches.

The corresponding global unstable branches u™, u~ and global stable
branches s*, s~ are given by

ut = " uis,)

neNp

and

st = U f*”(sfgc).

n€Np
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53

Ry

54

Figure 1. Linearization in V.

The following lemma seems to be embedded in [23]. The idea is that
the linearization places strong restrictions on the first return of stable
and unstable branches of p to V.

Lemma 5. With the notation above, suppose that one of the un-
stable branches u™ or u~ returns to Q1 or Qs. Then the first return
must be through Ry. If one of the unstable branches returns to Qs or
Q4, the first return must be through Ry.

Similarly if one of the stable branches st or s~ returns to Q2 or Q3
the first return must be through Rs. If one of the stable branches return
to Q1 or Q4, it must be through Ry.

Proof. Suppose that an unstable branch will intersect (1 in r for the
first time after it left N. By definition of the unstable branch f~!(r)
is strictly contained in the subarc of the stable branch from the fixed
point p to r. However, if r is not contained in R, then as explained
above f~1(r) belongs to Q1. This contradicts the definition of r. All
the other cases are obtained with a similar argument. q.e.d.

Now we finish the proof of Proposition 4. Fix a coordinate system
in a small neighborhood N of p such that f restricted to N is linear.
Keeping the previous notation, we assume that the branches u™ and s™
have the same closure. Since we assume that u™ accumulates onto s,
by Lemma 5, the unstable branch «* must enter Ry. Let g be the first
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point of intersection of this branch with Ro. Consider the simple closed
curve formed by the unstable arc from p to ¢, the horizontal line segment
connecting ¢ to the stable boundary of ()1, and the remainder of the
stable boundary to p. By the Jordan curve theorem, which we now use
for the first time, this simple closed curve will divide the domain into
two connected components (see Figure 2).

Ry

Figure 2.

Let D be the connected component containing (R; N Q1) \ u™. We
first assume that ¢ € (1. Then the image f(q) is contained in D.
By hypothesis the stable branch s™ accumulates onto f(q). After first
leaving N the branch s is contained in the connected component com-
plementary to D, and thus the stable branch must intersect and cross
the boundary of D (perhaps not with a transversal intersection). By
construction of the Jordan boundary, the stable branch s™ must either
cross the unstable branch u™ or cross the horizontal line segment con-
necting ¢ and the stable branch. The latter is not possible since by
Lemma 5, the first time the stable branch intersects )1 it must do so
through R;.

135
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Figure 3.

Now assume that ¢ € Q2 (see Figure 3). This time the image f(q)
of q is contained in the component complementary to D. By hypothesis
the stable branch s* accumulates onto f(q). In this case, when it leaves
N, the stable branch s is contained in D and therefore it must intersect
and cross the the boundary of D. This implies that s™ must either cross
the unstable branch u™ or cross the horizontal line segment connecting
g. Again by Lemma 5, the latter is not possible since the first time the
stable branch intersects ()2 it must do so through Rj3. q.e.d.

For a smooth flow on a manifold, a natural object of study is the
closed orbit counting function, which counts the number of closed or-
bits with primitive period < T'. It is known that for geodesic flows in
negative curvature, the topological entropy of the flow is precisely the
exponential growth rate of the closed orbit counting function. It is also
known that in dimensions four and greater, there is no general relation
between topological entropy and closed orbits. In particular, there exist
flows having positive topological entropy and no closed orbits.

However, for smooth flows on compact 3-manifolds, Katok [16] show-
ed that topological entropy is always a lower bound for the exponen-
tial growth rate of the closed orbit counting function. Furthermore, he
showed that if the flow has positive topological entropy, then there exists
a horseshoe (locally maximal hyperbolic set). The horseshoe guarantees
the existence of infinitely many hyperbolic periodic orbits with an ex-



(C°° GENERICITY OF POSITIVE TOPOLOGICAL ENTROPY

ponential growth rate of the closed orbit counting function. This gives
the following corollary of Theorem 1:

Corollary 6. There is a C*™ open and dense set of positively curved
metrics on S having infinitely many hyperbolic closed geodesics, and
moreover, having an exponential growth rate of hyperbolic closed geo-
desics.

As mentioned in the Introduction, if one combines the recent result
of Hofer, Wysocki, and Zehnder on the existence of a global surface of
section or heteroclinic connection for a C*° dense set of Riemannian
metrics on S2, with the proof of Theorem 1, one obtains that that the
typical geodesic flow on S? exhibits chaotic behavior.

Theorem 7. There is a C* open and dense set of Riemannian
metrics on S? whose geodesic flow has positive topological entropy. More
precisely, given a Riemannian metric on S? whose geodesic flow has zero
topological entropy, one can find an arbitrarily small perturbation of the
metric in the C™ topology such that the geodesic flow for the perturbed
metric has positive topological entropy.

