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INTEGRABILITY OF POISSON BRACKETS

Marius Crainic & Rui Loja Fernandes

Abstract

We discuss the integration of Poisson brackets, motivated by
our recent solution to the integrability problem for general Lie
brackets. We give the precise obstructions to integrating Poisson
manifolds, describing the integration as a symplectic quotient, in
the spirit of the Poisson sigma-model of Cattaneo and Felder. For
regular Poisson manifolds we express the obstructions in terms
of variations of symplectic areas, improving on results of Alcalde
Cuesta and Hector. We apply our results (and our point of view)
to decide about the existence of complete symplectic realizations,
to the integrability of submanifolds of Poisson manifolds, and to
the study of dual pairs, Morita equivalence and reduction.

Introduction

A Poisson bracket on a manifold M is a Lie bracket {·, ·} on the
space C∞(M) of smooth functions on M , satisfying the derivation prop-
erty

{fg, h} = f{g, h}+ g{f, h}, f, g, h ∈ C∞(M).

The integrability problem for Poisson brackets can be loosely stated as:
• Is there a Lie group integrating this Lie algebra?

Stated as such, this problem is beyond our current state of knowledge, as
is illustrated by the well-known flux conjecture in symplectic geometry
[26] (see also Milnor’s remarks about infinite dimensional groups in
[28]). However, such problems become more tractable if instead of
infinite dimensional Lie groups one brings finite dimensional objects
known as Lie groupoids into the picture.
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A Poisson bracket on a manifold M gives rise to a Lie bracket [·, ·] on
the space Ω1(M) of 1-forms on M . This bracket is uniquely determined
by the following two requirements:

(i) For exact 1-forms it coincides with the Poisson bracket:

[df, dg] = d{f, g}, f, g ∈ C∞(M).

(ii) It satisfies the Leibniz identity:

[α, fβ] = f [α, β] + #β(f)α, α, β ∈ Ω1(M), f ∈ C∞(M).(1)

Here # : T ∗M → TM denotes contraction by the Poisson 2-tensor
Π ∈ Γ(Λ2TM) which is associated to the Poisson bracket by Π(df, dg) =
{f, g}. An explicit formula for this bracket is

[α, β] = L#αβ − L#βα− dΠ(α, β), α, β ∈ Ω1(M).(2)

The triple (T ∗M, [·, ·], #) is an example of a Lie algebroid. Lie algebroids
can be thought as “infinite dimensional Lie algebras of geometric type”,
or “generalized tangent bundles”. In general, a Lie algebroid is a
vector bundle A → M together with a Lie bracket [·, ·] on the space
of sections Γ(A) and a bundle map # : A → TM , giving rise to a
Lie algebra morphism # : Γ(A) → X(M), such that the analogue of
Leibniz’s identity (1) is satisfied for all α, β ∈ Γ(A).

The global counterpart to Lie algebroids are Lie groupoids. A Lie
groupoid consists of arrows (transformations) between different objects
(points), which can be (smoothly) multiplied provided they match.
More formally, a groupoid is a small category where every morphism
is an isomorphism. A Lie groupoid is a groupoid in the differentiable
category: it consists of a manifold Σ (the arrows), together with two
submersions s, t : Σ → M (the source and the target maps) onto the
base manifold M (the objects), an embedding M → Σ, x �→ 1x (the
unit section), and a smooth map Σ×M Σ→ Σ, (g, h) �→ gh (the multi-
plication) defined on the space of pairs (g, h) with s(g) = t(h). We will
follow the conventions of [4].

To every Lie groupoid there is associated a Lie algebroid (see [4]).
The converse is not true, and the precise obstructions to the integration
of Lie algebroids to Lie groupoids were determined in [10]. Uniqueness,
up to isomorphism, can be obtained by requiring the s-fibers to be
simply connected (i.e., connected with vanishing fundamental group)
and, given Σ, one can construct a s-simply connected groupoid Σ̃ by
taking universal coverings of the s-fibers (see [29, 10]). The integrability
problem for Poisson manifolds can then be restated as:
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• Is there a Lie groupoid integrating T ∗M?
Note that the integrability of T ∗M really amounts to the integrability
of the brackets [·, ·] on Ω1(M).

The integration of Poisson manifolds is, of course, a particular case
of the integrability problem for general Lie algebroids. As already men-
tioned above, a complete solution for the latter was presented in [10].
However, it is important to understand this special case. On the one
hand, the integration of Poisson manifolds is richer due to the pres-
ence of symplectic geometry on the leaves of the characteristic foliation,
which gives rise to many properties that are not present in the general
integrability problem. On the other hand, the integrability problem for
Poisson brackets is relevant, for example, to symplectic reduction [12],
to Poisson topology [18], to various quantization schemes [5, 24, 35],
and to many other problems. As an example of the richer geometry pre-
sented in the special case of Poisson manifolds, we shall see that a Lie
groupoid integrating a Poisson manifold has a natural symplectic struc-
ture, a well-known fact going back to the earlier works of Weinstein et
al.

Recall that a symplectic groupoid is a Lie groupoid Σ together
with a symplectic form, such that the graph of the multiplication is
Lagrangian. This apparently mild condition is actually quite strong.
It induces a natural Poisson structure on M , satisfying the following
properties (see [8]):

(a) s is Poisson and t is anti-Poisson.1

(b) Both s and t are complete maps.
(c) The s-fibers and the t-fibers are symplectic orthogonal.
(d) M , viewed as the unit section, is a Lagrangian submanifold of Σ.
(e) The Lie algebroid of Σ is canonically isomorphic to T ∗M .

The inverse problem (reconstructing Σ) is the symplectic version of the
integrability problem:
• Is there a symplectic groupoid integrating M?

Again, it is not hard to see that if a Poisson manifold admits an inte-
grating symplectic groupoid, then it admits a unique s-simply connected
one. In this case we say that M is an integrable Poisson manifold, and

1A Poisson map is a map φ : M → N between two Poisson manifolds that
preserves the Poisson brackets. A Poisson map is called complete if, whenever Xh is
a complete Hamiltonian vector field on N , then Xφ∗h is also a complete Hamiltonian
vector fields on M .
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the s-simply connected groupoid Σ = Σ(M) integrating M will be called
the symplectic groupoid of M .

By property (e) above, if a Poisson manifold is integrable, then its
associated algebroid T ∗M is also integrable. The converse is also true
as was shown by Mackenzie and Xu in [25]:

Theorem 1. If M is a Poisson manifold such that T ∗M is an inte-
grable Lie algebroid then M is an integrable Poisson manifold.

Many known results like this have a different and simpler proof in our
unified approach to the integrability problem to be presented below. Let
us give a short overview of our solution to the integrability problem and,
at the same time, an outline of the content of the paper.

In [10], for any Lie algebroid A we have constructed a topological
groupoid G(A), called the Weinstein groupoid of A which is a funda-
mental invariant of the Lie algebroid. Moreover, this groupoid has a
compatible differentiable structure (i.e., is a Lie groupoid) if and only
if A is an integrable Lie algebroid. In the case of Poisson manifolds,
where A = T ∗M , we will denote G(T ∗M) by Σ(M). One should think
of Σ(M) as the homotopy (or fundamental) groupoid of the Poisson
manifold, and in fact it can be described, as we shall explain in Sec-
tion 1 below, as a quotient

Σ(M) = cotangent paths/cotangent homotopies.

The obvious similarity to the ordinary homotopy group is related with
the following basic philosophical principle:

In analogy with the role played by the tangent bundle TM of
manifolds, Lie algebroids can be thought of as the “tangent
bundles of (possibly singular) geometric structures”.

Accordingly, many constructions/results in differential geometry that
can be carried out in terms of just the tangent bundle make sense for
general Lie algebroids. However, sometimes this is not entirely obvious,
and the Lie algebroid framework can reveal totally new patterns. For
instance, in contrast with the fact that the fundamental groupoid of
a manifold is always smooth, G(A) may fail to be smooth. The main
result of [10] gives the precise obstructions for a differentiable structure
to exist in G(A), and expresses them in terms of so-called monodromy
groups. For the special case of Poisson manifolds, we shall describe them
in Section 2 below.
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There are two special properties of T ∗M that distinguish this case
from the general case. First, the anchor and the bracket are both in-
duced from the Poisson tensor and so are intimately related. Second,
one has the duality between T ∗M and TM . As we shall see in Sec-
tion 3, these lead to a description of Σ(M) as a symplectic quotient,
a fact first noted in [5]. Then the symplectic form on Σ(M), makes
the Weinstein groupoid into a symplectic Lie groupoid, hence reproving
Mackenzie-Xu’s result mentioned above.

Our main result, whose proof is given in Section 4 below, can be
stated as follows:

Theorem 2. For a Poisson manifold M , the following are equiva-
lent:

(i) M is integrable by a symplectic Lie groupoid.
(ii) The algebroid T ∗M is integrable.
(iii) The Weinstein groupoid Σ(M) is a smooth manifold.
(iv) The monodromy groups Nx, with x ∈ M , are locally uniformly

discrete.

The last condition of the theorem makes no reference to algebroids
or groupoids, and gives an integrability criteria which is computable
in explicit examples. Moreover, the monodromy groups Nx (which are
just some additive subgroups of the co-normal vector space ν∗

x(L) to
the symplectic leaf L through x) are invariants of Poisson manifolds
which are interesting on their own. For regular Poisson manifolds, as we
discuss in Section 5 (improving on results of Alcalde Cuesta-Hector [1]),
the monodromy can be expressed in terms of variations of symplectic
areas of spheres along transverse directions to the symplectic leaves. In
Section 6, we present many examples of integrable and non-integrable
Poisson manifolds.

A well-known result of Karasev and Weinstein states that any Poisson
manifold M has a symplectic realization, i.e, there exists a symplectic
manifold S and a surjective Poisson submersion µ : S → M . The ex-
istence of symplectic realizations with µ complete has been an open
problem, which can be thought as yet another instance of the integra-
bility problem for Poisson manifolds:

• Is there a complete symplectic realization of M?

In Section 7 below we solve this problem (and sketch a different proof
of the result of Karasev and Weinstein):
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Theorem 3. A Poisson manifold admits a complete symplectic real-
ization if and only if it is integrable.

This establishes the equivalence of all the different notions of integra-
bility. In the last two sections of the paper we give some more applica-
tions of our integrability results.

In Section 8 we consider the Poisson brackets induced on a subman-
ifold of a Poisson manifold. We clarify and improve the results of Xu
[38] and Vaisman [31] on induced Poisson structures. We also discuss,
for an integrable Poisson manifold, when is the induced Poisson bracket
on a submanifold integrable.

In Section 9 we discuss Morita equivalence of Poisson manifolds, both
for integrable and non-integrable Poisson manifolds. We observe that
the original definition due to Xu only makes sense for integrable Pois-
son manifolds. For non-integrable Poisson manifolds we consider a weak
notion of Morita equivalence, and we prove that many invariants of Pois-
son manifolds, relevant to the integrability problem, are weak Morita
invariant.

Remark 1 (Hausdorff Issues). The reader will notice that we are
forced to allow non-Hausdorff manifolds in our paper. There are at
least two simple reasons for this. First of all, a bundle of Lie algebras g
over a manifold B may not integrate to a bundle G of Lie groups over
B (that is, the Lie algebra of the fiber Lie group Gb coincides with gb,
for all b ∈ B), if we require G to be Hausdorff. However, there exists
always at least one which is a (possibly non-Hausdorff) manifold (see
[14]). Secondly, there are simple examples of foliations whose graph,
although a manifold, may be non-Hausdorff.

We mention here the objects of this paper which allow non-Hausdorff
manifolds:

(a) Lie groupoids (Sections 3 and 4) may be non-Hausdorff manifolds.
However, the base space (denoted M here), as well as the s-fibers
and t-fibers, are always assumed to be Hausdorff.

(b) For a symplectic realization π : S → M (Section 7), S is allowed
to be non-Hausdorff. However, the leaves of the foliation F(π) by
fibers of π and of the symplectic orthogonal foliation F(π)⊥, are
all Hausdorff.

In particular, the Poisson manifolds we study are always assumed to be
Hausdorff. All manifolds are assumed to be 2nd countable.
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1. Cotangent paths and their homotopy

In the sequel M will denote a Poisson manifold. We let # : T ∗M →
TM be the bundle map determined by contraction with the Poisson
tensor, and we let [·, ·] be the Lie the bracket on 1-forms, which was
defined in the introduction. We also denote by π : T ∗M → M the
canonical projection.

Definition 1. A cotangent path in M is a path a : I → T ∗M ,
where I = [0, 1], satisfying

d

dt
π(a(t)) = #a(t).

Given a cotangent path a : I → T ∗M and a vector field X on M we
define, following [19], the path integral:∫

a
X ≡

∫ 1

0
〈a(t), X(γ(t))〉dt,

where γ(t) = π(a(t) is the base path of a. If X = Xh is a Hamiltonian
vector field for some Hamiltonian function h ∈ C∞(M), we see that∫

a
Xh = h(γ(1))− h(γ(0)).

So for a Hamiltonian vector field the integral only depends on the end-
points of the base of the cotangent path.

From a differential-geometric viewpoint, as was first explained in [17],
cotangent paths are precisely the paths along which parallel transport
can be performed whenever a contravariant connection has be chosen.
Let us briefly recall how this works.

First of all, a contravariant connection ∇ on a vector bundle E
over M is a bilinear map

Ω1(M)× Γ(E)→ Γ(E), (α, s) �→ ∇αs,

such that for all f ∈ C∞(M), α ∈ Ω1(M), s ∈ Γ(E), we have:
(a) ∇fαs = f∇αs.
(b) ∇α(fs) = f∇αs + #α(f)s.

This is the analogue, in the Poisson category, of the usual connections.
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The value of ∇αs at x ∈M only depends on the value of α at x and
the values of s along the integral curve of #α through x. Also, just like
the usual covariant derivative, given a cotangent path a and path s in E
above π◦a, there is a well-defined contravariant derivative ∇as, which is
a path in E above π◦a. This leads to the notion of parallel transport
along a cotangent path a: it is the map τa : Eπ(a(0)) → Eπ(a(1)) which
takes u ∈ Eπ(a(0)) to s(1) ∈ Eπ(a(1)), where s : I → E is the solution of
the differential equation ∇as = 0, with initial condition s(0) = u. All
this is described in detail in [17].

We will be mostly interested in contravariant connections on T ∗M . A
covariant connection ∇ on TM induces, apart from the dual covariant
connection on T ∗M , still denoted by ∇, a contravariant connection ∇
on TM defined by

∇αX = ∇X#α + [#α, X],

and a dual contravariant connection on T ∗M , also denoted by ∇, and
given by:

∇αβ = ∇#βα + [α, β].

These connections satisfy ∇# = #∇ and they form a basic connec-
tion in the sense of [17]. The connection ∇ has contravariant torsion
given by

T∇(ω, η) = ∇ωη −∇ηω − [ω, η].

Fix a covariant connection ∇ on TM . Given a family aε = aε(t) of
cotangent paths with the property that the base paths γε(t) = π(aε(t))
have fixed end points, we consider the differential equation2

∂tb− ∂εa = T∇(a, b).(3)

This equation has a unique solution b = b(ε, t) (running in T ∗M) with
initial condition b(ε, 0) = 0, and we define the variation of aε to be the
cotangent path:

var(aε) = b(ε, 1).

Definition 2. A cotangent homotopy is a family aε = aε(t) of
cotangent paths with the property that the base paths γε(t) have fixed
end points and var(aε) = 0. Two cotangent paths a0 and a1 are said to
be homotopic, and we write a0 ∼ a1 if there is a cotangent homotopy
joining them.

2Given a covariant connection ∇ on a bundle E → M , a path γ(t) in M and a
path u(t) in E over γ, we use the notation ∂tu ≡ ∇γu.
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For an alternative definition of cotangent homotopy which avoids the
use of connections we refer to [10].

Cotangent homotopy defines an equivalence relation on the set of
cotangent paths and enjoys many properties similar to the ones enjoyed
by the usual notion of homotopy. For example, since the analogue of
closed 1-forms in this calculus are the Poisson vector fields, the following
corresponds to the homotopy invariance of integrals of closed 1-forms
along paths:

Proposition 1. Let a0 and a1 be cotangent paths. If a0 ∼ a1 then,
for any Poisson vector field X on M , we have∫

a0

X =
∫

a1

X.

