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PRESCRIBING SCALAR CURVATURE ON SN ,
PART 1: APRIORI ESTIMATES

CHIUN-CHUAN CHEN & CHANG-SHOU LIN

Abstract
In this paper, we describe great details of the bubbling behavior for a se-
quence of solutions wi of

Lwi + Riw
n+2
n−2
i = 0 on Sn,

where L is the conformal Laplacian operator of (Sn, g0) and Ri = n(n−2)+

tiR̂, R̂ ∈ C1(Sn). As ti ↓ 0, we prove among other things the location of
blowup points, the spherical Harnack inequality near each blowup point and
the asymptotic formulas for the interaction of different blowup points. This
is the first step toward computing the topological degree for the nonlinear
PDE.

1. Introduction

This is the first of a series of papers to study the problem of pre-
scribing scalar curvature on Sn, the n-dimensional sphere with n ≥ 3.
Let g0 be the metric on Sn induced from the flat metric of R

n+1, and R
be a given C1 positive function on Sn. We are interested in the ques-
tion whether there exists a metric g conformal to g0 such that R is the
scalar curvature of g. Set g = cnw

4
n−2 g0 for a suitable positive constant

cn. Then the question above is equivalent to finding a smooth positive
solution of

(1.1) Lw +Rw
n+2
n−2 = 0 on Sn,
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where L = ∆g0 − n(n− 2)
4

is the conformal Laplacian operator of

(Sn, g0). In general, the same question can be studied in any Rieman-
nian manifold. For a compact Riemannian manifold and a constant R,
this problem is called the Yamabe problem, which was solved in early
80s through the works by Trudinger [22], Aubin [1] and Schoen [19].
For a historic account, we refer the readers to Lee and Parker [14] and
references therein. For the last three decades, Equation (1.1) has been
continuing to be one of major subjects in nonlinear elliptic PDEs. For
recent developments, see [1], [2], [3], [5], [6], [7], [8], [9], [10], [11], [12],
[14], [15], [16], [17], [18], [19], [20], [21] and the references therein.

In [5], Chang-Gursky-Yang considered Equation (1.1) when n = 3
and R is a positive Morse function on S3. Under some nondegenerate
conditions on the critical points of R, Chang-Gursky-Yang were able
to obtain the apriori bound for positive solutions of Equation (1.1).
Furthermore, they computed the Leray-Schauder degree d for Equation
(1.1) by the following formula

(1.2) d = −
1 +

∑
p∈Γ−

(−1)ind(p)

 ,

where Γ− = {p ∈ S3 | p is a critical point of R satisfying ∆g0R(p) < 0}
and ind(p) is the Morse index of the Hessian of R at p. When the right-
hand side of (1.2) is assumed to be nonzero, the existence of positive
solutions to Equation (1.1) was previously obtained by Bahri-Coron [3]
and Schoen-Zhang [21]. However, the degree-counting formula (1.2)
provides us more information about Equation (1.1). Particularly, it
tells us when the concentration phenomenon for solutions of (1.1) could
occur. Li [16] proved the apriori bound for Equation (1.1) on S4 and
derived the formula for the Leray-Schauder degree by adding the effect
of the interaction of multiple blow-up points. In this series of papers,
we will generalize the results of [5] and [16] on S3 and S4 to higher
dimensions.

As in our previous works [8], [9], it is more convenient for us to
study (1.1) in R

n. Without loss of generality, we may assume that the
north pole of Sn is not a critical point of R. By using the stereographic
projection π from Sn to R

n, we set u(x) = 2
n−2

2 (1 + |x|2) 2−n
2 w(π−1(x))
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for x ∈ R
n. Then u(x) satisfies

(1.3)

{
∆u(x) +K(x)u

n+2
n−2 = 0 in R

n,

u(x) = O(|x|2−n) at ∞,

where K(x) = R(π−1(x)) for x ∈ R
n.

When K(x) is a constant, solutions of (1.1) can be classified com-
pletely. See [13] and [4]. For nonconstant R(x), it is well-known that
existence of solutions depends on K in a very subtle way. So, through-
out the paper and [10], we always assume 0 < a ≤ K(x) ≤ b and K(x)
has a finite set of critical points {q1, . . . , qN}. Near each qj , by Taylor’s
expansion, K(x) can be written as

K(x) = K(qj) +Qj(x− qj) +Rj(x),

where Qj(x) is a C1 homogeneous function of degree βj > 1, i.e.,
Qj(λx) = λβjQj(x) for λ > 0 and Rj satisfies

lim
x→qj

|x− qj |−βjRj(x) = lim
x→qj

|x− qj |1−βj | �Rj |(x) = 0.

Here, βj is not necessarily an integer. Of course, if K(x) ∈ C∞, then
βj must be an integer.

(K0) | �Qj(x)| ≥ c1|x|βj−1 for some c1 > 0.

Let U1(x) = (1 + |x|2)−n−2
2 .

(K1) At each critical point qj , according to βj , K satisfies one of
the following conditions (i), (ii) and (iii):

(i) If βj < n, Qj satisfies

(1.4)

∫Rn �Qj(x+ ξ)U
2n

n−2

1 (x)dx∫
Rn Qj(x+ ξ)U

2n
n−2

1 (x)dx

 �=
(

0
0

)
,

for any ξ ∈ R
n.

(ii) If βj = n, then

(1.5)
∫

Sn−1

Qj(x)dσ �= 0

provided that there exists a vector ξ ∈ R
n satisfying

(1.6)
∫

Rn

�Qj(x+ ξ)U
2n

n−2

1 (y)dy = 0.
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(iii) If βj > n,

(1.7)
∫

Rn

〈x− qj ,�K〉|x− qj |−2ndx �= 0.

We note that all integrals in (1.4)–(1.7) are L1(Rn). In [5], [9] and
[16], we knew that only part of critical points of K might be blowup
points for certain solutions. Denote by Γ− those critical points of K.
More precisely:

Definition 1.1. Assume that K satisfies (K0). We say qj ∈ Γ− if
and only if K satisfies one of the following conditions (i), (ii) and (iii)
at qj according to βj :

(i) If βj < n, there exists ξ ∈ R
n such that

(1.8)


∫

Rn

�Qj(x+ ξ)U
2n

n−2

1 (x)dx = 0 and∫
Rn

Qj(x+ ξ)U
2n

n−2

1 (x)dx < 0.

(ii) If βj = n, there exists ξ ∈ R
n satisfying

(1.9)


∫

�Qj(x+ ξ)U
2n

n−2

1 (x)dx = 0 and∫
Sn−1

Qj(x)dσ < 0.

(iii) If βj > n,

(1.10)
∫

Rn

〈x− qj ,�K〉|x− qj |−2ndx < 0.

Clearly, the notion qj ∈ Γ− and conditions (K0)–(K1) are invariant
under the conformal transformations.We list several examples of Q to
explain conditions (K0) and (K1).

Example 1.2.

1. Q(y) =
∑n

j=1 ajy
2
j . Clearly aj �= 0 for all j iff (K0) holds. It is

easy to see that ξ = 0 is the only vector satisfying
∫

Rn �Q(y +

ξ)U
2n

n−2

1 (y)dy = 0 and
∫

Rn Q(y)U
2n

n−2

1 (y)dy = cn
∑n

j=1 aj for some
positive constant cn. Thus, (K0) and (K1) hold for a Morse func-
tion R on Sn satisfying ∆R(q) �= 0 for any critical point q of R.
And q ∈ Γ− iff ∆R(q) < 0.
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2. Q(y) =
∑n

j=1 ajy
3
j , aj �= 0, for j = 1, 2, . . . , n. Clearly, no ξ ∈ R

n

satisfies
∫

Rn �Q(y + ξ)U
2n

n−2

1 (y)dy = 0.

3. Q(y) = y3
1 − λy1

∑n
j=2 y

2
j . For λ > 3

n−2 , Q(y) satisfies (K0)
and (1.4). In fact, there are exactly two solutions ξ = ±ξ0 of∫

Rn �Q(y+ ξ)U
2n

n−2

1 (y)dy = 0, where ξ0 = (ξ0,1, 0, . . . , 0) for some
ξ0,1 > 0. Direct computations show∫

Q(y + ξ0)U
2n

n−2

1 (y)dy = −
∫
Q(y − ξ0)U

2n
n−2

1 (y)dy < 0.

The main purpose of our work is to show that homogeneous functions
Qj(x) for qj ∈ Γ− completely determine the structure of solutions of
(1.1). Conditions (K0) and (K1) are already enough for our purpose.
However, in order to make our presentation transparent here, each Qj

at qj ∈ Γ− is assumed to satisfy

(K2) For each qj ∈ Γ− with βj < n, assume that

(1.11)
∫

Rn

Qj(x+ ξ)U
2n

n−2

1 (x)dx < 0 whenever∫
Rn

�Qj(x+ ξ)U
2n

n−2

1 (x)dx = 0.

To state our main theorem, we introduce the notion Λ−. Assume
(K0) and (K1). Let Λ− be a collection of subsets of Γ− such that a
subset A of Γ− is an element in Λ− if and only if A satisfies the following
conditions.

1. The number of the elements in A ≥ 2.

2. For any two elements qj �= qk in A, the exponents βj and βk

satisfies
1
β∗j

+
1
β∗k

>
2

n− 2
,

where

(1.12) β∗j = min(βj , n).

Now we can state a special case of the Main Theorem we are going
to prove in this paper and the subsequent one [10].
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Theorem 1.1. Assume that K satisfies (K0) and (K1) such that βj

of Qj at each critical point qj in Γ− satisfies βj >
n− 2

2
. In addition,

we assume

(1.13)
1
β∗j

+
1
β∗k

�= 2
n− 2

for qj �= qk ∈ Γ−. Then there exists a constant c > 0 such that for any
solution w of (1.1), we have

(1.14) c−1 ≤ w(y) ≤ c for y ∈ Sn.

Let d denote the Leray-Schauder degree for the nonlinear map w +
L−1(Rw

n+2
n−2 ) on C2,α(Sn) with 0 < α < 1. Moreover, if (K2) holds

additionally, then d satisfies

(1.15) d = −
1 +

∑
j∈Γ−

(−1)n+1 degFj +
∑

A∈Λ−

∏
k∈A

((−1)n+1 degFk)

 ,
where degFj denotes the standard topological degree of the mapping
Fj(x) = �Qj(x) from Sn−1 to R

n\{0}, and Γ− and Λ− are defined
as above.

We remark that the assumption βj >
n−2

2 in Theorem 1.1 is an also
necessary condition for the existence of apriori bounds for solutions of
Equation (1.1). In [11], we constructed blowing up solutions of (1.1)
for some K satisfying (K0) and (K1) with βj < n−2

2 . To establish
the apriori bound (1.14), the first step is to understand the details of
blowing-up behavior of a sequence of solutions wi near each blow-up
point. In [8], [9] for a sequence of local solutions ui of

(1.16) ∆ui +Ki(x)u
n+2
n−2

i = 0 in B2 = {x | |x| < 2}
where 0 is assumed the only blowup point, we have completely classified
types of concentrations of ui according to the flatness β of Q at the
blowup point 0. In particular, if n−2

2 < β < n then

(1.17) ui(x) ∼M−γ
i

in any compact set of B1\{0}, where

γ =

{
2β

n−2 − 1 if β < n− 2
1 if β ≥ n− 2,
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and Mi is the maximum of ui in B1. Hereafter, the notation ai ∼ bi
for two sequences of positive numbers denotes that the ratio ai/bi is
bounded above and below by two positive constants independent of i.
Thus, ui(x) ↓ 0 in C2

loc(B1\{0}). The result (1.17) is important when
global solutions ui of Equation (1.3) are considered, because those local
maxima must satisfy certain rules according to (1.17). Together with
the Pohozaev identity, we must have 1

β∗
j

+ 1
β∗

k
= 2

n−2 for some blowup

points qj and qk. The apriori bound (1.14) then follows from this. We
will give a complete proof of this result in Section 10 of the paper. When
n− 2 < βj < n for any critical point qj , the apriori bound was obtained
previously in [15].