Appendix: Proof of Lemma 2

We first formulate a version of the theorem of Klingenberg and Tak-
ens which we need to prove Lemma 2. To give a precise statement of
their result we begin by developing the following notation.

Let (M,g) be a C* Riemannian manifold and qbg be the geodesic
flow acting on the unit tangent bundle SM. Let v be a closed geodesic
of length ¢ and vy = 4(0). Choose a hypersurface ¥ C SM through
vp which is transversal to the orbit <;5th (vg). Then there exist open
neighborhoods ¥y and ¥; of vg in ¥ and a diffeomorphism P(X%,g) :
So — %) defined by P(3,9)(v) = ¢3) (v), where 6 : ¥y — R is a
differentiable map such that 6(vg) = .

Note that the smooth mapping P(X, g) is symplectic with respect
to the induced symplectic structure. For 3 sufficiently small, we can
define a symplectic coordinate system 1 : ¥ — R2"~2 with 1(vg) = 0,
and where R?"~2 the standard symplectic structure. Hence, the map
P(3,9,%) = 9oP(%,g)oy~t : Uy — Uy, where U; = (%;), is a smooth
symplectic map which preserves the origin. For each k € N denote by
Pi(%, g,9) € JF(n — 1), the k-jet of P(X2,g,%) at 0, where J¥(n — 1) is
the space of k-jets of symplectic automorphisms of R>*~2 which fix the
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origin.

For an open neighborhood V' of 4(0), we denote by G*¥T1(V,~) the
set of all C*¥*! Riemannian metrics ¢’ such that the support of ¢ — g
is contained in V and such that v is a closed geodesic of length £.
Klingenberg and Takens prove the following theorem.

Theorem 8. Let v be a closed geodesic and ¥ and v as above.
Then for each open neighborhood V' of v(0) and m € N U {oo}, with
m >k, the map

Py(Z,9): G™(V,y) — JE(n —1)

defined by Pr(X,0)(¢") = Pp(X, ¢, 1) is an open mapping. In particular,
if the closure of a subset Q C J¥(n—1) contains P,(2,v)(g"), then there
exists in each C™ neighborhood R of ¢’ a metric h € RNG*>(V,~) such
that Py(3, ¢)(h) is contained in Q.

We now show how to apply Theorem 8 to prove Lemma 2. Assume
first that ~ is an elliptic closed geodesic, > a transversal section con-
taining 4(0), and V a neighborhood of v(0). Let Q@ C J2(1) be the set
of nondegenerate symplectic twist maps fixing 0, i.e.,

Q={¢:R* = R>: ¢(r,0) = (r,0 + ap + oar) + o(|r|*))}

such that ag # 0, £7/2, £27/3 and a; # 0.

Since 7 is elliptic, the map P3(3,¢)(g9) = P(X, g,v) has the form
(r,0) — (r,0+ o+ ayr). If this map is a degenerate twist map, one can
make an arbitrarily small perturbation of the 4-jet to ensure that ag #
0,47/2,427/3 and a1 # 0. Thus the closure of Q C J2(1) contains
P(%,g,%). Theorem 8 then provides in every C'* neighborhood R of
g a metric h € RN G*(V, ) such that Py(X,¢)(h) is contained in Q.
MacKay and Stark [20, 13] show that minimal periodic orbits (minimal
with respect to a generating function) of nondegenerate twist maps,
which always exist arbitrarily close to the fixed point, must consist of
hyperbolic periodic points or parabolic periodic points. Therefore the
geodesic flow for h will either have a hyperbolic closed geodesic or a
parabolic closed geodesic.

Now suppose -y is a parabolic closed geodesic, X a transversal section
containing #(0), and V' a neighborhood of 7(0). Let Q' C J1(1) be the
set of symplectic maps having 0 as a hyperbolic fixed point, i.e.,

Q' ={o: R? — R?: #(0) = 0 and spec(D¢(0)) N Sl = 0},
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where S! = {z € R?: |z| = 1} and spec(D$(0)) denotes the spectrum
of the linear mapping D¢(0). The map Pi(X,¢)(g) = P(3,g9,%) has
the form z — D¢@(0)z. By assumption spec(D¢(0)) N {—1,1} # 0,
and therefore an arbitrarily small perturbation of the 1-jet of ¢ ensures
that spec(D#(0)) N'S! = (. Thus the closure of Q' C J1(1) contains
P(%,g,v%). Theorem 8 then provides in every C° neighborhood R of
g a metric h € RN G*(V,v) such that P,(X,)(h) is contained in Q'
Hence, the geodesic flow for h will have a hyperbolic closed geodesic.
This completes the proof of Lemma 2. q.e.d.