Proof. Let a = a(ε, t) and b = b(ε, t) be as above, and set I = 〈a, X〉,
J = 〈b, X〉. Fixing some connection ∇, for any ω ∈ Γ(T ∗M), we have

d

dt
〈ω(γ(t)), X(γ(t))〉 =

〈
∇ dγ

dt
ω, X(γ(t))

〉
+
〈
ω(γ(t)),∇ dγ

dt
X
〉

.

A straightforward computation using the defining equation (3) and ex-
pression (2) for the Lie bracket, shows that

dI

dε
− dJ

dt
= LXΠ(a, b).

Integrating first with respect to t, using b(ε, 0) = 0, and then integrating
with respect to ε, we find that∫

a1

X −
∫

a0

X =
∫

var(aε)
X +

∫ 1

0

∫ 1

0
LXΠ(a, b) dtdε.

for any vector field X, and any family {aε}. For cotangent homotopies
and Poisson vector fields this gives

∫
a0

X =
∫
a1

X. q.e.d.

Remark 2. In [19], Ginzburg gives a simple example (cf. Example
3.4) showing that the integral is not invariant under homotopy of the
base path. Referring to the (non-)invariance of the integral under this
“naive homotopy” he states: “this example shows that the above naive
definition of homotopy is not a correct extension of this notion to the
Poisson category”. The proposition above shows that cotangent homo-
topy gives the desired extension.
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Another instance of behavior similar to the usual notion of homotopy
is obtained by looking at flat contravariant connections. For these con-
nections we have the following contravariant version of a classical result
in differential geometry:

Proposition 2. Given a flat contravariant connection, parallel
transport along cotangent paths is invariant under cotangent homotopy.

The proof is similar to the proof of the previous proposition (see
Proposition 1.6 in [10]), and will be omitted. Next we give the con-
travariant analogue of the fundamental group.

Definition 3. Let x ∈M be a point in the Poisson manifold M . The
isotropy group Σ(M, x) is the set of equivalence classes of cotangent
paths whose base paths in M start and end at x. The group structure
is defined by concatenation of paths. We also define the restricted
isotropy group Σ0(M, x) by considering only cotangent paths whose
base path is a contractible loop.

The groups Σ(M, x) play a fundamental role in Poisson geometry. For
instance, one can show that linear holonomy of Poisson manifolds (de-
fined along cotangent paths, cf. [17]), only depends on homotopy classes,
hence factors through the isotropy group. Also, if µ : S →M is a com-
plete symplectic realization, then there is a natural action of Σ(M, x)
on µ−1(x), and, if the “reduction” µ−1(x)/Σ(M, x) is smooth, then it
carries a natural symplectic structure. More details and more examples
will be given in the later sections. Notice also that, by Proposition 1,
integration along closed cotangent paths gives a group homomorphism∫

: Σ(M, x)→ H1
Π(M)∗,

where H1
Π(M) denotes the 1st Poisson cohomology group of M , i.e., the

set of Poisson vector fields modulo the Hamiltonian vector fields.
Though one may view the groups Σ(M, x) as analogues of the fun-

damental groups of manifolds, there is also a strong analogy with the
construction of simply connected Lie groups integrating Lie algebras. In
the remaining part of this section, we elaborate on these two analogies.

Notice that the two groups we have just defined do relate to the
fundamental groups of the symplectic leaf L through x. We have a
short exact sequence

1 �� Σ0(M, x) �� Σ(M, x) �� π1(L, x) �� 1,(4)
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where the first map is just the inclusion, while the second one associates
to a cotangent path its underlying base path. In the Poisson context
however, there are several new features which are not present in the
case of classical fundamental groups. For example, one can assert that
Σ(M, x) and Σ(M, y) are isomorphic only when x and y lie in the same
symplectic leaf of M . Also, the groups Σ(M, x) are not to be considered
as discrete groups; this brings us to our second analogy, for which we
need to recall the reconstruction of simply connected Lie groups in terms
of paths in their Lie algebras, due to Duistermaat and Kolk [15].

Let G̃ be a simply connected Lie group with Lie algebra g. We can
identify elements g ∈ G̃ with homotopy classes of paths g(t) starting at
g(0) = e and ending at g(1) = g. Using derivatives and right transla-
tions, we obtain a bijective correspondence between paths g(t) in the
Lie group G̃ starting at e, and paths a(t) in the Lie algebra g with free
end points. Explicitly:

a(t) =
d

ds
g(s)g(t)−1

∣∣∣∣
s=t

.(5)

This bijection shows that there is a natural notion of homotopy of paths
in g, which corresponds to the homotopy of paths in G̃ (with fixed end
points): if aε is a family of paths in g, the only thing we have to require is
that the induced family gε of paths in G̃ has fixed end points gε(1). If we
let var(aε) = d

dεgε(1) one can show that var(aε) can be defined directly
in terms of the family aε, i.e., using data in g and with no reference
to the Lie group G̃. This is in complete analogy with the variation for
cotangent paths given above, with the extra simplification coming from
the fact that here no connection is involved: var(aε) = b(ε, 1) where
b = b(ε, t) is the solution of the differential equation

db

dt
− da

dε
= [b, a], b(ε, 0) = 0.

The upshot is that the resulting group G(g) of homotopy classes of paths
in g can be defined directly in terms of the Lie algebra g, and hence
makes sense even if we don’t assume the existence of G̃. Moreover,
since the space of paths in g (say of class C1) carries a natural structure
of Banach manifold, G(g) has a natural quotient topology, and at most
one interesting smooth structure (the one for which the quotient map
is a submersion). The fact that a smooth structure always exists, is far
from trivial (see [15]). This gives a proof of Lie’s third theorem asserting
the existence of a simply-connected Lie group G(g) integrating g, and at
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the same time a proof of the fact that any simply-connected Lie group
G̃ must be isomorphic to G(g).

Let us look now at the isotropy groups Σ(M, x). Since the space
of cotangent paths carries a natural structure of a Banach manifold
(for which the underlying topology is the C1-topology), Σ(M, x) has a
natural quotient topology, and there is no ambiguity when looking for
the smooth structure on Σ(M, x) (and similarly for Σ0(M, x)). However,
unlike G(g), the isotropy group Σ(M, x) is not always a Lie group (see
Lemma 1 and Corollary 1).

Let us recall from our discussion in [10] why Σ(M, x) may fail to be a
Lie group (see, also, the informal discussion in [30]). First, observe that
the Lie bracket on 1-forms induces a Lie bracket on the kernel of the map
#x : T ∗M → TM . By skew-symmetry, this kernel coincides with the
co-normal bundle to the leaf L through x. One calls ν∗

x(L) = Ker(#x)
the isotropy Lie algebra at x. Now, the simply connected Lie group
G(ν∗

x(L)) integrating the isotropy Lie algebra and the restricted isotropy
Lie group Σ0(M, x) are both quotients of the space of paths in ν∗

x(L).
Also, two paths in ν∗

x(L) which are homotopic as Lie algebra paths, are
homotopic as cotangent paths. However, the converse is not true, since
a cotangent homotopy may force one to go away from x. In other words,
Σ0(M, x) is (topologically) a quotient of G(ν∗

x(L)).
The following result summarizes some results from [10]:

Lemma 1. Let M be a Poisson manifold, x ∈ M , and denote by L
the symplectic leaf through x. The following are equivalent:

(i) Σ(M, x) is Hausdorff.
(ii) Σ(M, x) is a Lie group.
(iii) Σ0(M, x) is Hausdorff.
(iv) Σ0(M, x) is a Lie group.

In this case, Σ(M, x) has Lie algebra the isotropy Lie algebra ν∗
x(L), its

connected component of the identity is Σ0(M, x), and the group of its
connected components π0(Σ(M, x)) is isomorphic to π1(L, x).

One can get a better grasp on the notions of homotopy and variation
introduced above when T ∗M is integrable to a symplectic groupoid Σ.
Then, as in our discussion of Lie algebra paths, there is a bijection
between cotangent paths and paths g(t) in Σ which stay in an s-fiber,
and which start at an identity element. The variation of families aε of
cotangent paths corresponds then to the derivatives with respect to ε
of the end points of the associated paths in Σ. Hence, aε is a cotangent
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homotopy precisely when the corresponding family of paths in Σ is a
homotopy with fixed end points.

Remark 3. Let us briefly explain the perspective one gains by using
the language of algebroids/groupoids, as well as its unifying role. First
of all, a cotangent path can be identified with a Lie algebroid morphism
TI → T ∗M . Similarly, two cotangent paths a0 and a1 are homotopic
if and only if there exists a Lie algebroid homomorphism adt + bdε :
T (I × I) → T ∗M , which covers a (ordinary) homotopy with fix end-
points between the base paths π(ai(t)), and which restricts to ai(t) on
the boundaries. Therefore, all these constructions readily extend to any
Lie algebroid. For example, in the case A = TM one recovers the usual
notions of path and homotopy of paths, and the fundamental group(oid).
For a Lie algebra g, viewed as a Lie algebroid over a point, one recovers
the construction of Duistermaat and Kolk of the simply connected Lie
group G(g).3

We point out that we have given above the precise meaning of “cotan-
gent homotopy with fixed end-points”. For example, a family of cotan-
gent paths aε(t), ε ∈ [0, 1], such that aε(0) = aε(1) = 0, in general, will
not be a cotagent homotopy. In fact, such a definition would quickly
lead to erroneous statements: for example, integration of Poisson vector
fields over cotagent paths would not be invariant under cotangent ho-
motopy. Similar remarks apply for Lie algebroids. We refer the reader
to [10] for details on these constructions in the general Lie algebroid
framework.

2. The monodromy groups of Poisson manifolds

In this section we give various descriptions of the monodromy groups
of a Poisson manifold M at a point x ∈M . We shall see that these are
certain additive subgroups

Nx ⊂ ν∗(L)x,

where L is the symplectic leaf through x, and ν∗
x(L) is the co-normal

space to L at the point x. Recall that ν∗
x(L) carries a Lie algebra

structure induced from the Lie bracket on 1-forms. The monodromy
group actually sits inside the center of this Lie algebra.

We start with the shortest possible description of monodromy:

3Of course, for Lie groups, one uses pointwise multiplication of paths instead of
concatenation, as in any first course on fundamental groups.
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Description 1. The monodromy group Nx is the set of vectors v ∈
Z(ν∗

x(L)), with the property that the constant cotangent path a(t) = v
is cotangent homotopic to the zero cotangent path.

To understand why this group shows up when looking at smoothness
issues, we consider a slightly larger group: Ñx ⊂ G(ν∗

x(L)) consists
of those elements represented by Lie algebra paths which, as cotangent
paths, are homotopic to the zero path. First of all, by its very definition,
there exists an exact sequence

0 �� Ñx
�� G(ν∗

x(L)) �� Σ0(M, x) �� 0,(6)

so that

Σ0(M, x) = G(ν∗
x(L))/Ñx.

Next, the group Ñx almost coincides withNx. The only difference comes
from the fact that, although Ñx does lie in the center Z(G(ν∗

x(L))), it is
only the connected component Z0(G(ν∗

x(L))) of the center that naturally
identifies (via the exponential) with the center of ν∗

x(L). It follows that

Nx = Ñx ∩ Z0(G(ν∗
x(L))).

In particular, let us point out the following (see also Lemma 1)

Corollary 1. The isotropy group Σ(M, x) is a Lie group if and only
if the monodromy group Nx is discrete.

The next description not only explains the nature of the monodromy,
but it is also suitable for computations.

Description 2. Consider a linear splitting σ : TL → T ∗
LM of the

short exact sequence

0 �� ν∗(L) �� T ∗
LM

# �� TL �� 0 .(7)

Assume that σ can be chosen so that its curvature

Ωσ(X, Y ) ≡ σ([X, Y ])− [σ(X), σ(Y )]

is Z(ν∗(L))-valued. Then

Nx =
{∫

γ
Ωσ : [γ] ∈ π2(L, x)

}
⊂ ν∗(L)x.
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The integrals involved in this last description should be viewed as
integrals of forms with coefficients in flat vector bundles:4 the Bott con-
nection gives ν(L) (hence also ν∗(L), and Z(ν∗(L))) a natural flat vector
bundle structure over L. We point out that the assumption that σ is
center-valued is only needed to simplify the outcome. It is satisfied in
many examples (e.g., whenever x is a regular point), but not always (see
Example 6.4 in Section 6). In general, the formula

∂([γ]) =
∫ 1

0
Ωσ

(
dγ

dt
,
dγ

dε

)
dε(8)

defines a group homomorphism

∂ : π2(L, x)→ G(ν∗(L)x),

and

Ñx = {∂(γ) : [γ] ∈ π2(L, x)} ⊂ G(ν∗(L)x).

In the center-valued case, any center-valued Lie algebra path can be
identified (i.e., defines the same Lie group element) with its integral,
viewed as a central Lie group element, and we obtain

∂([γ]) =
∫ 1

0

∫ 1

0
Ωσ

(
dγ

dt
,
dγ

dε

)
dεdt =

∫
γ
Ωσ,

which is the description of the Nx given above.
Let us give a more conceptual explanation for the homomorphism

∂, which also provides the relation between the previous two descrip-
tions. The “philosophical idea” on Lie algebroids mentioned in the
introduction, and the remark that the homotopy long exact sequence
of a (smooth) fibration can be carried out at the level of tangent bun-
dles (see the construction of ∂ below), suggests a construction of such
sequences for algebroids.

Description 3. Viewing (7) as analogous to a fibration, there is a
long exact sequence

· · · �� π2(L, x) ∂ �� G(ν∗(L)x)
j �� Σ(M, x) �� π1(L, x),

where ∂ : π2(L, x) → G(ν∗(L)x) is the map given above, and j is the
composition of the projection from G(ν∗(L)x) onto Σ0(M, x) with the
inclusion.

4Note that forms with values in flat bundles can be integrated over simply con-
nected cycles.
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One can construct ∂ in complete analogy with the construction of the
boundary map for fibrations: given a 2-loop γ : I × I → L based at x,
one lifts its differential dγ to a morphism adt+bdε : T (I×I)→ A. Since
γ on the boundary of I× I takes the constant value x, the restriction of
this morphism to the boundary, gives the path a(1, t) in the Lie algebra
ν∗(L)x, hence an element in the Lie group G(ν∗(L)x). If we choose a
splitting σ, we can use it to lift dγ, and the computation gives precisely
the expression (8) for ∂.

3. The symplectic groupoid Σ(M)

In this section we describe the Weinstein groupoid Σ(M) associated
to a Poisson manifold. Note that, though Σ(M) is just a special case
(with A = T ∗M) of the general construction of the Weinstein groupoid
of a Lie algebroid A [10], the extra structure coming from the Poisson
bracket and the cotangent bundle translates into some special proper-
ties of Σ(M). In particular, we explain the relation with the work of
Cattaneo and Felder [5] on the Poisson-sigma model (the Hamiltonian
formulation).

We denote by P (T ∗M) the space of cotangent paths in M which are
of class C1, and we denote by ∼ the cotangent homotopy equivalence
defined using cotangent homotopies aε in P (T ∗M) which are of class C2

in ε. The Weinstein groupoid is defined as the quotient5

Σ(M) = P (T ∗M)/ ∼ .(9)

For the groupoid structure, the source and target maps s, t : Σ(M)→M
take the equivalence class of a cotangent path to the end-points of the
base path, while the multiplication is given by concatenation (see [10]
for details). We shall see that this groupoid gives new insights into the
global properties of a Poisson manifold.

As a simple example, let us consider the integration of Poisson vector
fields along cotangent paths, discussed in Section 1 above. First, invari-
ance under cotangent homotopy (see Proposition 1) shows that we can
view integration as a map which associates to each Poisson vector field
X a map ∫

X : Σ(M)→ R, g = [a] �→
∫

a
X.

5In [10], this groupoid was denoted G(T ∗M).
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Second, additivity with respect to the concatenation of paths∫
g0g1

X =
∫

g0

X +
∫

g1

X,

can be viewed as a cocycle condition for
∫

X: if Σ(M) is a smooth
manifold, this means that

∫
X defines a differentiable 1-cocycle on

Σ(M). Third, and last, for an Hamiltonian vector field we can write:∫
g
Xh = h(t(g))− h(s(g)),

which just says that
∫

Xh is a differentiable coboundary. Hence,
denoting by H1

dif(Σ(M)) the first differentiable cohomology group of
Σ(M), integration defines a map H1

Π(M)→ H1
dif(Σ(M)).

