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A DEGENERATION FORMULA OF
GW-INVARIANTS

JUN LI

Abstract

This is the sequel to the paper [23]. In this paper, we construct the virtual
moduli cycles of the degeneration of the moduli of stable morphisms con-
structed in [23]. We also construct the virtual moduli cycles of the moduli
of relative stable morphisms of a pair of a smooth divisor in a smooth vari-
ety. Based on these, we prove a degeneration formula of the Gromov-Witten
invariants.

0. Introduction

This is the second part of the project initiated in [23].

Like Donaldson invariants of 4-manifolds, Gromov-Witten invariants
are intersection theories on the moduli spaces of stable morphisms to
varieties or symplectic manifolds. Unlike the Donaldson invariants, in
this case one needs to use virtual intersection theories to define the
Gromov-Witten invariants: namely, the intersection theories defined via
virtual moduli cycles. Such cycles were first constructed by Tian and the
author [25, 26] for algebraic varieties, and an alternative construction
was achieved by Behrend-Fantechi [2, 3]. Gromov-Witten invariants of
general symplectic manifolds were developed in [32, 31, 6, 27, 33, 34]
and the equivalence of these constructions were proved in [28, 35, 19].

The goal of this project is to prove a degeneration formula of the
Gromov-Witten invariants in algebraic geometry. This is the analogy
of the Donaldson-Floer theory in gauge theory. Such a degeneration
theory (for Gromov-Witten theory) was investigated by several groups
using analysis [5, 14, 15, 24, 37].
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Here is the situation we will study in this paper. Let W — C be a
family of projective schemes over a smooth pointed curve 0 € C' so that
the total space W is smooth, the fibers W; over t # 0 € C are smooth
varieties and the special fiber Wy has two smooth irreducible compo-
nents Y7 and Y5 intersecting transversally along a connected smooth
divisor D € Wy. We will call Y £ (V;, D;), where D; = D C Y;, the
relative pairs after decomposing Wy. In this paper, we will construct
the Gromov-Witten invariants of W; for all t € C. We will construct the
relative Gromov-Witten invariants of the relative pairs Y £ (Z, D).
We will prove that the Gromov-Witten invariants of W are locally con-
stant for t € C. Finally we will prove a degeneration formula relating
the Gromov-Witten invariants of W with the relative Gromov-Witten
invariants of Y7 and Y3°!, one in cycle form and the other in numerical
form.

The first part of this paper is devoted to constructing the Gromov-
Witten invariants of the singular scheme W{;. This is based on the
moduli of relative stable morphisms to W/C', constructed in the first
part of this project [23]. Recall that there we constructed a stack 20
that includes all expanded degenerations of W. We then introduced the
notion of prestable, predeformable and stable morphisms to 20. We let I'
be the triple consisting of the genus, the number of marked points and
the degree of the stable morphisms. We then constructed the moduli
space M(2W,T") of stable morphisms to 2 of topological type I'" and
proved that it is a Deligne-Mumford stack, separated and proper over C.
Applying parallel construction to a relative pair Z! (of a smooth divisor
D in a smooth variety Z) we constructed the stack of expanded relative
pairs 3™, We then defined the notion of relative stable morphisms to
3! and showed that the moduli (3!, I") of relative stable morphisms
to 3! with topological type I" is also a separated and proper Deligne-
Mumford stack. Here I" is the topological type of the relative stable
morphisms, to be explained momentarily.

In this paper, we first construct the standard obstruction theory of
M(W,T), M(Wo,T) = M(W,T) xc 0 and M(3*, T'). We then show
that they are all perfect, thus allow us to construct their respective
virtual moduli cycles. Based on the virtual moduli cycle [9(20, T')]V'™,
we define the Gromov-Witten invariants of W

OO HY(Wo) >k x H* (M, ) — Q

in the standard way, where T' = (g, k, A). Similarly, for Z™' we define
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its relative Gromov-Witten invariants
U4 HH(Z)% x H*(Mpo) — H,(D")
to be
UE" (@, 8) = qu(ov (@) Uno(8) (3, T)] ™) € H.(D").

Here k (resp. r) is the number of ordinary (resp. distinguished! ) marked
points of the domain curves, ev is the evaluation morphism associated
to the ordinary marked points, q : 9t(3™,T) — D" is the evaluation
associated to the distinguished marked points and 7 : 9t(3*, T7) —
Miro is the forgetful morphism, where 9Miro is the moduli of stable nodal
curves®> whose topology is given by the data in I".

The invariants \IJEVO and \Illg,rel have the expected properties. For
instance, \IIEV ¢ is locally constant for t € C, and \Iflg,rel is invariant under
any smooth deformation of 2.

The second part of this paper is to derive a degeneration formula of
the Gromov-Witten invariants associated to the (degeneration) fam-
ily W. As explained in [23], we expect to have a formula relating
the Gromov-Witten invariants of Wy, and hence of W;, to the rela-
tive Gromov-Witten invariants of Yirel. In this paper, we prove such a
degeneration formula:

U (a(t), B)

= Y 2 S (W Gla(0). A, 0 85 (30000, 8,2)]

neQ ~ jeK,

We will explain the notation momentarily. We call the above the de-
generation formula in numerical form. There is a parallel degeneration
formula in cycle form:

[DR(QUO, F)]virt

Z gl(n) @n*A'([ﬂﬁ( iel’rl)]virt % [S)ﬁ( Eel’FQ)]virt).
neEQ/~

The degeneration formula in numerical form is an easy consequence of
the degeneration formula in cycle form.

The distinguished marked points of the domain of a relative stable morphism f
are mapped to the distinguished divisor D C Z under f.
2By which we mean nodal curves having no vector fields, not necessary connected.
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We now explain the notation in the degeneration formulas. Let I'y be
a topological type of a relative stable morphism f to Yfel. As introduced
in [23], Ty is a weighted graph that consists of vertices, ordered legs
and ordered roots. Each leg or root is a line segment with one end
attached to a vertex. Each vertex represents a connected component
of the domain X of f (not necessarily connected), each leg (resp. root)
represents a marked point (resp. distinguished marked point) on X. We
require all distinguished marked points are mapped to D under f. The
vertices (resp. roots) of I' are assigned weights, representing the degrees
of f along the associated components of X (resp. the contact orders of
f along the normal direction of D C Z).

We define the evaluation morphism

q1 Zi)ﬁ( ]ielvrl) —’DT§ f'_> (f(ql)a"'af(ch))

by evaluating on the distinguished marked points (q1, ..., ¢, ) of X. Now
let I'y and I'y be so that they have identical number of roots. Then we
have a pair of evaluation morphisms q; and qg and thus can form the
Cartesian product

m( ﬁel,l“l) XDrf)ﬁ( 561,1“2).

Let A: D" — D" x D" be the diagonal morphism. The virtual moduli
cycle of the above Cartesian product is

A'([ﬁﬁ( 1{617F1)]Virt % [m( 5617F2)]Vi1"t)'

The set 2 (in the summation above) is the set of all admissible triples
(I'1,T9, I). Here (I'1,T, I) is admissible if I'; and I'y are two weighted
graphs associated to two relative stable morphisms that satisfy the fol-
lowing property: First their ordered sets of weighted roots are isomor-
phic. Hence if (f1, f2) is an element in 9(Y, T'1) x pr M(YEL, T'y) with
X; the domain of f;, then we can glue the i-th distinguished marked
points (associated to the i-th root) of X; with the i-th distinguished
marked point of X for all ¢ to obtain a new nodal curve X and a
morphism f: X — Wjy. As part of the requirement, the curve X is
connected of arithmetic genus g and f is a stable morphism of degree
d. Lastly, I is a rule assigning an ordering of the union of the ordinary
marked points of X1 and Xo, consistent with their original orderings.
Now let n = (I'1,T'2, I) be an admissible triple with r roots. Then any
permutation o € S, defines a new element 1 by reordering the roots of
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1 according to o. For ny,m2 € Q, we say n1 ~ 12 if g1 = ng for some o.
The notation Eq(n) appeared in the degeneration formula is the set of
all o € S, so that n =n°.

Let n € Q/~, then the above construction associates to every pair
(f1, f2) a stable morphism f in 9(20,T). This defines a morphism

‘1)77 : m( ﬁel,Fl) X pr gﬁ( 561,1“2) — EDT(QU(),P).

A lemma in [23] asserts that ®,, is a local immersion and the degree of
®,,, as morphism to Im(®,,), is | Eq(n)|. Then the degeneration formula
in cycle form asserts that the union of

m(n) ! rel virt rel virt
‘Eq(?’]”q)n*A ([ﬂﬁ( 1 7F1)] X [gﬁ( 2 7F2)]
is the virtual moduli cycle of 9M(2Wy,I"). Here m(n) is the product of
the weights of the roots of n (or of the I'; in n).

We now explain briefly the strategy to prove the degeneration for-
mula. Let (1,t) be the pair of the trivial line bundle on (20, T") and
the pullback of a section t € I'(O¢) so that ¢~1(0) is the origin 0 € C.
Then the virtual moduli cycle [9(2Wo, T')]¥"™ is the intersection

[0, )]V N t71(0) € A IM(Wo, T).

Using the notion of localized top Chern class, this is c1 (1,t) [997(20, T')]V*®

It turns out that to each n € § there associates a pair (Ly,t,) of
a line bundle L, on MM (2, I') and a section t, € I'(L,) so that 1 =
@peq/Ly as line bundles and under this isomorphism t = II,cq /.ty
This says that 9(2W, ') “virtually” is a union of normal crossing divi-
sors, each associated to an n € Q and is defined by the vanishing of t,,.
This can be seen as follows: Let f € 9(2W,T") be a general point, say
represented by f:X — Wy. Then f; = f|x, with X; = f~1(Y7) defines
a relative stable morphism to Yf‘ﬂ. Similarly we have the induced rela-
tive stable morphism f5: Xy — Y2re1. Let I'1 and I'y be the topological
types of fi and fo, respectively. The fact that f can be reconstructed
from the pair (fi, f2) provides us a triple n = (I'1, "2, I'), which belongs
to Q. The general points f € 9(Wy, ") that share identical 7 defines
a closed subset in (W, I'). This set is homeomorphic to t,’ 1(0). The
miracle is that such closed subset carries a natural closed subscheme
structure, and is in fact defined by the vanishing of a Cartier divisor
(Ly, t,). Further the tensor product of all such (L,,t,) is the (1,t)
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that defines the moduli stack 9t(20p,I"). Then by applying the known
identity of the localized top Chern class, we have

[9(Wo, D)V = 1 (1, £)[9R(W, 1)V = Z c1(Ly, t,))[9(28, T)]¥I"t.
neEQ/~

To prove the degeneration formula in cycle form, we need to show
that

c1 (L ty) [M(20, )]

m . .
— | EéZ;Mq)TI*A' ([m( iel’ Fl)]vlrt % [Dﬁ( 12'617 F2)]v1rt) )
This is done as follows: First we will show that the vanishing locus
t,1(0) C 9M(W,T) is homeomorphic to the image stack of ®,. We
then show that the cycle c1(Ly, t,)[9(20,T)]V"" is a multiple of the
virtual moduli cycle of 9M(YP, T'1) x pr MY, T'2), endowed with the
obstruction theory induced by the Cartesian product. This leads to the
formula above.

Finally, we explain the notations in the degeneration formula. This
formula is an immediate corollary of the degeneration formula in cycle
form. The only new symbols are j;., K, and 3,; ;. First 3;:Y; — Wy
is the inclusion and hence j7a(0) is the pullback cohomology. Secondly,
given any n = (I'1,T'2,I) € Q, we can form the moduli space of sta-
ble curves (not necessary connected but with no vector fields) whose
topology are determined by I';. We denote such moduli space by M.
For any pair (C1,C9) € Mre X Qﬁrg we can glue Cy with Cy pairwise
along all pairs of the i-th distinguished nodes. This defines a morphism
Gy - S)ﬁpg X Mrg — My . The terms fy; ; are terms appear in the
Kunneth decomposition,

Gy (B) = Z Bn,1, X B2

jeKn

assuming it exists.

As mentioned in the introduction of [23], the construction of the
moduli stacks 9(20,T") and M(3"!, T), and the derivation of the degen-
eration formula in this paper will be useful in studying several problems
in algebraic geometry, some related to mathematical physics. Some of
these will be addressed in the future research.

The degeneration formula of Gromov-Witten invariants for sym-
plectic manifolds has been pursued by several groups prior this work.
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(In symplectic setting this is when a smooth symplectic manifold de-
generates to a union of two smooth symplectic manifolds intersecting
transversally, called the symplectic sum.) In [37], Tian studied the sym-
plectic sums for semi-positive symplectic manifolds and showed how to
derive the decomposition formula of the Gromov-Witten invariants in
this setting. Later, A. Li-Ruan [24] worked out a version of the relative
Gromov-Witten invariants and the degeneration formula of Gromov-
Witten invariants for general symplectic manifolds and symplectic sum.
The degeneration formula in numerical form proved in this paper is
analogous to the degeneration formula in [24]. A parallel theory was
developed by Ionel-Parker around the same time [14, 15, 16]. Their
formula works for more general cases and is largely analogous to ours.
It contains a correction term, which is expected to be trivial when the
symplectic sum is along a (holomorphic) divisor. The SFT theory of
Eliashberg-Givental-Hofer [5] is a very general theory part of which can
be interpreted as research along this line. The degeneration formula in
cycle form proved here is new.

This paper consists of five sections. In Section 1, we work out the
obstruction theory of 9t(20,T), M(3™,T') and other related moduli
stacks. The main result of this section is that the standard obstruction
theories of these moduli stacks are perfect. Section 2 is devoted to
construct the virtual moduli cycles of these moduli stacks. We present
a modified construction of virtual moduli cycles which allow one to
construct such cycles without assuming the existence of global locally
free sheaves that resolve the obstruction sheaves, as assumed in [26]
(and also assumed in [3] but recently removed in [22]). The Gromov-
Witten invariants of Wy and the relative Gromov-Witten invariants of
Z™! are constructed in this section. In Section 3, we constructed the
line bundles with sections (L,,t,) mentioned in the introduction and
in Section 4 we demonstrate how to derive the degeneration formula,
assuming a series of key lemmas. The last section is devoted to the
proof of these key lemmas. In the Appendix, we give an expression of
the obstruction space of a closed point in 9t(20,T") and in (3", T) in
terms of some known cohomology groups.

1. Deformation theory of log morphisms

In this section we will first recall the notion of morphisms between
schemes with log structures (in short log morphism). We will then
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show that the notion of predeformable morphisms introduced in [23]
is a special class of log morphisms. In the end, we will work out the
deformation theory of log morphisms.

1.1 Predeformable morphisms and log morphisms

Let f: X — W]n| be a flat family of predeformable morphisms over S
with g : S — A"! the morphism underlying f (cf. [23, §2]). In this
subsection, we will give X and W{n] canonical log structures and show
that f is a morphism between schemes with log structures. We will
then use the sheaf of log differentials to describe the deformation of
predeformable morphisms. All materials concerning schemes with log
structures are drawn from the papers of Kato [17, 18].

We first recall the notion of logarithmic structures (log structures) on
schemes, following [17, 18]. Let X be any scheme with Oy its structure
sheaf. We view Ox as a sheaf of monoids under multiplication.

Definition 1.1. A prelog structure on X is a homomorphism
a: M — Ox of sheaves of monoids, where M is a sheaf of commutative
monoids on the étale site Xqt of X. The prelog structure a: M — Ox
is said to be a log structure if o induces an isomorphism a:a~1(O%) —
O%, where O% is the subsheaf of invertible elements in Ox.

Given a prelog structure, one can construct canonically an associated
log structure a®: M?® — Ox, where M? = (M@ O%) /a1 (O%) (cf. [18,
§2]). A morphism (X, M) — (Y,N) of schemes with log structures is a
pair (f, h) of a morphism f:X — Y and a homomorphism h: f~1(N) —
M that satisfy the obvious commutativity condition: The composite
fYN) - M — Ox is identical to f~1(N) — f~}(Oy) — Ox. For
convenience, given a scheme (X, M) with local log structure, we shall
abbreviate it to X T with the local log structure M implicitly understood.
Accordingly, we will abbreviate a morphism (X, M) — (Y, N') between
schemes with log structures by f: X1 — YT,

A typical example of a scheme with log structure is the log structure
of a pair (X, D) of a smooth scheme X and a divisor D C X with normal
crossing singularities (cf. [17, (1.5)]). Let

T :Win] — A"

be the expanded family constructed in [23, §2]. Recall that Wn] is a
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small resolution of W x ¢ C[n] constructed in [23]3 . Then W[n] x o1 0 C
W{n] is a divisor with normal crossing singularities having n + 2 irre-
ducible components. Here A"t — Al is the morphism (21, ..., z,11) —
21 ... Zng1. We let Wn]" and A1 be Wn] and A"+ endowed with
the log structures induced by their respective pairs

Win] xar 0 C Win] and A" x 1 0c A"

Let X be a log scheme. A chart of XT consists of an étale neigh-
borhood U C X, a constant sheaf of monoids P and a homomorphism
P — Oy so that the associated log structure P® of P is isomorphic to
the log structure on U. We now describe the charts of W[n]'. Recall
that the projection 7, is smooth away from n + 1 disjoint smooth codi-
mension 2 subvarieties Dy, ..., D41, indexed so that the component
D; surjects onto the I-th coordinate hyperplane H; ¢ A"+, Let y € Dy
be any point. A chart of W (n| along y consists of a pair (W, 1), where
W is a Zariski open subset of y € Wn] and v is a smooth morphism

(1.1) ¥ W — Speck[wy, o] @y, (AT £ 0

so that the canonical projections W — A"t! is the composite of 1
with the projection ©; — A"™*!. Here the two projections in the fiber
product are defined via t; — wjws and by viewing ¢; as the [-th standard
coordinate variable of A"l Let N2 — (), be the homomorphism of
monoids? defined by e; — ¥*(w;) and let N**! — O n11 be defined via
e; — t;. We then form the product N? XN, Nt where N; = N, N; — N2
is defined by e — e; + e while N; — N**1 is the inclusion as the I-th
copy in N"*1. Because of the relation t; — wjws, the homomorphism

(1.2) N2 xy, Nt — Oy

induced by N> — Oy, and N"*1 — Opni1 — Oy defines a preloga-
rithmic structure on W. This defines a chart of Wn]" near y € D.
Similarly, the log structure of A™*! is given by the homomorphism
Nt Opn+1 via e — 1.

3We first fix an étale C — A’ so that 0 € C is the only point over 0 € A'. We
then form C[n] = C x a1 A", where A" — Al is defined via (t;) — t = ITt;. The
family Wn]/C[n] has the property that it has smooth total space, its fibers have
only normal crossing singularities and the fibers of W [n| are either Wy for t £ 0 € C
or unions of Y1, Y2 and copies of a ruled variety A. Finally the G[n] = GL(1)*"
action on A"V via (t;)° = (o1t1, 07 Loata, ... ,) lifts to a unique action on W[n).

4We will denote by N the additive monoid of nonnegative integers, and by N* the
direct product monoid with standard generators e, ..., ek.
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Now let f: X — W/n| be a flat family of predeformable morphisms
over S, defined in [23, §2]. Out next step is to show that we can
endow X /S with a log structure so that f becomes a morphism be-
tween schemes with log structures. We will use the following convention
throughout this paper. We call p:U — V an étale neighborhood of the
family X' /S if U and V' are étale neighborhoods of X and S, respectively,
such that the diagram

(1.3) pl ”l

is commutative.

Definition 1.2. Let 7: X — S be a flat family of nodal curves and
let x € X be a node of the fibers of the family X'/S. A chart of the nodes
of X'/S near x consists of an affine étale neighborhood p:Uf — V of X'/S
near x, two regular functions z; and 29 € I'(Oy) and a regular function
s € I'(Oy) satisfying 2122 = p*(s) such that the homomorphism

(1.4) ¢ : k[z1, 22] @[5 T(Op) — T'(Ou)

is an étale homomorphism, that {z; = 2o = 0} C U is connected and
that the induced homomorphism

¢+ (K[21, 2] @y T(Oy))" — T(On)’

is an isomorphism.

A few remarks are in order. First ¢ is defined by viewing z1, 29
and s on one hand as formal variables and on the other hand as regular
functions. This should cause no confusion since their roles are clear
from the context. Also, the homomorphism k[s] — k[z1, 22| is defined
by s +— z1z2. As a convention, in this section we will use L and h (or
L" and h") to denote the I-adic completion of the ring L and the image
of h € L under the homomorphism L — L, assuming I = (z1, z2) is an
ideal of L.

Lemma 1.3. Let m: X — S be a flat family of nodal curves and
let x € X be a node in X,, where y = w(x). Then there exists a chart
of the nodes of X /S near x.

Proof. The proof is straightforward and will be omitted. q.e.d.
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We next recall the notion of morphisms of pure contact and prede-
formable morphisms. Let f: X — W/n| be a flat family of morphisms
over S. We let £ € X be a node of the fibers of X'/S so that f(¢) € D;
for some [. (Such nodes are called the distinguished nodes.) We let
(U/V, d) be a chart of the node £ of X/S, as in Definition 1.2, and let
¥ : W — Win| be a chart of f(£) as in (1.1) so that f(U) C W. We
let fi = flu:U — W. As mentioned, we denote by A the (z1, zo)-
adic (resp. (s)-adic) completion of A in case A is a k|z1, z2]-algebra
(resp. k[s]-algebra).

Definition 1.4. Let the notation be as before. We say f is for-
mally of pure contact of order m at £ (or is predeformable at £) if there
is an étale chart U/V of £ € X /S and a chart W of f(§) so that the
induced homomorphism

fii  k[wy, wa] — (k[z1, 22] @y T(O))*

has the property that there are units hq, he € (]k[zl,zz] O (q] F(OV))A
satisfying hihy € T (Oy) so that, possibly after exchanging w; and we,
fi",(w,) = illz;” We say f is of pure contact of order m if there are charts
as before and units h1, hy € k21, 22] @[5 '(Oy) satisfying hihg € T'(Oy)
such that, possibly after exchanging wy and wa, fj(w;) = 2" h;.

The notion of pure contact of order m was defined in [23, Definition
2.3]. We have the following facts whose proof can be found in the
Appendix.

Lemma 1.5. The notion of pure contact is independent of the
choice of the charts of the nodes of U]V .

Lemma 1.6. Let the notation be as in Definition 1.4. Then f is
of pure contact at & if and only if it is formally of pure contact at €.

Let f: X — W]n] be a predeformable morphism over S. We now
define the induced log structure on X' /S. We begin with charts of f.
Let € X be any closed point so that f(z) ¢ D. Here D is the union
of all D;. A chart of f near z is a triple (Un/Va, Wa, fo) of an étale
neighborhood U, /V, of € X, a Zariski neighborhood W, C W[n]—D
and fo = f|u, so that fo(U) C W,. Charts of this type will be called of
the first kind. Next let z € X’ be a distinguished node of X'/S, namely
f(z) € Dy, for some l,. We pick a chart (W,, 1) of f(x) € Wn]
with 1, as in (1.1). Because f is predeformable, by Lemma 1.6 we can
find a chart of the nodes of X'/S near z, say given by (Us/Va, o) as
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in Definition 1.2, so that U, — X — W(n] lifts to fo :Us, — Wy, and
further there are units hq 1, ha2 € I'(Oy, )™, elements gq 1, ..., Jant1 €
I'(Oy,) and an integer my, so that

(1.5)  hajhap €T(Oy,), folwa,)= zzgha,i and  f3(tj) = ga,j

fori = 1,2 and j = 1,...,n+ 1> Here we comment that we will
not distinguish we ; (resp. zq,i) with ¢} (wa,i) (resp. ¢k (zq,)). In other
words, we will view wq; € Oy, (resp. za; € Oy, ). Similarly we will
view &, € Oy, via the pullback Opant1 — Oyypy. Note that since
Wa,1Wa,2 = b, and zq,12q,2 = S, We must have

(1.6) Jole = S0 (ha,1ha,2).

We will call such triplet (Us/Va, Wa, fo) With (¢a, 1) understood a
chart of f of the second kind.

Simplification 1.7.  In case (Uy/Va, Wa, fo) is a chart of the
second kind, for simplicity we assume hq,1 = ha,2 = 1. This is possible
possibly after an étale base change of Uy, /V,.

We now cover X' by charts of f, say (Uy/Va, Wa, fo) indexed by
a € A, of the first or the second kinds satisfying the Simplification 1.7.
Let a be a chart of the second kind with ¢, and v, understood. We
then let M2 = N? (resp. NO = N) and let M2 — Oy, (resp. N2 — Oy,,)
be the prelog structure defined by eqn; — 2 (resp. eq +— so). Note
that Ng — Ma0 defined by e, — €q,1 + €q,2 makes the projection U, —
Vo @ morphism between schemes with (their respective associated) log
structures. We now define the desired log structures on S. Let £ € S be
any closed point and let X¢ be the fiber of X over £ with ¥ = f~1(D)NA;
be the set of distinguished nodes of X:. We let Ag be a collection of
a € A so that {Ua}aen, covers a neighborhood of X C X. We then
let K; be those a so that f~1(D;) NU, # 0. We let K be the union of
Ky, ..., Kyt1. By eliminating redundant « from Ag we can assume that
each node of Xz N f~1(Dy) is covered by at most one o € K;. We then
pick an étale neighborhood V of £ € S so that V — S factor through
Vo — S for all @ € Ag. For each I € [n+ 1] we let N; = ®acr, N and
let N; be the quotient (monoid) of N by the relations maeq = mgeg for
all pairs a, 3 € K;. In case K; = (), we agree N; = N; = N. Note that
for o € K; the homomorphism N; — Oy, defined by e, +— s, and the

"By this we mean it is in the image of the pullback homomorphism T'(Oy,) —
I'(Ou,).
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pullback Oy, — Oy descends to a homomorphism N; — Oy, because
of the relations (1.5) and (1.6). When K; = (), we define N; — Oy, via
e — g*(t;). We define the prelog structures Ny and Ny on V to be the
ones given by the direct sums

(1.7) N = n+1Nl—>OV and N n+1Nl—>OV

We denote by Ny and Ny the associated log structures on V.