References
[1] R. Abraham, Bumpy metrics, Global Analysis, Proceedings of Symp. Pure and
App. Math., XTIV, Amer. Math. Soc., 1967, 167-170, MR 42 #6875, Zb1 0215.23301.

[2] L. Abramov, On the entropy of a flow, Translations Amer. Math. Soc. 49 (1966)
167-170, MR 22 #4816, Zbl 0185.21803.

[3] D. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature,
Trudy Mat. Inst. Steklov 90 (1967) 1-209, MR 36 #7157.

[4] G. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Pub-
lications, IX, American Mathematical Society, 1966, MR 35 #1, Zbl 0171.05402.

5] K. Burns & M. Gerber, Real analytic Bernoulli geodesic flows on S?, Ergod. Th.
[ y g g
& Dynam. Sys. 9 (1989) 27-45, MR 90e:58126, Zbl 0645.58029.

[6] K. Burns & H. Weiss, A geometric criterion for positive topological entropy, Comm.
Math. Phys. 192 (1995) 95-118, MR 96e:58120, Zbl 0945.37003.

[7] P. Le Calvez, Dynamical properties of diffeomorphisms of the annulus and of the
torus, American Mathematical Society SMF/AMS Text, 4, 2000, MR 2000m:37059.

[8] P. Le Calvez & J. Franks, Regions of instability for non-twist maps, preprint.

[9] G. Contreras-Barandiardn & G. Paternain, Genericity of geodesic flows with posi-
tive topological entropy on S*, J. Differential Geom. 61 (2002) 1-49, MR 1 949 783.

[10] V. Donnay, Geodesic flow on the two-sphere, Part I: positive measure entropy,
Ergod. Th. & Dynam. Sys. 8 (1989) 531-553, MR 90e:58127a, Zbl 0645.58030.

[11] V. Donnay, Transverse homoclinic connections for geodesic flows, IMA Vol. Math.
Appl. 63, Hamiltonian Dynamical Systems, 1999, 115-125, MR 96h:58133,
Zbl 0835.58027.


http://www.emis.de/cgi-bin/MATH-item?0835.58027
http://www.ams.org/mathscinet-getitem?mr=96h:58133
http://www.emis.de/cgi-bin/MATH-item?0645.58030
http://www.ams.org/mathscinet-getitem?mr=90e:58127a
http://www.ams.org/mathscinet-getitem?mr=1949783
http://nyjm.albany.edu:8000/jdg/2002/61-1-1.htm
http://nyjm.albany.edu:8000/jdg/2002/61-1-1.htm
http://nyjm.albany.edu:8000/jdg/2002/61-1-1.htm
http://www.ams.org/mathscinet-getitem?mr=2000m:37059
http://www.emis.de/cgi-bin/MATH-item?0945.37003
http://www.ams.org/mathscinet-getitem?mr=96e:58120
http://www.emis.de/cgi-bin/MATH-item?0645.58029
http://www.ams.org/mathscinet-getitem?mr=90e:58126
http://www.emis.de/cgi-bin/MATH-item?0171.05402
http://www.ams.org/mathscinet-getitem?mr=35:1
http://www.ams.org/mathscinet-getitem?mr=36:7157
http://www.emis.de/cgi-bin/MATH-item?0185.21803
http://www.ams.org/mathscinet-getitem?mr=22:4816
http://www.emis.de/cgi-bin/MATH-item?0215.23301
http://www.ams.org/mathscinet-getitem?mr=42:6875

140 G. KNIEPER & H. WEISS

[12] J. Franks, Geodesics on S? and periodic points of annulus homeomorphisms, In-
vent. Math. 108 (1992) 403418, MR 93f:58192, Zbl 0766.53037.

[13] C. Genecand, Transversal homoclinic orbits near elliptic fized points of area-
preserving diffeomorphisms of the plane, Dynamics reported, 1-30, Dynam. Re-
port. Expositions Dynam. Systems (N.S.), 2, Springer, Berlin, 1993, MR 96£:58086,
Zbl 0796.58024.

[14] H. Hofer, K. Wysocki & E. Zehnder, Finite energy foliations of tight three-spheres
and Hamiltonian dynamics, Ann. of Math.(2) 157 (2003) 125-255, MR 1 954 266.

[15] H. Hofer, K. Wysocki & E. Zehnder, Pseudoholomorphic curves and dynamics
in three dimensions, Handbook of dynamical systems, 1A, 1129-1188, North-
Holland, Amsterdam, 2002, MR 1 928 532.

[16] A. Katok, Lyapunov ezponents, entropy and periodic orbits for diffeomorphisms,
Publ. Math. Hautes Etudes Sci. 51 (1980) 137-173, MR 81i:28022, Zbl 0445.58015.