On the other hand, there is a Van Est map (see [9]) which takes
a differentiable cocycle into a Poisson cohomology class, and which is
defined in all degrees. This map is known to be an isomorphism in
degree one. One can think of the Van Est map as differentiation of
differentiable cocycles. A simple check shows that:

Proposition 3. The map
∫

: H1
Π(M) → H1

dif(Σ(M)) is the inverse
of the Van Est map in degree one.

The reader will notice that all this discussion extends to any Lie
algebroid with appropriate changes.

On Σ(M) we consider always the quotient topology, so that it be-
comes a topological groupoid. As in the case of the isotropy groups
Σ(M, x), there is no ambiguity when looking at the smoothness of Σ(M):
the smooth structure, if exists, will be the unique one for which the quo-
tient map P (T ∗M) → Σ(M) is a submersion. It is also convenient to
consider the larger space P̃ (T ∗M) of all C1-curves a : I → T ∗M , with
base path γ = π ◦ a of class C2. It has an obvious structure of a Ba-
nach manifold, and P (T ∗M) is a (Banach) submanifold of P̃ (T ∗M) (cf.
Lemma 4.6 in [10]). We need an explicit description of the tangent
spaces to these Banach manifolds, and a more geometric description of
the equivalence relation defined on them by cotangent homotopies.

The tangent space TaP̃ (T ∗M) consists of curves U : I → TT ∗M such
that U(t) ∈ Ta(t)T

∗M , i.e., vector fields along a. Using a connection ∇
on TM and the associated contravariant connections ∇ (see Section 1),
such a curve can be viewed as a pair (u, φ) consisting of curves u :
I → T ∗M and φ : I → TM over γ (namely, the vertical and horizontal
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component of U). The subspace TaP (T ∗M) ⊂ TaP̃ (T ∗M) consists (see
[10], Section 5.2) of those pairs U = (u, φ) with the property that

#u = ∇aφ.

Now let us describe the equivalence relation defined by cotangent
homotopies in terms of a Lie algebra action. The Lie algebra consists
of time-dependent 1-forms, vanishing at the end-points

P0Ω1(M) =
{
ηt ∈ Ω1(M), t ∈ I : η0 = η1 = 0, ηt of class C1 in t

}
with Lie bracket the bracket on 1-forms with time varying as a parame-
ter. The Lie algebra P0Ω1(M) acts on P̃ (T ∗M) and this action satisfies
the following properties:

(a) It is tangent to P (T ∗M).
(b) The orbits in P (T ∗M) define a finite codimension foliation.
(c) Two cotangent paths are homotopic if and only if they belong to

the same orbit.

This is proved in [10], and here we shall give only the definition of the
action. This means we will define a Lie algebra map

P0Ω1(M)→ X(P̃ (T ∗M)), η �→ Xη.

So, given a time-dependent 1-form η ∈ P0Ω1(M) and a path a ∈
P̃ (T ∗M) with underlying path γ : I → M , we have to describe a path
Xη,a in T ∗M above γ. Let us first assume that a is a cotangent path.
To describe Xη,a, we specify the components (u, φ) with respect to a
connection ∇:

u = ∇ab, φ = #b.

This does not depend on the connection, and, by the discussion above,
it does define a vector tangent to P (T ∗M). We check that this can also
be written as:

Xη,a(t) =
d

dε

∣∣∣∣
ε=0

φε,0
η a(t) +

dηt

dt
(γ(t))
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where φs,t
η stands for the flow of the time dependent one form η.6 Now,

this formula make sense for any path a : I → T ∗M and this is our
definition of the action.

What we have said so far makes sense for any Lie algebroid. Let us
now take advantage of the fact that we have A = T ∗M , the cotangent
bundle. We have a natural identification P̃ (T ∗M) � T ∗P (M), where
P (M) denotes the Banach space of paths γ : I → M of class C2.
Hence, P̃ (T ∗M) carries a natural symplectic structure. Moreover, the
set of cotangent paths P (T ∗M) is the level set J−1(0) of the map J :
P̃ (T ∗M)→ P0Ω1(M)∗ given by:

〈J(a), η〉 =
∫ 1

0
〈 d

dt
π(a(t))−#a(t), η(t, γ(t))〉dt.

and one has the following result due to Cattaneo and Felder (see [5]):

Theorem 4. The Lie algebra action of P0Ω1(M) on P̃ (T ∗M) is
Hamiltonian, with equivariant moment map J : P̃ (T ∗M)→ P0Ω1(M)∗.

Hence the Weinstein groupoid can be described alternatively as a
Marsden-Weinstein reduction:

Σ(M) � P̃ (T ∗M)//P0Ω(M).(10)

The two alternate descriptions (9) and (10) for the Weinstein group-
oid of a Poisson manifold give the precise relationship between our in-
tegrability approach introduced in [10], which is valid for any Lie alge-
broid, and the approach of Cattaneo and Felder in [5].

Corollary 2. If Σ(M) is smooth, then it admits a symplectic form
which turns Σ(M) into a symplectic groupoid.

Proof. We sketch a proof of Theorem 4. From what we saw above,
we only need to check the compatibility of the symplectic form with the
product, i.e., that the graph of multiplication is a Lagrangian submani-
fold. This can be restated in a slightly simpler form using the following
proposition which will also be useful later.

6Given a time-dependent one-form η on M , its flow is a map φt,s
η (x) : T ∗

x (M) →
T ∗

Φ
t,s
#α

(M). It is uniquely determined by the conditions φt,s
η φs,u

η = φt,u
η , φt,t

η =id, and

the differential equation

d

dt

∣∣∣∣
t=s

(φt,s
η )∗β = [ηs, β],

where (φt,s
η )∗(β)(x) = φs,t

η β(φt,s
#η(x)), with φt,s

#η the flow of the vector field #η.
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Proposition 4. Let G be a Lie groupoid, and let ω ∈ Ω2(G) be a
symplectic form. The following statements are equivalent:

(i) The graph of multiplication γm = {(g, h, gḣ) ∈ G ×G ×G : (g, h) ∈
G(2)} is a Lagrangian submanifold of G × G × G.

(ii) The relation m∗ω = π∗
1ω + π∗

2ω holds.

Here, we denote by m : G(2) → G the multiplication in G and by π1, π2 :
G(2) → G the projections to the first and second factors.

Using this Proposition we prove the Corollary above. First note that
we have the following explicit formula for the symplectic form ω̃ in
P̃ (T ∗M):

ω̃a(U1, U2) =
∫ 1

0
ωcan(U1(t), U2(t))dt,

for all U1, U2 ∈ TaP̃ (T ∗M), where ωcan is the canonical symplectic form
on T ∗M . The additivity of the integral shows that that condition (ii)
holds at the level of P̃ (T ∗M), hence it must hold also on the reduced
space Σ(M). q.e.d.

Proof of Proposition 4. We claim that the graph of multiplication γm

satisfies the following two properties:
(a) γm is isotropic iff m∗ω = π∗

1ω + π∗
2ω.

(b) γm is isotropic implies that M is also isotropic.
Assuming these claims, it should be clear that (i) implies (ii). Con-
versely, if (ii) holds, then by (a) we have that γm is an isotropic sub-
manifold. Since dim γm = dimG(2) = 2 dimG − dim M , we see that γm

is Lagrangian provided that dimM = 1
2 dimG. Since γm is isotropic, we

know already that 2 dimG − dim M ≤ 3
2 dimG, and so we have

dim M ≥ 1
2

dimG.
But, by (b), M is also an isotropic submanifold of G so that

dim M ≤ 1
2

dimG.
and equality must indeed hold.

To prove the claims let us denote by Ω = ω⊕ω⊕(−ω) the symplectic
form on G × G × G, and let γ : G(2) → G × G × G be the embedding:

(g, h) �→ (g, h, g · h).
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Obviously, the graph γm is an isotropic submanifold of G ×G ×G if and
only if γ∗Ω = 0, and this condition is clearly equivalent to

m∗ω = π∗
1ω + π∗

2ω.

This shows that (a) holds.
In order to show that (b) also holds we observe that M , viewed as

the identity section of G, can be expressed as

M = {x ∈ G : ∃g ∈ G, x · g = g} .

Hence we have M = π(∆ ∩ γm) where π : G × G × G → G is projection
onto the first fact and

∆ ≡ {(h, g, g) ∈ G × G × G} .
Now, it is easy to check that ∆ ⊂ G×G×G is a coisotropic submanifold,
π : ∆→ G is projection along its characteristic foliation, and ∆ and γm

have clean intersection. By a standard argument in symplectic geometry
(see [26], Lemma 5.34), γm being isotropic implies that the projection
M = π(∆ ∩ γm) is also isotropic. q.e.d.

4. The smoothness of Σ(M)

We are now in position to give a proof of our main result concerning
the smoothness of Σ(M). The discussion here depends heavily on our
general integrability criteria for Lie algebroids [10].

Theorem 5. For a Poisson manifold M the following statements are
equivalent:

(i) M is integrable by a symplectic Lie groupoid.
(ii) The algebroid T ∗M is integrable.
(iii) The Weinstein groupoid Σ(M) is a smooth manifold.
(iv) The exponential map of Σ(M) associated to a (or any) connection

is injective around the zero section.
(v) The monodromy groups Nx, where x ∈ M , are locally uniformly

discrete.
In this case Σ(M) is the unique s-simply connected, symplectic groupoid
which integrates M .

Before proceeding to the proof, we clarify conditions (iv) and (v).
The exponential map referred to in condition (iv) is defined as fol-

lows. Given a contravariant connection ∇, one can define the notion
of cotangent geodesic as in the classical case, by the equation ∇aa = 0
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(see [17]). Then, for a0 ∈ T ∗M sufficiently close to zero, the geodesic
starting at a0 is defined up to the time t = 1, hence defines an element in
P (T ∗M). This correspondence defines a map ẽxp∇ : T ∗M → P (T ∗M),
and, the map induced to the quotient, exp∇ : T ∗M → Σ(M), is called
the exponential map associated to ∇. As in the classical case, the
map is only defined on a neighborhood of the zero section.

Condition (v) should be viewed as the main “integrability criterion”.
The results of Section 2 show that it is suitable for computation in con-
crete examples. In order to measure the discreteness of the monodromy
groups we define a function rN : M → [0, +∞] by

rN (y) = d(Ny − {0y}, {0y}),
where the distance is induced by some norm on T ∗M . By convention,
rN (y) = +∞ if Ny = {0y}. Clearly, Ny is discrete if and only if rN (y) �=
0. By uniform discreteness of N around y we mean that

lim inf
y→x

rN (y) �= 0.

Proof of Theorem 5. If Σ is a symplectic groupoid integrating M , then
its associated algebroid is isomorphic to T ∗M , and this shows that (i)
implies (ii). To see that (ii) implies (iii), we assume that Σ is a Lie
groupoid integrating T ∗M . Taking the universal covers of the s-fibers
of Σ together, we get a new groupoid Σ̃ which still integrates T ∗M ,
and which is s-simply connected. More precisely, Σ̃ is the collection of
paths lying on the s-fibers, which start at the identity section, where
we identify any two which are homotopic by homotopies with fixed end
points (see [10] for details). It follows from Remark 3 that Σ̃ is naturally
identified with the space of cotangent paths, modulo homotopy, i.e., with
Σ(M). Since the quotient Σ of Σ̃ is smooth, so is Σ̃ ∼= Σ(M). That (iii)
implies (i) is the content of the previous section.

For any contravariant connection ∇ the exponential ẽxp∇ : T ∗M →
P (T ∗M) defines a transversal to the foliation on P ∗(TM). In partic-
ular, if the associated leaf space Σ(M) is smooth, the differential of
exp∇ at zero elements is the invertible, and this shows that (iii) implies
(iv). Conversely, if (iv) holds, then one uses exp∇ to define the smooth
structure on Σ(M) around the identity elements, and then, using right
translations, one extends the smooth structure to the entire topological
groupoid Σ(M) (cf. [10]). This explains why (iv) implies (iii).
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Finally, the equivalence with (v) is the main theorem in [10], applied
to the special case of the cotangent Lie algebroid of a Poisson manifold.

q.e.d.

5. The regular case

A Poisson manifold is called regular if the Poisson tensor has constant
rank. In the regular case, both F = Im # and ν∗(F) = ker # are vector
bundles over M , and the isotropy Lie algebras ν∗(F)x are all abelian.
This amounts to several simplifications and leads to a new geometric
interpretation of the integrability criteria.

Let us consider, for instance, the long exact sequence of Section 2. In
the regular case it becomes

· · · �� π2(L, x) ∂ �� ν∗(L)x
�� Σ(M, x) �� π1(L, x) .

The monodromy groups can be described (or defined) as the image of ∂,
which, in turn, is given by integration of a canonical cohomology 2-class
[Ωσ] ∈ H2(L, ν∗

x(L)), and this class can be computed explicitly by using
a section σ of # : T ∗

LM → TL. In this section we will give a different
geometric interpretation of monodromy based on the symplectic geom-
etry of the leaves of M . We state the main results first, and delay all
proofs until the end of the section.

Fix a point x in a Poisson manifold M , let L be the symplectic leaf
through x, and consider a 2-sphere γ : S2 → L, which maps the north
pole pN to x. The symplectic area of γ is given, as usual, by

Aω(γ) =
∫

S2

γ∗ω,

where ω is the symplectic 2-form on the leaf L.
By a deformation of γ we mean a family γt : S2 → M of 2-spheres

parameterized by t ∈ (−ε, ε), starting at γ0 = γ, and such that for each
fixed t the sphere γt has image lying entirely in a symplectic leaf. The
transversal variation of γt (at t = 0) is the class of the tangent vector

varν(γt) ≡
[

d

dt
γt(pN )

∣∣∣
t=0

]
∈ νx(F).

We shall see below that the quantity

d

dt
Aω(γt)

∣∣∣∣
t=0
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Figure 1. Symplectic spheres.

only depends on the homotopy class of γ and on varν(γt). Finally, the
formula

〈A′
ω(γ), varν(γt)〉 =

d

dt
Aω(γt)

∣∣∣∣
t=0

,

applied to different deformations of γ, gives a well-defined element

A
′
ω(γ) ∈ ν∗

x(L).

The promised result is:

Proposition 5. For any regular manifold M , the function rN is
lower semi-continuous, and

Nx = {A′
ω(σ) : σ ∈ π2(L, x)}.

Next, we form the (set theoretical) bundle of “variations of symplectic
areas” (this already appears in [1] and in earlier work of Dazord, and
it has been used in [39] in the case where the symplectic foliation is
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simple):

A′
(M) =

⋃
Nx ⊂ ν∗(F).

Similarly, the groups Sx(M) = ν∗
x(L)/Nx fit together into a (set theo-

retical, again) bundle of groups,

S(M) = ν∗(F)/A′
(M) =

⋃
x∈M

ν∗(F)x/Nx,

which will be called the structure groupoid of M . Note that the
groups Sx(M) are closely related to the isotropy groups Σ(M, x) intro-
duced in Section 1. More precisely, it follows from Section 2 that:

Sx(M) = Σ0(M, x),

and we have a short exact sequence

1 �� Sx(M) �� Σ(M, x) �� π1(L) �� 1.

In the sequel we will only be interested on the structures on S(M)
coming from ν∗(F) via the projection ν∗(F)→ S(M), and on structures
on A′

(M) as a subspace of ν∗(F). In particular, both A′
(M) and S(M)

are topological groupoids, and there is no ambiguity when asking for
the smooth structure on A′

(M) and on S(M), respectively.

Theorem 6. For a regular Poisson manifold M , the following are
equivalent:

(i) M is integrable.
(ii) Σ(M) is a Lie groupoid.
(iii) S(M) is a Lie groupoid.
(iv) A′

(M) is a Lie groupoid.
Moreover, in this case, A′

(M) is étale (i.e., its source is a local diffeo-
morphism), and there is an exact sequence of Lie groupoids

1 �� S(M) �� Σ(M) Φ �� π1(F) �� 1 .