The degree counting formula (1.15) is more difficult to prove. Usu-
ally, there are two ways to establish the Leray-Schauder degree. One is
to approach the nonlinear term in Equation (1.1) by subcritical expo-
nents. Another one is to deform the curvature function R, e.g., replace
R in Equation (1.1) by Rt = 1 + t(R − 1) for 0 ≤ t ≤ 1. For the latter
case, if one can show for any ε > 0, solutions of (1.1) with R replaced
by Rt are uniformly bounded for ε ≤ t ≤ 1, then the Leray-Schauder
degree is the same for each t �= 0. Thus, for our purpose, it suffices to
compute the Leray-Schauder degree for small t > 0. In the situation
when t is small enough, the degree theory developed by Chang-Yang [6]
can be applied very well. But, Chang-Yang was only able to prove the
degree counting formulas (1.2) for the class of Morse functions. More
seriously, as we will see, the degree formula in [6] did not count all pos-
sible solutions. Roughly speaking, their results only covered the case
when solutions of (1.1) possess at most one blow-up point as t tends to
zero. Later in this paper, we will prove that under assumptions (K0)
and (K1), if a sequence of solutions wi of (1.1) with Rti as the scalar
curvature blows up as ti → 0, then the number of blow-up points must
be greater than one. Therefore, solutions obtained in [6] only consist of
bounded solutions as t → 0. We also remark that if the degree βj for
each qj ∈ Γ− is no less than n−2, then any sequence of solutions of (1.1)
with R replaced by Rti remains uniformly bounded as ti → 0. In this
case, Λ− is an empty set and the degree-counting formula (1.15) reduces
to d = −[1 +

∑
j∈Γ−(−1)n+1 degFj ]. When R is a Morse function on

S3, this is the degree counting (1.2).
In this paper, we consider a sequence of solutions ui of (1.3) with

curvature functions Ki set by

(1.18) Ki(x) = n(n− 2) + tiK̂(x),
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where we assume ti → 0. Here, K̂ is a C1 function satisfying the
nondegenerate conditions (K0)–(K1). Solutions ui are always assumed
to blow up at some points of R

n. The main purpose of this article is to
study blowup behavior of ui near a blowup point and to study the effect
due to the interaction between different blowup points. This is the first
step for computing the degree-counting formula. Based on these, we
will construct all possible blowup solutions of (1.1) as ti ↓ 0 in [10] and
then we are able to compute the “local degree” for each blowup solution.
In [10], we will give a complete proof of the degree formula. From the
analytic point of view, the main difference between this paper and [9]
are: First, we consider the degenerate case limi→∞Ki = constant here,
which can not be covered by the results for nondegenerate limi→∞Ki

in [9]. Second, we allow the number βj defined in (K0) to be greater
than or equal to n in this paper, while we assume 1 < βj ≤ n − 2 in
[9]. Third, we also consider the interaction between different blow-up
points here, while we mainly study local behavior near a blow-up point
in [9].

The first interesting question concerning a sequence of blowup so-
lutions is to find the location of blowing up points. A general result
states that if Ki converges to K in C1, then any blowup point must be
a critical point (see [21], [16], [8]). Obviously, this result could not be
of any help for our present situation because the limit function of Ki is
identically a constant. Nevertheless, by using more delicate estimates
than the nondegenerate case, we are still able to prove the following.

Theorem 1.2. Suppose K̂ satisfies (K0) and ui is a sequence of
solutions of (1.3) with K = Ki given in (1.18). Then �K̂(q) = 0 for
any blowup point q of ui.

Throughout the paper, we let {q1, . . . , qm} be the set of blowup
points for {ui}, and βj be the degree of Qj of K̂ at qj . To analyze the
blowup behavior of ui more accurately, the important step is to show the
isolatedness of blowup points, that is, to prove the spherical Harnack
inequality (1.19):

(1.19) max
|x−qj |=r

ui(x) ≤ c min
|x−qj |=r

ui(x) for 0 ≤ r ≤ r0.

For nondegenerate case, the spherical Harnack inequality (1.19) was
proved even for local solutions. See [8], [9] of the reference. For the
degenerate case, we do not know whether the spherical Harnack in-
equality holds or not for local solutions. In Section 4, we study the
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situation when it fails. Due to the analysis there and the effect of inter-
actions of different blowup points, nevertheless, the spherical Harnack
inequaltiy is proved for global solutions.

Theorem 1.3. Suppose that K̂ satisfies (K0) and (K1). Assume

βj ≥ 2(n− 2)
n

for each qj ∈ Γ−. Then any blowup point is isolated.
Furthermore, if βj < n+ 1 at a blowup point qj, then ui satisfies

(1.20) ui(x) ≤ c |x− qj |−
n−2

2

for |x− qj | ≤ δ0 with some positive constants δ0 and c.

By the theory of elliptic equations and the scaling property of Equa-
tion (1.3), inequality (1.20) implies (1.19). Hence, we also call (1.20)
the spherical Harnack inequality. We note that in Theorem 1.3, (K1) is
required only for those qj where βj < n− 2.

For each blowup point qj , we let Mi,j and qi,j denote the local max-
imum and a local maximum point of ui near qj , that is,

(1.21) Mi,j = ui(qi,j) = max
|x−qj |≤δ0

ui(x),

where δ0 is a small positive number such that the distance of qj and
qk are greater than 2δ0. The following theorem is concerned with the
asymptotic relations of Mi,j for different blowup points. Let l denote
the nonnegative positive integer such that q1, . . . , ql are simple blowup
points and ql+1, . . . , qm are not simple blowup points. For the notion of
simple blowup points, we refer the reader to [8], [9] or Section 2 of this
paper.

Theorem 1.4. Assume that K̂ satisfies (K0) and (K1) and assume
β of Q > n−2

2 at any q ∈ Γ−. Let {qj}m
j=1 be the set of blowup points

for ui, and Mi,j , qi,j and l be defined as above. Then m ≥ 2, l ≥ 1
and β1 = . . . = βl > βj for l + 1 ≤ j ≤ m. Furthemore, the following
conclusions hold:

(i) We have qj ∈ Γ− for 1 ≤ j ≤ m and there exists a constant c > 0
such that

(1.22) |qi,j − qj | ≤ c


M

− 2
n−2

i,j if βj < n+ 1,

M
− 2

n−2

i,j (logMi,j)
1
n if βj = n+ 1,

M
− 2

n−2
n

βj−1

i,j if βj > n+ 1.
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Moreover, the limit vector ξ = limi→+∞M
2

n−2

i,j (qi,j − qj) satisfies
(1.8) if βj < n, and satisfies (1.6) if n ≤ βj < n+ 1

(ii) Assume that l = 1. We index qj according to the ordering of
βj : β1 > β2 = . . . = βl1 > βl1+1 ≥ . . . ≥ βm for some positive
integer l1. Then

(1.23)
1
β∗1

+
1
β2

>
2

n− 2
,

Mi,j satisfies
(1.24)

tiM
− 2β∗

1
n−2

i,1 if β1 �= n

tiM
− 2n

n−2

i,1 logMi,1 if β1 = n

 = (1 + o(1))
l1∑

j=2

η1,jM
−1
i,j M

−1
i,1 ,

and

(1.25) tiM
−2βj
n−2

i,j = (1 + o(1))ηj,1M
−1
i,j M

−1
i,1 for 2 ≤ j ≤ m,

where

(1.26) ηj,k =
n(n− 2)|Sn−1||qj − qk|−n+2

|bj | ,

and

(1.27) bj =


βj

∫
Rn Qj(x+ ξ)U

2n
n−2

1 (x)dx
with ξ = limi→+∞Mi,j(qi,j − qj) if βj < n

n
∫
Sn−1 Qj(x)dσ if βj = n∫

Rn〈x− qj ,�K̂〉|x− qj |−2ndx if βj > n

(iii) Assume l ≥ 2. Then β1 = . . . = βl < n− 2 and Mi,j satisfies

(1.28) tiM
− 2β1

n−2

i,j = (1 + o(1))
l∑

k=1,k �=j

ηj,kM
−1
i,j M

−1
i,k for 1 ≤ j ≤ l,

and

(1.29) tiM
− 2βj

n−2

i,j = (1+o(1))
l∑

k=1

ηj,kM
−1
i,k M

−1
i,j for l+1 ≤ j ≤ m.
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Theorem 1.4 gives us rather complete information about blowup
solutions, that is, the local maxima of blowup solutions must satisfy the
necessary conditions (1.24) and (1.25), or (1.28) and (1.29). Conversely,
in [10] we will construct such blowup solutions satisfying these relations
and compute the contribution of these solutions to the Leray-Schauder
degree of Equation (1.1). We note that the third term of the right hand
side of (1.15) corresponds to the effect of multiple blowup points.

The paper is organized as follows: In Section 2–Section 9, we con-
sider the degenerate case for Equation (1.3), that is, Ki(x) = n(n−2)+
tiK̂(x) with ti ↓ 0. In Section 2, main results for local solutions are
stated and their proofs are given in the subsequent sections. There are
two main issues in Section 2. The first one is the quantity Li, which
is associated with each “good” local maximum point of solutions. The
quantity Li is introduced in Sections 2 and will play an important role
because it decides how large of the range where ui behaves “simply”.
We will give its proof in Sections 3 and this is the major step where the
method of moving planes is applied. Another important issue in Sec-
tion 2 is the spherical Harnack inequality (1.20). We will see that when
the flatness β ≥ n−2

2 , the spherical Harnack inequality always holds. See
Theorem 2.4. The case β < n−2

2 is the difficult one for our analysis, even
when the Harnack inequality holds. In the general principle, we can ob-
tain the local bubbling informations through the Pohozaev identities.
However, we have to compute each term in the identity very accurately
and the Harnack inequality itself is not enough for us to achieve this
goal. We need a sharper estimate for the error term of the solution and
the approximation bubbles. This is a very delicate analysis because in
general the solutions might lose the energy more than one bubble. In
Section 5, we show that a method of ODE surprisingly gives us fine
estimates when the spherical Harnack inequality is validated. Together
with suitably chosen comparision functions, we complete the proof of
our desired estimate in Sections 5. See Theorem 2.7. This is one of
two difficult jobs in the paper. These estimates for the error term are
required in the proof of Lemma 7.1 in Section 7. Lemma 7.1 exactly
tells us how, through the Pohozaev identities, the local informations
can be put together to obtain more global one. Section 4 will deal with
the situation when the spherical Harnack inequaltiy (2.19) fails. Here,
we employ a technique of Schoen to localize blowup points. Combined
with the method of moving planes developed in Section 3, this provides
a clear picture for the case when the Harnack inequality does not hold.
Based on the analysis in Section 4 and Lemma 7.1, Theorem 1.3 and
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Theorem 1.4 are proved in Section 8 and Section 9, respectively. We
will prove Theorem 1.2 in Section 6 as a direct consequence of results
in Section 2. Finally, we will prove the apriori bound of Theorem 1.1 in
Section 10.
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2. Estimates for local solutions

For the convenience of the reader, we briefly review some of previous
results from [8] and [9], which would be useful later. Let ui be a solution
of

(2.1) ∆ui +Ki(x)u
n+2
n−2

i = 0 in Ω,

where Ω is an open set in R
n. Let x0 be a blowup point. Following

Schoen’s idea, a blowup point x0 is called simple if there exists a constant
c > 0 and a sequence of local maximum points xi of ui such that

(2.2) x0 = lim
i→+∞

xi,

and

(2.3) ui(xi + x) ≤ c Uλi
(x) for |x| ≤ r0,

where r0 > 0 is independent of i, λi = ui(xi)
− 2

n−2 tends to zero as
i→ +∞ and

(2.4) Uλ(x) =
(

λ

λ2 + |x|2
)n−2

2

for x ∈ R
n.

For any λ > 0, by elementary calculation, Uλ(x) satisfies

∆Uλ + n(n− 2)U
n+2
n−2

λ (x) = 0 in R
n.

We note that the definition of a simple blowup point is different from
the original one given by Schoen. However, it is not difficult to prove
that these two definitions are equivalent.



prescribing scalar curvature on Sn 79

Instead of (2.3), the inequality

(2.5) ui(xi + x) ≤ c ui(xi)−1|x|−n+2

is often used when x0 is a simple blowup point. Also, by (2.4), we have

(2.6) Uλ(x) ≤ (2|x|)−n−2
2 for x �= 0,

which implies that if x0 is a simple blowup point, then

(2.7) ui(xi + x) ≤ c |x|−n−2
2 for |x| ≤ r0.

A blowup point x0 is called isolated if (2.7) holds for some c and r0 > 0.
It is easy to see a simple blowup point must be isolated. The inequality
(2.7) is important because it implies that the Harnack inequality holds
for each sphere with center xi, i.e., there exists a positive constant c > 0
such that

(2.8) max
|x−xi|=r

ui(x) ≤ c min
|x−xi|=r

ui(x)

for 0 ≤ r ≤ r0.
Suppose that x0 is a blowup point of ui. Theorem 1.3 in [8] states

that x0 is a simple blowup point if Ki(x) → K(x) in C1 and Ki satisfies
for some constant c either (i) | �Ki(x)| ≤ c if n = 3 or (ii)

(2.9) | �j Ki(x)| ≤ c| �Ki(x)|
β−j
β−1

if n ≥ 4 in a neighborhood of x0 for 1 ≤ j ≤ β = n − 2. Also see [15]
for the same conclusion when global solutions are considered. We make
some remarks here. First, if Kj = n(n − 2) + tiK̂ with K̂ satisfying
(2.9), then (2.9) holds for Ki also with the same constant c. Thus
Theorem 1.3 in [8] can apply to our case. Second, if K̂ is smooth and
| � K̂(x0)| ≥ c > 0, then obviously condition (2.9) holds for Ki also.
Actually, from the first step of the proof of Theorem 1.3 in [8], the
smoothness assumption of K̂ can be removed if x0 is not a critical point
of K̂. Even when x0 is a critical point, it is not necessary to assume
that K̂ is smooth. In this case, condition (2.9) can be replaced by

c1|x− x0|β−1 ≤ | � K̂(x)| ≤ c2|x− x0|β−1

in a neighborhood of x0 for some constants
c2 > c1 and β > 1.