We next define the desired prelog structure on U,. By replacing
Uy by Uy Xy, V, we can assume V, = V. Accordingly we let N, and
N, — Oy be that induced by Ny and Ny. Now let [ be so that
a € K. Recall that U, has a prelog structure given by M2 — Oy . Let
Ng — Mg be as before (defined by eq — €q,1 +€q,2). Then we have the
obvious homomorphism

(1.8) My =M) xno Ny & (®ruNy) — Oy,
and
(1.9) M, = Mg X NO N; & (@l’;élNl’) — Oua.

Here MY x NO N; — Oy, is induced by M2 — Oy, and N; — Oy, —
Oy, while Ny — Oy, is the composite of Ny — Oy, — Oy, . The arrow
in (1.9) is defined similarly. They define two prelog structures on U,.
We let M, — Oy, and M, — Oy, be the associated log structures.
Note that the obvious N, — M, and M, — N, make the projection
Uy — V, a morphism between schemes with respective log structures.

Proposition 1.8. The log structures (U, My) and (Va, No) patch
together to form log structures M on X and N on S. The same con-
clusion holds for (Uy, My) and (Va,No). The collection of homomor-
phisms No — M, makes X7 = (X, M) a log scheme over ST = (S, N).
Further, the morphism f is naturally a morphism between schemes with
log structures X1/ST — Wn]'/An+1i,

Proof. The fact that the so defined log structures on U, and V,
patch together to form log structures on X and S is obvious. We now
study the morphism f. We first investigate the morphism g:S — A"t}
underlying f. Let £ € S be any closed point with (V, Ny) a chart
of ST, constructed before. Recall that the log structure on A™t1T ig
given by the prelog structure N**! — T'(A"*!) via ¢; + #;. To show
gly:V — A"l is a morphism between schemes with log structures we
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need to define a homomorphism N*+!1 — Ny, that satisfies the obvious
compatibility condition. By definition Ny = @;N; and N; is N in case
K; = 0 and is the quotient of N; = @aeKlNaO otherwise. In the first
case we define N — N; to be the unique isomorphism. In the later case
we let N — NN; be induced by 1 — mge, € N; for some a € K;. By the
definition of IV; such definition is independent of o € K;. The desired
homomorphism N**! — Ny, is the direct sum of these n + 1 copies
N — N;. It is direct to check that this defines ¥V — A"l a morphism
between schemes with log structures. By working over a covering of S,
one sees that ¢ is a morphism between ST — AT,

The proof that f a morphism between X1 and W[n]T and is com-
patible to g: ST — A" is similar, relying on the relations (1.5) and
(1.6) and the assumption that all h,,; = 1. This completes the proof of
the proposition. q.e.d.

We conclude this subsection by noting the equivalence of the de-
formations of predeformable morphisms and the deformations of log
morphisms.

Definition 1.9.

1. A log extension of (V,,N,) by I consists of an extension 1706 of V,
by I as schemes, and an extension N, — O% of N, — Oy,,. We

denote such extension by (Va, Ny).

2. A flat log extension of (Un/Va, Ma/Na) by I consists of an ex-
tension (Vo,Na) of (Va,Ny) by I, a flat extension U, — Vs of
Uy — Vo and an extension M, — Op of the prelog structure
M, — Oy, of which the following holds a. The projection
L~{ — Va is a log morphism under the given N, — M,; b. Away
from the distinguished nodes of U, the prelog structure M, — Oﬂa
is the pullback of Ny — Oy RES Near the distinguished nodes in

U, the projection Ll — Va is log smooth.

We have the following lemma which says that extending f as a pre-
deformable morphism is equivalent to extending f as a log morphism.

Lemma 1.10. Let f: X/S — W[n]/A™! be as before with the
canonical_log structures understood. Let S O S be an extension of S.
Suppose Stz’sNa log extension of S, Xt — ST is a flat log extension of
X/S and f'x"CJf/SJr — Wn]' /A" is an extension of f as log mor-
phism. Then f is a predeformable extension of f and the log structures
on X/S induced by f coincide with the log structure of X]L/S]L
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Proof. The proof is straightforward and will be omitted. q.e.d.

1.2 Deformation of predeformable morphisms

The goal of this subsection is to work out the deformation theory of pre-
deformable morphisms. Based on the equivalence lemma, it is natural
to work out the deformation theory of predeformable morphisms in the
frame work of log morphisms. However, the deformation theory of log
morphisms worked out in [17, 18] deal with the question on how to ex-
tend families over ST to ST. In our situation, the log structure on S for
a predeformable family f:X/S — W[n]/A"*! relies on the morphism
f. Hence for any extension of base S C S the extension of log structure
to S is part of the extension problem. Hence the deformation theory of
Kato [18] can not be applied directly. In this subsection, we will work
with the deformation of predeformable directly.

Our construction of the obstruction theory is elementary. We first
show that locally there are no obstruction to extending predeformable
morphisms. We then identify the space of all such deformations. After
that, it is standard to express the obstruction to the deformation of
(global) predeformable morphisms as a cohomology class in a cohomol-
ogy of a complex built out of a Céch complex. In the end, we check that
this complex is a perfect complex.

We begin with recalling some basic notion in deformation theory.
Our treatment follows [1, 26]. Let A be an A-algebra. We let Tvi, A
be the category whose objects consists of are all triples (B, I, ¢) where
B are A-algebras, I are ideals of B such that I? = 0 and ¢ are A-
homomorphisms A — B/I. Let £ = (B,I,¢) and ¢ = (B, I',¢') be
two objects in Tri, A A morphism from ¢ to ¢ consists of an A-
homomorphism 7 : B — B’ so that r(I) C I’ and ¢/ = ¢ o ry where
ro:B/I — B'/I' is the induced homomorphism. We let 91004 be the
category whose objects are pairs (B,I) where B are A-algebras and
I are B-modules. Morphisms from (B,I) to (B’,I') are pairs (r,T7)
where r: B — B’ are A-homomorphisms and 7 are B-homomorphisms
I — I'. We let 9007 be the category whose objects are (v, B, I) where
(B,I) € Ob(Mod4) and v € I. Morphisms from (B, I,v) to (B',I',v")
are pairs (r,7) as in Mody4 so that 7(v) = v'.

We define Def  7: Tti, 5 — (Sets) be the functor that associates to
any £ = (B, I, ) the set of all A-homomorphisms A — B extending ¢:
A — B/I. (In case A is understood, we will omit the subscript A.) It is
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known that under some mild conditions [36] this set admits B/I-module
structures. Once this is the case, then after fixing a reference element
a € Defy(§) we can give Def,(€) a natural B/I-module structure. In
particular, if B = B/I * I, which is the trivial extension of B/I by the
module I, then Def,(§) contains the trivial extension B — A induced
by B= B/I«1 — B/I — A. Using this as the reference element, we
obtain a canonical module structure on Def,(£). Note that there is a
natural functor Mov 4 — Tri, 7 that sends (B, 1) to (B*1,1, ) where

@: A — B is the obvious homomorphism. We let Def} : Mod 4 — Mod4
be the composite of Mody — TtiA/z with Def,. We call Defy the
functor of the first order deformations.

Now let E*® be any complex of A-modules. For any integer i the
i-th cohomology of E® defines a functor h*(E®) : Mod4 — Mody via
(B,I)— (B,h{(E*®4I)).

Definition 1.11. Let S = Spec A be an affine scheme over T =
Spec A. A perfect obstruction theory of S/T consists of a two term
complex of finitely generated free A-modules E* = [E' — E?] (indexed
at [1,2]) and an obstruction assignment ob taking value in the second
cohomology of E* of which the following hold:

1. The functor Def! is isomorphic to the functor h!(E*).

2. For any triple (B, 1,¢) € Ob(Triy z), the element
0b(B, I, ) € h*(E*)(I) = h*(E®* @4 1)

is the obstruction class to extending ¢ : A — B/I to an A-
homomorphism A — B.

3. The obstruction assignment
(BvL 90) = (B7h2(E. ®A I)70[](B?I? 90))

is a functor from Tri, /4 to Mod’. Namely it satisfies the base
change property.

A few remarks are in order here. First, in [26], we only consid-
ered the case where T' = Speck. Here we need to study the relative
case for the proof of the degeneration formula. When T = Speck,
we will omit 7" from the notation. When 7' is nontrivial, we will call
the obstruction theory so defined the relative obstruction theory. Sec-
ondly, when we restrict to the subcategory of all triples (B,I,¢) so
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that B are Artin local rings with residue fields k, then the above data
is the obstruction theory to deforming ¢(Speck) in S. Thirdly, since
Homy (€24 7 ®a B/I,1) is canonically isomorphic to ’Defz/z((B, 1)), we
have ker{E?Y — E'V} >~ Q, /4 Lastly, in the definition we can replace
E* by its associated complex of sheaves of Ogpec p-modules and modify
the wording accordingly. This is convenient if we work with obstruction
of schemes or stacks. We will call h?2(E®) the obstruction module and
call its associated sheaf (of Ogpec p-modules) obstruction sheaf.

We now investigate the deformation theory of predeformable mor-
phisms to W n|. Let I" be the data (g, k, b) representing the genus, the
number of marked points and the degree of the maps. Recall that a
morphism f: X — Wn]| is said to be stable as morphism to 20 if f is an
ordinary stable morphism, it is predeformable along the nodal divisors
of the fibers of W[n]/A™! and ut(f) is finite. Here Aut(f) consists
of all pairs (a,b) with a: X = X and b € Gn| so that foa =bo f,
where b: W [n] — W{n] is the automorphism defined by the G[n]-action
on W[n]. We let 9(W [n],T')* be the moduli space of stable morphisms
to Wn] of prescribed topological type that are also predeformable as
morphisms to the family W[n]/C[n| and are stable as morphisms to the
stack 20.

As argued in Section 2 in [23], it is a Deligne-Mumford stack and it
comes with a tautological morphism

IM(W[n], 1) — M(2W,T).

In the remainder of this section, we will cover (W [n],T')5" by affine
étale charts and construct canonical obstruction theory of each of these
charts. The obstruction theory of 9(20,T") will be the descent of the
obstruction theory of 9(Wn|,T')%t. Since this study is local, during
our study we are free to shrink an open chart S — (W (n],T)5" if
necessary.

In the remainder of this subsection we fix an affine étale chart S —
IM(W[n],T)s* with f: X — W(n] its universal family. We let S = Spec A
and let D C X be the divisor of the union of all marked sections of X'/S.
We fix a collection of charts (Un/Va, fa) of f that covers X satisfying
the simplification assumption. In case « is a chart of the second kind,
we will reserve the symbols W, 24, Wayi, @a; Yo, Mo and [, for the
data associated to the chart «. Our first task is to show that locally
there are no obstruction to extending predeformable morphisms f,.

We begin with the notion of flat extensions of an étale neighborhood
Uy /Vo. Let I be an A-module with Z, = I ® 4 Oy,. We say 904 is an
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extension of V, by I it V, C Va is a subscheme with the ideal sheaf
7 of V, C V, satisfying (Z ) = 0 and the resulting Oy, -modules T is
isomorphic to Z,. We say Ua/ Vs is a_small extension of Uy, /V, by I
1f Va is an extension of V, by I and Z/Ia is a flat extension of U, over
Va. Now let Uy /Va be an extension of Uy /Va by I. We first consider
the case where « is a chart of the second kind. By Lemma 1.6, we can
assume that the ¢y of Us/Vs in (1.4) is extended to b f U /V
say an extension fo :Uy, — Wn] of fo:Us — Win] is a predeformable
extension if Uy, — W[n] — A"t factor through V, — A"*! and if the
family }; Uy — W {n] is predeformable along D;,, .

We now define the space Homyy, (f*Qyyp), 1 ) that will parameterize
all such extensions. The group Homy, (f*Qyy (), 1 )T is the set of triples

(110) (90, 77177]2) € HOmua (f*QW[n]az-a) EBI(?Q’ Ia =1 XA OZ/{Q

that obey the following condition:

(1.11) o(f*dwa,;) = ff(wai) - mi,  @(f*dt) € I and m +n2 € Iy

fori =1,2andl=1,...,n+1. Here I, = I® 40y, . Since fo(Us) C Wy

and wq; € T'(Ow,), f* dwa,l € f*Qwn ®ox Oy, and hence p(f*dwa ;)
makes sense. Note also that because t;, = wq,1Wq,2, from (1.11) we
have

(1.12) Sa(m +n2) = o(f*dty,).

Clearly, Homyy,, (f*Qyy[n), 1 )T is an A-module and is A-flat if I is A-flat.

When « is a chart of the first kind, we define Homyy, (f*Quyypy), 1 )
be the subgroup of ¢ € Homy, (f*Qy(y), Za) such that ¢(dt;) € I, for
all I. Note that in case o and 3 are two charts of f and p, : Uag =
Un xx Ug — U, is the projection, then there is a canonical restriction
A-homomorphism

P+ Homyy, (f*Quypay, 1)1 — Homyy, (£* Qg 1)

We now state and prove the following local deformation lemma.

Lemma 1.12. Let Zjloé/)?a be an extension of Us/Va by I. Then
fa automatically extends to a predeformable morphism fo:Uy — W(n].
Further, after fizing one such extension, say fl, the space of all such
extensions is canonically isomorphic to the space Homy,, (f*QW[n},I)T.
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Proof. We will consider the case where « is a chart of the second
kind. The other case is simpler. First, we extend ¢, to a parameter-
ization aa of Z/~{a / 1704 with Z,; and s, the corresponding extensions of
Za,i and sq, respectively. We consider the composite ¢, o fo:Uy — Oy,
where 0y, is defined in (1.1). Let ho; =1 € T'(Oy,) and g € I'(Oy,)
be part of the definition of the chart of f,, as in (1.5) and (1.6). Since
both U, and V, are affine, we can extend hq; and gq to ha; € F(OZ)Q)
and ga, € I'(Oy; ), respectively, so that anlﬁmg € I'(0y, ) and ga,, =
St (Ea,lﬁag). We then define F : U, — ©;, by wa; — %Zlfﬁm and
t; = Ga,. Since W, — 0Oy, is smooth, we can lift F' to an extension
fo 1 Uy — Win] of fo. Namely, fa is an extension of f, such that
Yo © fa = F. The morphism fz is a desired extension.

_ Now let ﬁ be a fixed predeformable extension of f, to Zjla / l~)a. Let
fo be any predeformable extension of f,. As morphisms from U, to
Oy,, Yo 0 fa is defined by

(113) (Yoo fa) (wai) =205 ha; and (Yo o fo)*(t) = Jay
and Y, o f& is defined by
(114) (a0 o) (wai) = Zyehly; and (a0 f)*(t) = Goy-

We let n; = iNLa,i —h . € Zo- Then n1 + 12 € I, since Ea,lﬁmg and

a,t
hly 1 bl o € T(Op,). Now let @ € Homy, (fiQy,T) be defined by the
difference® d(fa — f1). It can be easily checked, based on (1.13) and
(1.14), that (¢, n1,m2) is in Homyy, (f*QW[n],I)JV.

It remains to check that this correspondence is one-one and onto,
which is straightforward. This completes the proof of the lemma. q.e.d.

Remark 1.13. In the remainder part of this paper, we will call
(¢, m,m2) the log difference of fa and f;’w denoted by de(]f”vCY - f:’l) Fur-
thermore, if fl, ﬁ~and f;, are three predeformable extensions of f, to
Ua, then d¥(f3 — f1) = d'(f3 — f2) + AT (fa — f1).

SLet t: A’ — A be a small ring extension with I = ker{t}. We call 4’ — A
a small extension if 72 = 0. Let B be any ring. Let fi, fo: B — A be two ring
homomorphisms so that ¢ o fi = ¢ o fa. We define the difference of f; and f2 to be
the map d(f1 — f2): Qp — I defined by b® 1 —1® b +— fi1(b) — f2(b) € I. Tt is
an A-homomorphism Qg ® g A — I. Note that once f1 is fixed, then fa is uniquely
determined by d(f1 — f2). Conversely, any ¢ € Homa(Qp ®p A, I) defines a unique
homomorphism f2: B — A so that d(fi — f2) = .
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We next study the obstruction to deforming a global predeformable
morphism f:X — W{n]. Before we proceed, we introduce more conven-
tion which will be followed throughout this paper. We let 1o : U, — X
and j,:V, — S be the tautological projections. As a convention, for
each o € A we let A, =T'(V,) with A — A, the tautological homomor-
phism, for o and 3 € A we will denote by U, the product U, xx Us
and by p, the projection U,3 — U,. The same convention applies to
multi-indices in the obvious way. We let 7, :Uy — V,, be the projection.
For sheaf of Oy-modules A (resp. A-module I; divisor D) we will de-
note by A, (resp. I,, resp. D,) the pullback sheaf .. A (resp. I ® 4 Aq;
resp. D xx Uy,). Also, for A-module I, we will use Z (resp. Z,) to de-
note the sheaf of Ox-modules Oy ®4 I (resp. Oy, x4 I). We denote
by do : FO — F2 the pullback of d: FO — F! in (1.15). For sheaves
of Ox-modules A and B we agree that Homy,, (A, B) = Homy, (Aa, Ba)
and for A-modules I and J we agree Homy, (I, J) = Homy_ (14, Jo).

We now study the deformation of f: X /S — W(n]/A""!. Since X /S
is a flat family of nodal curves, there is a complex of free A-modules

(1.15) F* = [F° -4 FY
so that for any A-module I,
(1.16) Exty (Qx/s(D),I) = h'(F* ®4I).

Now let S £ Spec A« FIV'7 with S C S be the immersion induced by
the obvious projection Ax F1Y — A. Let 1 € F1 @4 F'V be the identity
element and let [1] € Ext}Y(QX/S(D),FW) be the associated element.

The element [1] defines a family X'/S extending the family X'/, using
(1.16). It has the following properties:

Firstly, let I be any A-module and let a € F' @4 I be any element.
Let T = Spec A x I and Xr/T be the extension of X defined by the
cohomology class |a] € Extk(QX/S(D),I) ofa € F*@a1. Then X X3
T = Xt under the morphism T — S defined by A x FIY — A x I via
(@,y) = (2,a(y)). N

Secondly, let T £ Spec Ax FO — S = Spec Ax F''V be the morphism
defined by A x FIY — Ax FOV wia (2,y) — (z,d"(y)). Then we have
isomorphism over TXx Xg T>x Xg TV, where the projection T — S is
defined by the obvious inclusion A — A x FOV.

"In this section we will denote by A s I the trivial ring extension of A by the
A-module I.
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As mentioned, 1 € F! ®4 F!V defines an extension X / S , which we
fix from now on. We let U, (resp. lja) be the étale neighborhood of
X (resp. S) that is the minimal extension of U, (resp. Va)® . Then
{t,/Vs} forms a covering of X/S. By Lemma 1.12, fo : Uy — Wa
can be extended to a predeformable morphism z]a — W]n]. For each
o we pick one such extension (, : Uy — Wn] once and for all. Now
let a, 8 € A be a pair so that Uyg # 0. Let Zjag = U, X 5 Hﬂ and let

Da :Zjaﬁ — Zja be the projection, following our convention. Since both
Ca © P and (g o pg are predeformable extensions of fo5:Usz — W n,
by Lemma 1.12 their difference defines an element

Cap 2 d1(Cs 05 — Ca 0 Pa) € Homyy , (f*Quyrpy, FIY)1.

This defines a homomorphism
(1.17) Cap(e) : Fl— Homuaﬁ(f*ﬂw[n], A)T.
Now to each o we construct a homomorphism
(1.18) Ca() : FO — Homy, (f*Qup), A)F.
Let 1 € FO®4 FY be the identity element. Then

d(1) € F' @4 F® = Hom(F", F%)
(d is the differential in the complex F'®*) defines a morphism

7:T £ Spec A« FO — Spec A x F1V = S.

Let Xp/T be the pullback family of X/S via 7 with ¢: Xp — X the
induced the projection. By the second property after (1.16), X7 is iso-
morphic to X xg T for the T" — S induced by the obvious inclusion
A— Ax FOV. We let qo: X7 — X be the induced projection. Clearly,
Uy 2 U, x g T is canonically isomorphic to Uy X g T" under the isomor-
phism Xpr =2 X xgT. Then restricting to Uy, both {, oq and f o gy are
predeformable extensions of f,. By Lemma 1.12, the difference

d'(Ca 0 g — foqo) € Homy, (f*Quypny, FO)1.

It defines the desired homomorphism (,(-) in (1.18).

8We say L?a is a minimal extension of the étale neighborhood U, if ﬁa — X is an
étale neighborhood and U, X 3 X = U,
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Lemma 1.14.  Both (,(-) and (ug(-) are homomorphisms of A-
modules. Further, for any a € F° we have

_pzvé.oé(a) + p%gﬁ(a) = Caﬁ(d(a)) € Homuag (f*QW[n]7A)T7
where po :Uag — Uy is the projection and p}(a(-) is the pullback homo-
morphism.
Proof. The proof is straightforward and will be omitted. q.e.d.

In the next part, we will construct the complex that will be a part
of the perfect obstruction theory of S C (W n|,I')** we are about to
construct. Let I be any A-module. We let D(I)® be the Cech complex

D(I)® = C*(A, Hom (f* Q. 1))
associating to the covering A, where
F(uozlmamHom (f*QW[n}>I)T) = Honlu(yr“ak (f*QW[n]a I)T

with 8:D(I)* — D(I)**! the coboundary differential in the Cech com-
plex. We let

Op : FF @4 T — CF(A, Hom (f* Q. 1Y), k=0,1

be defined by dp(a)a = (a(a) and 01(b)ag = C(ap(b). By Lemma 1.14,
0 are homomorphisms of A-modules. We now show that this defines a
homomorphism of complexes

d:F*®@a1 — D()°.

To prove this, we need to check that é; 0 d = 90y on F° ®4 I and
Dod; =0on F1®4 1. We will check 9o =0 on F! @4 I and leave the
other to the readers. Let b € F! @4 I be any element. By definition,

(Do 51)(b)aﬁv = 51(b)a[3 —01(b)ay + 61 (b)ﬁv = gaﬁ(b) — Cany(b) + Cﬁv(b)

as elements in Homy,, (f*Qyypn), 1 )T, where the summation is taken
after pulling back each term in the summation to this module in the
obvious way. But this vanishes because of the relation (gy — (ay +Cap =
0, following Remark 1.13. This shows that 0o d; =0 on F' @4 I.

In the end, we define the complex E(I)® by

(1.19) E()'= @ (FlesaleDUI)™)
i+j=k
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with the differential dg:E(I)* — E(I)¥*! defined via

(d®,—60) 01+0 g
B —_—

FO@al FleoaIlaoDI) D(I)! — ...
When I = A, we will abbreviate D(A)® and E(A)® to D® and E*®
respectively.

Lemma 1.15. We assume A is a sufficiently fine cover of f.
Then for any A-module I, E(I)® is canonically isomorphic to E® @4 I
as complexes. Further, the complex E® is a complex of flat A-modules.

Proof. The proof is straightforward and will be omitted. q.e.d.

We remark that the complex E® just constructed depends on the
choice of the atlas A. To emphasize this dependence we shall denote it
by E}. Let A’ be any atlas of f that is a refinement of A with associated
complex E},. Following [30, III.2], we can define a homomorphism of
complexes Ef — E%, which induces a map of cohomologies

p(A,A) : K(ES @4 1) — hY(ES, @4 1)

and then form the direct limit lim_, h*(Ej ®4 I) taken over all charts
of f. Note that this limit is a functor from 900 4 to 900 4, denoted by
hi(E®). We now assume A is fine enough so that h*(E®)(I) = hi(E{®4l)
for all A-module I. We fix such a A once and for all, and abbreviate
the resulting complex E} to E®.

We now prove the main result of this section.

Proposition 1.16. Let Defly be the functor of the first order
deformations of morphisms to S = Spec A, which is naturally a functor

from A-modules to A-modules. Then Defy is naturally isomorphic to
the functor h'(E®).

Proof. Let £ = (B, I) be any object in 9od 4. We first show that
there is a canonical isomorphism Def!y(¢) = h1(E®* @4 I).