Here π1(F) stands for the homotopy groupoid of F . This object
is well-known in foliation theory (sometimes under the name of mon-
odromy groupoid), and it is one of the simplest examples of a Weinstein
groupoid (namely the one associated to the Lie algebroid TF). The ar-
rows between x, y ∈M are the leafwise homotopy classes of paths (paths
tangent to F) with end-points in x and y, so that there are arrows only
between points lying in the same leaf.
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In the short exact sequence above, S(M) and π1(F) are (in principle)
easily computable from the Poisson geometry of M , and the sequence
will give in fact a pretty good indication to what the integration of M
should be. On the other hand, this sequence shows that the symplectic
groupoid of M is an extension of the monodromy groupoid π1(F) by
the structure groupoid S(M). This suggests a different strategy to inte-
grate a regular Poisson manifold: assuming S(M) to be a Lie groupoid
one looks for an extension of π1(F) by S(M). In [1] it is shown that
this strategy works under some additional technical assumptions, and
Theorem 6 is actually an improvement over the results of [1].

We now turn to the proofs of the results we have stated so far. Recall
that the normal bundle ν (hence also any associated tensor bundle) has
a natural flat F-connection ∇ : Γ(TF)× Γ(ν)→ Γ(ν), given by

∇XY = [X, Y ].

In terms of the Lie algebroid TF , ∇ is a flat Lie algebroid connection
(see [16]) giving a Lie algebroid representation of TF on the vector
bundle ν (and also on any associated tensor bundle). Hence the foliated
forms with coefficients in ν, denoted Ω•(F ; ν) = Γ(∧•T ∗F ⊗ ν), carry a
foliated de Rham operator

dFω(X1, . . . , Xp+1)

=
∑

i

(−1)i∇Xi(ω(X1, . . . , X̂i, . . . , Xp+1))

+
∑
i<j

(−1)i+j−1ω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1),

for which the associated cohomology, called foliated cohomology with
coefficients in ν, is denoted H∗(F ; ν). Similarly one can talk about
cohomology with coefficients in any tensorial bundle associated to ν.
The special case of trivial coefficients R will be denoted H∗(F).

For instance, the Poisson tensor in M determines a foliated 2-form
ω ∈ Ω2(F), which is just another way of looking at the symplectic
forms on the leaves. Therefore, we have a foliated cohomology class in
the second foliated cohomology group:

[ω] ∈ H2(F).

On the other hand, we saw above in “Description 2” of the monodromy
groups, that a splitting σ determines a foliated 2-form Ωσ ∈ Ω2(F ; ν∗),
with coefficients in the co-normal bundle, and that the corresponding
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foliated cohomology class

[Ω] ∈ H2(F ; ν∗)

does not depend on the choice of splitting.
These two classes are related in a very simple way. In fact, there is a

map

dν : H2(F) −→ H2(F ; ν∗),

which can be described as follows. We start with a class [θ] ∈ H2(F),
represented by a foliated 2-form θ. As with any foliated form, we have
θ = θ̃|TF for some 2-form θ̃ ∈ Ω2(M). Since dθ̃|F = 0, it follows that
the map Γ(∧2F)→ Γ(ν∗) defined by

(X, Y ) �→ dθ̃(X, Y,−),

gives a closed foliated 2-form with coefficients in ν∗. It is easily seen
that its cohomology class does not depend on the choice of θ̃, and this
defines dν . Now the formula ω(Xf , X) = X(f), immediately implies
that

dν([ω]) = [Ω].

We emphasize that the operator dν is well-known in foliation theory
and is part, together with dF , of the spectral sequence of a foliation. The
advantage of this point of view comes from the fact that the construction
of dν is functorial with respect to foliated maps (i.e., maps between
foliated spaces which map leaves into leaves).

From this perspective, a deformation γt of 2-spheres is a foliated map
S2 × I →M , where in S2 × I we consider the foliation F0 whose leaves
are the spheres S2 × {t}. From H2(S2) � R, we get

H2(F0) � C∞(I) = Ω0(I)

H2(F0; ν∗) � C∞(I)dt = Ω1(I),

where the isomorphisms are obtained by integrating over S2. Hence, dν

for F0 becomes the de Rham differential d : Ω0(I) → Ω1(I). Now, the
functoriality of dν with respect to γt when applied to ω gives

d

dt

∫
S2

γ∗
t ω =

〈∫
γt

Ω,
d

dt
γt(pN )

〉
.

This proves the last part of the proposition (and also the properties
of the variation of the symplectic area, stated at the beginning of this
section).
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Next, we recall (see [1]) that the second homotopy groups of the
leaves fit into a smooth étale groupoid (actually, a smooth bundle of
discrete groups)

π2(F) =
⋃

x∈M

π2(Lx, x).

Also, according to “Description 3” in Section 2, we should view ∂ as part
of a long exact sequence (but now of groupoids rather than groups):

· · · �� π2(F) ∂ �� ν∗(F) �� Σ(M) Φ �� π1(F) .

This clearly implies the exactness of the sequence of Theorem 6. Now,
the smoothness of ∂, together with the fact that π2(F) is étale, imply
the following property of the monodromy groups: for any a ∈ Nx, there
is a smooth local section α of ν∗(F) defined on some open U containing
x such that α(x) = a, and α(y) ∈ Ny for all y ∈ U . This immediately
implies that rN is lower semi-continuous.

Let us turn now to the equivalence of the various statements in Theo-
rem 6. We know from the general Lie algebroid case that (i) implies (ii).
The fact that (ii) implies (iii) follows from the exact sequence above.
To prove that (iii) implies (iv), we just have to observe that in the short
exact sequence

1 �� A′
(M) �� ν∗(F) �� S(M) �� 1 ,

the projection ν∗(F)→ S(M) will be a submersion if S(M) is smooth.
We are left with showing that (iv) implies (i), and for that we will
check the integrability conditions of Theorem 5. First of all, (iv) implies
that Nx are closed subgroups of ν∗

x(F). But Nx = ∂(π2(Lx, x)) are at
most countable (because second homotopy groups of manifolds are so),
hence Nx must be discrete. This shows that A′

(M) must be étale,
which, in turn, implies that lim infy→x rN (y) �= 0. If not, we can find a
sequence an ∈ Nxn of nonzero elements, with xn → x, an → 0x. This is
impossible since we can find a neighborhood of 0x which only contains
zero elements. This concludes our proof.

Remark 4. The last part of this proof can be restated as an in-
teresting property of any integrable, regular, Poisson manifold: every
transverse deformation var(γt) of a sphere γ0 such that ∂([γ0]) = 0 must
be a trivial deformation, i.e., ∂([γt]) = 0 for all small enough t. By the
results of this section, we can rewrite this as:

A′
ω(γ0) = 0 =⇒ A′

ω(γt) = 0, ∀t.
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This property plays an important role in Alcalde Cuesta and Hector
approach to integrability of regular Poisson manifolds, who state it as
“every symplectic vanishing deformation is trivial” (see [1]).

6. Examples

In this section we present several examples of integrable and non-
integrable Poisson manifolds. First, we give some immediate conse-
quences of Theorem 5 and of the main properties of the monodromy
groups.

Corollary 3. If all the monodromy groups Nx of the Poisson man-
ifold vanish, then M is integrable. This happens for instance in either
of the following cases:

(i) For any x ∈ M , the symplectic leaf L through x has finite second
homotopy groups.

(ii) The isotropy Lie algebra ν∗
x(L) is semi-simple.

Not every Poisson manifold is locally integrable (see the example in
Section 6.2 below). However, from the local form of regular foliations
we deduce:7

Corollary 4 (Lie). If x ∈M is regular, then M is locally integrable
around x, i.e., there exists a neighborhood of x in M which is integrable.

After these simple criteria for integrability, we now turn to the ex-
amples.
6.1. Poisson manifolds of dimension 2. The lowest dimension one
can have nontrivial Poisson manifolds is 2. However, it follows imme-
diately from Theorem 5 that in dimension 2 all Poisson manifolds are
integrable.

Corollary 5. Any 2-dimensional Poisson manifold is integrable.

In particular, we recover the main positive integrability result of [5]
that states that any Poisson structure on R2 is integrable.

Corollary 5 can be partially generalized to higher dimensions in the
following sense: any 2n-dimensional Poisson manifold whose Poisson
tensor has rank 2n on a dense, open set, is integrable. This, in turn,
is a consequence of a general result due to Debord [13] (see also [10],
Corollary 5.9) that states that a Lie algebroid with almost injective
anchor is integrable. The proof is more involved.

7As pointed out by Alan Weinstein in [37], this corollary should be attributed to
Lie, who found the normal coordinates near a regular point and used them to prove
a version of “Lie’s third theorem”.
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6.2. A non-integrable Poisson manifold. Already in dimension 3
there are examples of non-integrable Poisson manifolds. We consider
M = R3 with the Poisson bracket:

{f, g} = det


 x y z

∂f
∂x

∂f
∂y

∂f
∂z

∂g
∂x

∂g
∂y

∂g
∂z


 .

Identifying R3 with su(2)∗, this is just the Kirillov-Poisson bracket (see
also the next example). We choose any smooth function a = a(R) on
M , which depends only on the radius R, and which is strictly positive
for R > 0. We multiply the previous brackets by a, and we denote by
Ma the resulting Poisson manifold. The bracket on Ω1(Ma) is computed
using the Leibniz identity and we get

[dx2, dx3] = adx1 + bx1Rn,

[dx3, dx1] = adx2 + bx2Rn,

[dx1, dx2] = adx3 + bx3Rn,

where n = 1
R

∑
i x

idxi and b(R) = a′(R)/R. The bundle map # :
T ∗Ma → TMa is just

#(dxi) = avi, i = 1, 2, 3

where vi is the infinitesimal generator of a rotation about the i-axis:

v1 = x3 ∂

∂x2
− x2 ∂

∂x3
, v2 = x1 ∂

∂x3
− x3 ∂

∂x1
, v3 = x2 ∂

∂x1
− x1 ∂

∂x2
.

The leaves of the symplectic foliation of Ma are the spheres S2
R ⊂ R3

centered at the origin, and the origin is the only singular point. To
compute the function rN , using the obvious metric on T ∗Ma, we restrict
to a leaf S2

R with R > 0, and we use “Description 2” of Section 2. As
splitting of # we choose the map defined by

σ(vi) =
1
a

(
dxi − xi

R
n

)
,

with curvature the center-valued 2-form

Ωσ =
Ra′ − a

a2R3
ωn,
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where ω = x1dx2∧dx3 +x2dx3∧dx1 +x3dx1∧dx2. Since
∫
S2

R
ω = 4πR3

it follows that

N(x,y,z) � 4π
Ra′ − a

a2
Zn ⊂ Rn.

The canonical generator of π2(S2
R) defines the symplectic area of S2

R,
which is easily computable:

Aa(R) = 4π
R

a(R)
.

We recover in this way the relationship between the monodromy and
the variation of the symplectic area (Proposition 5). Also,

rN (x, y, z) =




+∞ if R = 0 or A′
a(R) = 0,

A′
a(R) otherwise,

so the monodromy might vary in a nontrivial fashion, even for nearby
regular leaves. Our computation also gives the isotropy groups

Σ(Ma, (x, y, z)) ∼=




R3 if R = 0, a(0) = 0,
SU(2) if R = 0, a(0) �= 0,
R if R �= 0, A′

a(R) = 0,
S1 if R �= 0, A′

a(R) �= 0.

We leave it to the reader the task of making the description of the
groupoid Σ(Ma) more explicit (see, also, [2, Sec. 6], where this example
is further discussed).

6.3. Heisenberg-Poisson manifolds. The integrability of the Hei-
senberg-Poisson manifolds was discussed in [34]. We recall that the
Heisenberg-Poisson manifold M(S) associated to a symplectic manifold
S, is the manifold S × R with the Poisson structure given by

{f, g} ≡ t{ft, gt}S ,

where t stands for the real parameter, and ft denotes the function on S
obtained from f by fixing the value of t. We can now easily recover the
main result of [34]:

Corollary 6. For a symplectic manifold S, the following are equiv-
alent:

(i) The Poisson-Heisenberg manifold M(S) is integrable.
(ii) S̃ is pre-quantizable.
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We recall that condition (ii) is usually stated as follows: when we pull
back the symplectic form ω on S to a 2-form ω̃ on the covering space
S̃, the group of periods{∫

γ
ω̃ : γ ∈ H2(S̃, Z)

}
⊂ R

is a multiple of Z. Note that this group coincides with the group of
spherical periods of ω

P(ω) =
{∫

γ
ω : γ ∈ π2(S)

}
,

so that (ii) says that P(ω) ⊂ R is a multiple of Z.

Proof of Corollary 6. We have to compute the monodromy groups. The
singular symplectic leaves are the points in S×{0} and they clearly have
vanishing monodromy groups. The regular symplectic leaves are the
submanifolds S×{t}, where t �= 0, with symplectic form ω/t. The most
straightforward way to compute the monodromy groups is to invoke
Proposition 5 of Section 5 (as an instructive exercise, the reader may
also try to use “Description 2”of Section 2). We immediately get

N(x,t) =
1
t
P(ω) ⊂ R,

and the result follows. q.e.d.

Note that one can be quite explicit in describing Σ(M(S)). Straight-
forward computations show that it consists of two types of arrows:

(a) arrows which start and end at (x, 0), which form a group isomor-
phic to the additive subgroup of T ∗

x,0M(S);
(b) arrows inside the symplectic leaves S × {t}, t �= 0, which consist

of equivalence classes of pairs (γ, v), where γ is a path in S and
v ∈ R. Two such pairs (γi, vi) are equivalent if and only if there is
a homotopy γ(ε, s) (with fixed end points) between the γi’s, such
that v1 − v0 = 1

t

∫
γ∗ω.

This explains how the general strategy of putting a smooth structure
on Σ(M) (see the end of Section 3) is related with the blowing-up tech-
niques used in [34].

Remark 5. Condition (v) of Theorem 5 splits into two conditions:
(a) Each monodromy group Nx is discrete, i.e., rN (x) > 0.
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(b) The monodromy groups are uniformly discrete, i.e.,

lim inf
y→x

rN (y) > 0.

If we choose a symplectic manifold which does not satisfy the pre-
quantization condition, the Poisson-Heisenberg manifold of Section 6.3
gives a non-integrable Poisson manifold that violates condition (a). On
the other hand, the example of Section 6.2 produces non-integrable Pois-
son manifolds in which condition (a) is satisfied, but condition (b) is not.
Hence the two conditions are independent.

6.4. Linear Poisson structures. Let G be a simply connected Lie
group with Lie algebra g. If we consider the Poisson manifold M = g∗
with the Kirillov-Kostant Poisson bracket, and let A = T ∗g∗, we always
obtain an integrable Lie algebroid: the source-simply connected Lie
groupoid integrating g∗ is

Σ(g∗) = G× g∗

with source and target maps

s(g, ξ) = ξ, t(g, ξ) = ad∗ g · ξ,
and with multiplication (g1, ξ1) · (g2 · ξ2) = (g1g2, ξ2), wherever defined.
In spite of the fact that linear Poisson structures are always integrable,
the symplectic geometry of their leaves varies in a nontrivial fashion,
and their monodromy reflects this behavior.

For a specific example take M = su∗(3). The symplectic leaves (i.e.,
the coadjoint orbits) are isospectral sets, and so we can understand
them by looking at their point of intersection with the diagonal matri-
ces with imaginary eigenvalues. There are orbits of dimension 6 (dis-
tinct eigenvalues), dimension 4 (two equal eigenvalues) and the origin
(all eigenvalues equal). Let us take for example the (singular) orbit L
through

x =


 iλ 0 0

0 iλ 0
0 0 −2iλ


 .

Then we find its isotropy subalgebra to be

gx =




 X 0

0 - tr X


 : X ∈ u(2)



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and so we see that the simply connected Lie group integrating the Lie
algebra gx is G(gx) = R × SU(2). We can also compute the isotropy
groups

Σ(g∗, x) = {g ∈ SU(3) : ad∗ g · x = x}

=




 g 0

0 det g−1


 : g ∈ U(2)


 .

We conclude that the orbit L is diffeomorphic to SU(3)/U(2) = CP(2).
In fact, one can show that it is symplectomorphic to CP(2) with a
multiple of its standard symplectic structure (see [17], Example 3.4.5).
Also, we see that the long exact sequence

· · · → π2(CP(2), x) ∂→ G(gx)→ Σ(g∗, x)→ π1(CP(2), x),

reduces to:

· · · → Z
∂→ R× SU(2)

ρ→ U(2)→ {1} ,

where ρ(θ, A) = eiθA. We conclude that ∂n = (πn, (−1)nI), so that ∂
takes values in the center Z(R× SU(2)) = R× {±I}, and

Ñx = Im ∂ � Z, Nx � 2Z.