(2.10)
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Thus, Theorem 1.3 of [8] can be restated as follows:

Theorem A. Let ui be a solutions of (2.1) with Ki = n(n−2)+ tiK̂
and x0 ∈ Ω be a blowup point of ui. Assume that either x0 is not a
critical point of K̂ or x0 is a critical point of K̂ and K̂ satisfies (2.10)
for some β ≥ n− 2. Then x0 is a simple blowup point.

Obviously, if x0 is a simple blow-up point, then there are no blowup
points in a small neighborhood of x0. If we further assume that K̂ has a
discrete set of critical points in Ω, then by Theorem A, ui has a discrete
set of blowup points at most. Hence, throughout Section 2 to Section 5,
we always assume that ui is a solution of

(2.11)


∆ui +Ki(x)u

n+2
n−2

i (x) = 0 on B2\{0},
ui(x) is uniformly bounded in any compact

set of B2\{0},

where B2 = {x : |x| < 2}, and Ki(x) = n(n−2)+ tiK̂ where K̂ satisfies
(2.10) with x0 = 0 for x ∈ B2 and some β ≥ 1. Here, solutions ui is
assumed to blow up at 0. Let M̂i denote the maximum of ui and xi be
a maximum point of ui, i.e.,

(2.12) M̂i = ui(xi) = max
|x|≤2

ui(x) → +∞

as i → +∞. Clearly xi → 0. If β = 1 or β ≥ n − 2, by Theorem A,
(2.3) holds for some constant c > 0. When 1 < β < n− 2, the situation
is more complicated as shown in [9].

A solution ui may have local maximum points beside xi. Let zi be
any local maximum point of ui with ui(zi) → +∞. Then by assumption
(2.11), limi→∞ zi = 0. Let vi(y) be the scaled function defined by

(2.13) vi(y) = M−1
i ui(zi +M

− 2
n−2

i y) with Mi = ui(zi).

Obviously, vi(y) is well-defined for |y| ≤ M
2

n−2

i when i is large. In the
paper, we will always reduce the arguments to the situation when

vi(y) is uniformly bounded in any compact set of
R

n, that is, for any ε > 0, there exists a sequence of
Ri → +∞ such that

(2.14)

|vi(y) − U1(y)| ≤ εU1(y) for |y| ≤ Ri.
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In this case, by passing to a subsequence, vi(y) converges to U1(y) in
C2

loc(R
n), where U1(y) is given in (2.4) with λ = 1.

For such “good” local maximum point zi, we set

(2.15) Li(zi) = min
[
(t−1

i ui(zi)
2

n−2 |zi|1−β)
1

n−2 , (t−1
i ui(zi)

2β̂
n−2 )

1
n−2
]
,

where β̂ = β if β < n and β̂ is any positive number in (n − 1, n)
if β ≥ n. One of the main themes for local solutions is to know if the

scaled vector M
2

n−2

i zi is bounded. This is closely related to the quantity
Li(zi). To see this, let us assume β < n for simplicity. In this case, if
lim

i→+∞
ui(zi)|zi|

n−2
2 = +∞, then

ui(zi)
2

n−2 |zi|1−β = (ui(zi)
2

n−2 |zi|)1−βui(zi)
2β

n−2 = o(1)ui(zi)
2β

n−2

and
Li(zi) = (t−1

i ui(zi)
2

n−2 |zi|1−β)
1

n−2 .

On the other hand, if

lim
i→+∞

ui(zi)|zi|
n−2

2 < +∞,

then it is easy to see

Li(zi) ∼ (t−1
i ui(zi)

2β
n−2 )

1
n−2 .

The quantity Li(zi) plays an important role for us to understand
the bubbling profile of ui. Our first result concerns with Li(xi) and
the simple blowup at 0. We recall xi is a maximum point of ui and
M̂i = ui(xi) is the maximum of ui. See (2.12).

Theorem 2.1. Suppose ui is a solution of (2.11) and K̂ satisfies
(2.10) for some β ≥ 1. Assume (1.4) in addition if β < n − 2. Then
after passing to a subsequence, 0 is a simple blow-up point if and only
if there exists a constant c > 0 independent of i such that

M̂
2

n−2

i ≤ c Li(xi)

for all i.

An interesting case is when the ratio M̂
− 2

n−2

i L(xi) tends to +∞ as
i → +∞. If ui is a global solution of (1.3), by applying the method of
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moving planes, we can prove that 0 is the only simple blowup point.
See (6.8).

On the other hand, when the ratio M̂
− 2

n−2

i L(xi) is bounded, we have
the following result.

Theorem 2.2. Let ui and K̂ satisfy the assumptions of Theorem 2.1
and let xi, M̂i and Li(xi) be defined in (2.12) and (2.15), respectively.
Suppose that there is c > 0 such that

Li(xi) ≤ c M̂
2

n−2

i ,

then M̂i|xi|
n−2

2 is bounded and β < n − 2. Furthermore, if assume in
addition that K̂ satisfies (K0) with Q being the homogeneous function

and lim
i→+∞

ξi = ξ exists with ξi = M̂
2

n−2

i xi, then ξ satisfies

(2.16)
∫

Rn

�Q(x+ ξ)U
2n

n−2

1 (x)dx = 0.

The following consequence of Theorem 2.2 is important when we
come to determine the position of blowup points for global solutions of
(1.3).

Corollary 2.3. Let ui and Ki satisfy the assumptions of Theo-
rem 2.1. Assume that either �K̂(0) �= 0 or �K̂(0) = 0 with β ≥ n− 2,

then lim
i→+∞

Li(xi)M̂
− 2

n−2

i = +∞.

Both proofs of Theorem 2.1 and 2.2 are given in Section 3, where the
application of the reflection method are discussed. By Theorem A, the
flatness β of K̂ at 0 determines the bubbling behavior of ui. Conven-
tionally, ui is said to lose the energy of one bubble at 0 if ui converges
to 0 in C1

loc(B2 \ {0}) and

(2.17) lim
i→+∞

∫
|x|≤1

u
2n

n−2

i (x)dx =
(

Sn

n(n− 2)

)n
2

,

where Sn is the Sobolev best constant. Clearly, if ui blows up at 0
simply, then ui lost one bubble.

Theorem 2.4. Assume that K̂ satisfies (K0) and (K1) at 0 with
n−2

2 ≤ β, and ui is a solution satisfying (2.11). Then ui loses the energy
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of only one bubble at 0. Suppose in addition that lim
i→+∞

Li(xi)M̂
− 2

n−2

i <

+∞. Then there exists a constant c > 0 such that

(2.18) ui(x) ≤ c |x| 2−n
2 for |x| ≤ 1.

Set ξi = M̂
2

n−2

i xi. Then after passing to a subsequence, the limit ξ =
lim

i→+∞
ξi satisfies (1.8).

When β < n−2
2 , it is possible that (2.18) does not hold and it is also

possible that ui loses energy of more than one bubble even (2.18) holds.
We first consider the case when inequality (2.18) does not hold. There
are two alternatives in this case.

Theorem 2.5. Assume that K̂ satisfies (K0) and (K1) at 0, and ui

is a solution of (2.11). Suppose

(2.19) lim
i→+∞

sup(ui(x)|x|
n−2

2 ) = +∞.

Then one of the followings holds:

(i) The origin is a simple blowup point and consequently, an isolated
blowup point. More precisely, we have

(2.20)

ui(xi + x) ≤ c Uλi
(x) for |x| ≤ 1, and

lim
i→+∞

M̂i|xi|
n−2

2 = +∞,

where λi = M̂
− 2

n−2

i .

(ii) The origin is not a simple blowup point and is not an isolated

blowup point. In this case, we have β <
n− 2

2
and there exists a

local maximum point zi of ui satisfying
(2.21)

ui(zi)|zi|
n−2

2 → ∞ and Li(zi)ui(zi)−
n−2

2 → ∞ as i→ +∞

such that for any δ > 0, ui(x) is a simple blowup with center zi
for x �∈ B(0, δ|zi|), i.e.,

(2.22) ui(x) ≤ c Uλi
(x− zi)
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for |x| ≥ δ|zi|, where λi = ui(zi)
− 2

n−2 . Also, for x �∈ B(zi, δ|zi|),
we have

(2.23) ui(x)|x|
n−2

2 ≤ c

with c = c(δ) independent of i. Moreover, ui(zi) = o(1)M̂i, where
o(1) tends to 0 as i→ +∞ and M̂i = max

|x|≤2
ui(x).

Remark 2.6. Two consequences follow from Theorem 2.5. First,
since (2.22) implies

(2.24) min
|x|=1

ui(x) ∼ ui(zi)−1,

the spherical Harnack inequality (2.18) holds if ui(x) ≥ c > 0 on B2 for
some c independent of i. Second, by (2.21),

lim
i→+∞

Li(zi)ui(zi)−
n−2

2 = +∞.

We will see later that this implies if ui is a sequence of global solutions,
then the number of the type of blowup points described in (ii) of Theo-
rem 2.5 is at most one. See (6.8). By using this fact, we then are able to
apply Lemma 7.1 to get rid of the blowup point of the type of behavior
in case (ii) of Theorem 2.5. This is indeed Theorem 1.3.

When ui converges to zero in C1
loc(B2\{0}), we say ui loses energy

of more than one bubble near 0 if

(2.25) lim
i→+∞

∫
|x|≤1

u
2n

n−2

i (x)dx >
(

Sn

n(n− 2)

)n
2

.

In this case, we have β < n−2
2 by Theorem A and Theorem 2.4. It is

easy to see the blowup described in (ii) of Theorem 2.5 belongs to this
case. Actually, when β < n−2

2 , it is possible for ui to lose infinite energy.
See [11] for the existence for such solutions.

To estimate ui more accurately when it satisfies (2.18) and loses
energy of more than one bubble, let

(2.26) ui(r) =
1

|∂Br|
∫
|x|=r

uidσ

be the spherical average of ui, and

(2.27) wi(s) = ui(r)r
n−2

2 with r = es.
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Obviously, wi(s) is well-defined for s ≤ 0. Since 0 is a blowup point,
wi has at least one maximum point. Let si ≤ 0 be the local maximum
point of wi, which is nearest to zero. Set

(2.28) Mi = e−(n−2
2

)si ,

(2.29) Li =
(
t−1
i M

2β
n−2

i

) 1
n−2

,

(2.30) Ri = Lγ
i , γ =

1

1 − 2β
n−2

, and

(2.31) ũi = M−1
i ui

(
M

−2
n−2

i x

)
.

Then we have the following estimates:

Theorem 2.7. Suppose that K̂ satisfies (K0) and (K1) at 0 with

1 < β <
n− 2

2
, and ui is a solution of (2.11) which converges uniformly

to zero in any compact set of B2\{0} and satisfies (2.18) and (2.25).
Define wi, si,Mi, Li, Ri and ũi as above. Then lim

i→+∞
Mi = +∞ and

there are c > 0, ai → 1, zi ∈ R
n and λi > 0 such that the following hold:

(i) lim
i→∞

λi = λ and lim
i→+∞

zi = z, where λ and z satisfy

(2.32) 1 = λ2 + |z|2.
Set ξ =

√
λz. Then ξ satisfies (1.8).

(ii) ũi satisfies

(2.33) |ũi(x)| ≤ c |x|−n−2
2 for |x| ≤ R−2

i , and

|ũi(x) − aiUλi
(x− zi)|

≤ c (L−n+2
i +R−n+2

i |x|−n+2 + max
|y|=M

2
n−2

i

|ũi(y) − aiUλi
(y − zi)|),

(2.34)

for R−2
i ≤ |x| ≤M

2
n−2

i .
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Remark 2.8. If LiM
− 2

n−2

i ≤ c for some constant c > 0, then from
the proof of Theorem 2.7, we will see that ũi(y) ≤ c1L

−n+2
i for some

constant c1 when |y| = M
2

n−2

i . Thus, the third term in the right hand

side of (2.34) can be absorbed by L−n+2
i when LiM

− 2
n−2

i ≤ c.

To extend the notion of simple blowup to cover the case when ui

loses energy of more than one bubble, we modify (2.3) as follows. Let
Br(y) denote {x : |x− y| < r}.

Definition 2.9. Assume 0 is a blowup point. The blowup point 0
is called simple-like if there exist c > 0, r0 > 0, a sequence of numbers
{λi}, a sequence of points {zi} and a sequence of balls {Bri(yi)} such
that limi→∞ λi = 0, limi→∞ zi = limi→∞ yi = 0, limi→∞ riλ

−1
i = 0, and

ui(x+ zi) ≤ cUλi
(x) on Br0(0) \Bri(yi).