Let T = Spec B and T = Spec B x I, the trivial extension by I.
Since B is an A-algebra, there is a tautological morphism T — S. Let
r € Defs(€) (= Defy(€)) be any element, associated to an extension
T — Sof T — S, and let fr:Xr — Wn] (tesp. fz: Xz — Win))
be the pull back family of f via T' — S (resp T — S). We let Dy C
X7 and Dz C A7 be the associated divisors of marked points and let
T = Ox, @p I. First of all, since X7 is a flat extension of A7 to f, it
associates to a unique element

(1.20) [a] € Ext, (Qx,/7(Dr),I) = h'(F* @4 1),
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where a € F' ®4 I. Now let S be the trivial extension of S by F'V and
let X/S be the family defined after (1.16). Then a defines a morphism
Pg * T — S via the homomorphism A @ F'Y — B @ I defined by
(x,y) — (Z,a(y)), where T is the image of x in B. By the first property
after (1.16), a defines an isomorphism 7, : X7 = X x 3 T, where the
projection T — S is via 0q. We let ﬁa = Z/N{a Xg T and YN/O( = 17(1 Xg T.
Then each U, /V, extends to a chart (Ua/Va, f:ﬁa) of f7, where f7 | £
ff\fj. We let pg : ﬁa — Z:Ia be the projection. Then over each ﬁa we
have two predeformable extensions of fr: One is ff,a and the other is
the composite (, o p,. Let

ba = A" (f7, = Ca © pa) € Homyg, (f7Quwin, 1)

and let b = {by} € D?®4 I. We claim that (a,b) € E' ®4 I is in the
kernel of dg. For this, we only need to check that

dE(a,b)ap = 6(a)ap + 0(b)agp
= Capla) + (bg — ba) = Capla) — d'(¢s 0 pp — Ca © Pa)

vanishes for all pairs («,3). But this follows immediately from the
definition of (4g(-). This shows that (a,b) defines a cohomology class
[(a,b)] € h*(E* ®4 ).

Next, we show that [(a, b)] is independent of the choices of a and the
isomorphisms v, : X7 = X x 3 T. Let @’ € F! x 4 I be another element
so that [a'] = [a] in (1.20). Then a —a’ = dj(c) for a ¢ € FY®4 I, where
dr:FO®a I — F!' ®4 I is induced by d in (1.15). Now let

goa/:f—>§, Va/:XT%/fx§f,
ﬁc/y:ﬁoc_’aav b/a:dT(fTa_Caoﬁé)
be objects defined similarly with a replaced by a’. Let b’ = {b.,}. We

claim that
dg(c) = (a,b) — (d',V) e E' @4 I.

Once this is established then [(a,b)] = [(¢/,b")] € h'(E® ®4 I), which
shows that [(a,b)] only depends on the class 2 € DefL(€). This way we
obtain a map

T(€) : Defs(v) — hH(E® @4 I).

Now we prove the claim. Since

dg(c) = (9(c), —6(c)) = (di(c), =0(c))
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and dj(c) = a — d, it suffices to show that d(c), = ((¢)q is identical to
(b= )a = —(ba— W) = ~d'(f, — CaoFa) + (7, — Cao )
= dT(ga © o — Ca © P)-

The proof that (,(c) = df((s 0 pa — Ca © pL) is routine and will be
omitted.

We now show that the map T(£) is one-one and onto. We give an
outline of the proof since it is standard. We first show that it is one-one.
Let 2 € Def5(€) be any element so that T(¢)(z) =0 € h'(E*®41). We
let (a,b) be the pair constructed associated to the family fz: Xz — W(n]
following the previous discussion. Since [(a,b)] = 0, thereisac € F'®4
I so that (a,b) = dg(c). This implies at first that a = dj(c). Hence
X7 & Xp X T under the obvious projection 7" — T' via B — B & I.
Let p: X5z — Ar be the projection. Because T(£)(z) is well-defined,
T(&)(x) is also represented by (0,b'), where b’ = {b,} and

Vo = A" (fz , = [T, © pa) € Homy, (f7Qw . 1)

Again, since T(¢)(x) = 0, there must be a ¢ € FO®4 I so that d;(c) =0
and 6(c) = b'. Hence c lifts to an element in Ext%, (Qx,/7(Dr),I),
which defines a new isomorphism ~: X7 = X7 xr T. Further, §(c) = b
implies that under this new isomorphism fz is the constant extension
of fr. Namely, f7 is the pull back of fr via the projection T — T. This
proves that z = 0 in Defs(¢) and hence T(€) is one-one.

The onto part is similar. Since this argument is standard in defor-
mation theory, we will omit it here. In the end, we need to check that
T(§) is a homomorphism of modules and that T is an isomorphism of
functors. This is straightforward and will be omitted. q.e.d.

Corollary 1.17. Let £ = (B, 1,¢0) be any object in Trig. Suppose
Defg (&) # 0, then Defg(€) is isomorphic to the set h'(E® @4 1).

Proof. Since S is an étale chart of 9 (W [n],T')**, which is a Deligne-
Mumford stack, the standard fact in deformation theory shows that
once an extension ¢:Spec B — S of ¢g is fixed, then the space of all
such extensions is canonically isomorphic to @ef}g(fo) ~ L (E®* ®4 1),
where £y = (B/I % I,1,pq). This proves the corollary. q.e.d.

Proposition 1.18. There is a natural obstruction theory to defor-
mation of the family of predeformable f:X — W{n] over S that takes
values in h2(E®).
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Proof. The construction of the obstruction class is standard, as
shown in [25] for smooth targets. Let & = (B, I, ¢) be an object in Trig.
Let T = Spec B/I and let fr:Xpr — W]n] be the pullback of f via
T — S. By definition, extending 7" — S to T — S is equivalent to
extending fr to a family of predeformable morphisms over T. We now
construct the obstruction class to this extension problem.

Since deformation of pointed curves is unobstructed, we can extend
Xr to a family over T. By our choice of F*, such extension can be
realized by an extension T — S of T — 5. We let X7 be the pullback

famﬂyXx ~T. Let Uafl/{ Xg T VafV Xg T Uan XXNXTand
let V, = V X x, X Also we extend Ua/Va to a chart (Ua/Va, fra, Wa)
of fr. This way Us / V,, is a minimal extension of Uy /Vi to X, /Tv Next
we let pq : U — I/l be the projection. For any a we pick a family of

predeformable extension he : Uy — Win] of fro. Welet po:Usg — Ua
be the projection. We then let

(1.21) bap = —d' (hg 0 pg — ha 0 Pa) € Homy,, (f7Quwp, ).

We let b = {bag}, which belongs to D' @4 I C E*®4 I. It follows from
the Remark 1.13 that b is a cocycle, and thus defines a cohomology class
[b] in h2(E® ®4 I). The technical part of the proof is to check that the
cohomology class [b] is independent of the choices of T — S and ha.
The argument for this is straightforward though tedious, and will be
omitted.

We now show that it is an obstruction class to extending fr to
families of predeformable morphisms over T. First, if such extensions
do exist, then we can choose X7 and h, be data coming from one of
such extensions. Then the corresponding b’ = 0 as cocycle and thus
[b] = [V/] = 0. This shows that [b] = 0 whenever extensions of fr
exist. Now assume [b] = 0. We first look at the case where the cycle
be D'®4I is acoboundary in D®*®4 I. Namely, thereisace D@y T
so that b = 9(c). Let ¢ = {co} with ¢, € Homy, (f}QW[n]T,I)T. Then
by Lemma 1.12, we can find predeformable extension fz Uy — Win]

of fr o so that dT(fT N —Ea) = ¢o. Then over (7&5, the difference of the
pullbacks f= 30 pp and fT o O Da is
(ng fTa Opa)
=df (fiﬁ o P — hy o bs) — Al (f5, © Pa — o © Ba)
+d(hg © Ps — ha © Ba)
= (Cﬁ - Ca) - baﬁ — 0
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Hence {f7 ,} patch together to form a desired extension Xz — W(n] of
fr. 7
In general, assume [b] = 0, then there is an a € F' ®4 I and ¢ €
DY ®4 I so that
b=dg(a,c) =d(a)+ d(c).

Now let 7/:T — S be a new extension of T — § so that d(7/ — 7) =
a, where 7 : T — S is the morphism used to construct the cycle b.
One checks that if one uses the new extension X Xg T , Where T —
S is via 7', to construct a similar cycle ¥ € D! ®4 I, then V is a
coboundary in D® ® 4 I. This reduces the situation to the previous case
studied, and hence confirms that a predeformable extension of fr over
T can be found. This shows that [b] is an obstruction class to extending
fr to families of predeformable morphisms over f, or equivalently the
obstruction class to extending 7' — S to T — 8.
We define
0b(B,1,p) = [b] € B*(E* @4 1).

Again it is direct to check that this assignment defines a functor from
Trig to Modg. This completes the proof of Proposition 1.18. q.e.d.

We now summarize the results of this section in the following the-
orem. We need a vanishing lemma whose proof will be provided in
Proposition 5.1.

Lemma 1.19. For sufficiently fine A, we have h*(D®* ®4 I) = 0
for any A-module I and i > 2.

Theorem 1.20. Let S be an affine chart of the moduli stack
IM(W[n],T)st. Then the obstruction theory just defined is a perfect ob-
struction theory of S.

Proof. Let f: X — Wn| be the universal family over S. If suffices to
show that there is a complex of finitely generated free A-modules E*® =
[E' — E?] so that it is quasi-isomorphic to E®, where E® is the complex
associated to a sufficiently find atlas A of f. Since h'(D® ®4 I) =0 for
i>2and any I, h'(E* ®4 1) = 0 for i > 3 and any I. Hence there is a
bounded subcomplex E*® of flat A-modules so that it is quasi-isomorphic
to E®. Then we can apply the standard technique [12, III1.12] to find
a bounded subcomplex E* of finitely generated free A-modules that is
quasi-isomorphic to E®. Finally, since h'(E ®4 I) # 0 only for i = 1
and 2, we can choose E*® to be of the form [E' — E?]. This proves the
theorem. q.e.d.
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Remark 1.21. In the Appendix, we will express the cohomology
h*(E®) in terms of some known cohomologies.

1.3 Obstruction to deforming relative stable morphisms

We will follow the notation developed in [23, Section 4] concerning rel-
ative stable morphisms. Let (Z,D) be a polarized relative pair and
let Z[n]" be the expanded relative pair constructed there. Recall that
Z[n]™ consists of a proper variety Z[n] over A" and a smooth divi-
sor D[n] C Z|n| that is isomorphic to D x A" under the projection
Z[n] — Z x A™. The pair (Z[n], D[n]) over A" also admits an equivari-
ant G[n] action whose action on A" is the standard one? . The fibers
of Z[n]/A" has at most normal crossing singularities and the singular
locus of all the fibers of Z[n]/A™ is a disjoint union of smooth varieties
B4,...,B,, indexed so that B surjects to the [-th coordinate hyper-
plane H; C A”.

In [23] we used admissible graph to describe the topological type of
relative stable morphisms to (Z[n], D[n]). Recall that a weighted graph
I" consists of a collection of vertices Vr, an ordered collection of weighted
roots Rr and an ordered collection of legs Lt plus two weight functions
g,b:Vr — Z>o and a multiplicity assignment u: Rp — Z*. We require
I' to be relatively connected in the sense that either I' is connected or
each of its vertex has at least one root attached to it.

A relative morphism to Z[n]" of type I consists of a pointed com-
plete nodal curve X and a morphism f: X — Z[n] that has the following
property: First the marked points of X are labeled by the ordered legs
and roots of I, say are p1,...,pr € X and ¢1,...,¢- € X. We let
W1, ., iy be the the weights of the respective roots of I'. Secondly, the
connected components of X are labeled by a € Vr and the arithmetic
genus of the component X, is g(a). Further, in case a root or a leg is
attached to a vertex a then its associated marked point must lie in the
connected component X,. Thirdly, restricting to each connected com-
ponent X, the morphism f|x, with all the marked points in X, is an
ordinary stable morphism to Z[n] of degree b(a) (using the polarization
on Z chosen implicitly). Lastly, as divisor f~1(D[n]) = p1q1 +- - -+ pr gy

We recall the notion of relative stable morphisms to 3" defined
in [23]. Let f:X — Z[n] be a relative morphism of type I, as de-

°In short, Z[1] is the blowing up of Z x A' along D x 0 and D[1] is the proper
transform of D x A'. Z[2] is the blowing up of Z[1] x A along D[1] x A', etc. The
G|[n] action is the unique lifting of its standard action on Z x A™.
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scribed. Recall fibers of Z[n]/A™ have normal crossing singularities
along By,...,B,. We say f is predeformable if it is predeformable
along all B;, as defined before. We say f is stable as a relative mor-
phism to 3™ if f is predeformable and Aut(f) is finite. Here Aut(f) is
the group of all pairs (a,b) where a: X — X are automorphisms and
b € G[n] so that foa = f°. (Here we view b as an automorphism
b:Z[n] — Z[n] using the G[n] action on Z[n] and f? is the composite of
f with b.) As was proved in [23], the moduli of all relative morphisms
to Z[n]" of type I that are stable as morphisms to 3™ form a Deligne-
Mumford stack. We will denote this stack by 9(Z[n]"®,I')**. The goal
of this subsection is to describe the obstruction theory of this moduli
stack.

Similar to the case f: X — W{n], for any family of relative stable
morphisms f: X — Z[n| over S there is a canonical log structure on
X /S and on Z[n]/A" that makes f a morphism between log schemes.
The log structure on A” (resp. Z[n]) is given by the divisor U} ; H; C A"
(resp. Z[n] x a1 0U D[n] C Z[n]). As to the log structure on X' /S, we
first note that if we let W/A! be Z[1]/Al, then Z[n]/A" = W[n—1]/A"
and f is a family of predeformable morphisms to Wn — 1]. We let
(X, M) and (S, N) be the associated log structures of f: X — Win—1].
We let M” — Ox be the log structure of f~1(D[n]) C X. The the
desired log structure on X’ is the associated log structure of the prelog
structure M’@M” — Oy. It is obvious that this gives X a log structure
M, making it a log scheme over (S, ') and making f a log morphism
between XT/ST — Z[n]T /A

Let S = Spec A be an affine chart of 9M(Z[n]™, T)* with f: X —
Z[n] the universal family and ¢;, pj : S — X its marked sections. We
cover f by charts of the first or the second kind. Let these charts
be (Un/Va, fa,Za) indexed by A as defined before (1.5) with W{n]
(resp. Dy; resp. n + 1) replaced by Z[n] (resp. By; resp. n). We let
D C X be the divisor of the locus of all marked sections of X'/S. We
now fix a complex of finite rank free A-modules F* = [F° L F ' so
that

h*(F®* ®a ) = Ext%(Qx/5(D),I), I=1®0s0x

for all A-module I. We form the group Homyy, (f*Qyzp,), 1 ) as fol-
lows: In case Uy/Vea is a chart away from f~(D[n]), this group is
Homyy, (f*Qywin—1)» DT with W[n — 1]/A" = Z[n]/A™ understood. Now
let Uy /V, be a chart of some points in f~!(D[n]) that is away from
f~Y(B). Then by shrinking U,/V, and Z, if necessary, we can as-
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sume that there is a section z, € I'(Oz,) so that z, = 0 is the divisor
Z, N Din]. We define Homyy, (!]““Qz[n],I)Jr be the subgroup of

(¢, 77) € Homua(f*QZ[n]aIa) ©Za

so that
o(f*dzq) = fi(zq)-m and @(dy) € I, VI

Using the A-modules Homyy, (f*Qyz(,, [ ), we can form the complex
(D(I)*,0), just as we did for W[n] before (1.19). As before, the element
1 € F' @4 F' defines a flat extension of X'/S to X/S, where § £
Spec A * F'V, with extended sections g;, p; .S — X. We let tha/ﬁa be
the minimal extension of Uy /V, as an étale neighborhood of X'/S. We
then pick Co:U, — Z[n] that is an extension of f,:U, — Z[n] so that
(o is predeformable and

(1.22) D) =Y @ (Va).
j=1

To construct the corresponding complex E(I)® we need two homomor-
phisms

(1.23) Ca() : FO — Homy, (f* Q. A)
and
(1.24) Cap(+) : F' — Homy,, (f*Qzp, A)T.

First, as before we argue that the difference of (, and (g over LN{ag canon-
ically defines an element (.5 € Homy, , (f*Qz, F V)T, which naturally
defines a homomorphism as required in (1.24). Here the log differ-
ential, namely f*(dz,)/f*(za) — n, appear near D[n] because of the
constraint (1.22). The construction of (1.23) is similar. Namely, locally
over Spec A x FV there are two extensions of f: one given by the pull-
back of (, and the other given by the pullback of f. Their difference
then gives rise to the homomorphism (1.23).

Once all such data are constructed, we then go ahead to form the
homomorphism of complexes F* @4 I — D(I)®, form a new complex
E(I)® and check that there is a complex of finite rank free A-modules
E* = [E' — E?] so that it is quasi-isomorphic to E®, parallel to the
argument in the previous subsection.

We now state the main result of this section.
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Lemma 1.22. Let the notation be as before and let A be a suf-
ficiently fine covering of f by charts of the first or the second kinds.
Then the complex E® is a complex of flat A-modules. Further, for any
A-module I we have E(I)®* = E* ®4 I and h*(E®* ® I) = 0 fori # 1,2.
In particular, there is a complex E® = [E' — E?] of finitely generated
free A-modules so that it is quasi-isomorphic to E®.

Theorem 1.23. Let the notation be as in the previous lemma and
let S = Spec A be the affine chart of M(Z[n]* ,T)% as before. Then
there is a perfect obstruction theory of S taking value in the complex
E*. In particular, the functor of the first order deformations @e%« i
isomorphic to h*(E*®) and there is an obstruction assignment ob taking
values in h2(E®) that satisfies the required base change property.

Proof. The proof of the lemma and the theorem are parallel to that
of Lemmas 1.15, 1.19 and the Theorem 1.20. The only new ingredient is
about preserving the divisor f~1(D[n]) = 3" ujq;(S). Since ¢;(S) C X
is a divisor smooth over S and D[n] C Z[n| is a smooth divisor, that
the deformation of morphisms preserving this relation is given by the
sheaf of log differentials is well-known, for example see [20]. Since the
proof is routine and parallel to what we did before, we shall omit it.
This completes the proof of the theorem. q.e.d.

2. Gromov-Witten invariants

In this section, we will define the virtual moduli cycle of (20, T),
M (20, T) and M(3*,T), thus defining the Gromov-Witten invariants
of the family W, of the singular variety Wy and the relative Gromov-
Witten invariants of the pair (Z, D). In the next section, we will prove
the decomposition (degeneration) formula relating the Gromov-Witten
invariants of W; to the relative Gromov-Witten invariants of the pairs
(Yi, Dl) and (Yg, D2)

2.1 Perfect obstruction theories of 9(20,T") and (3", T).

Recall that the construction of the virtual cycles of moduli stacks is
based on the choice of their perfect obstruction theories. In this section,
we will show that the perfect obstruction theories constructed in the pre-
vious section naturally induce perfect obstruction theories of M(20,T")
and M(3™,T).
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Let M be a proper Deligne-Mumford stack with an atlas A consisting
of finitely many affine étale morphisms ¢, : S, = Spec A, — M. We
first recall the definition of a perfect obstruction theory of M.

Definition 2.1. A perfect obstruction theory of M (over the atlas
A) consists of a choice of perfect obstruction theory (E?,0b,) of S, for
each o € A so that they satisfy the following compatibility condition:
First, let Ob, be the obstruction sheaf (i.e., = Coker{El — E2}), then
the collection {Obg}aecn descends to a (global) sheaf of Opp-modules
Obym. Secondly, the obstruction assignments ob,, and obg are identical
when pulled back to S,s, using the given isomorphisms.

Note that {Ob,} descends means that over S,z the pullback of Ob,
and of Obg are isomorphic and that such isomorphisms satisfy the co-
cycle condition on S .

Our immediate goal is to show that the obstruction theories of
M(W[n],T)5* naturally induces a perfect obstruction theory of (20, T').

Theorem 2.2.  There is a natural perfect obstruction theory of
IMM(20,T) induced by the perfect obstruction theories of M(Wn],T)5
constructed in the previous section.

Proof. Let S be an affine chart of M(20,I"). Without lose of gen-
erality, we can assume S is one of the chart constructed in the proof of
Theorem 3.10 in [23]. Namely, there is a chart S C 9(W(n],T)s for
some n so that S is a closed subscheme of S and S — 9M(20,T) is in-
duced by S — S and 9M(W[n],T)** — 9M(2W,T). We let S = Spec A and
S = Spec A. We then let E* = [El — EZ} be the complex of A-modules
provided by Theorem 1.20 for the chart S.

We begin with the functor of the first order deformations in S. As
argued in the proof of [23, Theorem 3.10], there is a neighborhood U
of S x {e} C S x G[n] so that the morphism S x G[n] — IMM(W[n],T)"*
induced by the G[n]-action lifts to an étale ¢: U — S. Since U — S
is étale, each vector v € T.G[n| defines a first order deformation of the
inclusion S — S, and hence an element © € h'(E® @5 A). This induces
a homomorphism

(2.1) T.G[n] @k A — WNE" @4 A) — E' 4 A.

Since elements in M (W n],T')** associate to stable morphisms to 20,
at each closed point p € S the homomorphism T.G[n] — T,5/T,5
induced by the group action is injective. Hence the cokernel of the
composite in (2.1) is also free. Now let E' be the cokernel of (2.1) and
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let B2 =E° @7 A. It is direct to check that the composite of (2.1) with
E' 7 A — E ®7 A is trivial. Hence ok R A — oK ®7 A lifts to
E!' — EZ.

We next show that the natural obstruction theory of S takes values
in the cohomology theory of E°®. First, since (2.1) has free cokernel, E*
is a two-term complex of finitely generated free A-modules. Secondly,
that the functor of the first order deformations in S is given by the
functor h!(E*) is obvious since the morphism

(2.2) SxGn|>U -3

induced by the group action is étale near S x {e}. Finally, let (B, I,¢) €
Ob(Zrig), then it is also an object in Trig and thus has an obstruction
class

ob(B,I,p) € h*(E" @5 1) = h*(E* ®4 1)

to extending ¢:Spec B/I — S to Spec B — S. Because G[n] is smooth
and ¢:U — S (in (2.2)) is étale, ob((B,I,¢)) is also an obstruction
class to extending ¢ to Spec B — S.

Now let S, be charts of (20, ") with E? their complexes that are
part of their obstruction theories. Then it is direct to check that the
collection {h?(E2)} form a sheaf over 91(20,T'), and the obstruction as-
signments 0b,, are compatible. This completes the proof of Theorem 2.2.

q.e.d.

We now state the theorem concerning the obstruction theory of
m(arel7r)_

Theorem 2.3. The perfect obstruction theory of E)J?(Z[n]rel,F)St
constructed in the previous section naturally induces a perfect obstruc-

tion theory of M(3,T).

Proof. We will omit the proof here since it is exactly the same as
the proof of the previous theorem. q.e.d.

The next issue is about the obstruction theory of the substack
M (W, ') defined by the fiber product

m(mta F) = m(mv F) X t,

where t € C'is a closed point. Clearly, when ¢ # 0 the stack 9(20;,T") is
naturally isomorphic to the module stack of stable morphisms to W; of
topological type I', which itself admits a natural obstruction theory as
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worked out in [25]. The obstruction theory of 9(2y, ") deserves more
attention since it was not known before.

We now study the obstruction theory of (2, I'). Let Wy[n] =
Win] xc 0. As in the case of M(2W,I"), we only need to work out the
obstruction theory of

M(Wo[n], D)™t 2 M(Wn],1)* x¢ 0.

Let S = Spec A be an affine chart of (W n],T)**. Then Sy = S x¢ 0
is an affine chart of M(Wy[n],I)**. We let Ay be the quotient ring
of A so that Sy = Spec Ag. As before we let f: X — W][n| be the
universal family over S and let fy: Xy — Wy[n] be the restriction of f to
So C S. We fix a sufficiently fine covering (Uy / Ve, fa, Wa) of f indexed
by A and let E® be the associated complex of A-modules constructed in
Section 1.1. We let Vy be the coverings {Vy o} of Sp with Vo = Vo % 0.
Similarly we let Uy = Uy X 0 and let fo o : Uy — Wo[n] be the
restriction of f to Up . For any Ap-module I, we define

(23) ]‘—‘VO,aln.am (I) é I ®AO F(Ovo,al.“am)'

Using these, we can form a Cech complex C*(Vy, Ag) with the standard
coboundary operation. Let E§ = E® ®4 Ag. We next construct a
homomorphism

5; : Ef — C1(Vy, Ag) @y ToC.

Here we understand C~1(Vp, 4g) = 0. Let £ € E} be any element. We
write £ = (a,b) with a € F! ®4 Ag and b € C°(A, Hom (f*QWM,AO)T),
as in Section 1. Then by the construction in Section 1.1, to each oo € A
the element a defines an extension of Uy o/Vo,a to Zj{o,a/f/o,a by Apa (=
'y (A0)). The extension (, chosen before (1.18) induces an extension

€0, :Z/~{07a — Win| of fo.o:Upa — Woln]. We let m,:Wn] — C be the
tautological projection. We now consider m, o (po : Uy — C. Since

T © C0,alto . factor through 0 € C,
d(my 0 (o0 — 0) € Ty (Aoa) @k ToC,  Ava = Ao @45 Oy

Because Z(],a is a predeformable extension, the above element lies in
Apq @k ToC. We define 61(a)s to be this element. For d1(by), since
bo € T'(Uy, Hom( f*QW[n],AU)T), bo induces a homomorphism (m, o
Ty C — Ay Again this is an element in Ag, @k ToC. We de-
fine &1(by) to be this element. Clearly, this construction carries over
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to the case of multi-indices. This defines a map (a homomorphism) of
complexes

PR EB — C.il(b, Ao) Rk ToC.

It is direct to check that this is a homomorphism of complexes. We let
F* be the associated complex defined by

F' = 6 D Ci72(b, A)() Rk ToC

whose differential is the obvious induced one. Then we have a short
exact sequence of complexes

0= C._l(&,Ao) Rk ToC = F* —= E* ®4 Ag— 0

which induces a long exact sequence of cohomologies for any Ag-module
I

0 — WY (F* @4, I) — W (E§®4, ) — I R4 ToC —

— h2(F* @4, I) — RA(ES @4, I) — 0.