This provides the example promised in Description 2: since the last
two groups are distinct, there can be no splitting with center-valued
curvature. Another argument is that such a splitting would define a
flat connection on the co-normal bundle ν∗(L) = Ker #|L, and since
L = CP(2) is 1-connected, it would follow that the co-normal bundle
would be a trivial bundle. This is not possible. In fact, the total Stiefel-
Whitney class of CP(2) is nontrivial, and so is the Stiefel-Whitney class
of the normal bundle, when we embed CP(2) in any Euclidean space.
Hence, the co-normal bundle cannot be trivial.

7. Symplectic realizations

Recall (see [37]) that a symplectic realization of a Poisson mani-
fold M is a surjective Poisson submersion µ : S → M , with connected
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fibers, from a symplectic manifold S onto M .8 The symplectic mani-
fold S comes equipped with a pair of foliations, in duality with respect
to the symplectic structure: the one given by the fibers of µ, which will
be denoted by F(µ), and its symplectic orthogonal F(µ)⊥. In terms of
their tangent bundles (vectors tangent to the leaves) F(µ) is the ker-
nel of the differential of µ, while F(µ)⊥ is spanned by the Hamiltonian
vectors Xµ∗f (f ∈ C∞(M)). As explained in Remark 1, S may be non-
Hausdorff, but we do require the leaves of F(µ) and of F(µ)⊥ to be
Hausdorff. In particular, it makes sense to talk about the completeness
of the vector fields Xµ∗f . The symplectic realization is called complete
if, for any complete Hamiltonian vector field Xf on M , the vector field
Xµ∗(f) is complete.

The existence of symplectic realizations is guaranteed by the following
basic result:

Theorem 7 (Karasev [23], Weinstein [8]). Any Poisson manifold
M admits a Hausdorff symplectic realization φ : S →M .

Proof. Let M be a Poisson manifold. The Lie algebroid T ∗M inte-
grates to a local Lie groupoid Σloc(M). The proof of this result in [5]
(cf. Corollary 5.1) shows that one can exhibit this local Lie groupoid as
the quotient

Σloc(M) = O/ ∼
where O is a open set in the space of cotangent paths P (T ∗M). Hence,
by a local version of the construction of Section 3, one can perform a
Marsden-Weinstein reduction on a open set of P̃ (T ∗M) to obtain the
structure of a local symplectic groupoid on Σloc(M). The source map
(also the target map) s : Σloc(M) → M gives a symplectic realization.

q.e.d.

The question of existence of complete symplectic realizations is the
main topic of this section, and our main result is the following:

Theorem 8. A Poisson manifold admits a complete symplectic real-
ization if and only if it is integrable.

The fact that integrability is somehow related to (and implies) the
existence of complete symplectic realizations is well-known: if M is

8The reader should be aware that in the literature one often does not require φ
to be a submersion or to be surjective, while the “symplectic realizations” defined
above are also called “full symplectic realizations”.
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integrable, the target map s : Σ(M)→M gives the desired realization.
Completeness follows from the remark that a path γ : I → M is an
integral curve of Xf if and only if it is of the form γ(t) = s(γ̃(t))
where γ̃ : I → S is an integral curve of Xf◦s. Since this vector field
is left invariant, its flow is left invariant, and the usual argument for
Lie groups extends to the groupoid case to show that Xf◦s is complete,
provided Xf is complete.

The converse implication, which may look surprising at first sight,
appears to be more difficult since there is no obvious way of construct-
ing an integrating groupoid out of an arbitrary symplectic realization
S (note that S may be quite different from Σ(M)). However, we can
now take advantage of the fact that we always have the groupoid Σ(M)
around, and the only issue is to prove its smoothness. This is proved
by pulling everything back to S, which one can think of as a desingu-
larization of M , where the problem greatly simplifies.

Remark 6. We shall see that a complete symplectic realization of
M can be thought of as a faithful representation of the Lie algebroid
T ∗M . We can use this representation to integrate T ∗M , in a similar
way as one does to integrate a Lie algebra to a Lie group, with the
help of a faithful representation. Unlike the Lie algebra case, when such
a representation always exists (Ado’s theorem), in our case we have
to assume the existence of such a representation, i.e., of the complete
symplectic realization φ : S →M .

Remark 7. Note that, in light of Theorem 5 (v), the result above
can be stated with no reference to integrability or groupoids (and this
suggests that a different approach might be possible).

Proof of Theorem 8. We let µ : S → M be a complete symplectic
realization of M , and we first assume that S is Hausdorff. We split the
proof into several steps.

Step 1. The Lie algebroid T ∗M acts on S.
The map df �→ Xµ∗f defines a bundle map ρ : µ∗T ∗M → TS, which

can also be described as the composition of the dual of the differential
of µ with the anchor map T ∗S → TS induced by the symplectic form
on S. It induces a Lie algebra homomorphism Ω1(M)→ X(S), and

(dµ)s ◦ ρy = #µ(y), for all y ∈ S.(11)
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One should view ρ as an infinitesimal action of T ∗M on S (see also
below). Alternatively, we can also think of ρ as the horizontal lift of a
flat, non-linear, contravariant connection (see [17]).

Step 2. The action of T ∗M on S integrates to an action of Σ(M).
Notice that it is for this reason that we need µ to be complete (com-

pare with the integrability of infinitesimal actions of Lie algebras on
manifolds). Given a cotangent path a : I → T ∗M , with base path γ
starting at x0 ∈M , and given y ∈ S, the horizontal curve over a starting
at y0 is the solution u : I → S of the initial value problem:

d

dt
u(t) = ρu(t)(a(t)), u(0) = y0.

Let us check that this equation has a unique solution, defined on the
entire unit interval. We choose a time-dependent, compactly supported,
one-form α with the property that α(t, γ(t)) = a(t), and we consider the
induced time-dependent vector field on S, X(t, y) = ρy(α(t, µ(y))). A
solution of the equation above is an integral curve of X with initial
condition y0, hence uniqueness. Conversely, if u is an integral curve of
X, (11) implies that µ◦u is an integral curve of #α starting at x0, hence
it must be γ. It follows that d

dtu(t) = ρu(t)(α(t, γ(t))) = ρu(t)(a(t)).
Finally, u is defined on the entire I because the completeness of µ implies
that ρ(α) is complete whenever α is compactly supported.

Next we need to understand how the horizontal lifts depend on the
cotangent path:

Lemma 2. Let a0 and a1 be cotangent paths which are cotangent
homotopic. Then their horizontal lifts u0 and u1 are homotopic paths
relative to the end-points.

Proof of Lemma 2. Let us fix the initial point, and consider a family
aε of cotangent paths, so that γε = µ ◦ aε all start at x0 and end at
the same point. We obtain a corresponding family uε of paths in S as
above, all starting at y0, and all staying in the leaf of F(µ)⊥ through
y0. Moreover,

ρ(var(aε)) =
d

dε
uε(1),(12)

for all ε. Of course, this is related to the very definition of var(aε): by
formula (2) in Proposition 1.3 of [10], we have

var(aε) =
∫ 1

0
φt,s

αε

dαε

dε
(s, γε(s))ds,(13)
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where αε are time dependent 1-forms such that αε(t, γε(t)) = aε(t). Here
φt,s

αε denotes the flows of αε (see the footnote in Section 3), which are
covered by the flows of the vector field Xε = ρ(αε), and so we find

ρ(var(aε)) =
∫ 1

0
φt,s

Xε

dXε

dε
(s, uε(s))ds.

The left side of this equation is just the variation of parameters formula
for flows of time-dependent vector fields, so (12) holds.

In particular, if aε is a cotangent homotopy we have var(aε) = 0 and
so the end-points uε(1) are fixed. q.e.d.

Hence, for all g = [a] ∈ Σ(M) with s(g) = x0 and t(g) = x1, given
y0 ∈ S in the fiber above x0, there is a well-defined element u(1) ∈ S in
the fiber above x1, and we set g · y0 ≡ u(1). In other words we have an
induced action of Σ(M) on S (the operation g · y does satisfy the usual
axioms of an action).

Let us denote by µ∗Σ(M) the space of pairs (g, y), with µ(y) = s(g).
Then µ∗Σ(M) is a groupoid over S, called the action groupoid asso-
ciated with the action of Σ(M) on S: the source and target maps are
given by s(g, y) = y and t(g, y) = g · y, while the multiplication is given
by

(g, y) · (h, z) ≡ (g · h, z), whenever y = h · z.

Step 3. The action groupoid of Σ(M) on S is isomorphic to the
homotopy groupoid of F(µ)⊥.

Note that Equation (12) above actually shows that aε is a cotangent
homotopy if and only if uε is a homotopy with fixed end points. Recall
that, similar to Σ(M), one has a homotopy groupoid G(F) associated
to any regular foliation F : it consists of homotopy classes of paths with
fixed end-points, staying in a single leaf. Now, since ρ is actually an
isomorphism from µ∗T ∗M to the symplectic orthogonal foliation F(µ)⊥,
(12) shows that

µ∗Σ(M) ∼= G(F(µ)⊥)(14)

an isomorphism of topological groupoids.
Step 4. Σ(M) is a Lie groupoid.
Since the homotopy groupoid G(F) of any regular foliation is always

smooth, the action groupoid µ∗Σ(M) is also smooth and we want to
conclude from this that Σ(M) must be smooth too. To prove it, we
will use the exponential map exp∇ : T ∗M → Σ(M) with respect to a
connection ∇ on T ∗M , and verify condition (iv) of Theorem 5.
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Consider the induced map µ∗T ∗M → µ∗Σ(M), denoted µ∗ exp∇,
and also its composition F : µ∗T ∗M → G(F(µ)⊥) with the homeomor-
phism (14). Then F associates to a pair (v, y) (y ∈ S, v ∈ T ∗

µ(y)M)
the homotopy class of the path t �→ exp∇(tv)y. This map is a lo-
cal diffeomorphism at the zero section. Indeed, after the identification
µ∗T ∗M ∼= F(µ)⊥, it is just the exponential map of F(µ)⊥ with re-
spect to the pullback connection µ∗∇. Alternatively, its differential at a
point (0, y) ∈ µ∗T ∗M is an isomorphism since it fits into a commutative
diagram with exact rows:

0 �� T ∗M ��

ρy

��

T(0,y)µ
∗T ∗M ��

dF
��

TyS

id

��

�� 0

0 �� F(µ)⊥ �� T1yG(F(µ)⊥)
ds

�� TyS �� 0.

It then follows that µ∗ exp∇ is locally injective around the zero section,
which immediately implies the similar property for exp∇. Hence, by
(iv) of Theorem 5, it follows that M must be integrable.

When S is not necessarily Hausdorff, basically the same proof applies.
All the complete vector fields we have used were actually tangent to the
leaves of F(µ)⊥, which are Hausdorff. Of course, we also need to know
that the construction of the homotopy groupoid G(F) works well (i.e.,
is a smooth manifold) for any regular foliation F (on a possibly non-
Hausdorff manifold) with Hausdorff leaves, but this works exactly as in
the Hausdorff case. q.e.d.

The previous arguments become even more natural when using the
language of algebroids. Recall that an action of an algebroid A over
M on a map µ : S → M consists of a bundle map ρ : µ∗A → TS with
the property that it induces a Lie algebra homomorphism Γ(A)→ X(S)
and satisfies:

(dµ)s ◦ ρs = #µ(s), for all s ∈ S.

The action is called complete if ρ(α) is a complete vector field whenever
α ∈ Γ(A) has compact support.

A Lie algebroid action ρ determines a Lie algebroid structure on the
pullback µ∗A, called the action Lie algebroid of ρ: the anchor is
simply ρ, while the bracket is uniquely determined by the Leibniz rule
and [µ∗α, µ∗β] = µ∗[α, β]. Similarly, if a groupoid G acts on µ : S →
M , there is an induced groupoid µ∗G over S, called the action Lie
groupoid: its arrows consist of pairs (g, y) ∈ G× S with the property
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that µ(y) = s(g). The source of (g, y) is y, its target is g · y, and the
multiplication (product) (g, y) · (h, z), defined when y = h · z, equals to
(gh, z).

The same arguments as in the previous proof show that:

Corollary 7. Let A be a Lie algebroid. Then:
(a) A complete action of A on µ : S → M determines a (topologi-

cal) action of the Weinstein groupoid G(A) on S, and µ∗G(A) ∼=
G(µ∗A), as groupoids. Moreover, for any connection ∇ on A, the
pullback to S of the associated exponential map exp∇ A→ G(A),
identifies with the exponential expµ∗∇ : µ∗A → G(µ∗A) with re-
spect to the pullback connection µ∗∇.

(b) If A admits a complete action on µ : S →M such that the action
Lie algebroid µ∗A is integrable, then A is integrable.

The proof above consisted in observing that any symplectic realiza-
tion µ : S → M comes equipped with an action ρµ of T ∗M , which is
complete if and only if µ is complete. Moreover, df �→ Xµ∗f defines
a Lie algebroid isomorphism between µ∗T ∗M and TF(µ)⊥. Since the
latter is integrable, T ∗M must also be integrable.

Let us point out several consequences.

Corollary 8. Any complete symplectic realization µ : S →M comes
equipped with a (smooth) locally free action of Σ(M) on S. The action
is free if and only if the leaves of the symplectic orthogonal foliation
F(µ)⊥ are simply connected.

Proof. That the action is locally free, but not necessarily free, comes
from the fact that µ∗Σ(M) is isomorphic only to the homotopy groupoid
G(F(µ)⊥). Freeness corresponds to the case where G(F(µ)⊥) is a subset
of S × S, or, equivalently, to the simply connectedness of the leaves.

q.e.d.

In [27], Mikami and Weinstein have explained that “symplectic reduc-
tion” can be performed in the general context of actions of symplectic
groupoids. With our “infinitesimal point of view”, we find that all is
needed is a complete symplectic realization:

In particular, we find that “symplectic reduction” can be performed
in the general context of complete symplectic realizations (compare with
the similar result of Mikami and Weinstein [27], where one starts with
an action of the symplectic groupoid):
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Corollary 9. For any complete symplectic realization µ : S →M :
(i) There is a natural action of the isotropy group Σ(M, x) on the

fiber µ−1(x).
(ii) If µ−1(x)/Σ(M, x) is smooth, then it carries a natural symplectic

structure.
(iii) Every cotangent path a, starting at x and ending at y, induces a

bijection µ−1(x)/Σ(M, x) → µ−1(y)/Σ(M, y). It only depends on
the homotopy class of a, and, in the smooth case, it is a symplectic
diffeomorphism.

Proof. The reduced symplectic structure comes from the fact that,
since the action of Σ(M) on S is locally free, the tangent space of
µ−1(x)/Σ(M, x) at some y ∈ µ−1(x) is given by

TyF(µ)⊥y /TyF(µ) ∩ TyF(µ)⊥.

Then linear symplectic reduction shows that we have a nondegener-
ated bilinear form induced by the symplectic form on S. On the other
hand, the action of the cotangent paths on the symplectic quotients
µ−1(x)/Σ(M, x) is just the one induced from the action of Σ(M) on S.

q.e.d.

Corollary 10. Let µ : S → M be a complete symplectic realization,
and assume that the orbit space S/Σ(M) is smooth. Then it carries a
natural Poisson structure, whose symplectic leaves can be identified with
the symplectic manifolds µ−1(x)/Σ(M, x).

These results show that the map µ : S →M can be seen as a moment
map for the groupoid action of Σ(M) on S. In fact, it is easy to see
that the graph of the action {(g, y, g · y) : s(g) = µ(y)} is a Lagrangian
submanifold of Σ(M) × S × S, so the groupoid action of Σ(M) on S
is symplectic in the sense of Mikami and Weinstein [27]. In fact, the
corollaries above also follow from this observation hence the general
results of [27], since we know now that Σ(M) is smooth (see also the
recent preprint [33]).