According to the definition, it is not difficult to see that there are
exactly three types of simple-like blowup point: simple blowup, the
blowup described in (ii) of Theorem 2.5, and the blowup in Theorem 2.7

when Li ≥ cM
2

n−2

i for some constant c > 0. On the other hand, if 0
is non-simple-like, then by Theorem 2.5, inequality (2.18) holds and 0
must be isolated.

Remark 2.10. When the assumption (K1) is concerned in the
theorems of this section, (K1) is required only when β < n− 2.

3. Applications of the method of moving planes

In this section, we will collect some well-known results and prove
some lemmas which will be used in the proofs of the theorems in Sec-
tion 2. In the proofs, we often assume there is a sequence of local
maximum points zi of ui such that the scaled function vi in (2.13) sat-
isfies (2.14). By applying the method of moving planes, we can improve
the result of (2.14). When Ki satisfies if the nondegenerate conditions
(K0) and (K1) with 1 < β ≤ n − 2, we proved that ui(zi + x) could

be bounded by c Uλi
(x) with λi = ui(zi)

− 2
n−2 for |x| ≤ LiM

− 2
n−2

i . See
Lemma 3.1 in [9]. Actually the proof there can apply to the degener-
ate case. In the following, we give a brief sketch of the proof for the
convenience of readers. In fact, Lemma 3.1 below deals with the case
more general than the one considered in [9], namely, ui is allowed to
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have very large values, compared with ui(zi), in some small region. Let
d(B, 0) denote the distance from the origin to a ball B.

Lemma 3.1. Suppose that ui is a solution of (2.11), zi is a local
maximum point of ui and vi is given as in (2.13). Let B be a closed
ball in R

n with d(B, 0) > 0 and ε be a positive (small) number. Suppose
that there is a sequence of Ri → +∞ as i→ +∞ such that

|vi(y) − U1(y)| ≤ εU1(y)

for |y| ≤ Ri and y �∈ B. Then there exists δ = δ(ε, d(B, 0)) > 0 such
that

(3.1) min
|y|≤r

vi(y) ≤ (1 + 2ε)U1(r)

for 0 ≤ r ≤ L∗
i (δ), where L∗

i (δ) = min(δLi(zi),M
2

n−2

i ).

Proof. When B is an empty set and 1 ≤ β ≤ n−2, this is Lemma 3.1
in [9]. Thus, we only sketch the proof below. For the details, we refer
the interested readers to [9].

Let e1 = (1, 0, · · · , 0) and τ = d(B, 0). We may assume the center
of B is r0e1 for some r0 > τ . Let

F (x) =
τ2x

|x|2 + τe1,

vi(x) =
( τ
|x|
)n−2

vi

(τ2x

|x|2 + τe1
)
,

U1(x) =
( τ
|x|
)n−2

U1

(τ2x

|x|2 + τe1
)
.

(3.2)

By a straighforward calculation, we have

U1(x) =
(

λ

λ2 + |x− x0|2
)n−2

2

,

where λ =
τ2

τ2 + 1
and x0 = − τ3e1

τ2 + 1
. Also we have F−1(B) = {x :

x = F−1(y), y ∈ B} ⊂ {(x1, x2, · · · , xn) : x1 > 0}, d(F (B), 0) > 0 and
vi satisfies

�vi +Ki(x)vi

n+2
n−2 = 0

for x /∈ F−1(B), where Ki(x) = Ki(zi +M
− 2

n−2

i F (x)).
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Now assume that the conclusion of Lemma 3.1 does not hold. Then
by passing to a subsequence, there is a sequence of positive number ri
such that ri ≤ L∗

i (δ) and

(3.3) min
|y|≤ri

vi(y) ≥ (1 + 2ε)U1(ri),

where δ = δ(ε) will be chosen later. By the assumptions, it is easy to see
ri ≥ Ri → +∞ as i → +∞. Since by (3.2), vi(x) uniformly converges
to U1(x) in C2

loc(R
n\{0}), vi has a local maximum at some point qi near

x0. Now we are going to apply the method of moving planes to obtain
a contradiction.

For any λ < 0, let Σλ = {x | x1 > λ}, Tλ = {x | x1 = λ} and
xλ denote the reflection point of x with respect to Tλ. We also let
Σ′

λ = Σλ ∩ {x | |x| ≥ τ2(ri − τ)−1}. In the following, we will choose

a number λ0 satisfying −|x0| < λ0 < −|x0|
2

and show that for λ ≤ λ0,

there exists i0 = i0(λ0) such that

(3.4) vi(xλ) ≤ vi(x)

for x ∈ Σ′
λ, λ ≤ λ0 and i ≥ i0. This yields a contradiction to the fact

that vi has a local maximum near x0. Note that the local maximum
point qi tends to x0 as i→ ∞.

Let wλ(x) = vi(x) − vi(xλ). Then wλ satisfies

(3.5) �wλ + bλ(x)wλ(x) = Qλ(x) in Σ′
λ,

where 
bλ(x) = Ki(x)

(
vi(x)

n+2
n−2 − (vi(xλ)

n+2
n−2
)

vi(x) − vi(xλ)

Qλ(x) =
(
Ki(xλ) −Ki(x)

)
vi(xλ)

n+2
n−2 .

By (3.2) and (3.3), we have for |x| = τ2(ri − τ)−1,

(3.6) vi(x) ≥
(ri − τ

τ

)n−2 min
|y|≤ri

vi ≥ (1 + ε)U1(0)

for i large. On the other hand, vi(x−|x0|) converges to U1(0−|x0|) =
U1(0) uniformly for |x| = τ2r−1

i , where x−|x0| and 0−|x0| are the reflec-
tion points of x and 0 with respect to the hyperplane T−|x0|. Hence

there exists −|x0| < λ0 <
−|x0|

2
such that

vi(xλ) ≤ (1 +
ε

2
)U1(0)
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for |x| = τ2(ri−τ)−1, λ ≤ λ0 and large i. Together with (3.6), it implies
for |x| = τ2(ri − τ)−1,

wλ(x) ≥ ε

2
U1(0)

for λ ≤ λ0 and large i. In the following, we fix this λ0. Then there is a
small c0 such that

(3.7) wλ(x) ≥ ε

2
U(0) ≥ c0r

−n+2
i Gλ(x, 0)

holds for |x| = τ2(ri − τ)−1, λ ≤ λ0 and large i, where Gλ(x, y) is

Gλ(x, y) = cn
( 1
|y − x|n−2

− 1
|yλ − x|n−2

)
,

the Green function of −� on Σλ = {x : x1 > λ}.
If λ1 < 0 and |λ1| is large, then we have

(3.8) wλ(x) ≥ c0
2
r−n+2
i Gλ(x, 0)

for λ ≤ λ1, x ∈ Σ′
λ and large i. For the details, see [9].

For λ > λ1, let Q+
λ = max(0, Qλ), Li = Li(zi) and

(3.9) hλ(x) = aL−n+2
i Gλ(x, 0) −

∫
Σ′

λ

Gλ(x, η)Q+
λ (η) dη,

where a is a positive number to be chosen later. Obviously, hλ satisfies

�hλ = Q+
λ ≥ Qλ in Σ′

λ.

For λ ≤ λ0 and η ∈ Σλ, since |ηλ| ≥ |η| and |ηλ| ≥ |λ0| ≥ |x0|
2 > 0,

one has by (3.2)
|vi(ηλ)| ≤ c1(1 + |ηλ|)−(n−2).

Here, we use F−1(B) ⊂ Σλ also. For η ∈ Σ′
λ, we have

|η| ≥ τ2(ri − τ)−1 ≥ τ2

2
L∗

i (δ) ≥
τ2

2
M

− 2
n−2

i .

To estimate the integral term in (3.9), we note

Q+
λ (η) ≤ c2(1+|ηλ|)−(n+2)

∣∣Ki(zi+M
− 2

n−2

i F (ηλ))−Ki(zi+M
− 2

n−2

i F (η))
∣∣.
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By (2.10), when η ∈ Σ′
λ,

|Ki(zi +M
− 2

n−2

i F (η)) −Ki(zi)|

≤ ctiM
− 2

n−2

i |F (η)|
{
|zi|β−1 +M

− 2(β̂−1)
n−2

i |F (η)|β̂−1

}

≤ c3tiM
− 2

n−2

i (1 + |η|−1)

{
|zi|β−1 +M

− 2(β̂−1)
n−2

i (1 + |η|1−β̂)

}
≤ c4L

2−n
i (1 + |η|−β̂),

(3.10)

where |η| ≥ τ2

2
M

− 2
n−2

i is used and β̂ is the number in (2.15). Thus, we
have

(3.11) Q+
λ (η) ≤ c5L

−n+2
i (1 + |η|−β̂)(1 + |ηλ|)−(n+2).

By (3.11), following the computation in the proof of Lemma 3.1 in [9],
we obtain

(3.12)
∫

Σ′
λ

Gλ(x, η)Q+
λ (η)dη ≤ c6L

−n+2
i Gλ(x, 0)

for x ∈ Σ′
λ, where c6 is a constant depending on the constants in (2.10),

τ and n only.
Set a = 2c6 in (3.9). Then

(3.13) 0 <
a

2
[L(zi)]−n+2Gλ(x, 0) ≤ hλ(x) ≤ a[L(zi)]−n+2Gλ(x, 0).

Recall that ri ≤ δLi(zi). Choose δ to be sufficiently small such that
c0δ

−n+2 ≥ 2a. Then by (3.7) and (3.8), for i large,

wλ(x) > hλ(x)

holds for x ∈ Σ′
λ if λ = λ1, and holds for |x| = τ2(ri − τ)−1 and

λ ≤ λ0. It follows that hλ satisfies the assumptions of Lemma 2.1 in
[9] with λ1 ≤ λ ≤ λ0 when i is large. Applying Lemma 2.1 in [9],
wλ(x) > hλ(x) > 0 for x ∈ Σ′

λ and λ ≤ λ0. Hence, (3.4) is proved, and
then the proof of Lemma 3.1 is finished. q.e.d.

Note that if ui is a global solution defined in the whole space R
n,

then we can choose

L∗
i (δ) = min(L∗

i (δ), λM
2

n−2

i )
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for any λ > 0. Inequality (3.1) is very useful when the Harnack in-
equality holds for vi on each sphere |y| = r. Actually, under some extra
condition on ui, we can derive the spherical Harnack inequality from
(3.1) itself by using the Green representation formula. We will explain
this in Lemma 3.4, which tells us how to derive the Harnack inequality.
Before that, we have to state two well-known lemmas. For their proofs,
see [9].

Lemma 3.2. Suppose φ(x) satisfies

�φ(x) + n(n+ 2)U
4

n−2

1 φ(x) = 0 in R
n

with φ(x) → 0 as |y| → ∞. Then φ(x) can be written as

φ(x) = c0ψ0(x) +
n∑

j=1

cjψj(x)

for some cj ∈ R, j = 0, 1, . . . , n, where ψj(x) =
∂U1

∂xj
for 1 ≤ j ≤ n and

ψ0(x) =
n− 2

2
U1 + x · ∇U1.

Lemma 3.3. Suppose that u is a positive smooth solution of

�u+K(x)u
n+2
n−2 = 0 in Br,

where |K(x)| ≤ b. Then there exists a small εo > 0, depending on b and
n only, such that if ||u||

L
2n

n−2
≤ εo, then the Harnack inequality

u(x) ≤ c u(y)

holds for |x|, |y| ≤ r/4, where c > 0 depends on b and n only.

In Lemma 3.4, we consider a more general setting, which is needed
later. Assume that 0 < a ≤ K(x) ≤ b, u is a solution of

(3.14) �u+K(x)u
n+2
n−2 = 0, u > 0 for |x| ≤ l0,

and U is the solution of

(3.15)

�U +K0U
n+2
n−2 = 0, U > 0 in R

n,

U(0) = max
Rn

U = 1,
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where K0 is a positive constant. Let Br = {x : |x| < r}.
Lemma 3.4. Let u, U and l0 be as above. Suppose 0 < σ < 1,

R ≤ l0
8

, and E ⊆ BR/2 such that

(3.16) |u(x) − U(x)| ≤ σU(x)

for x ∈ BR\E,

(3.17)
∫
|x|≤R

|K(x) −K0|U
n+2
n−2dx ≤ σ,

(3.18)
∫

E
U

n+2
n−2dx < σ, and

(3.19) min
|x|=l

u(x) ≤ (1 + σ)U(r)

for some l ∈ [R, l0
4 ]. Then there is a constant c1 depending on n and b

only such that

(3.20)
∫

R≤|x|≤l
u

n+2
n−2dx ≤ c1(R−2 + σ + (

l

l0
)n−2),

Furthermore, if

(3.21) u(x) ≤ c2 (R−2 + σ + (
l

l0
)n−2)−1, and

(3.22) min
|x|=r

u(x) ≤ c3 U(r)

for R ≤ r ≤ l where c2 = c2(n, a, b) is a small positive constant and
c3 > 0, then

(3.23) u(x) ≤ c4U(x)

for |x| ≤ l

2
and x /∈ E, where c4 depends on c2 and c3.
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Proof. For r > 0, let Br = {x : |x| < r}. Let G(x, η) be the Green
function of the Laplacian operator −� on the ball Bl0 with zero bound-
ary value. Let x0 be a point satisfy |x0| = l and u(x0) = min|x|≤l u(x).
By the Green identity and (3.19),

(3.24) (1 + σ)U(x0) ≥ u(x0) ≥
∫

Bl0

G(x0, η)K(η)u
n+2
n−2 (η)dη,

and

U(x0) =
∫

Bl0

G(x0, η)K0U
n+2
n−2 dη + U(l0)

≤
∫

Bl0

G(x0, η)K0U
n+2
n−2 dη + U(l0)

(3.25)

Hence there is cn depending on n only such that

a cn

∫
R
2
≤η≤ l0

2

(l + |η|)−n+2u
n+2
n−2 dη

≤ u(x0) −
∫

B R
2
\E
G(x0, η)K(η)u

n+2
n−2 dη

≤ (1 + σ)U(x0) −
∫

B R
2
\E
G(x0, η)K(η)u

n+2
n−2 dη.