[17] W. Klingenberg, Lectures on closed geodesics, Grundlehren der Mathematischen
Wissenschaften, 230, Springer-Verlag, 1978, MR 57 #17563, Zbl 0397.58018.

[18] G. Knieper & H. Weiss, A surface with positive eurvature and positive topological
entropy J. Differential Geom. 39 (1994) 229-249, MR 94m:58170, Zbl 0809.53043.

[19] A. Lichtenberg & M. Lieberman, Regular and stochastic motion, Applied Mathe-
matical Series, 38, Springer-Verlag, 1983, MR 85g:58038, Zbl 0506.70016.

[20] R. MacKay & J. Stark, Lectures on orbits of minimal action for area-preserving
maps, University of Warwick, preprint, 1985.

[21] R. Mané, Oseledec’s theorem from the generic viewpoint, in ‘Proceedings of the
International Congress of Mathematicians’ 1 (1983) 1269-1276, MR 87e:58127,
Zbl 0584.58007.

[22] J. Mather, Invariant subsets of area-preserving homeomorphisms of surfaces, in
‘Mathematical Analysis and Applications’, Advances in Mathematics Supplemen-
tal Studies, 7B, Academic Press, 1981, 531-561, MR 84j:58069, Zbl 0505.58027.

[23] F. Oliveira, On the generic existence of homoclinic points, Ergodic Theory Dy-
nam. Systems 7 (1987) 567-595, MR 89j:58104, Zbl 0612.58027.

[24] J. Palis & W. de Melo, Geometric theory of dynamical systems, Springer-Verlag,
New York-Berlin, 1982, MR 84a:58004, Zbl 0491.58001.

[25] D. Petroll, Existenz und Transversalitiat von homoklinen und heteroklinen Orbits
beim geoddtischen Fluf, Dissertation, Universitat Freiburg, 1996.

[26] D. Pixton, Planar homoclinic points, J. Differential Equations 44 (1982) 365-382,
MR 83h:58077, Zbl 0506.58029.

[27] F. Takens & W. Klingenberg, Generic properties of geodesic flows, Math. Ann.
197 (1972) 323-334, MR 46 #6402, Zbl 0225.58006.


http://www.emis.de/cgi-bin/MATH-item?0225.58006
http://www.ams.org/mathscinet-getitem?mr=46:6402
http://www.emis.de/cgi-bin/MATH-item?0506.58029
http://www.ams.org/mathscinet-getitem?mr=83h:58077
http://www.emis.de/cgi-bin/MATH-item?0491.58001
http://www.ams.org/mathscinet-getitem?mr=84a:58004
http://www.emis.de/cgi-bin/MATH-item?0612.58027
http://www.ams.org/mathscinet-getitem?mr=89j:58104
http://www.emis.de/cgi-bin/MATH-item?0505.58027
http://www.ams.org/mathscinet-getitem?mr=84j:58069
http://www.emis.de/cgi-bin/MATH-item?0584.58007
http://www.ams.org/mathscinet-getitem?mr=87e:58127
http://www.emis.de/cgi-bin/MATH-item?0506.70016
http://www.ams.org/mathscinet-getitem?mr=85g:58038
http://www.emis.de/cgi-bin/MATH-item?0809.53043
http://www.ams.org/mathscinet-getitem?mr=94m:58170
http://www.emis.de/cgi-bin/MATH-item?0397.58018
http://www.ams.org/mathscinet-getitem?mr=57:17563
http://www.emis.de/cgi-bin/MATH-item?0445.58015
http://www.ams.org/mathscinet-getitem?mr=81i:28022
http://www.ams.org/mathscinet-getitem?mr=1928532
http://www.ams.org/mathscinet-getitem?mr=1954266
http://www.emis.de/cgi-bin/MATH-item?0796.58024
http://www.ams.org/mathscinet-getitem?mr=96f:58086
http://www.emis.de/cgi-bin/MATH-item?0766.53037
http://www.ams.org/mathscinet-getitem?mr=93f:58192

(C°° GENERICITY OF POSITIVE TOPOLOGICAL ENTROPY 141

[28] H. Weiss, Genericity of metrics on S? with positive topological entropy, preprint,
May 1994.

[29] E.Zehnder, Homoclinic points near elliptic fized points, Comm. Pure Appl. Math.
26 (1973) 131-182, MR 49 #9873, Zbl 0261.58002.

RUHR-UNIVERSITAT BOCHUM
44780 BocHUM, GERMANY

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802


http://www.emis.de/cgi-bin/MATH-item?0261.58002
http://www.ams.org/mathscinet-getitem?mr=49:9873