Notice that a complete symplectic realization gives rise to a two leg
diagram

S
µ

����
��

��
�� π

���
��������

M S/Σ(M)
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where the quotient S/Σ(M) and the map π are Poisson under some fa-
vorable circumstances (e.g., when S/Σ(M) is smooth and S is a princi-
pal Σ(M)-bundle over S/Σ(M)). Moreover, if the fibers of µ are simply
connected, the symplectic groupoid of this new Poisson manifold is just
the gauge groupoid S ×Σ(M) S. Note also that if one repeats this con-
struction on S/Σ(M) and the symplectic realization given by π, then
one gets back M .

Example 1. A well-known instance of this is provided by a complete
symplectic realization J : S → g∗ of the dual of some Lie algebra. In
this case we have Σ(g∗) = g∗ × G, where G is a simply connected Lie
group with Lie algebra g, and Σ(g∗, ν) = Gν is the isotropy group of
ν ∈ g∗ for the coadjoint action (see Section 6.2). Then we obtain a free
action of G on S which is Hamiltonian with momentum map J , and the
symplectic structures on J−1(ν)/Σ(g∗, ν) are the well-known Marsden-
Weinstein symplectic quotients. They form the leaves of the Poisson
manifold S/Σ(g∗) = S/G, provided this quotient is smooth. We will
came back to dual pairs later in our discussion of Morita equivalence
(see Section 9).

Corollaries 8 through 10 improve and explain the results of Mikami
and Weinstein [27, 33]. We can summarize this section by saying that
we can view a symplectic realization of a Poisson manifold M as a
momentum map for an action of the groupoid Σ(M) on S. Being the
target of a momentum map, M can be thought of as the dual of the
Lie algebra(oid) of its Weinstein group(oid). This fits well with Alan
Weinstein’s remark (see [4], p. 46) that “it is tempting to think of any
symplectic manifold S as the dual of the Lie algebra of π1(S)”.

8. Induced Poisson structures

In this section we discuss submanifolds which have a canonical in-
duced Poisson structure.

Let M be a manifold with a smooth foliation F , which may be singu-
lar (for singular foliations, see e.g., Vaisman’s book [32]). By a smooth
family of symplectic forms on the leaves we mean a family of sym-
plectic forms

{
ωL ∈ Ω2(L) : L ∈ F} such that for every smooth function

f ∈ C∞(M) the Hamiltonian vector field Xf defined by

iXf
ωL = d(f |L), ∀L ∈ F

is a smooth vector field in M .
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If (M, {·, ·}) is a Poisson manifold, then the symplectic foliation with
the induced symplectic forms on the leaves gives a smooth foliation with
a smooth family of symplectic forms.

Conversely, let M be a manifold with a smooth foliation F , furnished
with a smooth family of symplectic forms on the leaves. Then, we have
a Poisson bracket on M defined by the formula

{f, g} ≡ Xf (g),

for which the associated symplectic foliation is precisely F . Hence, a
Poisson structure can be defined by its symplectic foliation instead of
the Poisson bracket (see also [32], Theorem 2.14). This motivates the
following definition:

Definition 4. Let M be a Poisson manifold. A submanifold N ⊂M
is called a Poisson-Dirac submanifold if N is a Poisson manifold and:

(i) The symplectic foliation of N is N ∩ F = {L ∩N : L ∈ F}.
(ii) For every leaf L ∈ F , L ∩N is a symplectic submanifold of L.

Let us clarify this definition. First, the intersections N ∩ L need not
be connected, so in (i) we really mean that:

(ia) N intersects L cleanly, so that N ∩ L is a submanifold of N and
L and T (N ∩ L) = TN ∩ TL.

(ib) The symplectic leaves of N are the connected components of the
intersections N ∩ L.

Also, condition (ii) means that the symplectic forms on L ∩N are the
pullbacks i∗ωL, where i : N ∩ L ↪→ L is the inclusion. Then we must
have

TN ∩#(TN0) = {0} ,(15)

since the left-hand side is the kernel of the pullback i∗ωL.
By the remarks above, a submanifold N has at most one Poisson

structure satisfying these properties, and this Poisson structure is com-
pletely determined by the Poisson structure of M . Poisson submani-
folds are obvious examples of Poisson-Dirac submanifolds, and we will
see many other examples later.

In order to discuss the problem of integrability of Poisson-Dirac sub-
manifolds, it will be convenient to recall a few facts about Dirac struc-
tures. At the same time, this will allow us to justify our usage of the
term Poisson-Dirac submanifold.
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8.1. Poisson-Dirac subspaces. Recall (see [7]) that a linear Dirac
structure on a vector space V is a subspace L ⊂ V ⊕ V ∗ which is
maximally isotropic with respect to the canonical symmetric pair 〈·, ·〉
given by:

〈(v, ξ), (w, η)〉 =
1
2
(ξ(w) + η(v)).

We remark that linear Dirac structures can always be restricted to sub-
spaces: if W ⊂ V is a subspace, then on W one has the induced Dirac
structure

LW = {(v, ξ|W ) : (v, ξ) ∈ L, v ∈W} .

Now a Poisson vector space (V, Π) (a vector space V with a bivector
Π ∈ ∧2V ) is the same as a linear Dirac structure on V , with the prop-
erty that the projection L → V ∗ is bijective. Namely, a bivector Π is
completely determined by its graph LΠ ⊂ V ⊕ V ∗, where

LΠ ≡ {(#ξ, ξ) : ξ ∈ V ∗} .

Hence, given a subspace W ⊂ V one has the induced Dirac structure

LΠ
W = {(#ξ, ξ|W ) : ξ ∈ V ∗, #ξ ∈W} .

However, in general, the projection LΠ
W → W ∗ will not be bijective so

this Dirac structure is not defined by some bivector in W . Noticing that
the kernel of this projection is precisely W ∩#(W 0) we introduce the
following definition.

Definition 5. Let (V, Π) be a Poisson vector space. A subspace
W ⊂ V is called a Poisson-Dirac subspace if

W ∩#(W 0) = {0} .(16)

Therefore, a Poisson-Dirac subspace W of a Poisson vector space
(V, Π) has a natural induced bivector ΠW . Let us set

AW ≡ (#(W 0))0 = {ξ ∈ V ∗ : #ξ ∈W} .

The bivector ΠW is given by

ΠW (ξ, η) = Π(ξ̃, η̃),(17)

where ξ̃ and η̃ are extensions to V of ξ and η, at least one of which lies
in AW . On the other hand, condition (16) can also be written as:

W 0 + AW = T ∗M.
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Also, if (16) holds, we see that

W 0 ∩AW = W 0 ∩Ker #,

so we have a short exact exact sequence

0 �� W 0 ∩Ker # �� AW
�� W ∗ �� 0 .

The space AW has the role of relating V ∗ and W ∗, and shows that ΠW

is obtained by linear presymplectic reduction. Indeed, AW is a subspace
of the (presymplectic) vector space V ∗, while W ∗ is a quotient of AW

with the quotient map just the restriction to W .
We shall call a Dirac projection of W any projection p : V → W

such that p|#(W 0) = 0. Notice that p : V → W is a Dirac projection
if and only if p∗ : W ∗ → V ∗ is a splitting of the short exact sequence
above. The role of a Dirac projection p : V →W is to replace the choice
of extensions in the description (17) of ΠW :

ΠW (ξ, η) = Π(p∗ξ, p∗η).

Any projection p : V → W determines a splitting V = W ⊕ Ep, where
Ep = (1− p)V , and Dirac projections correspond to Π-orthogonal com-
plements of W in V (that is, Π(ξ, η) = 0 for all ξ ∈ W 0, η ∈ E0

p). This
orthogonality condition shows that Π decomposes as

Π = ΠW + ΠEp ,

for a unique ΠEp ∈ ∧2Ep.
We define the rank of a Poisson-Dirac subspace W ⊂ V to be the

number

rankW = dim(W 0 ∩Ker #).

This number r = rankW determines the dimensions of the other spaces
involved. For instance, dimAW = dimW + r and dimV = dim(W +
#(W 0)) + r. We find that

codim W − rankW = rank Π− rank ΠN ,

so that 0 ≤ rankW ≤ codim W .

Example 2. A cosymplectic subspace of a Poisson vector space
(V, Π) is a subspace W ⊂ V such that V = W + #(W 0). Hence, a
cosymplectic subspace is the same thing as a Poisson-Dirac subspace of
minimal rank (i.e., rankW = 0). Since this is the same as satisfying the
transversality condition W + Im(#) = V , a cosymplectic subspace is a
nonzero Poisson-Dirac subspace which has a unique Dirac projection.
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At the other extreme, we can consider Poisson-Dirac subspaces W ⊂
V of maximal rank (i.e., rankW = codim W ). Then we must have
W 0 = ker # or, equivalently, Im #W = Im #. This just means that W
is a Poisson subspace.

Finally, note that a Poisson vector space (V, Π) is completely deter-
mined by the linear symplectic space (S, ω), where S = Im # ⊂ V and

ω(#ξ,#η) = Π(ξ, η).

This is the linear counterpart of the remark made at the beginning of
the section, since the leaves of Π are just the linear symplectic affine
spaces obtained from (S, ω) by translation.

Now for any Poisson-Dirac subspace W ⊂ V , we have

Im #W = W ∩ Im #.

Hence, the linear symplectic space (SW , ωW ) that corresponds to W , is
such that SW ↪→ S and ωW = i∗ω, with i the inclusion. Conversely, the
canonical splitting

Im # = Im #W ⊕#(W 0),

shows that if W ∩ Im(#) is a symplectic subspace of Im(#) then W is
Poisson-Dirac.

Therefore, if we view a Poisson vector space (V, Π) as a linear sym-
plectic space (S, ω), the Poisson-Dirac subspaces of V correspond to the
symplectic subspaces of S.

8.2. Poisson-Dirac submanifolds. We now consider the non-linear
case. Let (M, Π) be a Poisson manifold, and consider a submanifold
N ⊂M which is “pointwise Poisson-Dirac”, i.e., TxN is a Poisson-Dirac
subspace of TxM (with respect to Πx ∈ ∧2TxM) for all x ∈ N :

TxN ∩#(TxN0) = {0} .

From the linear case it follows that there is an induced two-tensor on
N , denoted ΠN , but there is nothing to ensure us that it is smooth.

Example 3. Let M = C3 with complex coordinates (x, y, z). We
consider the (regular) foliation of C3 by complex lines defined by

dy = 0, dz − ydx = 0.

The leaves of this foliation are symplectic submanifolds of C3 with the
canonical symplectic form. Hence, we have a Poisson structure on M =
C3 with this symplectic foliation, and we denote it by Π. Now consider
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the submanifold N = {(x, y, z) : z = 0} ⊂ M . A complex line in the
foliation intersects N in a point (if y �= 0) or in a complex line (if
y = 0), which are symplectic submanifolds. This shows, that

TN ∩#(TN0) = {0} ,

so N is pointwise Poisson-Dirac, and ΠN is not smooth, for its image is
a non-smooth distribution. (Notice that it is nonetheless an integrable
distribution!)

If ΠN is smooth, the next proposition shows that ΠN satisfies au-
tomatically the integrability condition [ΠN , ΠN ] = 0 (i.e., the induced
almost Dirac structure on N is integrable):

Proposition 6. Let N be a submanifold of the Poisson manifold M ,
such that:

(i) N is pointwise Poisson-Dirac, i.e., TN ∩#(TN0) = {0}.
(ii) The induced tensor ΠN is smooth.

Then ΠN is a Poisson tensor on N .

Proof. Fix any x ∈ N . We claim that [ΠN , ΠN ]x = 0. By the linear
theory, we can choose a splitting TNM = TN ⊕ E where E is some
vector bundle over N , such that

Π = ΠN + ΠE ,

where (ΠE)x ∈ ∧2Ex, and (Ex)0 and (TxN)0 are Πx-orthogonal com-
plements.9 Since [Π, Π] = 0, it follows that

[ΠN , ΠN ]x = [ΠN + Π, ΠN −Π]x,

= −[2ΠN + ΠE , ΠE ]x.

The left-hand side of this expression lies in ∧3TxN ⊂ ∧2TxM ∧ TxN ,
while the right-hand side lies in ∧2TxM ∧Ex. Hence they must both be
zero. q.e.d.

This proposition has the following corollary which justifies our usage
of the term Poisson-Dirac submanifold in Definition 4.

Corollary 11. A submanifold N ⊂ M of a Poisson manifold is a
Poisson-Dirac submanifold iff it is pointwise Poisson-Dirac and the in-
duced tensor is smooth.

9Notice that for y �= x, in general, we will have (ΠE)y = (Π − ΠN )y �∈ ∧2Ey, but
that is irrelevant for the argument.
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Proof. If N ⊂ M is a Poisson-Dirac submanifold then it is point-
wise Poisson-Dirac. Also, the induced tensor coincides with the Poisson
tensor on N so it is smooth.

Conversely, if N ⊂ M is pointwise Poisson-Dirac and the induced
tensor is smooth, then by the proposition ΠN is a Poisson tensor, so
N is a Poisson manifold. By the linear theory, the smooth, integrable,
distribution defined by ΠN on N (namely Im(#N )) is just TN ∩ Im(#).
Hence, the symplectic foliation of N is N ∩F , where F is the symplectic
foliation of M , and the leaves of N are symplectic submanifolds of the
leaves of M . Therefore, N is a Poisson-Dirac submanifold. q.e.d.

A Dirac projection of N is a smooth bundle map p : TNM → TN
with the property that px : TxM → TxN is a linear Dirac projection
for each x ∈ N . In other words, {px} is a family of Dirac projec-
tions depending smoothly on x. The following proposition shows that
Poisson-Dirac submanifolds which admit a Dirac projection are the ob-
jects which Vaisman calls in [31] quasi-Dirac submanifolds.

Proposition 7. Let M be a Poisson manifold and N ⊂ M a sub-
manifold. The following statements are equivalent:

(i) N is a Poisson-Dirac submanifold admitting a Dirac projection
p : TNM → TN .

(ii) There exists a bundle E such that TNM = TN ⊕E and #(E0) ⊂
TN .

Proof. To show that (i)⇒ (ii), we just observe that if p : TNM → TN
is a Dirac projection then E = Ker p is a subbundle such that TNM =
TN ⊕ E and #(E0) ⊂ TN .

For the converse, we observe (as in the linear case) that (ii) gives a
decomposition

Π = ΠN + ΠE

with ΠN ∈ Γ(∧2TN) and ΠE ∈ Γ(∧2E), where now both ΠN and ΠE

must be smooth bivector fields. By Corollary 11, N is a Poisson-Dirac
submanifold. q.e.d.

Remark 8. If, around each point of N , we have local Dirac projec-
tions we can use a partition of unity to glue them into a global Dirac
projection. In fact, notice that a convex combination of linear Dirac
projections is a linear Dirac projection. Therefore, the existence of a
Dirac projection for a given Poisson-Dirac submanifold is a local issue.
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Corollary 12. Let N be a submanifold of Poisson manifold which
is pointwise Poisson-Dirac and for which the Poisson-Dirac subspaces
TxN ⊂ TxM have constant rank. Then N is a Poisson-Dirac submani-
fold admitting a Dirac projection.

Proof. The assumptions imply the existence of a Dirac projection: if
TxN ⊂ TxM have constant rank then #(TN0) has constant rank, and
so we can choose a bundle F such that TNM = TN ⊕ #(TN0) ⊕ F .
Then projection onto TN is a Dirac projection. q.e.d.

Example 4. Let N be a submanifold of a Poisson manifold M . If M
is a cosymplectic submanifold (i.e., each TxN is a cosymplectic subspace
of TxM), then N is a Poisson-Dirac submanifold. Similarly, if N is a
Poisson submanifold (i.e., each TxN is a Poisson subspace of TxM), then
N is also a Poisson-Dirac submanifold.

For a general Poisson-Dirac submanifold N ⊂ M , the rank of the
linear Poisson-Dirac subspaces TxN ⊂ TxM will vary. Let us call this
number the rank of the Poisson-Dirac submanifold at x, and de-
note it by rankx N . By the linear theory, we have:

codim N − rankx N = rank Πx − rank(ΠN )x.

Obviously, cosymplectic and Poisson submanifolds are examples of
Poisson-Dirac submanifolds of constant rank. Here is a simple example
of a Poisson-Dirac submanifold with nonconstant rank.