(3.26)

By the assumptions (3.16) and (3.17), there is c4 depending on n and b
only such that

∫
B R

2
\E
G(x0, η)K(η)u

n+2
n−2 dη

≥
∫

B R
2
\E
G(x0, η)

{
K0U

n+2
n−2 +K(η)(u

n+2
n−2 − U

n+2
n−2 )

− |K(η) −K0|U
n+2
n−2
}
dη

≥
∫

B R
2

G(x0, η)K0U
n+2
n−2 dη − c4l

−n+2σ.
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Together with (3.25), it leads to

a cn

∫
R
2
≤η≤ l0

2

(1 + l−1|x|)−n+2u
n+2
n−2 dη

≤ ln−2

∫
Bl0

\B R
2

G(x0, η)K0U
n+2
n−2 dη + c4l

−n+2σ


+ ln−2 [σU(x0) + U(l0)]

≤ c5 (σ +R−2 + (
l

l0
)n−2),

where c5 depends on n and b only. Obviously the inequality (3.20)
follows immediately.

Let ε0 be the number in Lemma 3.3 and c2 be a small number such
that

c2c5(cna)−1 < ε0.

If u(x) ≤ c2(R−2 + σ + (
l

l0
)n−2)−1 for R

2 ≤ |x| ≤ l, then

∫
R
2
≤|η|≤l

u
2n

n−2 dη <

∫
R
2
≤|η|≤l

u
n+2
n−2dη

(
max

R
2
≤|η|≤l

u

)
< ε0.

By Lemma 3.3, the Harnack inequality holds for u on {x : |x| = r} with

R ≤ r ≤ l

2
. The inequality (3.23) then follows from it and (3.22) for

R ≤ r ≤ l
2 . Together with (3.16), (3.23) holds for all |x| ≤ l

2 and x �∈ E.
q.e.d.

Let zi be a local maximum point and vi be the scaled solution in
(2.13) such that (2.14) holds and Ui(y) be the solution of (3.15) with
K0 = Ki(zi). In the next step, we are going to estimate the difference
between vi and Ui(y). By (2.14), for any ε > 0, we have a sequence of
Ri → +∞ such that

|vi(y) − Ui(y)| ≤ εUi(y) for |y| ≤ Ri.

By Lemma 3.1, there exists δ0 = δ0(ε) > 0 such that

(3.27) min
|y|=r

vi(y) ≤ (1 + 2ε)Ui(r)

for 0 ≤ r ≤ L∗
i (δ0). Then Lemma 3.4 yields the following important

result.



prescribing scalar curvature on Sn 95

Lemma 3.5. Let vi and Ui be described as above. Suppose that
there is a sequence of positive number li ≤ L∗

i (δ0) such that

(3.28) vi(y) ≤ c1 for |y| ≤ li.

Then there exists a small d > 0 such that

(3.29) vi(y) ≤ c2Ui(y), and

(3.30) |vi(y) − Ui(y)| ≤ c2r
−n+2
i

for |y| ≤ ri = dli where d is a constant depending on n only. Further-

more, let Q̃i(y) = Ki(zi) −Ki(zi +M
− 2

n−2

i y). Then for r ≤ ri,

(3.31)
∣∣∣∫

|y|≤r
Q̃(y)U

n+2
n−2

i (y)ψ0(y)dy
∣∣∣ ≤ c1r

−n+2,

and

(3.32)
∣∣∣∫

|y|≤r
Q̃(y)U

n+2
n−2

i (y)ψj(y)dy
∣∣∣ ≤ c1r

−n+1

for 1 ≤ j ≤ n, where ψj(x) are given in Lemma 3.2.

Proof. Without loss of generality, we might assume Ri << li. Oth-
erwise, (3.29)–(3.30) hold automatically. By Lemma 3.1, (3.27) holds
for 0 ≤ r ≤ li. Since Ki = n(n− 2) + tiK̂, we have∫

|x|≤Ri

|K̃i(x) −Ki(zi)|U
n+2
n−2 (x)dx ≤ c ti ≤ ε,

for ti small, where K̃i(x) = Ki

(
zi + M

− 2
n−2

i x
)
. Thus, vi satisfies as-

sumptions (3.16) ∼ (3.19) with an empty set E, R = Ri, l = dli and

l0 = M
2

n−2

i . Let d be small such that

c1(R−2
i + ε+ dn−2) < c2,

where c2 is the constant in (3.21). Then by (3.28), we have

vi(y) ≤ c2(R−2
i + ε+ dn−2)−1 for |y| ≤ li.

Then (3.29) follows immediately from Lemma 3.4. The inequality (3.30)
can be proved by the same argument as in Lemma 3.3 of [9]. Hence, we
omit the proof here.
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To Prove (3.31) and (3.32), we let wi = vi(y) − Ui(y). Then wi

satisfies

(3.33) ∆wi + b̃i(y)wi(y) = Q̃i(y)U
n+2
n−2

i (y),

where

(3.34)



b̃i(y) = K̃i(y)

v n+2
n−2

i − U
n+2
n−2

i

vi − Ui

 ,

K̃i(y) = Ki

(
zi +M

− 2
n−2

i y
)
, and

Q̃i(y) = Ki(zi) − K̃i(y).

Multiplying (3.33) by ψj , one has∫
|y|≤r

wi(∆ψj + b̃iψj)dy +
∫
|y|=r

(
ψj
∂wi

∂ν
− wi

∂ψj

∂ν

)
dσ

=
∫
|y|≤r

Q̃iU
n+2
n−2

i ψjdy

(3.35)

for 0 ≤ j ≤ n. Let ri = dli. By (3.30), we have for |y| ≤ ri,

(3.36) |vi(y) − Ui(y)| ≤ c2r
2−n
i .

To estimate the first term of (3.35), we recall

∆ψj +
n+ 2
n− 2

Ki(zi)U
4

n−2

i ψj = 0,

and then

wi(∆ψj + b̃iψj) =(K̃i(y) −Ki(zi))
(
v

n+2
n−2

i − U
n+2
n−2

i

)
ψj

+Ki(zi)
(
v

n+2
n−2

i − U
n+2
n−2

i − n+ 2
n− 2

U
4

n−2

i wi

)
ψj .

Hence for j = 0, we have as in (3.10)

|wi(∆ψ0 + b̃iψ0)|
≤ c
{
r2−n
i Li(zi)−n+2(1 + |y|)β̂−n−2 + r

2(2−n)
i (1 + |y|)−4

}
≤ 2c r2(2−n)

i (1 + |y|)−2,

(3.37)
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where |ψ0(y)| ≤ c(1 + |y|)2−n and β̂ < n are used. Similarly, by

|ψj(y)| ≤ c(1 + |y|)1−n for 1 ≤ j ≤ n,

we have

(3.38) |wi(∆ψj + b̃iψj)| ≤ c r
2(2−n)
i (1 + |y|)−3.

By applying (3.37) and (3.38), we have∣∣∣ ∫
Br

wi(∆ψj + b̃iψj)dy
∣∣∣ = O(r2−n)

for j = 0, and ∣∣∣ ∫
Br

wi(∆ψj + b̃iψj)dy
∣∣∣ = O(r1−n)

for 1 ≤ j ≤ n. When |y| = r, we have

| � vi(y)| ≤ c|y|−1vi(y) = O(|y|1−n)

by the gradient estimate. Therefore, the boundary term of (3.35) is
bounded by O(r2−n) for j = 0 and is bounded by O(r1−n) for 1 ≤ j ≤ n.
Both (3.31) and (3.32) then follow from (3.35). q.e.d.

Proof of Theorem 2.2. We prove Theorem 2.2 by contradiction.
Suppose lim

i→+∞
M̂i |xi|

n−2
2 = +∞. If β ≥ n− 2, by the definition (2.15)

and the assumption that Li(xi)M̂
− 2

n−2

i is bounded, we have

(3.39) Li(xi) =
(
t−1
i M̂

2
n−2

i |xi|1−β
) 1

n−2
.

If 1 ≤ β < n− 2, then

t−1
i M̂

2
n−2

i |xi|1−β = t−1
i M̂

2β
n−2

i

(
M̂

2
n−2

i |xi|
)1−β

≤ t−1
i M̂

2β
n−2

i ,

which implies (3.39) also.
Let vi(y) be defined as (2.13) with zi = xi. Obviously, vi(y) ≤ 1 for

|y| ≤ M̂
2

n−2

i . By Lemma 3.5, there exists a δ2 > 0 such that (3.29)–
(3.32) hold with dli replaced by δ2Li(xi). Recall the quantity Q̃i in
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Lemma 3.5. We may assume limi→+∞
	K̂(xi)

|	K̂(xi)| = e1 = (1, 0, . . . , 0).
Then

−Q̃i = Ki

(
xi + M̂

−2
n−2

i y
)
−Ki(xi)

= tiM̂
−2

n−2

i (�K̂(xi), y) + c(δ, i)tiM
− 2

n−2

i | � K̂(xi)||y|
= tiM̂

−2
n−2

i | � K̂(xi)|y1 + c(δ, i)tiM
− 2

n−2

i | � K̂(xi)||y|

(3.40)

for |y| ≤ δM̂
2

n−2

i |xi|, where c(δ, i) could be arbitrarily small if i is large
and δ is small. Therefore, we can choose δ small enough so that

(3.41)

∫
|y|≤ri

(−Q̃i)U
n+2
n−2

i (y)ψ1(y)dy ≥ c tiM̂
− 2

n−2

i |xi|β−1

= c (Li(xi))2−n

for some c > 0 where ri = δM̂
2

n−2

i |xi|. For the simplicity of notations,
we let li = δ2Li(xi). If ri ≥ li, then by (3.41), we have

(3.42)
∫
|y|≤li

(−Q̃i)U
n+2
n−2

i (y)|ψ1(y)|dy ≥ c1(Li(xi))2−n.

If li ≥ ri, as in (3.10), we have∫
ri≤|y|≤li

|Q̃i|U
n+2
n−2

i (y)ψ1(y)dy

≤ c

∫
ri≤|y|≤li

(
Li(xi)−n+2|y|−2n + tiM̂

− 2β̂
n−2

i |y|−n−1
)
dy

= o(1)Li(xi)2−n.

Together with (3.41), it implies that (3.42) holds also in the case of
li ≥ ri.

On the other hand, by (3.32), we have∣∣∣∣∣
∫
|y|≤li

Q̃iU
n+2
n−2

i ψ1dy

∣∣∣∣∣ ≤ c1Li(xi)−n+1.

This contradicts (3.42). Hence we conclude M̂
2

n−2

i |xi| is bounded.
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Suppose β ≥ n− 2. Since M̂
2

n−2

i |xi| is bounded, we have

M̂
2

n−2

i |xi|1−β =
(
M̂

2
n−2

i |xi|
)1−β

M̂
2β

n−2

i

≥ c1M̂
2
i .

Hence,
lim

i→+∞
Ln−2

i (xi)M̂−2
i ≥ c1 lim

i→+∞
t−1
i = +∞,

which yields a contradiction to our assumptions. Thus, β < n− 2 must
hold.