Here we used the fact that since )}y is an étale covering of Sy,
h/(C*(Vy,I)) = I when j = 0 and vanishes when j > 1.

Since terms in C*(Vy, Ap) are flat Ap-modules, we can pick a complex
of finitely generated free Ag-modules F* = [F! — F?] so that F* is
quasi-isomorphic to F*.

Proposition 2.4. The chart Sy admits a natural perfect obstruction
theory taking values in the cohomology of the complex F*°.

Proof. We need to check that the functor of the first order defor-
mations @ef}% is isomorphic to the functor h*(F*®) and that there is
an obstruction assignment taking values in h%(F*®) that satisfies the re-
quired base change property.

The fact that the functor @ef}go is isomorphic to h1(F*) = hL(FY)
follows directly from the definition and will be omitted. Now we con-
struct the obstruction assignment. Let (B, I, ) be any object in Trig,.
Let T = Spec B/I and fr: Xp — Wy[n] be the pullback family un-
der ¢ : T — Sy. Let Uro/Vro be the pull back of Uy o/Voo and let
JT.a:Ur,o — Wo[n] be the restriction of fr to Ur,. Recall that in con-
structing the obstruction class to extending T" — Sy to T = Spec B — S,
we first extend X7 /T to Xf/TV and extend fro : Uro — Woyln] to
J7.0 U, — Win], where Uz /Vi o is the minimal extension of
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Ur o/VT,o in Xf/f We then use the difference of f’f,a and ff g to
build a cocycle a € E®4, I. Let 7, :W[n] — C be the tautological pro-
jection as before. Since m, o fr, factor through 0 € C, m, o ff’,a S
Further because f’f,a is a predeformable extension, it lies in I,. Hence
the collection {7, o fT,a} defines a cochain ¢ € C°(Vp, I). It is routine
to check that the pair (a,¢) € F? ® A, I is closed, and hence defines a
cohomology class [(a,c)] € h?(F® ® 4, I). Further, it is routine to check
that this class is independent of the choice of the extensions fia’ and

that it is an obstruction class to extending ¢: T — Sp to T — So. We
define obg be the assignment that assigns (B, I, ) € Ob(Ztig,) to this
class in h2(F* @4, I) = h2(F* ®4, I). q.e.d.

Theorem 2.5. The obstruction theories of the charts Sy so defined
induce a perfect obstruction theory of M(Wyln],T')%t, which induces a
perfect obstruction theory of M(Wy, T).

Proof. The proof is similar to that of Theorem 2.2 and will be
omitted. q.e.d.

We comment that so far all the results concerning 20y, including
its construction, are based on the existence of the smoothing W of Wj.
It is not difficult to see that we can construct Wy[n] from Wy directly,
assuming Np,jy; = Ngg s Therefore, we can define 20y and the
moduli stack M (2Wy, ') directly without assuming the existence of W.
The construction of the perfect obstruction theory of 9(20y, I') without
using W is a little tricky, but should be doable. Since we will not use
this in this paper, we will content with assuming the existence of a
smoothing W of Wj.

2.2 Gromov-Witten invariants

The goal of this subsection is to construct the virtual moduli cycles
of the moduli stacks 9(20,T"), M(W,, T') and M(3",T") and to define
their respective Gromov-Witten invariants.

Currently, there are two constructions of virtual moduli cycles in
algebraic geometry. One is the original construction by Tian and the
author. They assumed that the moduli space admits a perfect obstruc-
tion theory. They then constructed a global cone that function as a
virtual normal cone. Such cone was constructed using the (algebraic)
Kuranishi maps of the obstruction theory [25, 26]. In their construction
they made a technical assumption that there is a global vector bundle
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on the moduli space that makes the obstruction sheaf its quotient. With
this vector bundle, the cone becomes a subcone of this vector bundle,
and the virtual moduli cycle is the intersection of this cone with the
zero section of this vector bundle, using Gysin map. The alternative
construction of Behrend and Fantechi [2, 3] works along a parallel line.
They constructed a similar cone as an Artin stack, assuming the mod-
uli space admits a perfect obstruction theory. They then obtain a cone
cycle in a vector bundle by assuming the existence of a global vector
bundle, as in the original construction of Tian and the author. These
two constructions yield identical cycles [19]. Recently, by working out
the intersection theory on Artin stacks, Kresh [22] showed that one
can construct the virtual moduli cycle without relying on the existence
of a global vector bundle as mentioned, thus removing this technical
condition. This makes the construction of virtual moduli cycles more
versatile. After seeing Kresh’s work, we realized that by applying a
simple trick we can remove the technical condition of the existence of
such vector bundles in our construction of the virtual moduli cycles. In
the following, we will present this modified construction.

We begin with the general situations. Let M be a proper and sep-
arated DM-stack. We let Ob be a sheaf of Opp-modules. We assume
that there is a finite collection of schemes S, and smooth morphisms

o @ Sa — M, indexed by a set A, so that the collection of images
Pa(Sa) C M form an open covering of M. We next assume that to each
a € A there is a locally free sheaf of Og_ -modules &,, a surjective ho-
momorphism of sheaves &, — p}Ob and a cone cycle C, € Z,Vect(&,)
that satisfy the following cycle consistency criteria. Here we denote
by Vect(&,) the vector bundle over S, so that its sheaf of sections is
Eo- In this paper, by abuse of notation we will view a vector bundle
as its total space. We first fix a few notations before we state the cri-
teria. Let p € M be any closed point. We pick an étale morphism
¢:(X,p) — (M, p) and let Xp be the formal completion of X along p.
We let G}, be the automorphism group of p € M. Note that G, acts
naturally on X' and up to G}, the scheme X is canonical. We next let
Vo = ¢*Ob ®o, ky and let V be the vector bundle V5 x X over X
Agam Gy acts on V and VX , "and up to Gy, they are canomcal

Cycle consistency criteria. We say the collection C = {(Sq, &q,
Co)}a satisfies the cycle consistency criteria at p € M if there is a cycle
Cp € Z*VXp invariant under G, of which the following hold. Let a € A

be any index, let S, ), = So XM p and let S“a =S4 XM Xp. We let pr;
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be the ¢-th projection of the product S‘a = Soa XM Xp. Then there is a
surjective homomorphism of vector bundles

A~

[OF I Vect(é’a) XS, Sa — VXP XX;: Sea

extending the canonical (composite) homomorphism!®
=Vp X Sap

so that ®7CF = ©5C,. Here the first arrow above is induced by £, —

POb, By is the tautological flat morphism Vect(E,) X s, So — Vect(Eq)
and @7 are the flat pullback homomorphism of cycles.

We will call the collection C £ {Cp C Vg }pem satisfying the above
criteria the infinitesimal models of the collection C. Accordingly we
will call C a local model of C. In the following, we say the collection
C is consistent if there is a C as above that satisfy the above criteria.
Conversely, given C, we say it can be algebraicized if there is a C so that
they satisfy the above criteria. Note that once the infinitesimal models
exist, then the property of the local model C is completely determined
by the infinitesimal models. This is the key to many of the results
concerning virtual moduli cycles.

Given a consistent collection C = {(Sq,&q, Cq)}a over (M, Ob) we
now construct a canonical cycle [C] € A.M as follows. For each o we let
Zq be the set of irreducible components of C,. For a € =, we denote
by N, the irreducible variety (component) in C, associated to a and let
mg be the multiplicity of N, in Cy. Then we have

(2.4) Ca=Y_ mqN, € ZNect(E,).

CLEEQ

For any a € =, we define the base stack of a to be the minimal closed
integral substack Y, C M so that the natural N, — M factor through
Y, C M. Welet j,:Y? — Y, be the (maximal) dense open substack
so that the pullback sheaf j*Ob is locally free. Then FY £ Vect(j:Ob)
is a vector bundle stack over Y. Further, the natural morphism

(2.5) Na, : Vect(Sa)\pg1(Yg) — F% = Vect(j:Ob)

0For sheaves F of Oz-modules and closed subscheme X C Z we use F|x to denote
F ®o, Ox.
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induced by &, — pOb is flat. We let N C FY be the image stack of
Na|pgl(Y0) under 7, with the reduced stack structure. Clearly, by cycle

consistency criteria the flat pullback 1N contains N,| pal(Y0) As one

of its irrducible components. In the following, we will call NY C FY the
intrinsic representative of a. Note that since we choose Y9 to be the
maximal possible open substack of Y, so that j;Ob is locally free, the
open YY C Y, and the substack N? ¢ FY only depend on a.

Now let b € = be any element with Y, and NY C FY its base stack
and intrinsic representative. We say a ~ b if Y, = Y}, and Ng = Ng in
Fg = Fg. This defines an equivalence relation ~ on UycpaZo. We define
E = (Unen Ea)/ ~. Again by the cycle consistency criteria whenever
a ~ b then m, = my. Hence each a € = has an associated multiplicity
ma, a base substack Y, and an intrinsic representative NO C FY over
an open substack Y9 C Y.

Assuming there is a global locally free sheaf & on M making Ob its
quotient sheaf, then over each Y we have a flat projection Vect(&) lyo—
FY. We let N, C Vect(€) be the closure of the pullback of N? ¢ FY
under this projection. The associated cycle [C] is then defined to be

(2.6) €] = MaOyee(ey[Na] € AM,
ac=
where O!VQCt(S) is the Gysin map of the 0-section of Vect(£). This is

essentially the original construction of Tian and the author.

We now back to the general situation (without assuming the exis-
tence of such £). We need to define a map £:= — A, M so that £(a) is
the cycle O!VQCt(g) [N,] should a global £ exist. Let a € E be any element.
Since M can be covered by a quasi-projective scheme, there is a nor-
mal projective variety Y, and a generically finite surjective morphism
va:Ys — Y,. By abuse of notation, we also view ¢, as the composite
of Y, — Y, with Y, — M. Since Y, is projective, there is a locally
free sheaf of Oy,-modules F, so that ¢;Ob is a quotient sheaf of F,.
We denote by F, the vector bundle Vect(F,) over Y,. Let Y0 C Y, be
a dense open subset so that Y — YO is étale. Then the morphism
ha : Falyo — FY induced by F, — ¢:Ob is a flat morphism. We let
N, be the closure in F, of the flat pull-back hZNg. Note that N, only
depend on Y, and F, — ¢:Ob. The cycle N, C F; will be called a
representative of a € Z. With N, C F, chosen, we define

(2'7) f(a) = deg(@a)_lSOa*O!Fa [Na]v
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where Op, is the zero section of Fy, O!Fa is the Gysin homomorphism
Z.F, — A.Y, (of the zero section of Of,) and g is the push-forward
homomorphism of cycles. The degree deg(p,) is the degree of the mor-
phism ¢,:Y, — Y, defined in [38]. Finally, we define

(2.8) €] = ma&(a) € ALM.

a€=

Note that this construction coincides with that in (2.6) in case a global
locally free sheaf £ exists.

We will call this construction the basic construction and call [C] the
associated cycle of the collection C.

Lemma 2.6. Let the notation be as before. Then &(a) is indepen-
dent of the choice of Y, and F,.

Proof. Let ¢q1:Y,1 — Yo and g2 :Y,2 — Y, be two normal
varieties and generically finite dominant morphisms and let N, 1 C F, 1
and N, 2 C F, o be the respective choices of the representatives of a over
Y,1 and Y, 2. To prove the lemma it suffices to show that

deg((pa,l)il(Pa,l*O!Fa’l [Na,l] = deg(goa,Q)il@a,Q*o!Fa,z [Na72]-

We let Y, be the normalization of an irreducible component of Y5 1 xv,
Y, 2 that is dominant and generically finite over Y,. We let p;:Y, — Y, ;
be the projection induced by the i-th projection of Y, 1 Xy, Y, 2. We pick
a locally free sheaf F, on Y, and surjective homomorphism F, — p;F,
so that the diagram

fa E— pra,l

! l

p3Fa2 — pPips10b = pip; ,Ob

is commutative. Now let F, = Vect(F,), let U C Y, be a dense open
subset so that the projections U — Y,, U — Y, 1 and U — Y, 2 are flat.
Then the flat pull-back of N9 C FY via the induced F, |y — N is iden-
tical to the flat pullback of N, ; C Fp; under the flat morphism F, |y —
F, ;. Further, it is direct to check that deg(y,) = deg(ya,i) deg(p;).
Hence if we let NW C Fui Xy, Ya £ p; Fo i be the closure of the flat
pullback of N, |y, (under Fy; Xy, , U — Fg;), then for i = 1 and 2,

@a,i*O!Fa,i[Na,i] = deg(pi)_lSDa*OJ!g;‘Fa,i[Wa,i} = deg(pi)_lgoa*O!Fa [Na]-
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This, combined with the identity about the degrees, proves Lemma 2.6.
q.e.d.

We now show how to apply this construction to construct the virtual
moduli cycle of a Deligne-Mumford stack M endowed with a perfect
obstruction theory. Let {S,}aca be an atlas of M and let {(£3,0b4)}a
be the data associated to the perfect obstruction theory of M as in
Definition 2.1. Here £3 = [} — £2] is a complex of finite rank locally
free sheaves of Og, -modules. We let Obng be the sheaf of Opp-modules
that is the descent of Coker{&! — &£2}. Following [26, Section 3], to
each a we can construct a canonical cone cycle C, C Vect(£2), using
the relative Kuranishi-maps constructed from the perfect obstruction
theory of S,. The technical result proved in [26, Section 3] shows that
the collection { Sy, 2, C, } satisfies the cycle consistency criterion. Thus
by applying the basic construction just explained we construct a cycle,
called the virtual moduli cycle of M, associated to the given perfect
obstruction theory. We denote this cycle by [M]'*. (For an alternative
construction of virtual cycle, see [3, 21].)

By applying this construction to the stacks 9(20,T"), M (W, I') and
M(3', T') with their respective perfect obstruction theories, we obtain
the virtual moduli cycles [D(20,T)]Y™,  [9(Wo, T)]V"™  and
(M3, T)]Vit. As in [26], for t € C we define the GW-invariant of
W to be the homomorphism

\IJIWt R H*(Wt)xk % H*(mg,k) N Ho(pt) ~ Q
defined by
\IJI‘:Vf (a,8) = axo (ev*(a) U W;’k(ﬁ) [gj’t(m]t’ F)]Virt)7

where 7,5 and ev are the forgetful and evaluation morphisms, g and
k are the genus and the number of marked points of the topological
type I, q:9M(20;,T") — {t} C C is the projection and q.o is the push-
forward A9 (2W;,I") — Ho(pt) at degree 0. (Here we use H, to denote
the ordinary homology theory in case the ground field is C. Otherwise
one can use Chow rings to define the GW-invariants.)

The Gromov-Witten invariants of 20 is the homomorphism

U HY(R T Qu ) F ) H* (M) — HEM(C) = Q

defined via a similar formula with q.o replaced by q.;: AIN(2W,T) —
HPM(C). Here Qy is the sheaf of locally constant functions on W
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taking values in Q, 7: W — (' is the tautological projection and HQBM
is the Borel-Moore homology of the open complex curve C.

Now we define the relative Gromov-Witten invariants of Z™ =
(Z,D). Let I" be an admissible weighted graph mentioned before. As ex-
plained, it determines the topological type of relative morphisms to 3.
We let I'? be the sub-data (in I') relating to the domain curves. (Namely,
the connected components, the genus and both kinds of marked points
of the domain curves.) Let Mo be the moduli space of stable curves
with topological types I'°. Here a curve C' of topological type I'° is sta-
ble if all connected components of C' are stable pointed curves. Clearly,
Mro is a Deligne-Mumford stack. As in the ordinary case, there is a
forgetful morphism 7o : MM(3, T),T") — Mro. We define the relative
GW-invariants to be the homomorphism

U2 HH(Z)% x H*(Mpo) — H.(D")
(recall k and r are the numbers of legs and roots of I') defined by
U (@, 5) = au (v (@) U o (8) M3, D)) € H.(D").
Here
(2.9) q:MBET)— D" and ev: M3 T) — Z*

are the morphisms defined by evaluating on the distinguished and the
ordinary marked sections respectively.

3. Degenerations of Gromov-Witten invariants

In this and the next section, we will prove the degeneration formula
of the Gromov-Witten invariants of the family W/C stated in the intro-
duction of this paper. We will state the first version of the degeneration
formula in the first subsection. We will state the reduction lemmas in
Subsection 3.2. The proof of these lemmas will be given in the next
section.

3.1 The first version of the degeneration formula

The first step to prove the degeneration formula is to express (2, I')
as a union of Cartier-divisors in 9 (20, I"). Here we fix a I' = (g, k,b)
once and for all. We first define the notion of Cartier-divisor of an
algebraic stack M.
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Definition 3.1. Let M be an algebraic stack. A C-divisor on M
is a pair (L,s) where L is a line bundle on M and s is a section of L.
An isomorphism between (L, s) and (L, s’) consists of an isomorphism
L = L/ so that s = s’ under this isomorphism.

We comment that a C-divisor (L, s) over a scheme is a pseudo-divisor
(defined in [7]) via (L, Z,s) where Z = X — s~ 1(0). Note that when
(L,s) and (L', s") are two C-divisors, then (L, s)® (L', s') £ (L® L', ss")
is also a C-divisor. Also, we do not require that s be nontrivial.

We now let §2 be the set of all admissible triples defined in [23, Sec-
tion 4] and reviewed in the introduction. Recall that n = (I'1,T'9, I) € Q
is an admissible triple if I'y and I'y are two weighted graphs of identical
numbers of roots and I is an order preserving inclusion I : [k;] — [k]
where k; is the number of legs of I'; and k = k1 + ko. Let C7 and C5 be
two curves of topological types I'y and I'y, respectively. We can identify
the i-th distinguished marked point ¢; ; € C1 with the i-th distinguished
marked point g2 ; € C5 for all ¢ to obtain a new curve C 2 CUCy. It
has k marked points, ordered according to I. As part of the definition
of 2, we require that the multiplicities of the i-th roots of I'y and I'y are
identical, that C' is connected of genus g and b = >__cy(r Uy (r,) b(2)
(b(z) accounts for the degree of the stable morphism along the connected
component labeled by z). We will call C' the gluing of C; and C5 along
distinguised marked points. This gluing construction can be applied to
a pair of families of curves. Hence for each n = (I'1, 'y, I) € Q, we have
a closed local immersion of stacks

(3.1) O, : MY, ) xpr MYE, Tg) — IM(W, 1),

defined in [23, (4.8)]. Here M(YP:e', T;) — DT is the evaluation mor-
phism q in (2.9) and the morphism (3.1) is defined by sending any pair
((f1, X1), (f2, X2)) to the family (fi U fo, X1 U Xs). Following [23], we
define M(P:' UYL n) be the image stack of (3.1). As was shown in
[23, Section 4],

(3.2) MY, T1) xpr MY, T1) — MY L Y5, n)

is finite, étale of pure degree | Eq(n)|. Here by abuse of notion we also
use @, to denote this induced morphism.

In this subsection, to each 1 € Q we will define a C-divisor (L, s)
on M(20,T) so that the vanishing locus (as topological space) of s, is
MY UYL, 7). We begin with the study of line bundles on A™+!. We

241



242 JUN LI

continue to use the convention introduced in [23, Section 1] concerning
subsets of A"*1. For [ € [n + 1] we denote by H; C A™*! the I-th
coordinate hyperplane of A"*!. We define (s;, L;) be a pair of a section
of a line bundle on A"*! so that O gn+1(L;) = O gnt1(H;) and the section
sy is the constant section 1 € O an+1 under this isomorphism. Recall that
A" is a G[n]-subscheme (G[n] = GL(1)*") as defined in [23, Section
1]. Since H; C A™"! is invariant under the G[n]-action, there is a
unique G[nl-linearization on L; so that the section s; is G[n]-invariant.
We fix such a linearization. Now let J:[m + 1] — [n + 1] be an order
preserving embedding. Following the convention in [23, Section 1], J
defines a standard embedding!! ~;: A™+! — A"+l and hence defines a
pullback C-divisor v%(Ly, s;) on A™t1 There are two possibilities: One
is when [ # Im(J). Then Im(y;)NH; = () and hence there is a canonical
isomorphism'? ~%(Ly;, 5;) 2 (1pm+1,1). The other case is when J(I') = [
for some I’ € [m + 1], in which case we have v} (L;, s;) = (Ly, s)-

Now let J:[n;+1] — [n2+1] be an order preserving embedding. Let
S be any scheme, 7:S — A™*! and p: S — G[na] be two morphisms
with v;: Am+1 — An2+l the standard embedding. As in [23], we define
(y707)P:S — A"+ be the morphisms induced by ;o 7:5 — Ar2*!
and the G[ng]-action on A™2F! via p.

Lemma 3.2. Let J, 7 and p be as before. In case lo = J(l1) then
we have a natural isomorphism ((v o T)p)*(LZQ,Slz) = 7*(Lyy,s1,). In
case ly & Im(J) the same identity holds with (Ly,, s;,) replaced by (1,1).

Proof. 'We have the canonical isomorphism (v o 7)*(Ly,, s1,)
7*(Lyy, s1,)- The required isomorphism is then induced by the canonical
isomorphism

((7J © T)p)*(Llw 3[2) = (7J 0 T)*(Ll27 3[2)

induced by the G[ng]-linearization on (Ly,, si,). q.e.d.

We now construct the required C-divisor (Ly,s;) on 9(20,T"). Let
S — M(W,T') be any chart with f: X — W its universal family.
Without loss of generality, we can assume that W = Wn] X S via a
7:5 — C[n]. We let

(3.3) Sy =S Xon(an.r) MY LYK, n).

"For instance in case J:[2] — [4] is defined by J(1) = 1 and J(2) = 3, then
'-YJ:A.Q — A4 is deﬁned by ’)ﬂ](h,tz) = (tl, 1,t2, 1).
12We use bold 1x with subscription X to denote the trivial line bundle on X.
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In case S, = 0, we define (L,,s;)|s be (15,1). When S, # 0, we
consider the tautological projection p;,:S;, — MY UYL 7)) and the
composite p; o py .Sy, — M( gel, I';). Here

pi: i)ﬁ( liel U @5617 77) - gﬁ( gel, Fl)

is the i-th projection, which exists if we replace S by an étale cover of
S. By shrinking S if necessary, we can assume that the pullback of the
universal family of 9(Pt, T;) to S, (via p; o py) is given by a family
fi:X; — Vi, where ) is an effective relative pair in @gel(Sn) associated
to a morphism 7; : S§;, — A™. Following the discussion leading to the
proof of Proposition [23, Prop. 4.12], the tautological family over S, of
the morphism ®,|s, : S, — M(W, T') is represented by the family

fHUfa: XUXy — YU,

with VP U Ve € 20(S,) given by the morphism 7, : S, — C[n], where
n = ny +no, defined in [23, (4.4)]'3 . By definition f; U f is isomorphic
to the restriction of f to the family over S, denoted by fls,. Namely
there are isomorphisms shown below that make the following diagram

commutative
xux, R yeny
(3.4) %J %l
X x5S, L Wk S,
Now let Dy, ...,Dy,11 be the n + 1 components of the singular locus of

the fibers of W n] over C[n]. For any closed z € S, there is an integer
I, € [n+ 1] so that the images of the distinguished divisors Dy , C ) .
and of Dy, C V>, under the obvious morphism

D1, =Dy, CI U —W xg S,y — Wn]

lie in D, . Clearly, [ is locally constant on .S;. Hence by shrinking §
if necessary we can assume that it is constant on Sy, say is [;, € Z. In
the following we will call f|s, = f1 U f2 the n-decomposition of f and
call the divisor Dy, C Wn] the locus where the n-decomposition of f|s,
takes place.

13yf U Yz is the result of gluing the distinguished divisors of Vi and ) in the
obvious way.
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Definition 3.3. Let S — 9(20,T") be a chart with f: X — W the
universal family, where W = W(n| x¢(,) S. We say S is n-admissible
if there is an integer [ € [n + 1] so that the tautological S, — C[n],
where S, is defined in (3.3), factor through C[n] X an+1 H; C C[n| and
that the divisor D; C W(n] (or the locus X xyy,,) Dy C &) is where the
n-decomposition of f|g, takes place.

Clearly for each € 2 we can find an atlas A of MM(2W,I") so that
all its charts are n-admissible. Let A be such an atlas and let S, be any
chart in this atlas. We let fo: Xy — Wina| X¢pn,) Sa be the universal
family with 7, : S — C[ns] the tautological morphism. We let I,
be the integer so that D;, C Wn,| is where the n-decomposition of
fals.., takes place. We then define the C-divisor (Lya;8y,a) on Sy to
be the pull back of the C-divisor (L, ,s;,) on A"+ via § 7% Cln,] —
Aretl Because the chart S, is n-admissible, the vanishing locus of Sn,a
is exactly So NIV UYL, n).

Lemma 3.4. The collection (Ly ,8pa)aca forms a C-divisor on
m(W,T).

Proof. Let S, and Sg be two charts in A. We consider S,3 =
Sa X (an,r)Sp with its projections pa, pg. Let fo and fg be the universal
families over S, and Sg and let pi(fa) and pj(fs) be the pullback
families. We let the isomorphism of the families p,(fa) and pj(fg) be
given by the (left hand side of the) diagram

falSa
KXo X5, Sap ——2 Wy X5, Sap ——— Dy, X Clnal Sap

(3.5) «pllg Wng gl

f8lsag )
Xg XSB Saﬁ —_— Wg XSB Saﬁ — Dlg XC[nﬁ] Sag.