Example 5. Let M = R3 with coordinates (x, y, z) and the following
Poisson bracket:

{x, y} = f(z), {x, z} = {y, z} = 0,

where f ∈ C∞(R) is such that f(z) = 0 for z ≤ 0 and f(z) > 0 for
z > 0. Then one checks easily that N =

{
(0, 0, z) ∈ R3

}
is a Poisson-

Dirac submanifold. This Poisson-Dirac submanifold has rank two for
z ≤ 0, and has rank zero for z > 0.

Example 6. In the previous example, a Dirac projection still ex-
ists. Now, let M = R4 with coordinates (x, y, z, w) and Poisson bracket
defined by:

{x, y} = x2, {z, w} = z.

Then one checks easily that N =
{
(x, y, z, w) ∈ R4 : y = 0, x = z2

}
is a

Poisson-Dirac submanifold. Let us use coordinates (z, w) for N . The
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induced Poisson bracket on N is simply

{z, w}N = z.

and N is a Poisson-Dirac submanifold of rank 2 at points (0, w) and of
rank 0 elsewhere. Hence, for z �= 0 there is a unique Dirac projection.
The subbundle E ⊂ TNM , whose existence is asserted by Proposition 7,
is given by

E(z,w) =
{
(−z4a1, z

4a2, 0,−2z2a2) : a1, a2 ∈ R
}

, (z �= 0).

This bundle can be extended over points with z = 0, where it will have
fiber

E(0,w) = {(a1, 0, 0, a2) : a1, a2 ∈ R} .

Note, however, that at these points TN ∩ E �= 0, so in a neighborhood
of any point (0, w) there are no Dirac projections.

Let us restrict now to constant rank Poisson-Dirac submanifolds.
Then we have the vector bundle:

AN (M) ≡ {ξ ∈ T ∗
NM : #ξ ∈ TN} ,

and this has in fact a Lie algebroid structure over N , with bracket
induced from the bracket on T ∗M . On the other hand, we also have the
vector bundle

gN (M) ≡ TN0 ∩Ker #,

which is in fact a bundle of Lie algebras over N . Hence, we see that one
has a short exact sequence of Lie algebroids:

0 �� gN (M) �� AN (M) �� T ∗N �� 0.(18)

The Lie algebroid AN (M) determines a subgroupoid ΣN (M) of the
Weinstein groupoid Σ(M), which consists of equivalence classes [a] ∈
Σ(M) that can be represented by a cotangent path a with #a ∈ TN .
The short exact sequence above then gives a groupoid homomorphism
ΣN (M) → Σ(N) with kernel a bundle of Lie groups G(gN ). We shall
show now that, in the integrable case, the diagram

ΣN (M) � � ��

�����������
Σ(M)

Σ(N)

corresponds in fact to symplectic reduction.
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Proposition 8. Let N be a constant rank Poisson-Dirac submani-
fold of a Poisson manifold M . If M is integrable then ΣN (M) is a Lie
subgroupoid of Σ(M). Moreover, ΣN (M) ⊂ Σ(M) is a presymplectic
submanifold with rank equal to 2 dim N and its characteristic foliation
has leaves the orbits of the equivalence relation on ΣN (M) defined by
the bundle of Lie groups G(gN ).

Proof. Subalgebroids of an integrable Lie algebroid integrate to Lie
subgroupoids of the corresponding Weinstein groupoids. Hence, the
only thing to check is the statement about the characteristic foliation.
By invariance of the symplectic form ω ∈ Σ(M), it is enough to check
that the kernel of i∗ω, where i : ΣN (M) ↪→ Σ(M) is the inclusion,
coincides with (gN )x at points x ∈M .

Now observe that if x ∈ M , we have an isomorphism of symplectic
vector spaces

TxΣ(M) � TxM ⊕ T ∗
xM

where on the right the symplectic form is the the one defined by

ωx((v1, ξ1), (v2, ξ2)) = ξ1(v2)− ξ2(v1) + Π(ξ1, ξ2)

(the identity section gives a splitting of the differential of the source
map). Under this isomorphism, we have

TxΣN (M) � TxN ⊕AN (M)x,

and we check that

ωx((v1, ξ1), (v2, ξ2)) = 0, ∀v2 ∈ TxN, ξ2 ∈ AN (M)x

⇐⇒ v1 = 0, ξ1 ∈ gx,

so the result follows. q.e.d.

We conclude that if both N and M are integrable, the symplectic form
on ΣN (M) is obtained by symplectic reduction from the symplectic form
on Σ(M): we first pullback to ΣN (M), to obtain a presymplectic form,
and then we project to Σ(N) along the characteristic foliation.

Example 7. For a cosymplectic submanifold, we have rankN = 0
so ΣN (M) is a symplectic subgroupoid of Σ(M) of dimension 2 dimN
and we have Σ(N) = ΣN (M) (but not the converse; see below). On
the other hand, for a Poisson submanifold we have codimN = rankN
and this happens precisely when ΣN (M) is a coisotropic submanifold of
Σ(M).
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Notice that M being integrable guarantees that AN is integrable.
Although the foliation of the Lie algebroid AN coincides with the sym-
plectic foliation of N , this is not enough to guarantee that N is in-
tegrable, since the isotropy Lie algebras of AN and T ∗N are distinct.
Also, gN (M) being a bundle of Lie algebras is always integrable.

In general, a Poisson-Dirac submanifold will not have constant rank.
However, we can still define ΣN (M) which will be a non-smooth sub-
groupoid of Σ(M). We will still have a diagram as above relating Σ(M),
Σ(N) and ΣN (M). So, morally, Poisson-Dirac submanifolds are the
base manifolds of presymplectic groupoids, with Poisson submanifolds
corresponding to base manifolds of coisotropic subgroupoids.

By a presymplectic groupoid we mean a Lie groupoid G with a
closed 2-form ω ∈ Ω2(G) such that:

(i) ω is compatible with the product: m∗ω = π∗
1ω + π∗

2ω.
(ii) ω has a characteristic foliation defined by a normal Lie subgroup-

oid H ⊂ G.
Property (i) is similar to the corresponding property for symplectic

groupoids (see Proposition 4). Now, to explain (ii), recall that a normal
subgroupoid H ⊂ G is a wide subgroupoid such that that:

∀h ∈ Hx, g ∈ G with s(g) = x =⇒ ghg−1 ∈ H.

Notice that this condition only involves the isotropy groups of H. A
normal subgroupoid H ⊂ G defines an equivalence relation in G and an
equivalence relation in the base N :

• For g1, g2 ∈ G, g1 ∼ g2 if and only if there exist h, h′ ∈ H such
that hg1h

′ = g2.
• For x, y ∈M , x ∼ y if and only if there exists h ∈ H with s(h) = x

and t(h) = y;

So condition (ii) means that the leaves of the characteristic foliation are
the H orbits in G.

Presymplectic groupoids are interesting objects which we believe de-
serve more attention. Let us list some of the properties we hope they will
satisfy: Let G be a presymplectic groupoid over N with characteristic
foliation defined by H ⊂ G. Then:

(a) The base manifold N has a Dirac structure with null foliation the
foliation defined by H.

(b) Conversely, every Dirac structure has a (Weinstein) presymplectic
groupoid.
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(c) If the leaf space N/H is smooth it is a Poisson manifold. Its
symplectic groupoid is G/H provided it is smooth.

(d) The groupoid G′ obtained from G by factoring out only the isotropy
of H, has Lie algebroid LN ⊂ TN ⊕ T ∗N (the Dirac subbundle),
provided it is smooth.

(e) By a groupoid-equivariant coisotropic embedding theorem, G
should embed into a symplectic groupoid Σ, whose germ is unique
up to isomorphism. The base M of Σ is a Poisson submanifold
and the Dirac structure on N ⊂M is the one induced from M .

Remark 9. The definition given here of a presymplectic groupoid,
does not guarantee that to each (integrable) Dirac structure there will be
a unique presymplectic groupoid integrating it. To obtain uniqueness,
one must require a non-degeneracy condition which can be expressed
by saying that kerω intersects the fibers of s and t transversely. After
the submission of this work, the papers [2, 6] have appeared. There one
can find a serious discussion of presymplectic groupoids, multiplicative
forms and their main properties.

8.3. Lie-Dirac submanifolds. We consider now Poisson-Dirac sub-
manifolds which admit a Dirac projection compatible with the Lie brack-
ets on one-forms induced by the Poisson structures.

Definition 6. A submanifold N ⊂M of a Poisson manifold is called
a Lie-Dirac submanifold if it admits a Dirac projection p : TNM →
TN such that p∗ : T ∗N → T ∗M preserves Lie brackets (i.e., is a Lie al-
gebroid map). Such projections will be called Lie-Dirac projections.

Lie-Dirac submanifolds were first introduced by Xu in [38], under
the name “Dirac submanifolds”. Note that while the property of being
a Poisson-Dirac submanifold is a local property, the property of being
a Lie-Dirac submanifold is a global property. The obstructions will be
studied below.

Let us first give alternative characterizations of these submanifolds.
The proof is immediate and is left to the reader.

Proposition 9. Let M be a Poisson manifold and N ⊂ M a sub-
manifold. The following statements are equivalent:

(i) N is a Lie-Dirac submanifold.
(ii) There exists a Dirac projection p : TNM → TN such that

p∗([Π, X]) = [ΠN , p(X)]

for every X ∈ X(M).
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(iii) There exists a bundle E such that TNM = TN⊕E and E0 ⊂ T ∗M
is a Lie subalgebroid.

(iv) There exists a bundle E such that TNM = TN ⊕ E and E is a
coisotropic submanifold of TM .

Note that for property (iv) one considers on TM the tangent Poisson
structure.

Example 8. Any cosymplectic submanifold is a Lie-Dirac subman-
ifold. However, Poisson-Dirac submanifolds of constant rank, Poisson
submanifolds, or even symplectic leaves, may fail to be Lie-Dirac sub-
manifolds.

A Poisson-Dirac submanifold N ⊂ M of constant rank is Lie-Dirac
if and only if the sequence of Lie algebroids (18) has a Lie algebroid
splitting. Since this splitting integrates to a homomorphism of the cor-
responding Weinstein groupoids, we can complete the diagram above to
a commutative diagram

ΣN (M) � � ��

�����������
Σ(M)

Σ(N)

��

where the map going up is an embedding.
Now note that even if N does not have constant rank, the Lie-Dirac

projection induces a groupoid homomorphism Σ(N) → Σ(M) and we
have the following theorem, which is a slight improvement of Xu’s re-
sults.

Theorem 9. Let M be an integrable Poisson manifold. Then any
Lie-Dirac submanifold N ⊂ M is integrable, and Σ(N) is a symplec-
tic subgroupoid of Σ(M). More precisely, any Lie-Dirac projection p
induces a groupoid embedding of Σ(N) into Σ(M), which is a symplec-
tomorphism onto a symplectic subgroupoid of Σ(M). Conversely, any
such embedding is of this type.

Proof. The first part of the theorem is clear. So assume that i : Σ′ ↪→
Σ(M) is a symplectic groupoid embedding of a symplectic groupoid Σ′
over N . We can identify T ∗N � TNΣ′/TN and T ∗M � TMΣ/TM .
Hence, we obtain a Lie algebroid map i∗ : T ∗N → T ∗M whose image
is a Lie subalgebroid A ⊂ T ∗M which is transversal to (TN)0. It is
clear that E = A0 satisfies (iii) of Proposition 9, so N is a Lie-Dirac
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submanifold and the embedding i can be identified with the embedding
Σ(N)→ Σ(M). q.e.d.

Therefore, Lie-Dirac submanifolds of M are the base manifolds of
symplectic subgroupoids of Σ(M). It should be noted that for a given
Lie-Dirac submanifold N ⊂ M of a Poisson manifold there can be dis-
tinct connected symplectic subgroupoids of Σ(M) over N . In other
words, the Poisson manifold N does not determine uniquely the sub-
groupoid of Σ(M) (the image of the embedding). This is, of course,
because there can be several distinct Lie-Dirac projections. Here is a
very simple example.

Example 9. A manifold M with the zero bracket integrates to the
symplectic groupoid Σ = T ∗M , where ω is the canonical symplectic
structure, s = t is the projection to M , and the group operation is
addition in the fibers. If N ⊂ M is any submanifold, then a vector
subbundle E ⊂ T ∗M over N , with rankE = dimN , is a symplectic
subgroupoid Σ′ ⊂ Σ if and only if E ∩ (TN)⊥ = {0}. In this case, N is
obviously a Poisson submanifold of M , but there are many symplectic
subgroupoids with the same base N .

As was already remarked by Xu in [38], not every Poisson submani-
fold is a Lie-Dirac submanifold. Here we give the obstruction and show
that it is related to the monodromy of Section 2. So let i : N ↪→ M
be a Poisson submanifold, giving rise to the short exact sequence of Lie
algebroids

0 �� ν∗(N) �� T ∗
NM

i∗ �� T ∗N �� 0.(19)

Choosing a Dirac projection p : TNM → TN is the same as choosing
a splitting p∗ : T ∗N → T ∗

NM of this exact sequence. This choice gives
rise to a contravariant connection ∇ : Ω1(N) × Γ(ν∗(N)) → Γ(ν∗(N))
defined by:

∇αβ = [p∗(α), β].

If the Lie algebra bundle ν∗(N) is abelian (this is the case, for example,
if N consists only of regular points), this connection is independent of
the splitting, and it is flat:

R∇(α, β) ≡ ∇α∇β −∇β∇α −∇[α,β] = 0.
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In other words, ν∗(N) is canonically a flat Poisson vector bundle over
N . Then the curvature 2-form

Ω(α, β) = p∗([α, β])− [p∗(α), p∗(β)],

defines a Poisson cohomology 2-class [Ω] ∈ H2
Π(N, ν∗(N)) which is the

obstruction for N to be a Lie-Dirac submanifold. For example, for a reg-
ular leaf L of a Poisson manifold the Poisson cohomology H2

Π(L, ν∗(L))
coincides with the cohomology H2(L, ν∗(L)) and we conclude that:

Corollary 13. Let L be a regular leaf of a Poisson manifold. Then
L is a Lie-Dirac submanifold if and only if the canonical cohomology
class [Ω] ∈ H2(L, ν∗(L)) vanishes. If L is simply connected, then L is
a Lie-Dirac submanifold if and only if its monodromy group vanishes.

Example 10. Let us return to the Poisson brackets on su∗(2) of
Section 6.2. The origin is always a Lie-Dirac submanifold. The spheres
S2

R, for R > 0, are regular, compact and simply connected leaves, and
it follows that S2

R is a Lie-Dirac submanifold if and only if the variation
of the symplectic area A′(R) vanishes.

Recall now (see e.g., [32]) that the characteristic form class of the
regular Poisson manifold M is the relative cohomology class [ξ] = [dω] ∈
H3

rel(M,F), where ω is the foliated symplectic form. The characteristic
form class is obviously the obstruction to the existence of a closed 2-
form on M which pulls back to the symplectic 2-form on each leaf.
Equivalently, by the coisotropic embedding theorem of Gotay [20], it is
the obstruction for the existence of a leafwise symplectic embedding of
M . From the remarks in Section 5, we have a commutative diagram
relating the different classes associated with a regular Poisson manifold

[ω] ∈ H2(F)

δ
��

dν

����������������

[ξ] ∈ H3
rel(M,F) �� H2(F , ν∗) � [Ω]

where δ is defined from the long exact sequence of the pair (M,F):

· · · −→ Hk
rel(M,F) −→ Hk(M) −→

Hk(F) δ−→ Hk+1
rel (M,F) −→ · · · .

In particular we obtain:

Corollary 14. Let M be a regular Poisson manifold. Then:
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(i) If M admits a leafwise symplectic embedding then every leaf of M
is a Lie-Dirac submanifold.

(ii) If every leaf of M is a Lie-Dirac submanifold then M is integrable.

Note that the reverse implications in general do not hold.

9. Morita equivalence

In this section we discuss Morita equivalence of Poisson manifolds.
This notion, introduced by P. Xu [39], originates on Weinstein’s dual
pairs as a global form of Lie’s dual function groups. Intuitively, Morita
equivalence of Poisson manifolds means isomorphism from the point of
view of transversal Poisson geometry (in particular, it induces Poisson
diffeomorphisms between the transversal Poisson structures).