To prove (2.16), we let wi(y) = ln−2
i (vi(y) − Ui(y)) where li =

δ2Li(xi). Then wi satisfies (3.33) with Q̃i(y) replaced ln−2
i Q̃i in the

right hand side. By (K0),

(3.43)

Q̃i(y) = Ki(xi) −Ki

(
xi + M̂

2
n−2

i y
)

= −ti
[
Q
(
xi + M̂

− 2
n−2

i y
)

+R
(
xi + M̂

− 2
n−2

i y
)]

+ (Ki(xi) −Ki(0))

= −tiM̂− 2β
n−2

i

[
Q(ξi + y) + o(1)(|y|β + 1)

]
+ (Ki(xi) −Ki(0)),

where ξi = M̂
2

n−2

i xi. By (3.30) of Lemma 3.5, wi(y) is uniformly
bounded in R

n. After passing to a subsequence, we may assume that

wi(y) converges to w(y) in C2
loc(R

n). Since β < n − 2 and M̂
2

n−2

i |xi| is

bounded, we have L−n+2
i ∼ tiM̂

− 2β
n−2

i . We may assume

c = lim
i→∞

til
n−2
i M̂

−2β
n−2

i > 0

exists. Multiplying both sides of (3.33) by ψj = ∂Ui
∂yj

, we have by inte-
gration by parts,∫

Bli

ln−2
i Q̃i(y)U

n+2
n−2

i ψj(y)dy =
∫

Bli

wi(∆ψj + b̃i(y)ψj)dy

+
∫

∂Bli

(
ψj
∂wi

∂ν
− wi

∂ψj

∂ν

)
dσ.
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By (3.30), the boundary term = O(l−1
i ) → 0 as i→ +∞, and

|∆ψj + b̃i(y)ψj | ≤ |̃bi(y)ψj(y)| + (n+ 2)n
∣∣∣U 4

n−2

1 (y)ψj(y)
∣∣∣

≤ c(1 + |y|)−(n+2).

Thus, by Lebseque’s convergence theorem, the right hand side converges
to ∫

Rn

w
(
∆ψj + n(n+ 2)U

4
n−2

1 ψj

)
dy = 0.

Together with (3.43), it implies

0 = lim
i→+∞

∫
Bli

ln−2
i Q̃i(y)U

n+2
n−2

i ψj(y)dy

= c lim
i→+∞

∫
Bli

Q(ξi + y)U
n+2
n−2

1 (y)
∂U1(y)
∂yj

dy

=
(n− 2)c

2n

∫
Rn

Q(ξ + y)
∂

∂yj
U

2n
n−2

1 (y)dy

=
−(n− 2)c

2n

∫
Rn

∂

∂yj
Q(ξ + y)U

2n
n−2

1 (y)dy,

where U1 is defined in (1.4). Here, we have used the fact that ψj(y) is
odd in yj , and ∫

Bli

(Ki(xi) −Ki(0))ψj(y)U
n+2
n−2

i (y)dy = 0.

The proof of Theorem 2.2 is complete. q.e.d.

Proof of Theorem 2.1. Note that in Section 8, (2.16) is also proved
when β < n + 1. This holds only for global solutions. See Lemma 8.1.
Let xi and M̂i be the maximum point and the maximum of ui defined
in (2.12). We first prove the “if” part. Assume there is a constant c > 0
such that

(3.44) Li(xi) ≥ cM̂
2

n−2

i .

Let vi(y) be the scaled solution defined in (2.13) with zi = xi. Obviously,

vi(y) ≤ 1 for |y| ≤ M̂
2

n−2

i . By Lemma 3.1, Lemma 3.5 and (3.44), there
exists a small positive number δ > 0 such that vi(y) ≤ c U1(y) for

|y| ≤ δM̂
2

n−2

i and for some c > 0. Therefore, 0 is a simple blow-up
point.
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To prove the “only if” part, we assume

(3.45) lim
i→+∞

Li(xi)M̂
− 2

n−2

i = 0.

Suppose that 0 is a simple blowup point. Then there exists positive
constants c and δ0 < 1 such that

(3.46) vi(y) ≤ c U1(y)

for |y| ≤ δ0M̂
2

n−2

i . Following the notations of Lemma 3.5, we let wi(y) =
vi(y) − Ui(y) and ψ0(y) = n−2

2 Ui(y) + y · �Ui(y). By the gradient
estimate, we have by (3.46), | � vi(y)| = O(|y|−n+1) for |y| ≥ 1. Thus,

(3.47)
∫
|x|=r̂i

(
ψ0
∂wi

∂ν
− wi

∂ψ0

∂ν

)
dσ = O(r̂−n+2

i ) = O(M̂−2
i ),

where r̂i = δ0M̂
2

n−2

i . To estimate the first term of (3.35), we have by
Lemma 3.5∫

Br̂i

wi(∆ψ0 + b̃iψ0)dy =
∫

Bri

wi(∆ψ0 + b̃iψ0)dy

+
∫

Br̂i
\Bri

wi(∆ψ0 + b̃iψ0)dy,

where ri = δ0Li(xi). By Theorem 2.2, we have 1 ≤ β < n− 2. Similar
to (3.37), we have by the fact β < n− 2 that

|wi(∆ψ0 + b̃iψ0)| ≤ c r
2(n−2)
i (1 + |y|)−4

for 1 ≤ r ≤ ri. Hence∣∣∣∣∣
∫

Bri

wi(∆ψ0 + b̃iψ0)dy

∣∣∣∣∣ = O(r−n+1
i ).

We note that Lemma 3.5 is crucial in the estimate above. By applying
|vi(y)| + |Ui(y)| ≤ c|y|−n+2 and |ψ0(y)| ≤ c|y|−n+2 for ri ≤ |y| ≤ r̂i,∣∣∣∣∣

∫
Br̂i

\Bri

wi(∆ψ0 + b̃iψ0)dy

∣∣∣∣∣ = O(r−n+1
i ).
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Together with these two estimates, we have

(3.48)

∣∣∣∣∣
∫

Br̂i

wi(∆ψ0 + b̃iψ0)dy

∣∣∣∣∣ = O(r−n+1
i ).

By Theorem 2.2, ξi = M̂
2

n−2

i xi is bounded. We may assume ξ =
lim

i→+∞
ξi. Then ξ satisfies

(3.49)
∫

Rn

�Q(y + ξ)U
2n

n−2

1 (y)dy = 0.

Also, the right hand side of (3.35) converges to

lim
i→+∞

t−1
i M̂

2β
n−2

i

(∫
Br̂i

Q̃iU
n+2
n−2

i ψ0(y)dy

)

= −
∫

Rn

Q(y + ξ)U
n+2
n−2

1 (y)ψ0(y)dy.

(3.50)

Recall that ψ0(y) = n−2
2 U1(y) + y � U1(y). From integration by parts,

(3.49) and y · �Q(y) = βQ(y), we have

(3.51)

−
∫

Rn

Q(y + ξ)U
n+2
n−2

1 (y)ψ0(y)dy

=
n− 2
2n

∫
Rn

y · �Q(y + ξ)U
2n

n−2

1 (y)dy

=
β(n− 2)

2n

∫
Rn

Q(y + ξ)U
2n

n−2

1 (y)dy �= 0.

The last term does not vanish due to (K1).

Recall Li(xi)n−2 ∼ t−1
i M̂

2β
n−2

i . Putting (3.50), (3.51) and (3.48) to-
gether these estimates, we have

Li(xi)2−n ≤ c

∣∣∣∣∣
∫

Br̂i

Q̃iU
n+2
n−2

i ψ0(y)dy

∣∣∣∣∣
≤ c (Li(xi)1−n + M̂−2

i ),

which yields a contradiction to (3.45). Therefore, the proof of Theo-
rem 2.1 is complete. q.e.d.
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4. The method of localizing blow-up points

In this section, we will employ the method of localization of blow-up
points to prove Theorem 2.4 and Theorem 2.5. This technique was due
to R. Schoen. In the previous work [9], we have used this method to
prove the isolatedness of blow-up points. For other applications of this
method, see [17], [18]. We begin with the following lemma.

Lemma 4.1. Let δ, σ and ε be small positive numbers and R > 1.
Then there exist positive constants R = R(δ, σ) and C0 = C0(δ, σ,R, ε)
independent of i such that the following statements hold:

(i) If ui(y0)|y0|n−2
2 ≥ C0, then there exists a local maximum point

z ∈ B(y0, 2δ|y0|) of ui such that

(4.1) ui(y0) ≤ ui(z)

and the rescaled function

vi(y) = ui(z)−1ui(ui(z)
− 2

n−2 y + z)

satisfies

(4.2)
{

the origin 0 is the only local maximum point of vi

in B(0, 4R), and |vi − U1|C2(B(0,4R)) ≤ σ(4R)2−n.

(ii) Let {zi
j}si

j=1 denote all local maximum points of ui in the ball B1

which satisfy ui(zi
j)|zi

j |
n−2

2 ≥ C0 and (4.2) with z = zi
j. Assume

ui(zi
1) ≥ ui(zi

2) · · · ≥ ui(zi
si

). Then

(a) ui(y) ≤ 2C0|y|−n−2
2 for y �∈ Ωi where Ωi = ∪jB(zi

j , 2δ|zi
j |).

Furthermore,

|zi
j − zi

k| ≥ 4Rui(zi
j)

− 2
n−2

for j �= k.

(b) ui(x) ≤ 2ui(zi
j) holds for x ∈ B(zi

j , 2δ|zi
j |) and

|zi
j | ≤ ε|zi

k| for j < k ≤ si.(4.3)
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Lemma 4.1 can be proved by the blow-up method of Schoen and the
method of moving planes, Lemma 3.1. See Lemma 4.1–Lemma 4.4 in
[9]. In fact, we can prove more in Lemma 4.2 below. In the following,
zi
j is indexed by the ordering ui(zi

1) ≥ . . . ≥ ui(zi
si

).

Lemma 4.2. Let {zi
j}si

j=1 be the local maximum points in Lemma 4.1
and δ > 0 be a small number. Then we have the following statements if
the positive constant C0 in Lemma 4.1 is large enough.

(i) The inequality

Li(zi
j) ≥ (δui(zi

j)
2

n−2 |zi
j |)

n−1
n−2

holds for 1 ≤ j ≤ si.

(ii) Let
L∗

i (z
i
j) = min(Li(zi

j), ui(zi
j)

2
n−2 )

and
Di

j = {y : |y − zi
j | ≤ cL∗

i (z
i
j)ui(zi

j)
− 2

n−2 }
with c small. Then

zi
k /∈ Di

j

when k > j.

Proof. We follow notations in Section 3. Let vi be defined in (2.13)
with zi = zi

j and Ui be the solution to (3.15) with K0 = Ki(zi).
We may assume C0 is very large. If 1 < β < n, by (2.15) and

ui(zi
j)|zi

j |
n−2

2 ≥ C0, we have

ui(zi
j)

2
n−2 |zi

j |1−β = (ui(zi
j)

2
n−2 |zi

j |)1−βui(zi
j)

2β
n−2 < ui(zi

j)
2β

n−2

and

(4.4) Li(zi
j) = (t−1

i ui(zi
j)

2
n−2 |zi

j |1−β)
1

n−2 .

If β ≥ n and Li(zi
j) �= (t−1

i ui(zi
j)

2
n−2 |zi

j |1−β)
1

n−2 , then by (2.15),

Li(zi
j) =

(
t−1
i ui(zi

j)
2β̂

n−2

) 1
n−2 ≥ (ui(zi

j)
2

n−2 |zi
j |)

n−1
n−2

for large i since β̂ > n − 1, that is, (i) holds in this case. Hence in
order to prove (i), we may assume Li(zi

j) = (t−1
i ui(zi

j)
2

n−2 |zi
j |1−β)

1
n−2

and 1 < β < n.
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Let δ be small enough, Mi = ui(zi
j), Li = Li(zi

j) and

ri = δmin(Li,M
2

n−2

i |zi
j |).

. Then by (b) of part (ii) in Lemma 4.1,

vi(y) ≤ 2 for |y| ≤ ri.

By Lemma 3.1, Lemma 3.4 and Lemma 3.5, we have

vi(x) ≤ c Ui(x)

and
|vi(x) − Ui(x)| ≤ c r−2+n

i

for |x| ≤ ri, where c is a constant independent of δ and i. For the sake of
simplicity, δ always denotes a small positive number, but could change
from line to line. Assume ∇K̂(zi

j) is in the direction e1 = (1, 0, · · · , 0).

Let ψ1 =
∂Ui

∂y1
. By (3.32) of Lemma 3.5,

∣∣∣∣∣
∫
|x|≤ri

Q̃iU
n+2
n−2

i ψ1 dx

∣∣∣∣∣ ≤ c1r
−n+1
i .(4.5)

By (3.40), we have

−Q̃i(y) = tiM
− 2

n−2

i | � K̂(zi
j)|(y1 + o(1)|y|)

for |y| ≤ ri, where o(1) could be arbitrarily small if δ is small. Since
ψ1(y)y1 ≥ 0, we have

(4.6)

∣∣∣∣∣
∫

Bri

Q̃iU
n+2
n−2

i ψ1dy

∣∣∣∣∣ ≥ c2tiM
− 2

n−2

i |zi
j |β−1

for some c2 > 0. Since we assume Li(zi
j) = (t−1

i ui(zi
j)

2
n−2 |zi

j |1−β)
1

n−2 , it
follows from (4.5) and (4.6) that

(4.7) L−n+2
i ≤ c3r

−n+1
i .