We distinguish two cases: The first is when S is disjoint from mt(mgelu
25, n). Then the pullbacks of (Lj a,S,.) and (Ly.:8y,3) to Sag are
canonically isomorphic to the trivial C-divisor (1s,,, 1), hence they are
naturally isomorphic to each other. The other case is when S,z N
MY UYL n) # 0. Since S, and Sz are n-admissible, they have
the associated morphisms 7, : So — Clng] and 73 : Sz — C[ng] and
the associated integers [, and [g respectively. Because of the isomor-
phisms in (3.5), we have Dy, Xc(n,] Sag = Dy X Clng) Sap as shown in
the above diagram. Now let T' be any open subset of S,3 so that the
restriction of w2 to Wa xs, T' = Wp xg, T is induced by a sequence
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of effective arrows'® . Then by Lemma 3.2, the restriction to T of the
pullback p},(Ly.«,Sy,«) is canonically isomorphic to the restriction to T
of pi(Lyg:Sp,). By [23, Lemma 1.8], we can cover Sys by such 17s.
Further, applying Lemma 3.2 again we see immediately that the iso-
morphisms pj, (L., Sy.a)lT = pj(Ly 5, 8,,8)|7 patch together to form an
isomorphism

PBa - PZ(me Sn,a) — pE(Ln,B’ Sn,3)-

Since the isomorphism ¢,g canonically depends on the isomorphism
(3.5), over Syp, we have a3 © ¢3y = @ay. Thus the collection
(L, Sp,a)aca coupled with the isomorphisms ¢, defines a C-divisor
on M(20,I"). We denote the resulting C-divisor by (Ly,s;). q.e.d.

We now indicate the relation between the C-divisor (L,,s,) and
the canonical log structure on (2, T"). Recall that the log structure
defined in Section 1.1 defines a canonical log structure on M (W [n], '),
which is G[n]-equivariant and thus descends to a canonical log structure
N on M(2W,T). The line bundle L,, with the section s, defines also
a log structure £, on M(W,I"). It follows from the construction of
Ny (see (1.7)) and (Ly,s,) that the identity map is a log morphism
(M(2,T),L,) — (M(W,T),N). Using the chart V in (1.7), this is
given by the homomorphism of prelog structure N — N; C Ny defined
by 1 +— mgae, for a € K.

Associating to each closed point ¢ € C, considered as an effective
divisor in C, we have a C-divisor (L¢,7:) such that Oc(L:) = Oc(t)
and that 7, is the section induced by the constant section 1 € T'(C, O¢)
together with the natural homomorphism O¢(L:) — Oc(t). We let
(L, r¢) be the C-divisor on 9(20,T") that is the pullback of (L¢, 1) via
the tautological projection (W, T') — C. When t = 0 € C' we denote
the corresponding C-divisor by (Lg,rp). Recall that any triple n =
(I'1, Ty, I) € Q with r roots is defined to be similar to n° = (I'{,I'g, I)
for any permutation o € S,. Note that when 1y ~ 72 then (L,,,s,,) =
(L 8y )-

Proposition 3.5. The tensor product of the C-divisors {(Ly,s;) |
n € Q/~} is isomorphic to (Lo, ro).

Proof. Let A be an atlas of 9(20,T") so that all its charts are 7-
admissible for all n € Q/~. Since Q/~ is a finite set, such atlas does
exist. Now let S, be any chart in A. We let ), be those triples n € 2

YFor the definition of effective arrows please see [23, Section 1].
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so that Im(®,)) NSy # 0. Since (Ljq,8y,a) = (1s,,1) canonically when
n ¢ Qa/Na

®7]€Q/~(L77’ Sn) |Sa = ®77€Qa/N(L7770“ Snvo‘)'

Now let f, : Xy — W, be the universal family over S, and let 7, :
Sa — Clng| be so that W, = 7;Win,]. To each n € Q, we let I, be
the integer defined in Definition 3.3. The assignment 7 — [, defines a
function 2,/ ~— [nq+1]. Because of [23, Lemma 4.13], this assignment
is one-to-one. Now let K, C [no+ 1] be the image set of this assignment
and let 7o : Sy — A"eT! be the composition of 7, with the projection
C[na) — A"+l Clearly, if | € [ny + 1] — Kq, then 74(So) NH; = ()
and hence 75 (L;, 5;) = (1g,,1) . Otherwise, | = [, for a unique 7 €
Qo /~ and then 7},(L;, s;) = (Ly,a,8y,a). Therefore, we have canonical
isomorphisms

e/~ (Lnas Sna)lse = ek, Ta(Li, 81) @ Qiefna)-aTa (L1, 81)
= 75 (Ruek. (Lis s1))
& (Lo, ro)|s,-

Because the above isomorphisms are canonical, they are compatible over
Sap and hence define an isomorphism of C-divisors as required by the
proposition. q.e.d.

We now derive the first version of the degeneration formula. We
first recall the notion of localized top Chern class of a vector bundle
with a section. Let E be a rank m vector bundle over a scheme X
and s a section of E. The localized top Chern class of (E,s) is the
homomorphism

cm(E,8): AX — Av_pms H(0)

defined in [7] as follows: Let Z be any variety in X. We take the normal
cone Ny-1(g)nz/z to s71(0) N Z in Z and then define ¢, (E, s)([Z]) =
O!E(stl(o)mz/z), where 0, is the Gysin map of the zero section O of
E’s_l(())' This defines a homomorphism of the group of cycles. This con-
struction can be extended to the case where X is an algebraic stack [38]

with A, X understood to be the cycle group with rational coefficients.

B There is an exceptional case I should mention here. It is when there are s € S,
so that 7(s) € H; while fl;l(Dl) N Xs = 0. Note that since X; is connected, this
is possible only when | = 1 or no + 1. In either case, we agree that Xs decomposes
into C1 U Oy with either C1 = () or C2 = 0, and the corresponding n = (I'1, 0, 0) or
n = (0,T2,0), which we agree is in Q/~. In this case we let I, be 1 or n, + 1. With
this agreement, this statement is true without exception.
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We consider the moduli stack 9(20,I") and its Gromov-Witten in-
variants

U HE (R Qu)*F x H (M) — HEM(C) = Q.

Now let £ € C be any closed point and let HY(R*m.Qw) — H*(Wg)
be induced by W — W. As our convention, for a € Hg(R*ﬂ'*Qw) we
denote by «(&) its image in H*(Wg). We let HPM(C) — Q be the Gysin
homomorphism defined by intersecting with the divisor £ € C. Then
we have a commutative diagram

HE(R*mQw ) x H* (Mg i) —— HZM(C)=Q

(3.6) l l

We
H*(We)*k x H*(Myx) e, Q.
This was proved in [25] for £ # 0 except that there we used the existence
of a global vector bundle in defining the GW-invariants. This will be
proved later in this paper again. We let I' = (g,k,b) be the triple
as before and let o € HO(R*m.Quw)** and let 8 € H*(9M, ) be any
classes. As before, we let eve : MW, T') — ng be the evaluation
morphism by the ordinary marked points of the stable morphisms, and
let 7y :M(W, T') — My . be the forgetful map.

Theorem 3.6. For any closed £ € C, we have

We

\I/F (a(€>7 B)

= | Y (ev5(a(0) Um (8)) (c1(Ly,s,) (20, 1))
neQ/~
Proof. First, by the commutativity of the diagram (3.6), we have

\Ifzvé(a(f),ﬂ) = \IIFVO(Q(O),ﬂ). In the later part of this paper, we will

show that
\IIIEVU ((0),8) = axo ((GUS(O((O)) U 7T;7k(ﬂ)) (c1(Lo, ro)[9M(20, F)]virt))

Since (Lo, rg) is the tensor product of all (L,,s,), the Chern class op-
erations

c1(Lo,ro) = D er(Ly,sy) : AW, T) — AIN(W,,T).
neQ/~

The theorem then follows immediately. q.e.d.
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3.2 Statement of the degeneration formula

In this subsection, we will first construct the virtual moduli cycles of
several moduli stacks related to the substack 20y C 20. After that, we
will state the final version of the degeneration formula of the Gromov-
Witten invariants of this paper. We will leave the proof of the key
lemmas to the next section.

Let n € Q/~ be any admissible triple. Associated to n we have the
substack 9(Y UYL, n) C M(W,T) that is the image stack of @, in
(3.1). Let (Ly,,s;) be the C-divisor on 9M(20,I") defined in the previous
subsection. We define the substack

M(Wo,n) = s, ' (0) C M(W,T).
Note that we have an increasing chain of closed substacks
MY UYL, 1) € M(Wo, ) < M(Wo,T) € M(2W, T),

where the first inclusion induces a homeomorphism on topological spaces.
In the previous section, we have constructed the perfect-obstruction the-
ories of M (W, ') and of M (W, I'), and thus have constructed their vir-
tual moduli cycles. In the first part of this subsection, we will show that
the natural obstruction theories of M(Y:e' UYL, ) and of M (W, 1)
are also perfect. Thus they have natural virtual moduli cycles.

We first investigate the obstruction theory of 9(20,n). The discus-
sion is parallel to the obstruction theory of 9(20y,I"). We now present
the details. Recall that for each n we have the moduli 9 (W n], ') of
stable morphisms to W [n] of topological type I' that are also stable as
morphisms to the stack 20. We let (W [n],T)5* — 9(20,T') be the
tautological morphism and let

M(Woln],n)™ = M(W [n], T)** xoncanr) M(Wo, n).

As in the case of M(2W,T"), we first work out the obstruction theory
of M(Wy[n],n)**. Of course for étale charts S of M(Wn],T)** we
can define the notion of n-admissible as in Definition 3.3. Now let S
be an n-admissible chart of M(W[n],I')** and let S, = S Xon(w [, r)st
IM(Wo[n],n)st. As before, we let f: X — W/[n] be the universal fam-
ily over S. We let [ be the integer so that f~!(D;) is where the 7-
decomposition of f[s, takes place. We fix a covering of f by charts
(Un /Va, fo) of the first and the second kinds, indexed by A. Following
our convention, we denote by U the étale covering {Uy}a of X. We let
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fna :Upa — Wn| be the restriction of f, to Uy £ U, X3 Sy We
let Vo = Vo Xs Sy and let V, be the covering {V, o}a of S;. We let
A =T(0Og) and let E®* = E(A)* be the complex constructed in Section 2
associated to the covering A. Now let L, be the line bundle on S, that
is the pullback of L, via S, — 9(20,T). We form the ordinary Cech

complex
(3.7) Cy = C'(&, Ly)

of the invertible sheaf (line bundle) L,, over S, associated to the covering
Vy. Let Ay =T'(Og,). We define a homomorphism of the complex:

(3.8) o B @y Ay = CI A CHN(Y,, Ly)

as follows: Let (a,b) € E*®4 A, be any element. As argued in the proof
of Proposition 1.16, a defines, to each o € A, a flat extension ﬁma/f}n,a of
Up.a/Vi,a by the module T'(Oy, ) and predeformable extensions (; q :
Upo — Wn] of fra:Upe — Winl. Let pya: Vya — A1 be the
tautological morphism (induced by S — A"*!) and let P 977704 —
A" be the composite of ¢, o and the projection Wn], — A", Since
tio Pna = 0,

€ala) = d(t; 0 ppa — 0) € T(Vy.a, ooV An+1) =T (Via, L),

where Ny, /an+1 is the normal bundle to H; in A", Here we have used
the fact that p; Ny, an+1 is canonically isomorphic to L;. On the other
hand, for b = {bq} with by, € Homyy, (f*Qyra), An)T, ba(f*(dt;)) € 1. We
define £(by) = bo(f*(dt;)). This defines the homomorphism ¢; via

(3.9) 61((a,0))a = &a(a) + &(ba)-

Note that for k& > 1 elements in EF are of the form b = {bag...a), } and we
can define 0y (bay...q, ) similarly. This defines 0y for k > 1. It is direct to
check that the so defined map is a homomorphism of complexes. With
this homomorphism of complexes, we can form a complex

(3.10) E;£CI P oE 04 4,

with the induced differential. It is clear that the statement of Lemma 1.15
holds true to E}. Namely, for sufficiently fine admissible covering A of
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[, Ej is a complex of flat A,-modules. Further, to each A,-module I
we have the following exact sequence of complexes

(3.11) 0=C) ?®4, ] = Ey@4, ] =E* @4, 1 =0
which induces a long exact sequence of cohomologies

(3.12) 0 — h'(E} ®a, I) — h'(E* @4 1) — I ®4, Og,(Ly)
— hz(E;7 ®a, 1) — hW*(E* @4 1) — 0.

In particular, hk(E,'I ®a, I) =0 except k =1,2.

Proposition 3.7.  First, the functor of the first order deforma-
tions of S, is naturally isomorphic to the functor hl(E%) Secondly,
there is a natural obstruction theory to deformation of the families of
predeformable morphisms f|s, : X|s, — W (n] X an+1 Hj taking values in
hQ(E;). Finally, such obstruction theory is perfect.

Proof. We will omit the proof here because it is parallel to the
treatment of the obstruction theory of M(2Wo, I'). q.e.d.

Proposition 3.8.  The perfect obstruction theory constructed in
Proposition 3.7 induces a perfect obstruction theory of M(Wo, n), which
in turn defines a natural virtual moduli cycle [9N(Wo, n)]"**.

Proof. The proof is parallel to the construction of the perfect ob-
struction theory of 9(W,T') and of the virtual moduli cycle
[D0(20,T)]v*t. We shall omit the details here. q.e.d.

We next work out the obstruction theory of 9 (%! LI YL, n). W

let S = Spec A — M(W(n],T)* be an n-admissible Chart and let f

X — W{n] be the universal family over S. We then pick a sufficiently
fine covering (Uy/Va, fo) indexed by A. Following Section 1.2, we pick
the complex [F? — F!] as in (1.5) and pick extensions (, as defined
before (1.18). Based on these data we can form the complex E® as in
(1.19) so that its cohomology is part of the obstruction theory of S. We
let Sp = Spec Ag = S Xgneau 1) MY UYL n) and let fo: Xy — Wn]
be the restriction of f to ﬁbers over Sp. We let | € [n+ 1] be the integer
associated to n defined in Definition 3.3. By definition, the family fy can
be decomposed into two families of relative stable morphisms of types
I'1 and I'; respectively along a multi-section ¥ C & node Over Sp. We let
Uo,o = Ua X5 S0, Vo,a = Va X5 S0 and let fo.o = faly,.- Note that X is
étale over Sy. Now let 2\?0 be the formal completion of X along ¥ C Aj.



A DEGENERATION FORMULA OF GW-INVARIANTS 251

Then since ¥ — S is finite and étale, and since ¥ C A is a multiple
section of the nodal points of the fibers of X;/Sy, the extension sheaf
Eztﬁ(o(Q 2500 O 4,) is an invertible sheaf of Ox-modules. We denote
this sheaf by Myx. Then we have a natural homomorphism

Extl, (/500 Oxo) — oo (Exthe, (V1505 Or)) 2t puMs,

where p: Xy — Sp and p: ¥ — Sy are the projections, which defines a
canonical homomorphism

(3.13) F' @4 Ay — Exthy, (Qux, /50, Oxy) — oM.

Clearly, the composite of (3.13) is surjective. We let FT(]),0 =FO®4 A
and let F#,o be the kernel of (3.13). The module Fr},O is a free Ap-module
and FO®4 Ag — F' ®4 Ag factor through Fg’o — F;,O'

We now construct the complex that will give the obstruction theory
of So (which is a chart of (Y LY, n)). We let E® be the complex
associated to the family f and the covering A mentioned before. We let
Ef],o £ EF®4 Ag for k # 1 and let E,lho be the kernel of the composite
EloaAd) 25 Floa Ay — p.Myx. Clearly, the differentials in E® induce
differentials in E? .

Proposition 3.9. Lemma 1.15 holds true for the complex E? -
Proposition 3.7 holds true for the charts Sy with Ej replaced by Ep .

Proposition 3.8 holds true for the moduli stack MM(Y UYL, ).

Proof. We shall sketch the construction of the obstruction classes.
The remainder part of the proof is similar to that of Propositions 3.7
and 3.8 and will be omitted. Here we will follow closely the convention
introduced in the proof of Proposition 1.18. Let £ = (B, I, y) be an
object in Trig,. Let fr:Xr — W]n] be the pullback of f via T — S,
where T' = Spec B/I, and let ¥7 = X7 X x, £. By the definition of the
subscheme Sy C S, the formal completion of X7 along Y7 is isomorphic
to Speck[z1, 22]/(2122) X X1, at least after shrinking S if necessary. Now
let ' = Spec B. Then by the deformation theory of nodal curves, we can
find a flat extension Xz/T of X7 /T so that the formal completion of A5
along Y7 is isomorphic to Speck[z1, 22]/(2122) X X7, where X5 is étale
over T so that Y7 X7 T = Yp. In other words, the multiple section
Y C X extends to a multiple section Y7 C X7 and the extended
family X7 can be decomposed along ¥7=. Once we have chosen such
an extension, to each o € A we can pick a predeformable extension
ha :Up,o — W(n] of fro so that the composite Uy o — Win| — Antl
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factor through the I-th coordinate hyperplane H; ¢ A"t!. We let bag
be as defined in (1.21). Then b = {byg} € B2 ®4 I = E727,0 ®4a, L. We
define

0b(€) = [b] € h*(Ej o @4, 1).

It is direct to check that this defines an obstruction class. It is routine to
check that such choices of obstruction classes satisfies the base change
property. q.e.d.

Applying the basic construction of virtual moduli cycles formulated
in the previous section, we obtain cycles [I(2Wo, n)]V™ and [DM(Y U
@5&17 n)]virt'

We are now ready to state the degeneration formula of the Gromov-
Witten invariants of the family W. Let n = (I'1,I'2, I) be an admissible
triple in €. Let p; be the weight of the i-th root of I'; and I's, which
are the same. We define the multiplicity of n to be m(n) = []._; .

Lemma 3.10. We have the identity
c1(Lo, 50)[(20, )Y = [9(2Wo, 1) € A (W, I).
Lemma 3.11. We have the identity
[90(2Wo, )™ = c1 (L, s,) [0, T)]™ € AW, n).
Lemma 3.12. Under the natural isomorphism
AT LD, 1) = A (Wo, 1)
induced by the homeomorphism M(PL UYL, n) ~ M (W, n),
m(n) (YT U YE, )] = [MN(Wo, n)]™* € AIM(Wo, n).

Using the identity of C-divisors (Lo,So) = ®yeq/~ (L, s;,), we have
Corollary 3.13.

[D(2Wo, D)™ = >~ m(n) MY} UYE!,m)]".
neEQ/~

We now state how the virtual moduli cycle [9(25e U YL, n)]virt
is related to [9N(Y', T;)]¥I'. Using the natural evaluation morphism
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qi : MY, T;) — D" we form the Cartesian diagram

7 )

(3.14)
MY, T1) xpr MY, Do) ——— MY}, T1) x M(P5™, Ta)

| l

Dr 2 D" x D"
Here the arrow A is the diagonal morphism. Let ®, be the finite étale
morphism in (3.2), which has pure degree | Eq(n)| (see [23, Section 4]).

Lemma 3.14. We have the identity

! ! re virt re virt
TEqGn] P2 (DT, T < [P, T2 ™)

= [T U )

We will prove these lemmas in the next section.

The main degeneration formula of the Gromov-Witten invariants of
W follows immediately from these lemmas and the first version of the
degeneration formula proved in the previous subsection.

Theorem 3.15. Let the notation be as before. Then as elements in
AIN(W,, 1),

[m<m0’ F)]virt

_ m(ﬁ) ! rel virt % rel virt
= 2 Ty P (BROT T PR R,

Finally, we state the numerical corollary of this theorem. Let j; :
Y, — W be the inclusion and let

jfng(R*W*QW)Xk _ H*(Y;,Q)Xk

be the induced pullback homomorphism. Now let n = (I'1, 'y, ) € 2 be
any admissible triple. For ¢ =1 or 2, we let Mire be the moduli space of
stable curves of topological type I'? (See the definition before (2.9)). It
is naturally a Deligne-Mumford stack. Further, we have a natural local
immersion of stacks

qbn : fvtptl) X mtrg — i)ﬁng
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that associates to any pair of curves (C1,C2) € Mpe x Mrg the gluing
C1UCs by identifying the i-th distinguished marked point of C with the
i-th distinguished marked point of Cy for all i. Now let 5 € H*(IM, ).
We assume 3 has the following Kunneth type decomposition

Sn(B) = > o1 ®Byag,  Bij € H (Mry).

JEK,

Corollary 3.16. Let W/C be the family and let T' = (g,b, k) be as
before. Then for any closed point £ A0 € C, a € Hg(R*ﬂ'*Qw)Xk and
B e H*(My,) as before,

W,
v (a(9), 9)
m rel % rel *
C Y RS [ )+ 0 )]
a(n)] "
nEQ/~ JE€Ky

Here e is the intersection of the homology groups
H.(D") x Hy,(D") % H,(D")

and [y]o is the degree of the degree 0 part of the homology class v €
H.(D").

4. Proof of the main theorem

The goal of this section is to prove Lemma 3.12-3.14. In essence, the
proofs of these lemmas (except Lemma 3.12) rely on the comparison of
the virtual moduli cycles of stacks with the virtual moduli cycles of their
substacks. This is precisely the situation studied in [26, Lemma 3.4],
except that there we used the existence of certain locally free sheaves
to construct the virtual moduli cycles. To prove Lemma 3.12, we need
to study the situation more general than the one studied. In the first
subsection we will revise [26, Lemma 3.4] to cover all the situations we
need.

4.1 Comparison of the virtual moduli cycles

Let M — N be a representable morphism of stacks. In this subsection,
we assume M is a DM-stack having a perfect-obstruction theory with
the associated obstruction sheaves Obys. For N we need to consider two
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possibilities: One is when N is a DM-stack having a perfect-obstruction
theory with the obstruction sheaf Obxn. The other is when N is a closed
substack of a smooth Artin stack Q defined by the vanishing of a section
s of a vector bundle F on Q.

Let S = {Sa}a be an atlas of N and let {(F3,0bg,)}a be the data
associated to the perfect-obstruction theory of N. In case N is a DM-
stack this is specified in the Definition 2.1. In case N is an Artin stack,
we assume that there is an atlas S = {S,} of Q so that S, = S, XQ
N. Then we simply take Fs = [FL — F2] to be F} = Og, (TS,),
F2 = Og,(Flg,) and the arrow F. — F2 to be the one induced by
the differential of the section s € HY(F). The obstruction assignment
obg, taking values in Obg, = h?(F2) is the obvious one induced by
the defining equation s. Since M — N is representable, S, Xxn M
is a scheme. For each @ € A we pick an affine étale universal open
R, — So XN M. Without loss of generality, we can assume {R,}a
is a covering of M in the sense that the image Ry £ po(Ra) of the
tautological p,: R, — M is an open substack and the collection {R, }a
forms an open covering of M. Note that when N is a DM-stack, R, —
M are étale and then {R,}a forms an étale cover of M. In case N is
an Artin stack, then R, — M are smooth morphisms. In this case we
shall view {R,} as an atlas in the smooth site!® of M.

We let {(£2,0bg,)}a be the date given by the perfect obstruction
theory of M associated to the covering { R, }x. Namely, each (£3,0br,)
is a perfect obstruction theory of R,, the sheaves Coker{€l — &2}
descends to the sheaf Obp; of Opng-modules and the obstruction assign-
ments {obgr, } are compatible over all R,g = Ro XM Rg.

We next assume R, — S, admits a perfect relative obstruction
theory given by (L%, 0bg, /S.) as defined in Definition 1.11. We say
M — N admits a perfect relative obstruction theory if we can choose
{(£2,0bp, /s, )}a so that the relative obstruction sheaves Obg, /5, =
Coker{L! — £2} descends to a global sheaf on M and the obstruction
assignments obp_ /g, are compatible on the overlaps R,g3.

Definition 4.1. The perfect (relative) obstruction theories {€3,
obgr,}, {Fa,0bs,} and {L3,0bp /g, } are said to be compatible if to
each o € A there is an exact triangle of complexes

(4.1) = L5, = £y = F4®0s, O, = Lo =

16Namely, the open covering are univeral open smooth morphisms.

255
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which induces a long exact sequence of cohomologies

(4.2)
— (Lo ®T) 5 h(EL R T) 25 W (Fy ®og, T) " WYL © T) —

for any sheaf of Op_-modules 7 that satisfies the following properties:

(1) The first part of the above exact sequence is identical to the exact
sequence

0 — Defp_ g, (T) — Defp, (T) — Defg, (T) —

under the canonical isomorphisms Def!(Z) = h'(- ® Z) given by
the definition of the perfect obstruction theories.

(2) Let & be any object in Trig, , which is also an object in Trig,. Then
under the arrow 752 in (4.2) we have obg, (£) = T22(0bg, (£)).

(3) Let & = (B, I, o) be an object in Trip, /g, , which is also an object
in Trir,. Then obp, () = ™1 (UbRa/Sa(f))- Further, suppose
obgr,(§) = 0 and ¢ : Spec B/I — R, extends to ¢ : Spec B —
Ry. Let e € h'(F3 ®p)r I) be the difference of the tautological
Spec B — Spec S, and the composite of Spec B 2, Spec R,, and
Spec Ry == Spec S,. Then 0bg./s.(§) = T02(e).

Finally, the collection of exact sequences h?(L%) — h?(E2) — h%(F2)
— 0 descends to an exact sequence of sheaves

ObM/N — Obpq — Obn Ron Om — 0.