9.1. Integrable Poisson manifolds. Let us start by recalling Xu’s
definition:

Definition 7. Two Poisson manifolds M1 and M2 are Morita
equivalent if there exists a two leg diagram

S
π1

����
��

��
�� π2

		�
��

��
��

�

M1 M2

where S is a symplectic manifold and the maps π1 and π2 satisfy:

(a) Each πi is a complete Poisson map.
(b) Each πi is a surjective submersion.
(c) π1 and π2 have symplectic orthogonal, simply connected, fibers.

From our section on symplectic realizations we see that, in a Morita
equivalence, both Poisson manifolds have to be integrable. Also, if M
is integrable, then the associated symplectic groupoid Σ(M) defines a
Morita equivalence of M with itself (πi the source/the target). Hence:

Proposition 10. For a Poisson manifold M , the following are equiv-
alent:

(i) M is Morita equivalent to another Poisson manifold.
(ii) M is Morita equivalent to itself.
(iii) M is integrable.
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Moreover, if S defines an equivalence between M1 and M2, we also
see that S comes equipped with free (symplectic) actions of Σ(M1) and
Σ(M2), and the associated orbit spaces are M1, and M2, respectively:

Σ(M1)

�� ��

S
π1



��
��

��
��

�
π2

���
��

��
��

��
Σ(M2)

�� ��
M1 M2.

Or, in the terminology of [39, 40], we recover Xu’s result that two in-
tegrable Poisson manifolds are Morita equivalent if and only if their
symplectic groupoids Σ(M1) and Σ(M2) are symplectic Morita equiv-
alent. Now we can proceed as in the ring-theoretic version of Morita
equivalence and compose such equivalences: if Si defines an equivalence
between Mi and Mi+1, i ∈ {1, 2}, then S1 ⊗Σ(M2) S2, that is, the quo-
tient of S1 ×M2 S2 by the diagonal action of Σ(M2), is an equivalence
between M1 and M3. In particular:

Corollary 15. On the class of integrable Poisson manifolds, Morita
equivalence is an equivalence relation.

9.2. Weak Morita Equivalence. For general Poisson manifolds,
there are two important questions one should address:
• Find a satisfactory notion of Morita equivalence which works well

also for non-integrable Poisson manifolds.
• Construct “Morita invariants”, i.e., invariants which allow us to

distinguish non-Morita equivalent Poisson manifolds and eventu-
ally classify Morita equivalence classes.

The notion of weak Morita equivalence of Poisson manifolds is very
similar to that of Morita equivalence of foliations (discussed in [9, 18])
which, in turn, is an infinitesimal version of Morita equivalence of ho-
lonomy groupoids (see [21]). More precisely, given a submersion φ :
Q → M and a (regular) foliation F on M , the pullback foliation on
Q, denoted φ�F , is the foliation whose leaves are the connected compo-
nents of φ−1(L), with L leaf of F . In terms of the associated involutive
subbundles, φ�F consists of vectors X tangent to Q with the property
that dφ(X) ∈ F , and is in general different from the pullback vector
bundle φ∗F (note the difference in the notation). We will say that two
(regular) foliations Fi on Mi (i ∈ {1, 2}) are Morita equivalent if there
exists a manifold Q, and submersions πi from Q onto Mi with simply
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connected fibers:

M1
π1←− Q

π2−→M2,

and such that π�
1F = π�

2F .
For Poisson manifolds we proceed similarly. First of all, for a sub-

mersion φ : Q→ M from a manifold Q into a Poisson manifold M , we
form the bundle φ�T ∗M over Q:

φ�T ∗M = {(α, X) ∈ φ∗T ∗M × TQ : #α = φ∗X} .

This is a Lie algebroid over Q with the anchor (α, X) �→ X, and with
the Lie bracket

[(fφ∗α, X), (gφ∗β, Y )] = (fgφ∗[α, β] + X(g)φ∗β − Y (f)φ∗α, [X, Y ]),

where f, g ∈ C∞(Q), X, Y ∈ X(Q), α, β ∈ Ω1(M), and φ∗α is the
induced section of φ∗T ∗M . The idea is that this should represent the
pullback of the Poisson structure to Q. The point is that pull backs
of Poisson structures generally only make sense as Dirac structures,
and φ�T ∗M is precisely this pullback Dirac structure, viewed as a Lie
algebroid.

Definition 8. Let M1 and M2 be two Poisson manifolds. We say
that they are weakly Morita equivalent if there exists a manifold Q
together with two submersions onto M1 and M2 with simply connected
fibers

M1
π1←− Q

π2−→M2,

such that the pullback algebroids (equivalentely, Dirac structures) on P
are isomorphic:

π�
1T

∗M1 � π�
2T

∗M2.

The reader will notice that Dirac structures furnish a natural setting
fot Morita equivalence. We refer to [3] for details on this approach.
Also, the previous notion of Morita equivalence originates in [9] (see
Theorem 2 there and the comment preceeding it) and it coincides with
the equivalence used in [18].

Proposition 11. (i) Morita equivalence implies weak Morita equiv-
alence.

(ii) Weak Morita equivalence is an equivalence relation on the class of
all Poisson manifolds.
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Proof. Let S be as in the definition of Morita equivalence. We denote
by ρi : π∗T ∗Mi → TS the induced actions on S. There are bundle
isomorphisms

π�
1T

∗M1 � π∗
1T

∗M1 ⊕ π∗
2T

∗M2 � π�
2T

∗M2,

which, for sections α of π∗
1T

∗M1 and β of π∗
2T

∗M2 which are pullbacks
of one forms on M1 and M2, are given by

(α, ρ1(α) + ρ2(β))←−� (α, β) �−→ (β, ρ1(α) + ρ2(β)).

A careful computation shows that this is actually a Lie algebroid isomor-
phism. Assume now that P defines another weak Morita equivalence
between M2 and M3. We then form the fibered product R = Q×M2 P
and denote by q and p, the projections into Q, and P , respectively:

R
q

��		
		

		
		 p

		















Q
π1

����
��

��
�� π2

		�
��

��
��

� P
π3

����
��

��
�� π4

		�
��

��
��

�

M1 M2 M3.

Then R, together with π1q and π4p defines a weak Morita equivalence.
This follows from the functoriality of the operation φ� on Lie algebroids.

q.e.d.

We now proceed with the description of various (weak) Morita in-
variants. Due to the similarity with the notion of Morita equivalence of
foliations, it is not surprising that:

Proposition 12. Let M1 and M2 be weakly Morita equivalent Pois-
son manifolds with symplectic foliations F1 and F2. Then any weak
Morita equivalence Q between them induces a homeomorphism

φQ : M1/F1 �M2/F2,

and the fundamental groups of corresponding leaves are isomorphic

L1
φQ←→ L2 =⇒ π(L1) ∼= π(L2).

Moreover, if one of the two leaf spaces is a smooth manifold, then so is
the other one, and the map above is a diffeomorphism.
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Proof. It is easy to see that given a submersion φ : Q → M onto a
Poisson manifold M , the leaves of φ�T ∗M are of the form φ−1(L), where
L is a leaf of M . Hence, given a Morita equivalence M1

π1←− Q
π2−→M2,

the map L �→ π2(π−1
1 (L)) is a bijective correspondence between the

leaves of M1 and the leaves of M2. This bijection makes the following
diagram commute:

Q
π1

����
��

��
��

�
π2

��
















M1

��

M2

��
M1/F1



 �� M2/F2.

The statements on the leaf spaces follow from the fact that the maps
going down are quotient maps. On the other hand, the statement about
the fundamental groups of corresponding leaves, follows from the fact
that any submersion with simply connected fibers induces isomorphisms
in the first homotopy groups (cf. the Appendix in [18]). q.e.d.

Our next result shows that a large number of geometric invariants
are weak Morita invariants, including the monodromy groups we have
introduced before. In this respect, note that the higher homotopy groups
of corresponding leaves may not be isomorphic, so one may think of the
monodromy groups (which come from the second homotopy groups of
the leaves), as the next level in the hierarchy.

Theorem 10. The monodromy groups, isotropy Lie algebras and
groups, first Poisson cohomology groups and integration along cotangent
paths, are all weak Morita invariants. More precisely, let Q be a weak
Morita equivalence between M1 and M2, and let x ∈ M1, y ∈ M2 be
points whose leaves correspond. Then the following are isomorphic:

(i) The monodromy groups Nx(M1) and Ny(M2);
(ii) the isotropy Lie algebras gx, and gy;
(iii) the isotropy groups Σ(M1, x) and Σ(M2, x);
(iv) the reduced isotropy groups Σ0(M1, x) and Σ0(M2, x);
(v) the Poisson cohomology groups H1

Π(M1) and H1
Π(M2), and the two

maps

Σ(Mi, xi)×H1
Π(Mi) −→ R, ([a], X) �→

∫
a
X (i = 1, 2).
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Proof. The idea is the same as in the previous proof: given a Lie al-
gebroid A over M , and a submersion φ : Q→M with simply connected
fibers, we prove that all these groups for φ�A are isomorphic to the ones
of A. We use here that all we have said about T ∗M and Σ(M) works
for general Lie algebroids (cf. [10]).

We have already remarked that the leaves of φ�A are of type φ−1L,
with L leaf of A. Since the fibers are simply connected, the maps
π2(φ−1L)→ π2(L) are surjective [18].

Next, the kernel of the anchor of φ�A is clearly isomorphic to the
kernel of the anchor of A, i.e., the isotropy Lie algebras gq(φ�A) and
gφ(q)(A) are isomorphic. For the other groups, due to the canonical se-
quences (4), (6) (and their obvious versions for Lie algebroids), and
the fact that φ induces isomorphism in the first homotopy groups,
it is enough to prove the statement for the reduced isotropy group
Σ0(M, x) (and its Lie algebroid versions, denoted G0(A, x)). Both
groups G(φ�A, q) and G(A, x) (x = φ(q)) are quotients of the same
space (of paths in the isotropy Lie algebra), and one only has to check
that the equivalence relation (homotopy) is the same. For this one uses
that, when working in the smooth category, submersions do behave like
Serre fibrations (cf. the Appendix in [18]). Alternatively, one can prove
all these isomorphisms at once, computing the groupoid G(φ�A) of φ�A
(see [10] for notations):

First of all, a path for φ�A is a pair (a, γ̃), where A is an A-path, and
γ̃ is a path in Q over the base path of a. However, since:

(a) For any two paths γ̃0 and γ̃1 in Q covering the same path γ in
M , there is a homotopy γ̃ε between them, covering γ (this follows
since the fibers are simply connected, see the Appendix in [18]).

(b) If γ̃ε is as above, and a is an A-path with base path γ, then (a, γ̃ε)
is a φ�A-homotopy.

It follows that, when looking at homotopy classes of φ�A-paths (a, γ̃),
it is only a and the end points of γ̃ that matter. Then, working with
triples (p, a, q), where a is an A-path, and φ(p) = γ(0), φ(q) = γ(1), and
writing down what φ�A-homotopy means, ones gets G(φ�A) = Q ×M

G(A) ×M Q consists of triples (p, g, q) with φ(p) = s(g), φ(q) = t(g),
with the multiplication (q, h, r)(p, g, q) = (p, hg, r). This immediately
imply the rest.

Finally, the statement about Poisson cohomology follows from the
fact (see [9], Theorem 2) that if φ : Q → M is a surjective submer-
sion with simply-connected fibers then A and φ�A have isomorphic first
cohomology groups. q.e.d.
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Example 11. Let us look at some examples:

1. The fundamental group π1(S) is a complete Morita invariant in
the symplectic case.

2. The isotropy Lie algebra at zero is a complete invariant in the case
of linear structures (we actually see that g∗ and h∗ are weakly
Morita equivalent around the origin if and only if and only if g
and h are isomorphic Lie algebras).

3. Consider the sphere S2 with its standard symplectic structure
(area form) and form the Poisson-Heisenberg manifold M(S2) (see
the example in 6.3). This Poisson manifold is not Morita equiva-
lent to any of the Poisson manifolds Ma considered in the example
of Section 6.2, just because they have different leaf spaces.

4. The Poisson manifolds Ma, for different a’s, all have the same
leaf spaces. However, one can find a’s for which the monodromy
groups vary differently, hence the associated Poisson structures are
not weakly Morita equivalent (this will actually force one of the
manifolds to be non-integrable, but this can be avoided by going
to leaf spaces of higher dimensions).

We say that a Poisson manifold M has simple symplectic foliation
if F is regular, and the leaf space B = M/F is smooth. Equivalently,
one has a submersion π : M → B with connected symplectic fibers, and
M has the induced Poisson structure. Note that in this case there are
canonical identifications νx

∼= Tπ(x)B, and the monodromy groups Nx

define a bundle of subgroups

N (M) ⊂ T ∗B.

We know that the continuity of N (M) is related to the integrability of
M . It is not difficult to see that the class of such Poisson manifolds is
closed under weak Morita equivalence. From the previous proofs we see
that:

Corollary 16. For Poisson manifolds M with simple symplectic fo-
liation, the pair (B,N (M)) is a weak Morita invariant. More precisely,
a weak Morita equivalence Q between two such M1 and M2 induces a
diffeomorphism φ : B1 → B2 with (dφ)∗x(N (M1)) = N (M1).

Specializing to product foliations, Xu proved a similar result for or-
dinary Morita equivalence, along with a converse (see also the next
proposition).
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Remark 10. It is important that the isomorphism between the mon-
odromy is induced by the differential. For instance, consider the Poisson
manifolds M

′
a = Ma \ {0}. They all have the same leaf space, and one

can choose a and b such that the corresponding Poisson manifolds have
the same (i.e., isomorphic) monodromy, without being Morita equiva-
lent.

The following proposition suggests that, in some cases, the leaf space,
the homotopy groups of the leaves, and the monodromy groups form a
complete set of weak Morita invariants:

Proposition 13. Let M be a Poisson manifold with simple symplec-
tic foliation F and compact simply connected leaves. If N (M) = 0,
then M with the induced Poisson structure is weakly Morita equivalent
to B = M/F with the zero Poisson structure.

Proof. Let σ : F → T ∗M be a splitting of the anchor, and let Ω ∈
Ω2(F ; ν∗) be its curvature. Since each leaf L is simply connected, the
condition on the monodromy shows that Ω|L is exact. From the Reeb
stability theorem each L has a neigborhood of type T × L, hence Ω is
exact in a neigborhood L. By choosing a partition of unity supported
on such opens neigborhoods, and which is constant on each leaf (e.g.,
the pullback by π : M → B of an open cover of the base), we see that
Ω is exact. Hence σ has a global splitting compatible with the brackets.
This shows that Σ(M) = π(F)×M ν∗, which is clearly Morita equivalent
to T ∗B (as a bundle of abelian Lie groups over B). q.e.d.

Remark 11. Our aim here was not only to describe Morita invari-
ants, but also to point out that all the algebraic invariants we know are
weak Morita invariants. Nevertheless, although this notion does behave
well for all Poisson manifolds, it is not our intention to present it as
the “satisfactory” notion of Morita equivalence that we asked at the
beginning of this section, for it does not take the symplectic/Poisson
picture fully into account. Let us point out two other possible notions
of Morita equivalence for non-integrable Poisson manifolds:

Symplectic Morita Equivalence: We mimic Xu’s definition (see
Definition 7) but we remove the completeness assumption. Then we ob-
tain a symmetric relation which is also reflexive (because of the existence
of a local symplectic groupoid integrating any M). It is however not
clear that this relation is transitive, so we should take the equivalence
relation it generates.
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Algebraic Morita Equivalence: For M1 and M2 to be algebraic
Morita equivalent we require the existence of a Lie algebroid bi-module
for T ∗M1 and T ∗M2: there are commuting free actions ρ1 and ρ2 of
T ∗M1 and T ∗M2 on Q, with moment maps M1

π1←− Q
π2−→ M2, where

each πi is a surjective submersion with simply connected fibers, such
that the orbits of ρ1 (respectively, ρ2) are the fibers of π2 (respectively,
π1).

It is not hard to see that one has the following chain of implications:

symplectic Morita =⇒ algebraic Morita =⇒ weak Morita

In our opinion, it is an important open question to show that these
relations coincide or else to find new Morita invariants which are not
weak Morita invariants.
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ferential Geometry 26 (1987) 223–251, MR 0906389 (88j:58032), Zbl 0634.58003.

[13] C. Debord, Feuilletages singulaires et groupöıdes d’holonomie, Ph.D. Thesis,
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