Since ri ≤ Li, C0 is large and Li → +∞ as i→ +∞, we conclude ri/Li

is small from (4.7). Thus ri = δui(zi
j)

2
n−2 |zi

j |. Since both c1 and c2 are
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independent of δ and i, part (i) of Lemma 4.2 follows from (4.7) if δ is
chosen to be small enough.

We prove (ii) by contradiction. Assume that after passing to a se-
quence, there exists ji < ki such that zi

ki
∈ Di

ji
and both ui(zi

ji
)|zi

ji
|n−2

2

and ui(zi
ki

)|zi
ki
|n−2

2 tend to +∞. For simplicity of notations, we let
zi = zi

ji
and wi = zi

ki
. Recall that ui satisfies

(4.8) ui(wi) ≤ ui(zi).

Let Mi = ui(zi) and vi(y) be the solution in (2.13) scaled with respect

to the local maximum point zi. Since M
2

n−2

i |zi| → +∞ and (4.2) holds,
we have for any σ > 0, by Lemma 3.1

(4.9) min
|y|≤r

vi(y) ≤ (1 + 2σ)U1(r)

if i is large and 0 ≤ r ≤ 4d0L
∗
i (zi) with some d0 = d0(σ) > 0. Let

li = d0L
∗
i (zi). Applying Lemma 3.5 with an empty set E, l0 = M

2
n−2

i

and l = li, there is a constant c1 independent of σ and i

(4.10)
∫

R≤|y|≤li

v
n+2
n−2

i (y)dy ≤ c1σ,

provided that d0 < σ
1
2 and R ≥ σ−

1
2 .

Set
Bi = {x | |x− wi| ≤ ui(wi)

− 2
n−2 }

and
B̂i = {y |M− 2

n−2

i (y + zi) ∈ Bi}.
By (ii) of Lemma 4.1 and (4.8),

4R ≤ ui(wi)
2

n−2 |zi − wi| ≤M
2

n−2

i |zi − wi| ≤ cL∗
i (zi)

because wi ∈ Di. By (ii) of Lemma 4.1, we have |zi| = o(1)|wi| and

M
2

n−2

i ui(wi)
− 2

n−2 << M
2

n−2

i |wi|
= (1 + o(1))M

2
n−2

i |zi − wi| ≤ cL∗
i (zi).

Thus, Bi ⊆ 2Di.
Since ui(x) ≤ ui(wi) ≤ ui(zi) for x ∈ Bi, we have vi(y) ≤ 1 for

y ∈ B̂i. Since by Lemma 4.1, 0 is the unique local maximum of vi(y)
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for |y| ≤ 4R, we have B̂i ⊆ {y | R ≤ |y| ≤ li} if the constant c in Di
j is

small. Again by (i) of Lemma 4.1, we have for some constant c2 > 0,

0 < c2 ≤
∫

Bi

u
2n

n−2

i (x)dx =
∫

B̂i

v
2n

n−2

i dy ≤
∫

B̂i

v
n+2
n−2

i (y)dy

≤
∫

R≤|y|≤li

v
n+2
n−2

i (y)dy ≤ c1σ,

which yields a contradiction if σ is small enough. Therefore, (ii) is
proved. q.e.d.

Proof of Theorem 2.4. Let Li = Li(xi) and M̂i = ui(xi). Suppose

that LiM̂
− 2

n−2

i → +∞, then by Theorem 2.1, 0 is a simple blowup point
and ui loses the energy of one bubble at 0. Therefore, we suppose that

lim
i→+∞

LiM̂
− 2

n−2

i < +∞.

By Theorem 2.2, M̂
2

n−2

i |xi|n−2
2 is bounded, β < n − 2 and ξ =

lim
i→+∞

M̂
2

n−2

i xi satisfies (2.16). From the definition (2.15) of Li, we have

Li(xi) ∼
(
t−1
i M̂

2β
n−2

i

) 1
n−2 . Applying Lemma 3.1 and Lemma 3.5, ui

satisfies

(4.11) c1M̂
−1
i |x|2−n ≤ ui(x) ≤ c2M̂

−1
i |x|2−n

for
M̂

− 2
n−2

i ≤ |x| ≤ δ(t−1
i M̂

2β
n−2

−2

i )
1

n−2

with a small δ > 0. Let ri = δ
(
t−1
i M̂

2β
n−2

−2

i

) 1
n−2 . Then, we have

(4.12) min
|x|=ri

ui(x) ∼ tiM̂
1− 2β

n−2

i .

Now suppose

lim
i→+∞

sup
B2

(
ui(x)|x|

n−2
2

)
= +∞.

Let zi = zi
1, where zi

1 is the local maximum point in Lemma 4.2. Let

Mi = ui(zi). Since M
2

n−2

i |zi| ≥ C0 is very large, we have

(4.13) Li(zi) ≤
(
t−1
i M

2β
n−2

i

) 1
n−2

,
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and by (i) of Lemma 4.2,

(4.14) M
2

n−2

i |zi| << Li(zi).

Since ui(x) is a positive superharmonic function, there exists a small
constant c > 0 such that

(4.15) ui(zi + x) ≥ c M−1
i (|x|2−n − (3/2)2−n)

for M
− 2

n−2

i ≤ |x| ≤ 3
2 . In particular, we have

(4.16) min
|x−zi|≤min(r̂i,1)

ui(x) ≥ cM−1
i r̂2−n

i ≥ ctiM
1− 2β

n−2

i ,

where r̂i =
(
t−1
i M

2β
n−2

−2

i

) 1
n−2 . Since ui(x) has the only maximum point

xi in the region {x | |x| ≤ ri}, we have by (4.14)

ri ≤ |zi| << r̂i,

namely, the ball Bri(0) is contained inside of the ball B(zi, r̂i). Hence,
if r̂i is bounded, by (4.12), (4.16) and the maximum principle, we have

tiM̂
1− 2β

n−2

i ∼ min
|x|=ri

ui ≥ min
|x−zi|≤r̂i

ui

≥ ctiM
1− 2β

n−2

i .

First we consider the case when β > n−2
2 . Since β > n−2

2 and M̂i is the
maximum of ui, it implies M̂i ∼Mi. Hence, the function vi(y) rescaled
with respect to the center zi satisfies

vi(y) ≤ c

for some constant c > 0 and |y| ≤ M
2

n−2

i . Thus, vi(y) ∼ U1(y) for
|y| ≤ δLi(zi) by Lemma 3.4. Particularly, we have

M̂i ∼MiU1(|zi|M
2

n−2

i ) = Mi(Mi|zi|
n−2

2 )−2 = o(1)Mi,

which obviously yields a contradiction.
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For the case β = n−2
2 , we have by (4.14), (4.15) and the maximum

principle,

ti = tiM̂
1− 2β

n−2

i ∼ min
|x|=ri

ui

≥ min
|x−zi|≤2|zi|

ui ≥ cM−1
i |zi|2−n,

which implies
r̂i = (t−1

i M−1
i )

1
n−2 ≤ c|zi|.

But by (4.14), |zi| << r̂i for large i. Thus, we obtain a contradiction
and then (2.18) is proved.

Once that (2.18) is established, (1.8) follows from Lemma 5.2 of
Section 5. Also, from (2.18), the energy outside the region, where ui

is not simple, tends to zero. Therefore (2.17) is obtained, and then
Theorem 2.4 is proved. q.e.d.

Proof of Theorem 2.5. Suppose that ui satisfies

lim
i→+∞

sup
B2

(ui(x)|x|
n−2

2 ) = +∞.

Assume that 0 is not a simple blowup point. Then β < n − 2 by
Corollary 2.3. Let δ,R, C0 and the local maximum points {zi

j}si
j=1 of ui

satisfy the assumptions of Lemma 4.1 and Lemma 4.2. We will prove
si = 1 for i large.

Let zi = zi
1, Li = Li(zi), Mi = ui(zi) and vi(y) be the scaled function

defined in (2.13). We claim

(4.17) lim
i→+∞

LiM
− 2

n−2

i = +∞.

We prove (4.17) by contradiction. Suppose

lim
i→+∞

LiM
− 2

n−2

i < +∞.

Then for any small number σ > 0, by Lemma 3.1 and Lemma 3.5, there
is a small positive number d0 = d0(σ) such that

(4.18) min
|y|=r

vi(y) ≤ (1 + σ)U1(r)

for 0 ≤ r ≤ d0Li, and

(4.19)
∫

R≤|x|≤d0Li

v
n+2
n−2

i (y)dy ≤ c1(σ +R−2 + (
d0Li

Li
)n−2) ≡ c1σ̃,
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where R is very large and c1 is a positive constant independent of σ and

i. Note that L∗
i (d0) = min(d0Li,M

2
n−2

i ) = d0Li due to the assumption

Li ≤ c M
2

n−2

i .
Let Ωi be the set in Lemma 4.1. Let σ be a small positive number,

which will be chosen later. For |x| ≥ δ|zi| and z �∈ Ωi, we have by
Lemma 4.1,

ui(x)|x|
n−2

2 ≤ 2C0 ≤ 2Mi|zi|
n−2

2

for i large, which implies that

ui(x) ≤ c Mi

for some c = c(δ) > 0. If x ∈ Ωi, then for some j,

ui(x) ≤ 2ui(zi
j) ≤ 2ui(zi).

Hence, there is c1 = c1(δ) > 0 such that

(4.20) ui(x) ≤ c1Mi

for |x| ≥ δ|zi|.
If σ and d0 are small and R is large, then by (4.19) and (4.20),

Lemma 3.5 can be applied to obtain the Harnack inequality for vi(y) on
each sphere |y| = r ≤ d0Li if the annulus {y | r

2 ≤ |y| ≤ 2r} does not

intersect with the set
{
y | ∣∣y +M

2
n−2

i zi
∣∣ ≤ δM

2
n−2

i |zi|
}

. In particular,

(4.21) vi(y) ≤ c Ui(y),

holds for 2M
2

n−2

i |zi| ≤ |y| ≤ d0Li, where c is a constant independent of
i and δ. Let

(4.22) ri = d0LiM
− 2

n−2

i .

Going back to the function ui, (4.21) implies

(4.23) ui(zi + x) + |x|| � u(zi + x)| ≤ cM−1
i |x|2−n

for 2δ|zi| ≤ |x| ≤ ri.
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Let ei = | � K̂(zi)|−1 � K̂(zi) and e = lim
i→+∞

ei. Applying the

Pohozaev identity,

n− 2
2n

∫
B(zi,ri)

〈e,�Ki〉u
2n

n−2

i dx

=
∫

∂B(zi,ri)

[
〈e,�ui〉∂ui

∂ν
− 〈e, ν〉 | � ui|2

2

+
n− 2
2n

〈e, ν〉Kiu
2n

n−2

i

]
dσ.

(4.24)

By (4.23), the right hand side of (4.24) is dominated by r−n+1
i M−2

i . To
find a lower bound, we decompose B(zi, ri) into four parts: A1 = {x |
|x− zi| ≤ M

− 2
n−2

i R0}, A2 = {x | |x| ≤ 3δ|zi|}, A3 = {x | 3δ|zi| ≤ |x| ≤
2|zi|, |zi − x| ≥M

− 2
n−2

i R0} and A4 = {x | 2|zi| ≤ |x| ≤ ri}, where R0 is
a positive number.

For x ∈ A2, we have by Lemma 4.1

ui(x) ≤ 2C0|x|−
n−2

2 .

Then

(4.25)
∫

A2

| �Ki|u
2n

n−2

i (x)dx ≤ c2(δ|zi|)β−1ti.

For x ∈ A3, we have∫
A3

| �Ki|u
2n

n−2

i (x)dx ≤ c ti|zi|β−1

∫
A3

u
2n

n−2

i (x)dx.

By (4.19) and vi(y) ≤ c1(δ), we have∫
A3

| �Ki|u
2n

n−2

i dx ≤ c ti|zi|β−1

∫
R0≤|y|≤d0Li

v
2n

n−2

i (y)dy

≤ c ti|zi|β−1(c2(δ)σ̃ +R−n
0 ),

(4.26)

where the estimate,∫
R0≤|y|≤R

v
2n

n−2

i (y)dy ≤ c

∫
R0≤|y|≤R

|y|−2ndy ≤ cR−n
0

is used.
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For x ∈ A4, we apply (4.21)

ui(x) ≤ cM−1
i |x|2−n.

Hence ∫
A4

| �Ki|u
2n

n−2

i (x)dx

≤ c tiM
− 2n

n−2

i

∫
A4

|x|−2n+β−1dx

≤ c tiM
− 2n

n−2

i |zi|−(n+1)+β

= c (ti|zi|β−1)
(
Mi|zi|

n−2
2

)−2n
n−2

.

(4.27)

For x ∈ A1, we have a positive c0 > 0 such that

(4.28)
∫

A1

〈e,�Ki〉u
2n

n−2

i (x)dx ≥ c0(ti|zi|β−1).