The goal of this subsection is to show that with the data given in
Definition 4.1, we can construct a class [M, N]V'* € A,M, called the
relative virtual moduli cycle. We will then show that it is equal to
[M]VI'* in A,M. This allows us to give a different interpretation of
[M]¥i*t useful in the proof of the key lemmas in the previous section.

We first study the local situation. Let R, — M and S, — N be
respective charts as described before. Let p € M be any closed point,
qg € N be the image of p, p € R, be a lift of p € M and § € 5,
be the image of p. We let Ty = h (€S ® kp), To = h}(Fs @ kg) and let
Ty o = h'(L3,®kg). Similarly, we let O1 = h?(E®0kp), O2 = h*(FLkg)
and let Oy /p = h2(L8 ® kp), all implicitly depending on the lift p. Note
that they fit into the exact sequence

(4.3) 0—>T1/2—>T1—>T2i>01/2—>01—>02—>O
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induced by (4.1). We now let T'= T} & 15/ ker(d) and pick a surjective
homomorphism 7" — 75 that is an extension of 77 — T5. Next we let
O = O1®Im(0). We then pick an injective homomorphism 7:0; /5 — O
so that the composite O/ — O — Oy is the identity map. This way
we have two exact sequences

(44) 0—-Ty,—=T—-To—0 and 0— Oy — O — Oz —0.

Further, with various homomorphisms chosen and the isomorphism
T/ ker(d) = Im(4), we have the following induced exact sequence

0—T1 —T—0— 0 —0.

In the following for any vector space V' we denote by k[V] the ring of
formal power series lim,, &7 ,S°(V). We now let

(45) [eKTV]®0, g€ K[TyY]® Oy and h € K[TV]/(g) ® O1

be the Kuranishi maps of the (relative) obstruction theories of Ry, of S,
and of R, /S, at p (or ) respectively (see [26, Lemma 3.10]). By abuse
of notation, we denote by (g) the idea generated by the components of
g in kK[Ty'] and in k[TV] via the inclusion k[75'] — k[T"].

Lemma 4.2. We can choose the Kuranishi maps f, g and h so
that:

(1) p1(fp) = 7(gp) under the naturally induced maps o1 :k[TV]®0 —
K[TV] ® Oz and 7:K[TY] ® Oy — K[TV] ® Os.

(2) The differential dh,(0) : T — Oy is identical to the composite
T — Ty/ker(6) — Oy /9 induced by & in (4.3).

(3) Let h and f in ]k[[Tlv/Q]]/(g) ®O be the images of h and f under the

obvious maps induced by the arrows mentioned before, then f: h.

Proof. The proof follows from the construction of Kuranishi maps,
as was demonstrated in [26, Lemma 3.10]. q.e.d.

We now let X = Speck[TV], V1o = Oy x X, V = O x X and
let Vo = O x X, all viewed as vector bundles (or their total spaces)
over X. We let p1: Vi — V and p2: V' — Vi be the vector bundle
homomorphisms induced by arrows in (4.4). Then V5 is the quotient
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vector bundle of V' by Vi 5. We consider the subscheme I' C V; that is
the graph of f, consider Y = V)5 xx I' C Vi Xx V and consider

O1=Vij2 X1y puxv Y CY, 2 =Vixy, v ¥V CY.

Here 171 /2 1s the image scheme of the immersion 1y, s X1 Vi —
Vijg xx V and V2 Oy, x V C V1/2 xx V, where OV1/2 is the zero
section of Vj /5. Note that Vl /2 and V are isomorphic to Vi, and V,
respectively. Following [26, Page 145, we denote the normal cone to
Co,/y Xy ©1 in C@2/y17 by B(p):1 and denote the normal cone to
Co,/y Xy ©2 in Cg, /vy by B(p)2. Both B(p)1 and B(p)2 are subcones
in V1/2 X ¢ V, where X = Speck[T)]/(f) and V; = V; x x X. As argued
in [26, 146], based on the work of [38] (see also the recent [21]) there is
a canonical rational equivalence'® Q(p) € W, (V5 x ¢ V) so that

(4.6) 90Q(p) =B(p)1 and 9,Q(p) = B(p)2.

The cones B(p)1 and B(p)2 have the following interpretations as
shown in [26, page 145]. Let D(p); C V be the normal cone to X in X,
then

(4.7) B(p)1 = 61D (p)1

where ¢ : V1/2 X ¢ V —V is the projection. Next, we let W =
Speck[Ty] and let W = Speck[Ty]/(g9). We then form the normal
cone to C’W/W xw X in C’W/W xw X, denoted by D(p)sa. It is naturally

a subcone in V1/2 X ¢ Vs. Then

(4.8) B(p)2 = ¢5D(p)2,

where P2 = (1,,02) : V1/2 X% V—>V1/2 X% Va.

We caution that all the objects so far constructed depends on the
lift P, on the choices of arrows before (4.4) and on the Kuranishi maps.
Later we will show that they are canonical in certain degree, up to the
symmetry Aut(p).

7For closed subscheme A C B, C4y B is the normal cone to A in B.

8 Tn this paper we use the convention that a rational equivalence Q € W.Z is
a cycle in Z,(Z x P') so that all its irreducible components are flat over P'. We
then define 9oQ and 9@ to be QN Z x {0} and Q@ N Z X {oo} respectively. In case
p:Z — W is a flat morphism, we denote by ¢*@ the flat pullback of the rational
equivalence.



A DEGENERATION FORMULA OF GW-INVARIANTS 259

In the following, we first construct the relative moduli cycle [M, NVt
and several related cycles based on the collection of the infinitesimal
models D(p)s, etc. First at each p € M the cone

D(p)2 x5 0 C (V12 x5 Va) xx 0

is independent of the choices of the Kuranishi maps f, g and h and is
invariant under the natural Aut(p) action. (Here X is the subscheme
defined before that depends on p implicitly.) Similar statements hold
for the cycles D(p); € Z.V, the cycles B(p); € Z*(Vl/g X ¢ V) and
the rational equivalence Q(p) € W.(V; /2 X% V). These were proved
in [26, Section 3]. Secondly, for each o we pick a pair of locally free
subsheaves'? L, C &, over R,, viewed as a complex [L, — ], and a
surjective homomorphism of complexes

(4.9) (Lo — Ea] = [Obp, /s, — Obg,].

For simplicity, we denote by W, the vector bundle Vect(L, ® &,). As
shown in [26, Section 3| there is a unique cycle B; o, € Z,W, so that
the collection B; = {(Rq, Bi,a, Lo ®Ea)}a satisfies the cycle consistency
criteria for the infinitesimal models B(p); over the pair (M, Oby/n @
Obm). We let [Bi] and [Bz] be the associated class in A,M following
the basic construction. Next we let F, £ &, /Lo be the quotient sheaf,
which is locally free by our choice. Then Obg, ®0g,  Or, is canonically
a quotient sheaf of F,. Again following [26, Section 3] we can find a
unique cone cycle Dy, C Vect(L, & F,) so that the collection Dy =
{(Ra,D2,a, Lo ® Fo)} satisfies the cycle consistency criteria with the
infinitesimal models D(p)y C Vl/g X ¢ Vs over the pair (M, Obyy/N @
p*ObN), where p: M — N is the projection. Thus by applying the basic
construction to this collection we obtain the class [Ds] € A.M. We will
call the class [Ds] the relative cycle and denoted it by [M, NJVirt,

Lemma 4.3. We have [M]V"* = [M, N]V'* jn A, M.

To prove the lemma we need to construct a rational equivalence
[Q] € WM (or equivalently a class [Q] € A.M x P1) so that 9[Q)]
provides the identity in the lemma. Here when [Q] is a class, we define
0[Q] = 3[Q] — 950[Q] with Gp[Q] the image of the Gysin map 0'[Q]
associated to 0 — P'. The O is defined similarly. The proof is parallel
to that of [26, Lemma 3.4] and will occupy the rest of this subsection.

19Tn this paper by a pair of locally free sheaves we mean a locally free subsheaf of
a locally free sheaf with locally free quotient sheaf, all of finite ranks.
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We need to provide a revised proof since the current construction does
not rely on the existence of a global vector bundle as was assumed in
[26].

We first set up the notation relevant to the construction of the cycles
[B;], etc, following the basic construction of the virtual cycles. First, in
constructing the class [B;] we first built the index set =Z(B;). Each a €
E(B;) associates to an integral closed substack Y, C M, a multiplicity
Mg, a maximal open substack 7,:Y? — Y, so that 75 Obyy /N1, Obm is
locally free. Over YU we have a canonical cone representative N9 ¢ FO,
where FJ) is the vector bundle (stack) Vect(s;Obyn & j*Oby) over
Y?. We then pick a projective variety o, :Y, — Y, generically finite
over Y,, a locally free sheaf F, of Oy,-modules and a quotient sheaf
homomorphism F, — ¢ (Obnn @ Obm). We form the vector bundle
F, = Vect(F,) with the induced flat morphism Fa\wgl (vo) — FO. We
let N, C F, be the closure of the flat pullback of NO. Then [B;] is the
sum of my€(a) over all a € =Z(B;), where £(a) is deg(goa)_lnpa*O!Fa [Na].

We set up the notation for the cycle [D;] according to the same
rule. We first prove [B1] = [M]""*. This identity follows from the
relation (4.7). The actual proof goes as follows: First the class [D;] =
[M]¥'t (see [26, Section 3]). From (4.7) the index sets Z(B;) = Z(Dy)
naturally. For a € Z(B;) with @ € Z(D;) the corresponding element,
their base substacks Y, = Yg. Further the intrinsic representative Ng
is the flat pullback of N% under an obvious homomorphism of vector
bundles. Based on these, we can choose Y, = Yz, choose locally free
sheaves F, = Fg and then the cone representatives N, = Ng. This
proves £(a) = £(@) and hence [B;] = [D1] = [M]V". Since the proof is
straightforward, we will omit the details here. For the same reason, we
prove [Ba] = [M, N]V'* based on the identity (4.8). Again we will omit
the details here.

We now construct the required cycle [Q] so that

(4.10) 8[Q] = [B1] and 90[Q] = [Ba].

For each o € A we fix the pair £, C &, over R, as in (4.9). As before
we let W, = Vect(Ly @ E,). We claim that we can find a collection
of rational equivalence QQ, C W,W,, indexed by a € A that satisfy the
following existence lemma.

Lemma 4.4. Let o € A be any element. Then there is a unique
rational equivalence Qo € W, W, of which the following holds. Let p €
M be any point and let p be a lift of p in some chart Rg. We let
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V1/2, V and Va be the vector bundles over X (associated to D) defined
before and after Lemma 4.2. Let R, be the chart, let Rop = Ro XM P
and let Ry be the formal completion of R, along R, ,. We also pick a
morphism Ra — X that commutes with Ra — M and X — M. Now
let Oy/9 — O be the pair in (4.4) associated to p. Then up to Aut(p)
there are canonical induced homomorphisms of vector bundles over Ry,

O1/2 X Rap — P*(La)|Ra,s O X Rap — B*(Ea)|Ra, and
Lal|Ra, = O1/2 X Rap-

We then pick a surjective homomorphism 3 : Eq|Rr,, — O X Rayp s0
that the following diagram of the complexes of vector bundles over R

(411) [CO“Ra,p - ga|Ra,p] — [01/2 X Ra,p - O X Ra,p]

T |

[0 (L2) Rary — 1 (ED|Ra)
is commutative. Then there is a vector bundle homomorphism
®;: Wy xg, R — (Vl/Q X ¢ V) X ¢ Re
(recall Wy, = Vect(Lq ® E,)) extending the obvious homomorphism
Wa XR, Rap — (Vija x V) x Rap
induced by the pa before (4.11) so that

1(4"Q(p)) = P3(Qa);

where 1/1:(‘71/2 X ¢ V) X ¢ Ry — 171/2 X ¢ V and ®o: W, X R, Ry — W,
are the obvious (flat) projections.

We will call this lemma the rational equivalence consistency criteria.

This lemma is proved in [26, Section 3| for the case where M is a
quotient stack. The general case is exactly the same. We will not repeat
the argument here.

We now fix the collection Q = {(Rq, Qa, Lo BE)}a. To each a € A
we let Z(Qq) be the set of irreducible components of Q,. For each
a € Z(Qq), we let T, C @ be the corresponding irreducible component,
let m, be the multiplicity of @), along T, and let Y, C M be the
base substack of a, which is the closure of the image of T, — M. We
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then let 1 : Y? — Y, be an open substack so that LtaObn/Ns 1, ObM
and KO = ker{c:Oby; /N — 1;0bm} are locally free. We then pick a
homomorphism

(412) n: L;ObM/N — ICg

so that the composite KO — 1*Obyy /N — KY is the identity. (Such lift

exists possibly after shrinking YO C Y if necessary.) We let V? /2.0 =

Vect (1 0bp /), let V§ = Vect (K @ ¢ Obyy) and let ﬁ:V?/Qﬂ — VY be
the immersion induced by 7 and the tautological Obyg/n — Obwr.

We now construct the intrinsic representative of a as a cycle in F? x
P!, where FY = V(lJ /2,0 XY0 VY is a vector bundle stack over YU. Let
pr: W, — R, be the projection. It is easy to see that for some dense
open subset U of pr(T,) C R, we can lift the tautological U — Y,
to g: U — YY and lift the left vertical arrow (below) to surjective
horizontal arrow (the top one) as shown in the commutative diagram

Lo — €] ®0n, O —2s g*[10bp1 /N — KO ® 1 0bm]

(4.13) l l

g*[0bvyn — Obyyn] —— 97 [t ObyyN — 150by/N]-
Note that the other two arrows are tautological ones. We let
(4.14) (Wo x PY|yypr — F2 x P!

be the induced projection. Then an easy argument shows that the
statement in Lemma 4.4 implies that there is a reduced and irreducible
cycle ng C FY x P! so that the restriction of T}, to fibers over U x P! is
a dense open subset of the flat pullback of Qg,n via the arrow in (4.14).
We call ng an intrinsic representative of a.

Once we have constructed the intrinsic representative of a € Z(Q,),
we can define an equivalence relation on UZ(Q,) as we did before. Let
a € 2(Qq) and b € =(Qp) be two elements. In case Y, # Yy, thena o b.
In case Y, = Yy, we let ng and ng be the respective representatives
of a and b, based on the same 7 in (4.12). Then we say a ~ b if ngﬂng
is dense in both ng and ng. This defines an equivalence relation.
Further, whenever a ~ b then m, = my. Now let Z(Q) be the set of
equivalence classes. For any a € Z(Q), we pick a projective variety Y,
and a generically finite morphism ¢,:Y, — Y,. We then pick a pair of
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locally free subsheaves L, — &, over Y, a surjective homomorphism of
complexes
(Lo — Ea] = 5[Obymyn — Obm]

and a lift (of the above arrow)
(Lo — Ea] = ¢ [Obyn — K @& Oby]

over a dense open subset Y,? C Y,. After that, we let W, = Vect(L,DE,)
and let j, : Wa\yg — FY be the induced morphism. By shrinking Y2
if necessary, we can assume that Wy|yo — FY is flat. With all these
chosen, we let @, be the closure in W, x P! of the flat pullback of ng

and define £(a) = deg(goa)_lgoa*o!wa [Qa]. We define

[Q] = Z meé(a) € ALM x PL.
a€E(Q)

It remains to prove the identity

(4.15) 05o[Q) = Y madoot(a) = [Bg] € AM
a€E(Q)

and the similar identity with O, (resp. [Bz]) replaced by 9y (resp. [B1]).
We will prove the identity (4.15). The proof of the other identity is
similar. To achieve this, we will define a function p : 2(Q) x Z(B2) — Q
that satisfies

(4.16) Z map(a,b) = my, Vb e ZE(Bs)
a€E(Q)
and
(4.17) Osola) = D pla,b)E(d),  VaeZ(Q)
beZ(B2)

Once these two are established, then

aoo[Q] = Zmaaoo‘f(a) = Zma Z.“(aa b)f(b) = Zmbg(b) = [BQL

which is (4.15).

We first construct the function p. We begin with any (smooth) chart
Ry. We let L, @ E, be the locally free sheaves on R, chosen before.
For simplicity we denote by W, the sheaf L, & &, and continue to
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denote by W, the vector bundle Vect(L, @ &,). We let By  C W, and
Qo C Wy X P! be the cycles constructed before. For each a € Z(Q) we
let Qa,q be the closure in W, x P! of the pullback of ng via the arrow
n (4.14). The cycle Qg is also the union of irreducible components
of @, in the equivalence class a. With this choice of @), 4, we have the
decomposition

(4'18) Qo = Z maQa,a-

a€E(Q)

Similarly, we have a canonical decomposition

B2,oc: Z mbB2,a,b‘
bE=(Bs)

As before, we let =(B2,,) be the index set of irreducible components
of By o. For ¢ € Z(Bsy,), we denote by T¢. the corresponding compo-
nent. Then because 0-Qa = B2, there is a unique function pq(a,-):
E(B2,q) — Z so0 that 0scQa,a = D tala, c)Te. Again, by cycle (rational
equivalence) consistency criteria and the invariance of the cycle under
Aut(p), we conclude that whenever ¢; ~ cg then pq(a,c1) = pa(a,c2).
Thus pq(a,-) descends to a function pg(a,-) from Z(Bs2) to Z. Finally,
for b € (Bg) we define By 4 5 to be the union of T, for those ¢ € Z(Bs 4)
such that ¢ ~ b. Then we have the identity

aooQa,a = Z Ma(aa b) B2,a,b-

be=(B2)

For the same reason whenever R, Xy Rg Xm Yy # 0, then g (a,b) =
pg(a,b). Hence, we can define p(a,b) to be piq(a,b) for those « so that
Ry XM Yy # 0. Then the identity (4.16) follows from collecting term
BZ,a,b in

Z mbB2ab—BQ(x—aooQa— Z mq Z ab B2ab

=(B2) a€=(Q be=(B2)

for some « so that Ry, xn Yy # 0.

We now investigate (4.17). Let a € Z(Q) be any element, let ¢, :
Y, — Y, be the generically finite morphism and let £, C &, be the
pair of sheaves chosen before. We still denote by W, the vector bundle
Vect(L, @ E,). We let Q, € W, W, be the representative of a and let
0x0Qq = Y _m;D; be the decomposition into irreducible components.
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Since (), — M factor through Y, C M, all D; lie over Y,. We now
let A C Y, be a closed integral substack. We let T o be (the index set
of) those D; so that the image D; — M is exactly A. Similarly we let
=(Ba)a be those b € =(By) so that Y, = A. Clearly if we can show
that

(4.19) deg(0a) ™ Y mi @aiOyy, [Di] = D p(a,b)E(b),

€Y A be=(B2)a

since A C Y, is arbitrary, (4.17) will follow immediately.

In the remainder of this section we will prove the identity (4.19) for
any pair (a, A). We pick an étale pr:U — Y, so that U xy, A — A
is dominant. We then pick a pair of locally free sheaves Ly C &y and
surjective homomorphisms ¢ and ¢o of complexes as shown that make
the diagram

Ly — &) O G [ Obyyn — KO & 1:0bn]

[ |
(p*U[ObM/N — ObM] E— (,DZ[LZO()M/N — LZObM]
commutative. Here the top-right corner is the complex in (4.13) and
the right vertical arrow is the standard projection. As before, we let

Wy be the vector bundle Vect(Ly @ Ey). Then the homomorphism ¢;
defines a flat morphism WU|@51(Y0) — FY. We let Qu C W.Wy be the

closure of the flat pullback of ng € W.FY.
We next consider the projections

q1:U XY, Ya—> U and Z]&:WU XY, Ya—> WU.

We let W C Wi Xy, Y, be a dense open subset so that the tautological
W — Y, factor through Y? and W — FY is quasi-finite. We then let
Qu be the closure in (Wy xvy, Ya) x P! of the flat pullback of Q(c)w via

the obvious W — F9. Then since ng is dominant over Y? and since

g1 is proper, we have c?l*(QVU) = deg(pq)Qu and then
(4.20) G1+(020Qu) = D0G1+(Qu) = deg(pa) 00 Qu-

For the convenience of the readers, we list the related rational equiv-
alence relations constructed:

0, EWLEY, Qu e W.Wy, Qu € Wu(Wy xy, Ya) and Q' € W, W.

265
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(@' will be constructed in (4.23).) We now let T (resp. YN) be the (index)
set of those irreducible components of dQu (resp. 9.cQu) that lie over
and dominate A. For i € T or T we denote by T; the corresponding
component and by m; the multiplicity of Qu or @U along T;. We need
to divide T into two parts: One is T1 which consists of those T; so that
q1+(Ti) # 0. We let To = T — T;. Because of (4.20), there is a map

A:T1 — T so that under g, the component T; is mapped onto T,
say via ¥; 5): Ti — Ty Then (4.20) implies

(4.21) > deg(;) =deg(pa), jET.
iEAT(H)

We now compare the collection T with the collection T A- We let py
and p2 be the projections of U Xy, Y, to U and Y,, respectively. We
pick a pair of locally free sheaves £ — &£ on U xvy, Y, so that there are
two surjective homomorphisms ¢, and ¢9 of complexes as shown in the
commutative diagram

(4.22)
L — €] R

) |

pi[Ly — Eu) — [1:0byyNn — KO & 1 0bn] — K @ Obmlyo].

Here the two remaining arrows in the diagram are the ones chosen be-
fore. We let W be the vector bundle Vect(L & &) over U Xy, Y, and
let (1 :W — Wy Xy, Y, and (2: W — W, be the morphisms to vec-
tor bundles over U xvy, Y, and Y, induced by ¢; and ¢, respectively.
The map (; is obviously smooth whose fibers are vector spaces. Since
U xy, Y, — Y, is étale, (5 is also smooth with affine fibers. Further,
because of the commutative diagram (4.22) and the rational equivalence
consistency criteria, the flat pullback of Qy via (; and the flat pullback
of @), via (2 are identical over a dense open subset Y C U Xy, Y, that
is flat over both U and Y,. Hence since both Qy and (), are closed and
since all their irreducible components dominate Y,,

(4.23) Q' = ¢ (Qu) = &(Qa)

We now let Y’/ be the set of those irreducible components of 9,,@Q’ that
lie over and dominate A. Since the fibers of (; are vector spaces, YT is
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naturally identical to T, say via X' : Y/ — Y. Further, for each i € Y’
the component 7; is a vector bundle over T\, (;). On the other hand,
since po:U Xy, Yo — Y, is smooth, each irreducible component of 9 Q'
is a component of the flat pullback of a T; for some ¢ € T o. Thus there
isamap A\,: Y/ — T4 so that for each i € T the union Zje)\gl(i) ) is
exactly the pullback of Tj. For i € Y" and j € A\,(3), we let ¢; ;:T; — Tj
be the tautological map.

We are now ready to prove the identity (4.19). For each i € Y/, we
let b(T;) be the image of T; — U xvy, Y,. We pick a projective variety Z;
so that a dense open subset Z) C Z; is a finite branched cover of b(T})
and the induced Z) — A extends to @;: Z; — A. We then pick a pair of
locally free sheaves £; C &; over Z; and a surjective homomorphism of
complexes ¢} that lifts to a surjective ¢}, as shown in the commutative
diagram

[Li — & %, [£|ng - 5|z§}

# l

07 [Obmyn — Obm] —— o} [ObM/N|Z? - ObM’Z?] :

Then following the definition of £ we let W; = Vect(L; @ &;) and let
C; C W; x P! be the closure of the flat pullback of T; C W|,0 x P!
via the induced Wj] 70 = W z0- We then define (the non—normlalized)
£(i) = Oy, [Ci] € AM x P,

Forie T, T or T4 we define the variety Z) to be the image of T} in
U,inU xy, Y, or Y, respectively, and then define ¢;:Z; — A and the
class £(i) along the same line. We let Yy A be the induced morphism

U xy, A — A. We have the following lemma concerning the relations
AT — T, VY — T and A\, : Y — YA defined before.

Lemma 4.5. The following relations hold:
1. For each i € Y we have £(i) = E(N(i)).

2. For each i € T we have deg(; x, (i) E(Aa(i)) = E(@) and for any
J € Ta we have 3\~ deg(epi;) = deg(vy,a)-

3. Foranyi € Y1 we have deg(d)i,A(i))E(}\(i)) = £(4).

4. Forie Ty we have £(i) = 0.
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Proof. The proof of (1) is parallel to the proof of Lemma 2.6, using
the fact that the fibers of (7 are vector spaces. We will omit the proof
here. The proof of the identity in (2) concerning &(-) is similar and
will be omitted too. The identity concerning the degrees in (2) follows
from the fact that U xvy, Y, — Y, is étale. We now prove (3). Let
ieTand j=Ai)e Y. Welet 79 C Z; and Z]Q C Zj be the pair of
varieties constructed in defining the classes £(7) and £(j). By definition,
there is a canonical dominant morphism Z? — Z;-). Hence without loss of
generality we can assume that it extends to p: Z; — Z;. With this choice
of Z; and Zj, we can choose the pairs of sheaves £; C & and L; C &;
be so that the former is the pullback of the later via p. Then because
of the relation (4.20), the cycle representatives C; € Z,Vect(L; @ &;)
and C; € Z,Vect(L; @ &;) satisfies p,C; = deg(v); ;)C;. Here we used
the fact that C; is supported on a single variety. This relation implies
(3) immediately. The proof of (4) is parallel and will be omitted. This
proves the lemma. q.e.d.

It follows from the lemma that

deg(u,a) > miOiy, [Di] = deg(vua) Y mi€(i) = > m; ().

i€TA i€TA JEY

Here we used (2) to derive the last identity. Because £(i) = 0 for i € T,
by (1) of the lemma the right hand side above is

Z m; (i) = Z deg (1 x(i)) mi E(A(i)) = deg(¢a) Zmi &(i)

i€ i€ ieY

= deg(pa) deg(Vua) > pla,b)E(D).
bEE(B2) A
Here the first equality follows from (3) in the lemma, the second equality
follows from (4.21) and the last identity follows from the definition of
u(a,b), using the fact that U is étale over Y,. This proves the identity
(4.19) and hence completes the proof of Lemma 4.3. q.e.d.

4.2 Applications

In this subsection, we will study three cases of relative obstruction the-
ories and derive some identities.

We first study the case where N is a DM-stack and M — N is
a substack defined by the vanishing of a C-divisor (L,s). Namely if
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So — N is a chart (in an atlas A) and (Lg, o) is the associated C-
divisor on Sy, then M xn.S,, is defined by the vanishing of s,,. We denote
M xn S, by R,. We claim that there is a canonical relative obstruction
theory of R,/S, taking values in the sheaf Or, (La) (= Or,(Lalg,))-
Since R, is a subscheme of S,, the relative first order deformations
@e]‘}za/sa = 0. Now let £ = (B, 1, ) be any object in Trip, /g,. Since
B is a T'(Og,, )-algebra, its associated morphism ¢: Spec B — S, is an
extension of Spec B/I — S,. We consider the section s, o ¢ of ¢*L,.
Since $40¢|spec B/1 =0 € I'(9*La), 540¢ is an element in I'(Rq, La)® 1.
We define this element to be the relative obstruction class obpg, /g, (£)-
Of course, obp, /g, (§) = 0 if and only if ¢:Spec B — S, factor through
Ry C S,. Since Ry, — S, is an immersion, ¢ extends to Spec B — R,
as S,-morphism if and only if ¢ already factor through R, C S,. This
proves that obp_ /g, is an obstruction assignment. Since (L,s) is a C-
divisor on N, this defines a relative obstruction theory of M/N.

Now assume both M and N have perfect obstruction theories pro-
vided by the data {E3,0bg, o and {F3,0bg, /g, }a. We assume further
that the obstruction theories of M and N are compatible to the rel-
ative obstruction theory of M/N in the sense of Definition 4.1 with
L3 = [0 — Ok, (La)]'

Lemma 4.6.
Let the notation be as before. Then [M]V"t = ¢ (L, s)[N]Virt.

Proof. We will follow the notation developed before and after the
Lemma 4.2. Let p € N be any point, S, be an étale chart of N with
alift p € S, of p. We let Ty = h!(Fs @ kp) and let Oy = h?*(F2 @
kp). We let Wp be the formal completion of S, along p. Here we use
subscript p instead p since Wp depends on p up to Aut(p). We know
W, is Speck[Ty']/(g), where g is a Kuranishi map of the obstruction
theory of S, at p. We denote by (), the normal cone to Wp in W, £
Speck[Ty]. The cone C, is naturally embedded in Oy x W,. Again,
the pair ¢}, C Oz x Wp only depends on the point p € N, up to the
symmetry Aut(p). By the construction of the virtual moduli cycles in
[26] and in Section 2.2, this collection of cone cycles {C}},en can be
algebraicized and hence gives rise to a cycle, the virtual moduli cycle
[N]virt.

Now assume p € M. Then p € R, where R, = S, Xxn M. As
in (4.3), we let T} = h'(£, x kp) and O = h?(E, ® kp), etc. There
are two cases to consider. Onme is when 0 : Ty — O;/p in (4.3) is 0.
In this case T'=T1 = T, O = 01 and Oy = 01/01/2. Further, we

269
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can choose the relative Kuranishi map h € k[TV]/(g) ® Oy/5 to be
34, the pullback of s, via Speck[TV]/(g) = W, — S,. Here we have
used the canonical isomorphism O; /5 = La|5. Now let X, and Xp be
the schemes Speck[TV] and Spec[T"V]/(f), where f is the Kuranishi
map in (4.5). Then X, = W, and the cone D(p)2 is the normal cone
to Cp Xy, {8« = 0} in C,. The cone D(p)z is naturally embedded in

Vl /2% %, 172 For the same reason, when § is nonzero, thus surjective since
dim Oy /o = 1, the cone D(p)2 is also the normal cone to C,, Xy, {80 =0}
in Cp.

We are now ready to prove the lemma. First, from the discussion
before Lemma 4.3 we know the collection {D(p)2}pem can be algebrai-
cized. By definition, the cycle constructed based on {D(p)s} follow-
ing the basic construction in Section 2.2 is the relative virtual cycle
[M, N]VI't. However, since 8, are pullback of the section s,, the cone
D(p)2 is the normal cone to C), xg, {sq = 0} in Cp,. Further, since the
collection {(Lq, sq)} is the restriction of (L, s) to charts Sy, a repetition
of the proof of Lemma 4.3 shows that [M, N]Vi'* = ¢; (L, s)[N]"""*. Then
combined with the identity [M]V"* = [M, N]""* in Lemma 4.3, we have
[M]Virt = ¢ (L, s)[N]V''*. This completes the proof of the lemma. q.e.d.

We now investigate the second case. We let N be a DM-stack with
a morphism N — X to a scheme X. For simplicity we assume X is
smooth. Let £ : Xg — X be a smooth subvariety and let M be defined
by the Cartesian product

M:NXXX().

Then M is a substack of N. Let L over M be the pull back of the
normal bundle to Xy in X. Similar to the case just studied, there is
a canonical relative obstruction theory of M/IN taking values in the
cohomology of the complex £* = [0 — Opm(L)]. We now assume M
and N both have perfect obstruction theories and are compatible to
the relative obstruction theory of M/N. By the intersection theory of
DM-stacks [38], the Gysin map n'[N]VI'* € A, M.

Lemma 4.7.  Let the notation be as above. Then [M,N]Vi't =
,’7! [N]virt.

Proof. The proof is similar to that of the previous lemma with slight

modification. We shall omit the proof here. q.e.d.

We now investigate the third case. We let Q be a smooth Artin
stack with k C-divisor (L;,s;) and k positive integers n;, i = 1,..., k.
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We define N C Q be the substack defined by the vanishing of the
sections s{',...,s;". Then if we let p,, :So — Q be a smooth chart and
let S, = S, xq N, then S, has a natural perfect obstruction theory
taking values in the complex

(4.24) Fa = 105.(T8als.) — ®i0s, (pa ™)),

where p, : S, — N is the tautological morphism. We now let M be a
DM-stack over N and let R, — M be a chart so that R, - M — N
factor through R, — S,. We assume M has a perfect obstruction
theory given by {£3,0bgr,}a, where A is the atlas {R,}a of M. We
also assume M/N has a perfect relative obstruction theory given by
{£8,0bR, /s, }. Finally, we assume all these obstruction theories are
compatible. Hence by Lemma 4.3 we have [M]V"* = [M, N]Virt,

What we are interested is to compare this cycle with the virtual
moduli cycle of the substack My C M defined by Mg = M xn Ny,
where Ny C Q is defined by the vanishing of the sections si,...,s.
Note that M is homeomorphic to Mg. Again we assume Mg has
perfect obstruction theory so that it is compatible to the perfect ob-
struction theory of Ny and the perfect relative obstruction theory of
Mj/Ny. For simplicity, we only consider the case where Ny is smooth
and Codim(Np, Q) = k.

Lemma 4.8. Suppose the relative obstruction theory of Mo /Ny is
induced from that of M/N. Then [M, N]VI"'* = (Hle nl) Mg, Ng|i*t.

Here by the relative obstruction theory of M//IN inducing a relative
obstruction theory of My/Ny we mean that the relative obstruction
sheaf Obyg, /Ny = Obvyn ®oy Om, and the relative obstruction class
assignment by, /n, (§) = 0byg/n(€) for any triple £ € Ob(Tring, /N )-

Proof. Without loss of generality, we can assume all n; > 2 since
otherwise we can replace Q by Q N {s; = 0|n; = 1}. Let S, — Q,
S, =S, xq N and let R, — M be as before. We let (L;q, si o) be
the restriction of (Lj,s;) to Sq. Then Sq = SoN{sl', =+ = s/t =
0}. We let £ and &£ be the complexes of sheaves over R, that are
part of the (relative) obstruction theories of M /N and M as stated in
Definition 4.1. As before, we let F2 be the complex (4.24). Again, we
assume that the exact sequences (4.1) hold. We now let p € R, be any
closed point and let § € S, be the image of p. We let T; and O; (i = 1/2,
1, 2 or () be the vector spaces defined before (4.3) associated to p and
the pair R, /Sq. Since all n; > 2, the vector space Os is @leLi,ab- Also
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we can choose the Kuranishi map g, € k[Ty] ® Oz to be the germ of
sl = (870 5p,). We let W = Speck[T3] and let W, X and X be
the schemes defined after Lemma 4.2. Then since Codim(Sq, So) = k
and since Sq is smooth, the cone Cly, ), (which is defined after (4.7)) is

the vector bundle O x W over W. In this case the corresponding germ
D(p)2, which is the normal cone to C’W/W xw X in CW/W xw X, 18
Oy X Cxp /X s v

Now we consider the parallel situation for the pair My — Ngy. We
let Spo = Sy xq Ng and let Ry, = R, Xq Ng. We will denote by
P € Ro and § € Sy the same points p € R, and g € S, via the
inclusion Rpo C Ry and Sp o C So. We then let Tp; and Og; be the
vector spaces defined before (4.3) associated to the pair Ry o/So o Over
the point p. By assumption, Too C T2, Ty = Tij2, To C T is a
codimension k linear subspace, Op2 = 0 and Og /3 = Oy/3. Thus we
have the following diagram

0 —— 01/2 O ) 0
| L
0 —— Op/2 0o 0.

Further, we can choose the residue of h € k[TV]®01 5 in k[T |©O; o =
k[[Tafl/z]] ® Op,1/2, denoted by hg, be the relative Kuranishi map of
Ro.a/So0. at . We let Wy, Wy, Xo and Xy be the similarly defined
formal schemes associated to g € Sy, and p € Ry . Note that with this
choice, the Kuranishi map gy = 0 and Wy = W. Hence the associated
germ D(p)o 2 is the normal cone CXo/Xo’ which is a cycle in Oy 1 /5 % Xo.
Since Wg is W with the reduced scheme structure and since the
relative Kuranishi map hg is the restriction of the Kuranishi map h to
WO, Zo = Z xw Wy and Zo =7 X1 Wo. From this we see that the cycle
D(p)2 is a multiple of the pull-back of D(p)p 2 under the projection

<01/2 X 02) X Z LOJ) 00’1/2 X Z

with the multiplier given by the multiplicity of W along WO, which is
I

Based on this, we see that Z(M/N) is canonically isomorphic to
=(My/Np). Further, for any a € =Z(M/N) with the corresponding
@ € =(My/Ny), a representative (Aq, Fy, ¢q) of a is also a representative
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of @. Of course their multiplicities obey m, = mg [[n;. Therefore
. k
[M/N]Vlrt = Z mq§(a) = Z Mg, H n; - &(a)
a€=E(M/N) a€=(Mp/No) i=1
k .
= <H nz) [Mo/NoJ"™™.
i=1
This proves the lemma. q.e.d.

4.3 Proof of Lemmas 3.10 and 3.11

The proof of Lemma 3.10 is similar to that of Lemma 3.11 while tech-
nically less involved. Hence we will prove Lemma 3.11 and omit the
other. The strategy to prove Lemma 3.11 is to apply Lemma 4.6 to the
case where M = M(Wop, n) and N = MM (20, T"). To this end, we need to
work our the relative obstruction theory of (200, n)/9M(20,T").

Following the argument in Section 2.1, we only need to look at
the relative obstruction theory of 9(Wy[n], n)st /9 (W [n], T)5t. We first
cover M(Wn],T')5" by affine étale charts S, — IM(W[n],T)%. We let
(Ln,a» Sp,a) be the restriction of (Lj,sy,) to So. By definition, R, £
Sa Xanw ),y M(Wo[n],n)* is the subscheme of S, defined by the
vanishing of s,. Hence R, /S, admits an obvious relative obstruction
theory induced by the pair (L q,Sy.a), as defined in the first case
in Subsection 4.2. Namely, for any { = (B,[,p) € Trig, /g, with
¢:Spec B/I — R,, the relative obstruction class is

ObRa/Sa (g) = d(sa o 80) € F(Raa Ln,a) ®F(Ra) 1.

Hence the relative obstruction theory of R,/S, takes values in the
cohomology of the complex [0 — Og,(Ly.a)]. Because L, . are the
restriction of a global line bundle L, on 9MM(W[n],T')** and the sec-
tions s, over S, are the restrictions of the global section s,, the col-
lection of the relative obstruction assignments {obp_ /ga} are compat-
ible over R,3 and thus defines a global relative obstruction theory of
M(Wo[n],n)st /9M(W[n],T)%t taking values in the cohomology of

[0 — Ogn(wyn],mest (Lin)]-
We now let A, = I'(Og,,) and A, , = I'(Og,). Without lose of

generality, we can assume all S, are n-admissible (cf. Definition 3.3).
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We then form the complex of A,-modules E?, as in (1.19) and the com-
plex of A, ,-modules Ej , as in (3.10), with the subscript o added to
emphasize their dependence on «. Recall that they are the respective
complexes that are part of the perfect obstruction theories of S, and
R,. Further, we have the exact sequence of complexes (3.11). Thus to
apply Lemma 4.6 we only need to show that the relative obstruction
theory of 9M(Wy[n],n)t/9M(W[n],T)5* is compatible to the obstruction
theories of 9M(Wy[n],n)5" and of M(Wn],I')**, in the sense of Defini-
tion 4.1. Because of the exact sequence (3.11), we only need to show

that for any triple § = (B, I, ) in Trig, /g, we have

C(obg, /s, (§)) = obr, (&)

Here ¢ is the homomorphism h'(C*~1(Og, (Ly.a))) — h*(Ej ,(Or,)).
But this follows directly from the construction of the respective (rela-
tive) obstruction theories. As argued before, the relative obstruction
theory of 9M(Wy[n],n)st/9M(Wn],T')** descends to a relative obstruc-
tion theory of M(Wo, n)/M(2W,T") taking values in the cohomology of
the complex [0 — Ognay, ;) (Ly)], and this relative obstruction theory
is compatible to the obstruction theories of 9 (2Wy,n) and M(W,T).
Thus by applying the result proved in Subsection 4.2, we conclude
[9(Wo, )]V = c1(Ly, s,,) (20, T)]V"t. This proves Lemma 3.11.

4.4 Proof of Lemma 3.12

We now prove Lemma 3.12. Here is our strategy. Let Mg, be the
(Artin) stack of k-pointed genus g nodal curves and let

p MW, IT) — My,

be the forgetful morphism. Let n = (I'1, 2, I) € Q be as in Lemma 3.12
that has r ordered roots of weights u1, ..., u,-. We will show that in the
formal neighborhood of 9M(2Wy, n) in M(AW,I") (possibly after an étale
base change) there are divisors (L;,s;) for 1 < i < r so that 9(2p,n)
is defined by the vanishing of sf',... st while M(YPe U VL, ) is
defined by the vanishing of s, ...,s,. This way we can reduce the proof
of Lemma 3.12 to the situation studied in Lemma 4.8.

We now provide the detail of the proof. We first construct the desired
base change of the formal neighborhood of 9(20y,n) in M(W,T"). We
let Mre be the moduli stack of pointed nodal curves (not necessary
connected) of topological type I' (see the definition before (2.9)). Since
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we do not impose stability condition on such curves, Mro is an Artin
stack. Then for any pair (C1, C2) € Mre x Mrg we can form a new curve
C1 U Cs by gluing the pairs of the i-th distinguished marked point of
C1 and of Cs for all ¢ = 1,...,r. This construction extends to families,
thus defines a (local embedding) morphism Mre x Mrg — My .

Definition 4.9. Let A be an Artin stack. We say B is a formal
extension of A if A is a closed substack of B and the inclusion A — B
is a homeomorphism.

Lemma 4.10. We can find a formal extension Q of Mpe X Mrg
so that the morphism Mrp¢ x Mrg — My i extends to an étale morphism
Q— M.

Proof. For schemes, this is the topological equivalence of étale mor-
phisms [30]. Note that once such extensions exist, then they are canon-
ical. The proof of the general case can be proved by applying this
topological equivalence theorem to charts of the stacks. We will leave
the details to the readers. q.e.d.

We next consider the gluing morphism
®, 1 MY, T1) xpr MY, T1) — MY LY, 7) C MW, I).

Lemma 4.11. There is a formal extension MW, T)" of M(Pi, Ty)
x prIN(YEeL T'1) (as DM-stack) so that the morphism ®,, extends to an
étale morphism

¢, MW, )" — M(W,T).
Proof. The proof is similar to Lemma 4.10, and will be omitted.
q.e.d.

Because M(20,T')" is homeomorphic to M(YE, T'1) x pr M(Y3eL, T),

the forgetful morphism

(4.25) MV, T1) xpr MDYE', T2) — Mre x Mrg

extends to M(W,I')" — Q.

Our next task is to define the PD-divisors (L;,s;) on Q for i =
1,...,r as mentioned. We let & and ¢ be the universal families over
M, ;. and Mpe x Mpg. We let {node be the natural substack of all nodal
points of the fibers of £&. Then &,0qc C € is a smooth divisor. On the
other hand, each fiber ¢, (over p € Mr¢ x Mrg) contains r ordered
distinguished nodes. They define r ordered distinguished sections

(426) nl,...,nr:Mpgprg—>C.
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The nodal locus (oqe C ¢ is the union of a smooth divisor with the
images of these r sections. We now consider the universal family ¢ over
Q. Since Q — M, is étale, the nodal locus (,oq. is a smooth divisor
in . On the other hand, since Z‘MF‘fXMFg 2 (, Cnode C Cpoge and is a

homeomorphism. Hence each Im(n;) is an open subset in (, q,. We let
B; C (poqe be the open substack that contains and is homeomorphic to
Im(n;). We let B; C Q be the image stack of B; under the projection
¢ — Q. Clearly, B; are smooth divisors of Q. We define (L;,s;) be the
C-divisor on Q so that B; = s;*(0).

For later application, we now give trivializations of (L;,s;) on charts
of Q. let T, — Q be any chart. Then B;, = T, Xq B; is a smooth
divisor in T;,. Without loss of generality, we can assume that B;, is
defined by the vanishing of a u; o € I'(Or,, ). We then choose L; o be the
line bundle over Ty, so that Or, (Li o) = u;i(’)Ta and let s; o € I'(L; o) be
the constant 1. Put it differently, €;, = u;all is a global holomorphic
basis of L;, while the section s;, = 1 — U n€io vanishes on B; .
In case u;, is another defining equation of B;,, we define (Ei,a,gi,a)
similarly via a basis €, = ﬁ,;olll and 5; o, = U;ja€io. The transition
function is via €; o = (Ui ,a/Uia)€ia-

Now let u; be the weight of the i-th root of 1. We define

(4.27)
No={s;=:-=s,=0} and N={s{"=---=s =0} CQ,

both are substacks of Q. Clearly, No = Mr¢ x Mrg. Hence
MY LUYE!,7) = M(W,T)" xq No.
We define
M(Wo,n)" = IM(W,T)" xq N.

Lemma 4.12. Let g : M(W,I')" — Q and mp - MW, )" —
M(W,T) be the tautological projections. Then we have isomorphisms of
C-divisors

75 (L, 50)2 2 3y (L, s,).
Further, M(Wy, n)* — M(W, T) factor through an étale M (W, )" —
m(ﬂn(h 77) .

Proof. We cover MM(20,T')" by an atlas of étale charts S, — 9(20, )"
indexed by A. To each a € A, we let f,: X, — W{ngs| be the pullback
of the universal family over (W, T"). We then cover Q by charts Ty,
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indexed by the same set A. Without loss of generality, we can assume
that the composite of S, — M(W,I")" — Q factors through hy: S, —
T, C Q and the family X, is the pullback of the universal family (,
on T,. As before, we let B;, = T, xq B; C T, and let u;, be a
defining equation of B; o; We let (L; o, si«) be the restriction of (Lj,s;)
to the chart T,. As mentioned, we can choose €;, = u;;l to be a
holomorphic basis of L; o, and hence s; o = u; n€jo. Now we let Niq:
Bio — Za|3m be the lift of the section n; in (4.26) to B; . Since Q is
homeomorphic to Mre x Mrg, such a lift exists and is unique. We then
let Njo = niq(Biq) and let ]\Afm be the formal completion of ¢, along
N; . Without loss of generality, we can assume

Ni,a = SpeCk[[zla 22]] X Speck]t] Ty
Here Speck[z1,22] — Speck]t] is defined by ¢t — z122 and T, —
Speck[t] is defined by t — w; q.

We now back to the family f,: X, — Wng]. Recall X, = (,, X Q Sa-
We let /'\?2-7(1 be the formal completion of X, along N;, Xq Sa, which
is isomorphic to A, Xz, Nm By shrinking S, if necessary, we can
assume that there is a parameterization of a neighborhood of nodes
Wa C W(ng] given by

Yo 1 Wa — Speck|wy, wa] ®k[tla] F(An“Jrl)

for some lo € [ng + 1], as in (1.1), so that the induced morphism f, :
Xi o — Wn,| factors through

(4.28) frx‘/'\?i,a — W, via ﬁ(w]’) = Bja- zfj, ji=12.

Now let (Ly «, Sp,a) be the restriction to S, of (Ly, s,). By definition,
a trivialization of (Ly.qa, Sy«) is given by O(Ly, o) = tl_al(QTa with the
basis €, = tl_all and s, o = ;€. As mentioned, a trivialization of
(Lia, Si,a) is given by O(L; o) = ui_’olt(’)ga with e; o = ul_all and s;4 =

~Y

Uj,n€i,o. We then define an isomorphism Ly, o = L;@: ¢ via

6777a = (ﬁa’lﬁa’2)€§:i .

Note that since fa,18a0,2 € F((’)éa), the above identity defines an iso-
morphism Ly o = Lf?gi. Further, because of the relations (4.28) and
wiwe = &,

(4.29) Spa = SoH

e
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under this isomorphism. Hence it defines an isomorphism of the corre-
sponding C-divisors. It is routine to check that the so defined isomor-
phisms extend to an isomorphism of C-divisors

Wa(Lﬁa ST?) = W?\l(Liv Si)®m :

This proves the isomorphisms of the C-divisors.
The last statement follows directly from the construction of

M (W, n)°*. q.e.d.

We now consider the pair p:9(2y,n)¢* — N. Since M (Wo, n)°* is
étale over MM(Wy, n), we can take the obstruction theory of 9M(W, n)°*
to be the pullback of that of 9t(2Wy,n). We now workout the relative
obstruction theory of 9(2Wy, n)®*/N and to show that it satisfies the
set up in Lemma 4.8. We will follow closely the notation developed in
the beginning of Section 4.1. For convenience, we denote 9(20y, n)
by M.

We begin with a smooth chart S of Q and the associated chart
S =8 xqN. We let (L;,s;) be the restriction of (L;,s;) to S. Since
Q and hence S are smooth, the pairs (L;,s;) for i = 1,...,r define a
natural obstruction theory of S taking values in the cohomology of the
complex

(4.30) 7 = [0s(T8) 25 a1, 05(28™)]

as defined in the beginning of the Section 4.1. Here dsl* is the abbre-
viation of (ds{*,...,ds\"). Now let X be the universal family over S
and let D C X be the divisor of the marked sections of X. Then by the
deformation theory of nodal curves, there is a canonical homomorphism
of sheaves (the Kodaira map)

Os(TS) — &ty /5(Qx/s(D), Ox).

Next we pick an affine étale universal open R — S xny M with p: R —
S the projection. Without loss of generality we can assume that the
universal family of R is of the form f:p*X — W/n] for some integer
n. We now construct the standard obstruction theory of R. Since R
is a smooth chart (not necessary étale) of M, its obstruction theory
is slightly different from that defined in Section 3.1, which is for étale
charts of M.
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We begin with the construction of the complex Ej that will be part
of the obstruction theory of R. We let B = T'(Op) with A =T'(Og) as
before. First of all, we choose the complex F* in (1.15) to be

F'=0 and F!'=T(R,p*TS)=T(05(TS)) @4 B.

We pick a collection of charts (Uy/Va, fo) of f indexed by A, as men-
tioned in the paragraph before the equation (1.17). By shrinking R
and/or make an étale base change of S, we can assume that there is a
collection of charts {U,/V,} of X/S indexed by the same A so that V, =
RxgVy and Uy = R xgU,. We form the modules Homyy (f*Qyy ), B)f,
after picking the necessary data as shown in the paragraphs before the
equation (1.17). Since we have chosen F° = 0, the homomorphism ¢, (-)
in (1.18) is zero. The homomorphism (g(-) is exactly the one defined
in (1.17). We then form the complex D*®, the homomorphism ¢ and the
complex E*, following the definitions after Lemma 1.14, line by line ex-
cept that we replace F° by 0. To form the complex E7, we shall follow
the discussion after (3.8). We let C} be the complex defined in (3.7)
and let 6:E® = C;~! be the homomorphism defined exactly as in (3.8).
We then let Ej be the complex defined in (3.10). It follows from the
discussion before that the obstruction theory of M induces a natural
obstruction theory of R taking values in the cohomology of the complex

We now construct a complex F*® of A-modules that is quasi-isomor-
phic to F* (in (4.30)) and a homomorphism of complexes Ej = F°.
Let i be any integer between 1 and r. We let A; C A be the subset
of the indices « so that U, — X contains the i-th distinguished nodes
of some fibers of X'/S. Then the collection {Uy }aea, forms a covering
of a neighborhood of the i-th distinguished nodes of the fibers of X'/S
and the collection {V,}4, forms an étale covering of S. We let C¥ =
C*(As, L?") be the Céch complex of k-cochains of the line bundle L&
associated to the covering {V,},. The complex C¥ comes with the
standard coboundary operator C¥ — Cf“. We define F! = I'(Og(T'S))
and define F¥ = @7_ C*~2 for k > 2.

We next define the differential 0¥ : F¥ — F*+1. Let Z be the ideal
sheaf of the zero section of the total space T'S and let 5(2) be the sub-
scheme of T'S defined by the ideal sheaf Z2. Then there is a tauto-

logical morphism x :3(2) — S characterized by the following property:
Let v € T,S with Speck[t]/(t?) — T,S its associated morphism that

lifts to the morphism [v] : Speckl[t]/(t?) — §(2), then the composite

279
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K o [v] : Speck[t]/(t?) — S is the tangent vector v € T,S. Now let
§ € T(Os(TS)) be any element. We let S = SpecT'(Og) * A be the
trivial extension of S by A and let 6¢:S — S be the composite S —
5% .5, where § — 57 is defined by &. Since 6 (/) € T(G;L")
and 6f(s;")|s =0,

=T(S, 05(LM)).

d[gg(st) — 0] € T(S, Os(LE") @ Ty 5)

Here Iy g is the ideal of S C S , which is isomorphic to A. Now let
PaOi(s") € T'(Va, Os(LI*)) be the pullback under p, : Vo — S. We

then define
0} (&) = d[pi0f(st") — 0] € T(Va, O5(L7H)), € Ay,

and define 9' = @;0}. For k > 1 we let 0¥ :F* — F**! to be the direct
sum of the coboundary operators of C?. Clearly, the so defined operator
0°® satisfies 9F o 9**1 = 0, and hence defines a complex F* = (F*, 9%).
Further, it follows from our construction that the complex F* is quasi-
isomorphic to the complex F* in (4.30).

We now define the promised homomorphism ¢*: E} = F* ®4 B.
Recall that E} = I'(Og(T'S)) @4 B@® D and F! = T'(Og(TS)). The
homomorphism ¢! :E}7 — F! ®4 B is the one induced by the identity
of T'(Og(TS)) ®4 B. For k > 2, we notice that Ef; = EF g C7’§*2
and FF = eBZTZICf_2. The homomorphism ¢* will be induced by ¢ :
CZ — Cf ®4 B, which we define now. Let & € C’; be any element
and let (ag...ax) be a (k + 1)-tuple in A;. Then &,,..o, is an element
in I'(Vag...ay» Ln). Here L, is the restriction of L, to R. Using the
canonical isomorphism L, = p*L;@“ ‘, where p: R — S is the tautological
projection,

fao...ak E F(Vao...akap*L@@Mi) = F(Vao...ak7 Lf@ltl) ®A B
We denote this element by gao,,,ak. We define
O (©)ap.ar = Eagran € TVag.ap, L") @4 B.
This defines a homomorphism Cg — @lleCf ®4 B.

We claim that the so defined homomorphisms form a homomor-
phism of complexes Ej = F*® ®4 B. For this, we need to check the
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commutativity of the following diagram
EF d* Bl
(4.31) @kl gDk+1l

k
Fk ®a B 8—> Fk+1 ®a B.

We will prove the commutativity of (4.31) for the case k¥ = 1. The
other cases are similar and will be omitted. First, we show that (4.31)
commutes on D? C E1 Let £ € DY C E1 be any element given by
a collection {&,} of {a € Homy,, (f* QW[n],OS) , as defined 11} (1.11).
Because of the relation (1.12), the composite D° E, — E2 L F2@,
B is zero. On the other hand, by definition we have ©*(€) = 0. Hence
F(01(€)) = d'(¢}(¢)) for all € € D,

We next check that (4.31) commutes on I'(Og(T'S)) C E;. We first
recall the definition of ¢? o d'. Let £ € I(Og(T'S)) be any element. It
determines a morphism ke : R = Spec I'(ORr)*B — S that is the pullback
of ke: S — S via the tautological extension p: R— S of p:R— 5. We
let v € A; be any index with Uy, /V, the associated chart of the universal
family &'/S and with U /V, its minimal extension to the family X'/S.
We let Uy / Vo and U, / Va be the corresponding pullback charts of p* X /R
and p*X/R. We then pick a local parameterization of the nodes of
U, /Va and its extension to Uy /V,. We let (244, 5o) and (zw, Sa) be the
relevant functions associated to these parameterlzatlons . We let the
parameterizations of the nodes of U, /Va and Uy /Va be the pull back of
those from U, /V, and U, /V We let f,:U, — Wn| be the restriction
of f to Uy and let fo : Uy — Wi{n] be a predeformable extension of
fao Welet 1o : Uy — Uy, 7: U, — Ua, Ja i Va — Vi, Ja: V — Va,
Pa:Us — Vy and py : Uy — V,, be the tautological projections. Then
after picking a local parameter of f,(U,) C Win|, say (w1, w2) with
wiwy = 1, we have

fa(Wa,;) = lZ(Zle) “hai and ﬁ(wmi) :7&(%5:1) '%a,i

for some h,; € T'(Oy; ) and their extensions i € F(OE{ ) that satisfy
hatha2 € T(Oy,) and ha,1ha2 € T(Oy, ). Since Zy1%a,2 = 5a, we have

falti) = (hapha )T (35).

20By abuse of notation we will view s, as functions on V, and on U, via the pull
back Oy, — Oy, . The same convention applies to s, as well.
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Then

2 (dH€))a = dlfi(t,) — 0]
= (ha,1ha2)d[Jo(34) = 0] € T(Va, p* Ly @ I p).

Here the last relation follows because fa is predeformable.
As to d' o ¢!, by definition

1, 1 ~11; * T QUi ~
d" (9" (€))a = d[s1 — 0] € T'(Va, p L™ @ Iy _3).

Therefore we have p?(91(€))a = d*(p(€))a because of the isomorphism
L, = L7, (4.31), the relation t;, = (ha1ha2)sh’ and Incp & B and
Tg-g = A. This proves the commutativity of (4.31) for & = 1. The case
k > 2 is similar and will be omitted.

We define GF = ker{Ef’; — F* ®4 B}. Since Ef; — FF @4 B is
surjective, G* is a flat Og-module. The differentials of E? induces
differentials of G® and the resulting complex fits into the following exact
sequence

O:>G‘:>E;,:>F’®AB:>O.

It is routine to check that for each { = (B',I,¢0) € Trig/p there
is a canonical obstruction class obg/g(£) € h*(G® ® I) to extending
¢o:Spec B'/I — R to an S-morphism Spec B’ — R, and further such
assignment satisfies the requirement in Definition 4.1. Finally, we re-
mark that though the complexes G*, Ep and F* depend on the choice
of the covering {Uy/Va} of f, they as elements in the derived cate-
gory are unique. In particular the modules (sheaves) Obg/s 2 h2(G*),
Obr = h*(Ej) and Obg £ h2(F*) are independent of the choice of the
coverings.

We now cover N be an atlas {S,}= and for each a € Z we pick
an open étale R, — M XN S, so that {R,}z forms an atlas of M.
For each a we pick a sufficiently fine covering of its universal family
and then form the associated complexes G, E} , and Ej. Here we
added the subscript « to indicate the dependence on the chart R,/S,.
To be consistent with the notation in Definition 4.1, we let £}, = G,
&S = E? , and FS = F},, viewed as complexes of sheaves of Op, or

n,x a?
Og,-modules accordingly.

Lemma 4.13. There are standard relative obstruction theories of
R, /Sq for a € E taking values in the complexes L2, such that the (rel-
ative) obstruction theories {E5,0br,}, {F5,0bs,} and {L3,0bR /5. }
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are compatible in the sense of Definition 4.1. Further, the so defined
obstruction theories of Ry/Sa define a relative obstruction theory of
M/N that is compatible to the obstruction theories of M and N.

Proof. The proof is routine and will be omitted. q.e.d.

Let Ng C N be as in (4.27) and let My = M xn Ng. By definition
M) is an étale cover of M(V: UYL, 7). Note that Ny is smooth. As
to My, we endow it with the induced obstruction theory of (5! L
el n), which is perfect since that of (YUY, n) is. We let [Mg] Vi
be the virtual moduli cycle of M. Then Lemma 3.12 is equivalent to

(4.32) m(n)[Mo]""™ = [M]"" ¢ A, M.
By Lemma 4.8, to prove this identity it suffices to show that:

1) There is a relative obstruction theory of M /Ny that is compatible
to the obstruction theory of My and Ny.

2) The relative obstruction theory My /Ny is compatible to the rela-
tive obstruction theory of M/N.

The proof of 1) is parallel to the construction of the relative obstruc-
tion theory of M/N. The proof of 2) is immediate once the relative
obstruction theory was constructed. Since the proof is routine, we will
leave it to the readers. We state it as a lemma.

Lemma 4.14. The standard relative obstruction theory of Mqy/Ny
is compatible to the obstruction theories of Mg and Ng. Further, the

relative obstruction theory of Mgy/Ny is induced from the obstruction
theory of M/N.

In the end, we apply Lemma 4.8 to the pairs My/Ny € M/N to
conclude (4.32). This completes the proof of Lemma 3.12.
4.5 Proof of Lemma 3.14

It remains to prove Lemma 3.14. Let
(433) @y MDY T1) xpr MY, T2) — MY UYE,m)

be the étale morphism in (3.2). Using the Cartesian product (3.14),
we can give M(V, T1) x pr M(Y!, T2) a canonical obstruction the-
ory. We call such obstruction theory the obstruction theory induced
by the Cartesian product. On the other hand, since ®, is étale, the
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obstruction theory of 9)?(@1{91 U mgel, n) induces an obstruction theory of
MY, T1) x pr MY, To) as well.

Lemma 4.15.  The two obstruction theories of M(Y,T'1) X pr
M ( 5e17 I'2), one defined by the Cartesian product and the other induced
by that of MY LYY n), are identical.

Proof. The proof is similar to that in [26], and will be omitted. q.e.d.

We now consider the virtual moduli cycle of (i, T1)x pr
IM(YLL, T'y). Since the obstruction theory of M(YE, Ty ) x pr M(PE!, T2)
is induced by the Cartesian product,

pn( 1iel,]:w1) X pr m( 5617F2)]Virt
_ A'([m( ﬁel,rl)]virt % [Qﬁ( Eel’FQ)]virt).

On the other hand, because of Lemma 4.15 and because ®,, is étale of
pure degree [ Eq(n)],

! ' e virt re virt
g 2 (R T (s, T ™)

= PREE LY, ),

This is exactly Lemma 3.14.
This completes the proof of the degeneration formula of the Gromov-
Witten invariants stated in the beginning of this paper.

5. Appendix

5.1 The tangent and the obstruction spaces

In this appendix, we will express the first order deformation and the
obstruction spaces of M (2, ') and M(3*, T) in terms of some known
cohomology groups. As a corollary, we will show that the obstruction
theories we constructed in this paper are all perfect.

Let S — 9(W(n],T')® be an affine étale chart. As before, we denote
by f:X — W{n] be the universal family with D C X the divisor of the
ordinary marked sections. As before, we let m: X — S be the projection
and let p: S — A" be the morphism under f. By shrinking and
making an étale base change, we can assume the following holds for S
For each [ the projection induced by w

f_l(Dl)red B (S X An+1 Hl)red
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is a union of 7; disjoint sections oy;: (S X pn+1 H"Yeqa — fH(D))1eq for
i=1,...,7r. (Note that r; could be zero.) We pick an atlas (Uy/Va, fa)
of f indexed by A so that for each [ and i € [1,r;] there is exactly
one and only one « so that U, NIm(o;;) # 0, and hence Im(oy;) is
covered by U,. As before, we let A; be the collection of those a so that
Ua/Va covers Im(oy;) for some . When « is of the second kind, we
let (za,1, 20,2, Sa) be the parameterization of the distinguished nodes of
Un/Va (cf. before Simplification 1.7). We require s’ = g*(¢;) in case
a € A;. With such assumptions and choices made, the standard log
structure of S is given by the prelog structure Ng = ®N; — Og given
in (1.7).

We now let E* and D*® be the complexes associated to the perfect
obstruction theory of S constructed in Section 1. Let A =I'(Og). For
simplicity, we give an ordering of A; and thus the r; charts in A; are
Ui/Vias-- U /Viy. Welet R} be the complex

(szlll’l, s Ty 0" — (03 05) ®o

’ lvrl

OAn+1 (Hl),

AN+ 1

where (9?” /Og is the quotient of O?r’ by the diagonal Og «— O?”. In
case r; = 0, we agree R} = [A — 0]. Here the complex R} is indexed
at [0, 1].

Recall that H'(E®) is the space of first order deformations of f while
H?(E®) is the obstruction space to deforming f.

Proposition 5.1. For any A-module I, we have the following two
exact sequences
0 — Ext}(Qx,s(D),Z) — H°(D* @4 1) — H'(E* ®4 1)
— Exth(Qu/s(D),I) — H'(D*®4a 1) — H*(E* ®41) — 0

and

0— HO(Hom(f*QW[n}T/AnHT,I)) — HY(D* @4 I)
b n . 1 %
— @1211 He?t(Rl ®og I)— Hl('Hom(f QW[n]T/AnJrlT’I))
— HY(D* ®4 1) 2% ot HY (R} 90, I) — 0.
Further, H'(E®*) = 0 for i > 2 and H'(D®) = 0 for i > 2. Here
IT=1®4 0.
Here QW[n]T J Ant1t is the sheaf of log differgntials of the pair of log
schemes (cf. [17, 18]). Also, the cohomology H(R}) is the étale coho-
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mology of the complex of locally relatively constant sections, namely,
sheaves of Og-modules over X.

Proof. The first exact sequence follows directly from the construc-
tion of the complexes D* and E®*. We now prove the second exact
sequence. We first construct the arrow by. Let £ € H'(D® ® I) be any
element. Then ¢ is represented by {{, } where £, € Homy, (f*Qyy ), [ )t
In case oo € A; then

(5.1)
o = (Pas Na1s Na,2) € Homyy, (f* Qg Za) @ IE2, T = I ®0, Ou,,

following the convention in (1.10). Specifically, the 7. means dw;/w; —
Na,i, under the appropriate parameterization (wq,ws) of fo(Us). Recall
that A; is an ordered set, thus for a = i € A; we denote 7 ;) = 7a,1+7a,2-
Then we define

bo (&) = (ays - - - M) € AP

and then the arrow b is

bo(§) = (bo(§)1,-- -, bo(E))-

In case r; = 0, then we pick an « € A and define 1, = ¢ (dt;), where @,
is part of the &, asin (5.1). It is direct to check that if £ is a cohomology
class then by(¢); € HY (R} ® I). This defines the corresponding arrow
in the second exact sequence.

We next construct the arrow Hk (D®) — HL(R®). Let X = f~1(Dy)
C X and let Iy,cx be the relative locally constant ideal sheaf defined
by

I'(Va, Oy,) in case U, N f~1(D;) =0

I'Un, Isycx) :{ sMaT(V,, Oy,) otherwise.

Similarly, we let 77!Og be the pullback sheaf, namely I'(U,, 7~ 1O0g) =
I'(Va, Oy, ). Then we have the exact sequence in étale site

0— Is,cx — 7T_1(95 — @aen, (Os/55°0g5) — 0
and its induced exact sequence in cohomologies (of Og-modules)
0 — g"(t1)Os — Os — @aen,(0s/54°O5) — H'(R]) — 0.

Now we back to the complex D®. It follows from the construction of D*®
that there is a homomorphism of complexes D®* — C*(A, Iy, cx). The
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arrow by = @?jllbu. The arrow § in the second sequence is the ordinary

connecting homomorphism. We leave it to readers to check that with
these arrows the second sequence is exact.

The vanishing result stated in Lemma 1.19 follows from these exact
sequences. q.e.d.

The tangent and the obstruction to deformation of 9¥(3',T) is
similar. We let S — 9(Z[n]™, T)** be an affine étale chart, satisfying
the similar property as in the case just studied. We let f: X — Zn]
be the universal family with over S with D C X be the divisor of the
union of all ordinary and the distinguished marked sections. We let
(Za,1, %02, Sa) be the parameterization of charts U, /V, of f as in the
previous case. We let A; be those such that U, N f~1(B;) # 0. Let E®
and D*® be the complexes constructed in the Section 1 that is part of
the perfect obstruction theory of S.

Proposition 5.2. The two exact sequences in Proposition 5.1 still
hold with the sheaf Qw[n t/ An+1t replaced by Qz[n]T/AnT' The same van-
ishing results hold as wegl.

We will close this section by working out the obstruction sheaf of an
example suggested to us by E. Ionel.

Let Zie1 = (Z, D) be a pair of smooth variety and a smooth divisor.
We let I' be the graph consisting of one vertex and one leg. We assign
the weights of the vertex to be g = 1 and d = 0. Thus (3", T") is the
moduli of relative stable morphisms to Y from 1-pointed genus 1 curves
to Z of degree 0. Since d = 0, all f: X — Z in M(3" T") are constant
maps. Hence 9M(3',T') is isomorphic to M1 x Z. We now show that
its obstruction sheaf is

(5.2) Ob = m3Q7(log D)"Y,

where m9: 91 X Z — Z is the second projection.

Let fo € 9MM(3™,T) be a relative stable morphism. Since d = 0, we
can always represent fo by a morphism fy: X — Z[1]°, where Z[1]° =
Z[1] — D[1] U Z[1]psing With Z[1]osing is the singular locus of Z[1]o.
Then Z[1]°/C* = Z. The obstruction to deforming fy as morphism
to Z[l]o is Hl(f{)kTZ[l]o/Al) = TZ[l]"/A:l’f()(X)7 where Z[l]o — Al is the
tautological projection and T'z(jjo a1 is the relative tangent bundle. We
let f: X — Z[1]° be the family over 9y 1 x Z[1]° so that X is the pullback
of the universal family over 91 ; while the morphism f is the composite
of the projection X — 9y 1 x Z[1]° with the second projection Mty ;1 x
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Z[1]° — Z[1]°. Clearly, f is the universal family of 9(Z[1]*!,T)*".
The obstruction bundle to the moduli space M (Z[1]*}, T')* over M 1 x
Z[1)° is p5Tz10 a1, Where ps is the second projection of My 1 x Z[1]°.
The C*-action lifts canonically to p57'7[1jo a1 and the obstruction sheaf
of M(3*T") is the descent of P3Tzpp0/a1- It is direct to check that
under the quotient map My ; x Z[1]°/C* = M ; X Z, equivariant part
(P5T 21110/ a1)® is canonically isomorphic to 739z (log D). This proves
the identity (5.2).

5.2 Local and formal predeformable morphisms

In this part we prove that formal predeformable morphisms are auto-
matically local predeformable.

Lemma 5.3. Let L = (k[z1, 20] ®y[s] A)", be as in Definition 1.2.
Suppose there are units fi,f2,91,92 € L and an integer n > 1 so that
fif2 and g1g2 € A and that 2" f; = 2"g; fori=1,2. Then fi = g1 and
f2= g2

Proof. Welet r; = fi/g;. Then 2"(r;—1) = 0 for i = 1 and 2. Recall
that elements in L have unique normal form ag + >,~;(a;z} + b;jz)
for a;,b; € A (cf. [23]). By the uniqueness of the normal form, the
normal form of r1 (resp. r2) must be of the form r; = 1+ 3.5, a;2)
(resp. ro = 1 + ijl bjz]). Then fifa/g192 = rirs € A implies that
143 a2, = (14 Y bjz]) =" for some unit € € A, which is impossible
unless all a; and all b; are zero. This proves the uniqueness lemma.

q.e.d.

Lemma 5.4. The notion of pure contact is independent of the
choice of the charts of the nodes of U]V .

Proof. Let ¢ in (1.4) and ¢ : k[31, %] ®k[s] A — R be two charts
of the nodes of U/V. Without loss of generality we can assume that
the vanishing locus of ¢(z1) and ¢(31) are identical in Spec R. Then by
the proof of [23, Lemma 2.9], ¢; = z;/z; € Rs and hence cicy € Ar.
Now let ¢ :k[wi,ws] — R be of pure contact with respect to the chart
¢. If p(w;) = 2"h; in Rs for hy,hy € Rs satisfying hihy € A7, then
o(w;) = Z"(c"h;) in Rs and c{*hicy*hy € A7 as well. Thus ¢ is of pure
contact with respect to gz~5 as well. This proves the lemma. q.e.d.

We now state and prove the following equivalence result.



A DEGENERATION FORMULA OF GW-INVARIANTS 289

Lemma 5.5. Let the notation be as in Definition 1.4. Then ¢ is of
pure contact if and only if it is formally of pure contact.

Proof. Clearly, if ¢ is of pure m-contact, then it is so formally. We
now prove the other direction. Assume ¢ is formally of pure m-contact.
Then there are 8 and 82 € R such that $(w;) = 2" 3;, where as usual
¢ : k[wy,ws] — R is the homomorphism induced by . We first show
that there are f; and f» € Rs so that ¢(w;) = 2" f; in Rs for i =1
and 2. Let z = o(w) € R, then & = $(w) € z*R. Thus by [29, Thm
8.1], the residue class of T € Rs/(2") is ()" =0 € (R/(2"))". Hence
T € Npm>1I™R/(2]"), and by [29, Thm 8.9] there is an a € R/(2]")
satisfying @ = 1 mod I such that ax = 0. Then a¢ € § and by our
assumption a is a unit in Rs/(2}"). Hence T = 0 in Rs/(2]"). This
proves that ¢(w;) € z{"Rs and hence there is an f; € Rgs such that
o(wy) = 2" f1 in Rs. For the same reason, p(wz) = 24" f2 in Rg for
some fy € Rs.

We next prove the following induction hypothesis: For any nonneg-
ative integer k, there are g1 and go € Rs such that

(5.3) 21" f1 —21"g1, 25'fa— 25'ge € s*Rs and gigo € AT + s*Rs.

Clearly, this statement is true for £k = 0. We now show that this state-
ment is true for k+ 1 if it is true for k. Let g1 and g3 be elements in Rg
satisfying (5.3) for an integer k. To carry out the induction we need to
find r1 and r9 € Rgs so that

(5.4) 2 fi— 2(gi 4 1) € s*TIRg for i=1,2
and
(5.5) (g1 +71)(g2 + 72) € A + " Rs.

Since ¢ formally is of pure m-contact, there are units 1; and 72 € Rs
such that 2" f; = z/"n; for i = 1 and 2 and 7112 € A. Because g; and n;
satisfy the relation

2"gi = 2;"n; mod s* and J1Go, Mo € A+ sklfi,
by the uniqueness Lemma 5.3, §; = 7; mod s*. Hence
(2" fi = 2"g:)" = 2" fi — 2" Gi = 2" (i — §s) € 2"s" R,

As we argued in the existence of f;, this implies that 2/"(fi — ¢;) €
zlmskRg.
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We now let I; € Rs be such that 2" f; — 2"g; = zimskli. We let
r1 = s*(l 4+ 22h1) and ro = s¥(ly + 2z hy) with hy and hy € Rs to be
determined. Clearly, (5.4) will hold with this choice of r; and ry. As
for (5.5), we need

(g1471)(92+72) = gr92+5" (g1l2+g121h+gal1 +g222h2) € AT+ Rs.

Since g1go € A7 + s*Rs, we can find ¢ € Rs so that gigo — cs* €
A7 + s*1Rs. Hence we need to find hy and hy in Rs so that

(c+ gila + g2l1) + g1h121 + g2hozo € AT + sRs.

Let d = ¢+ gils + g2ly. Clearly, there are y; and vo € Rand o € Ay
so that d — (a4 v121 + 7222) € sRs. Hence following the argument for
the existence of f;, there are ¢; and ¢y € Rgs so that d — (c121 + ca22) €
A7 + sRs. Hence the choice hy = —clgfl and hy = —62951 will do the
job for (5.5). Here g1 and g, are units since 3; and 2 are units. This
proves that for each k we can find g; and go that satisfy (5.3).

Now we show that there are h; and hg € Rg as required by the
lemma. We first let M C Rgs be the set of those elements that are anni-
hilated by some power of s. It is an ideal, and since Rg is Noetherian,
there is an N so that sV M = 0. We let g; and gy be the pair satisfy-
ing (5.3) for k = N + 1. In case R/M = 0 then the lemma is already
proved. Now assume R/M # 0. We consider the ring Rs/Ms. Since
@(t) = p(w1)p(wa) = es™ in R for some unit € € R, Rs/Ms is flat
over k[t]. Now consider the homomorphism @ : k[w;,ws] — Rs/Ms
induced by ¢. By [23, Prop. 2.2], it is formally of pure contact. Hence
there are h; and hy € Rs/Ms so that p(w;) = 2™h; in Rs/Ms for
i =1 and 2. Because Rs/Ms is flat over k[t], 7, (w1)@y(w2) € Rs/Ms
implies that hihy € Rs/Ms. We then apply the uniqueness Lemma
5.3 to conclude that the residue classes of h; and g; in Rs/(Ms, s*) are
identical. Hence we can find h; € Rg so that its residue class in Rs/Ms
and Rg/(s*) are h; and g; respectively. Therefore we have p(w;) = 2/"h;
in Rs and hihy € A7. This completes the proof of the lemma. q.e.d.
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