If we chose σ, d0 to be small and R0 to be large, then by (4.25) ∼ (4.28),
the left hand side of (4.24) has

(4.29)
∫

B(zi,ri)
〈e,�Ki〉u

2n
n−2

i dx ≥ (c0/2)ti|zi|β−1

when i is large. Combining the estimates of both sides of (4.24), one
has

ti|zi|β−1 ≤ c r−n+1
i M−2

i = c1L
−n+1
i M

2
n−2

i ,

namely,
Li(zi)−n+2 ≤ c1Li(zi)−n+1,

which obviously yields a contradiction. Hence (4.17) is proved.
If si > 1, then by (4.17), L∗

i (z
i
1)ui(zi

1)
− 2

n−2 ≥ 1 with L∗
i (z

i
1) =

min(Li(zi), ui(zi)
2

n−2 ) defined in Lemma 4.2. Since zi
2 �∈ Di

1, we have
|zi

2| ≥ c2 for some c2 > 0. On the other hand, by (2.11) and the Harnack
inequality, we have ui converges to 0 uniformly on any compact subset
of B1 \ {0}. Thus,

ui(zi
2) ≤ max

|x|=c2
ui(x) → 0 as i→ +∞,

which yields a contradiction again. Therefore, si = 1. We note that
xi �= zi because 0 is not a simple blowup point. The other conclusions
of Theorem 2.5 follow from (4.17) and the lemmas in Section 3. Hence,
the proof of Theorem 2.5 completely finished. q.e.d.
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5. An ODE approach

In this sectin, we consider a sequence of solution ui of (2.11) such
that

sup
|x|≤1

(ui(x)|x|
n−2

2 ) ≤ c1 and ui(x) converges

to 0 in C2
loc(B1\{0}).

(5.1)

From (5.1) and the theory of elliptic equations, it is easy to see

max
|x|=r

ui(x) ≤ c min
|x|=r

ui(x)

for 0 ≤ r ≤ 1
2 and some c > 0 depending on c1 only. Let ui(r), wi(s), si,

Mi and Li are defined in (2.26) ∼ (2.31), respectively. By (5.1), wi(s) ≤
c1 for s ≤ 0. Throughout this section, we set

(5.2) Ri = Lγ
i and γ =

1

1 − 2β
n−2

By a straightforward computation, wi satisfies

(5.3) w′′
i −

(n− 2
2

)2
wi +Ki(s)w

n+2
n−2

i = 0 for s ≤ 0,

where

Ki(s) = |∂Bes(0)|−1w
−n+2

n−2

i (s)
∫
|x|=es

Ki(x)
(
u(x)|x|n−2

2

)n+2
n−2

dσ

and Bes(0) is the ball with radius es and center 0. Since we assume Ki

is bounded between two positive constants, by (5.1), there are â and b̂
such that Ki(s) satisfies

(5.4) 0 < â ≤ Ki(s) ≤ b̂.

From (5.3) and (5.4), there is a constant c2 > 0 such that if s is a local
maximum point of wi, then

(5.5) wi(s) ≥ c2 > 0.

In particular, we have wi(si) ≥ c2 > 0. Since ui(x) converges to zero in
C2

loc(B1\{0}), si → −∞ as i→ +∞. Thus, we have by (5.5),

(5.6) lim
i→+∞

Mi = +∞.
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We can obtain some basic estimates for wi as in the following. For
the proof, see [9]. Let wi be denoted by w.

Lemma 5.1. There is a small number ε0 > 0 and large M such
that the following statements hold:

(i) Suppose that w(s) is nonincreasing in (so, s1) with w(so) ≤ ε0.
Then there exists a constant c depending on â and b̂ only such
that

(5.7) s1 − so ≤ 2
n− 2

log
w(so)
w(s1)

+ c

holds. Futhermore, if s1 is a local minimum point of w, then

(5.8) s1 − so ≥ 2
n− 2

log
w(so)
w(s1)

.

(ii) Suppose that w(s) is nondecreasing in (s1, s2) with w(s2) ≤ ε0.
Then there exists a constant c depending on â and b̂ only such
that

(5.9) s2 − s1 ≤ 2
n− 2

log
w(s2)
w(s1)

+ c

holds. Futhermore, if s1 is a local minimum point of w, then

(5.10) s2 − s1 ≥ 2
n− 2

log
w(s2)
w(s1)

.

Proof Theorem 2.7. The proof of Theorem 2.7 is very long. So, we
devide it into two steps. The first step is to estimate ui via Lemma 5.1,
and the second step can refine the estimate further by using comparison
functions. First, we want to prove

Step 1. There is a constant c such that

(5.11) ui(x) ≤ c (tiM−1
i )γ |x|−n+2

for R−2
i M

− 2
n−2

i ≤ |x| ≤ R−1
i M

− 2
n−2

i , and γ = (1 − 2β
n−2)−1,

(5.12) ui(x) ≤ c Mi

for R−1
i M

− 2
n−2

i ≤ |x| ≤M
− 2

n−2

i ,

(5.13) ui(x) ≤ cM−1
i |x|−n+2 for M

− 2
n−2

i ≤ |x| ≤ 1
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if LiM
− 2

n−2

i ≥ c1 > 0, and

(5.14) ui(x)

 ≤ c M−1
i |x|−n+2 for M

− 2
n−2

i ≤ |x| ≤ LiM
− 2

n−2

i

≤ c M−1
i L−n+2

i for LiM
− 2

n−2

i ≤ |x| ≤ 1,

provided that limi→+∞ LiM
−2

n−2

i = 0.

Recall wi(s) = ui(r)r
n−2

2 with s = log r ≤ 0. Let ŝi be a local

maximum point of wi. By (5.5), wi(ŝi) ≥ c > 0. Set ûi(x) = r̂
n−2

2
i ui(r̂ix)

with r̂i = eŝi . Then ûi(x) ≤ c|x| 2−n
2 for 0 ≤ |x| ≤ r̂−1

i . By passing to
a subsequence, ûi(x) converges to Û(x) in C2

loc(R
n\{0}). In Lemma 5.2

(below), we will show that Û(x) = [λ̂(λ̂2 + |x − q̂|2)−1]
n−2

2 for some
λ̂ > 0 and q̂ ∈ R

n. A direct computations show that Û(r)r
n−2

2 has a

unique critical point at r =
√
λ̂2 + |q|2, which is also nondegenerate.

From here, we deduce that for each large i, wi(s) has a sequence of local
maximum point sj,i and local minimum point sj,i for j = 1, 2, . . . , N(i).
Such that the following holds:

sj,i < sj,i < sj+1,i with sN(i)+1,i = si, w(s) is decreasing

for s ∈ (sj,i, sj,i) and w(s) is increasing for s ∈ (sj,i, sj+1,i)
(5.15)

for 1 ≤ j ≤ N(i). Furthermore, w(sj,i) → 0 as i → +∞ for j =
1, 2, . . . , N(i), and,

sj+1,i − sj,i and sj,i − sj,i → +∞ as i→ +∞
for any j = 1, 2, . . . , N(i). Consequently, Mj,i/Mj+1,i → 0
as i→ +∞ for y ∈ {1, 2, . . . , N(i)}.

(5.16)

Note that N(i) ≥ 1 due to the assumption that ui loses the en-
ergy of more than one bubble. For j = 1, 2, . . . , N(i), we set ûi(x) =

r
n−2

2
j,i ui(rj,ix) with rj,i = esj,i and Û to be the limit of ûi in C2

loc(R
n\{0}).

Then we have

Lemma 5.2. Let Û be described as above. Then

(5.17) Û(x) =

(
λ̂

λ̂2 + |x− q̂|2

)n−2
2

,
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where

(5.18) 1 = λ̂2 + |q̂|2.

Furthermore, if set ξ0 =
√
λ̂q̂, then ξ0 satisfies

(5.19)
∫

Rn

�Q(ξ0 + y)U
2n

n−2

1 (y)dy = 0 and

(5.20)
∫

Rn

Q(ξ0 + y)U
2n

n−2

1 (y)dy < 0.

The proof of Lemma 5.2 will be given at the end of this section. Now,
we go back to the proof of Step 1. By the remark above, we denote
ŝi and si to be the local maximum point sN(i),i and local minimum
point sN(i),i, respectively. Since wi(si) → 0 as i → +∞, there are
ŝi < ai < si < bi < si such that wi(ai) = wi(bi) = ε0, where ε0 is the
small positive number in Lemma 5.1. By a simple scaling argument,

(5.21) si − bi ≤ c3 = c3 (ε0)

for some constant c3 independent of i. By Lemma 5.1,

2
n− 2

log
ε0

wi(si)
≤ si − ai, bi − si

≤ 2
n− 2

log
ε0

wi(si)
+ c.

(5.22)

To obtain some estimate for si − ai and bi − si, we need to find upper
and lower bounds for wi(si). First, we show that

(5.23) ( min
|x|=ri

ui)−1 max
|x|=ri

ui → 1 and ri = esi .

uniformly as i → ∞. To see it, let x̂i be any sequence of points with
|x̂i| = ri. Let hi(η) = ui(x̂i)−1ui(riη). Since wi(si) → 0 as i → +∞,
after passing to a subsequence, hi(η) converges to h(η) in C2

loc(R
n\{0})

and satisfies

(5.24) ∆h(η) = 0 in R
n\{0}.
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Let h(r) be the spherical average of h. Since si is a local minimum point
of wi, we have

(5.25)
d

dr
(h(r)r

n−2
2 ) = 0 at r = 1.

By the Liouville Theorem, (5.25) implies

(5.26)

{
h(η) = a|η|2−n + b,

a = b > 0

Clearly, from it we obtain (5.23) and

(5.27) | � ui|(x) = −u′i(ri)(1 + o(1))

for |x| = ri as i → +∞. By (5.23) and (5.27), the Pohozaev identity
implies

P (ri, ui) =|Sn−1|
{1

2
w′

i
2(si) −

1
2

(n− 2
2

)2
w2

i (si)
}

+ o(1)(w′
i
2(si) + w2

i (si)),
(5.28)

where

(5.29) P (r;ui) =
n− 2
2n

∫
|x|≤r

(x · �Ki)u
2n

n−2

i (x)dx.

Hence,

(1 + o(1))w2
i (si) = − cnPn(ri, ui)

≤cn
{∫

eai≤|x|≤ri

|x|| �K(x)|u
2n

n−2

i dx

+
∫
|x|≤eai

|x|| �K(x)|u
2n

n−2

i dx
}

≡I1 + I2.

(5.30)

Since | �Ki(x)| ≤ c|x|β−1, by (5.1),

|I2| ≤ c ti exp(βai).

By Lemma 5.1, we have for ai ≤ s ≤ si

c wi(si) exp
[n− 2

2
(si − s)

]
≤ wi(s) ≤ wi(si) exp

[n− 2
2

(si − s)
]
.
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Therefore

|I1| ≤ c tiw
2n

n−2

i (si) exp(nsi)
∫ si

ai

exp[(−n+ β)s] ds

≤ c tiw
2n

n−2

i (si) exp(nsi) exp[(−n+ β)ai].

By Lemma 5.1 again,

wi(ai) exp
(

(n− 2)(ai − si)
2

)
≤wi(si)

≤c wi(ai) exp
(

(n− 2)(ai − si)
2

)
.

These estimates imply

(5.31) |I1| ≤ c tiε
2n

n−2

0 exp(βai).

Hence, we obtain

(5.32) wi(si) ≤ c t
1
2
i exp

(
βai

2

)
.

Together with (5.22), it implies

(5.33) si − ai ≥ 1
n− 2

(− log ti − βai) − c(ε0).

To obtain a lower bound for wi(si), we recall ŝi < ai < si to be the
next local maximum point of wi. Set

(5.34) ûi(y) = M̂−1
i ui(M̂

− 2
n−2

i y),

where M̂i = exp(−n−2
2 ŝi). By Lemma 5.2, by passing to a subsequence,

ûi(y) converges to Û(y) in C2
loc(R

n\{0}) with

Û(y) =

(
λ̂

λ̂+ |y − q̂|2

)n−2
2

.



prescribing scalar curvature on Sn 119

Let r̂i = δ exp ŝi for a small δ > 0. By (5.28) and (5.31),

w2
i (si) ≥

∣∣∣∣∣
∫

r̂i≤|x|≤eai

〈x,�Ki(x)〉u
2n

n−2

i (x)dx

∣∣∣∣∣
− c

{
ti

∫
|x|≤r̂i

|x|βu
2n

n−2

i (x)dx+ ti

∫
eai≤|x|≤ri

|x|βu
2n

n−2

i (x)dx

}

≥cnti
{∣∣∣∣∣
∫

r̂i≤|x|≤eai

〈x,�K̂〉û
2n

n−2

i dx

∣∣∣∣∣− r̂β
i − ε

2n
n−2

0 exp(βai)

}
.

(5.35)

Since wi(ai) = ε0, by the scaling property of Û(y), we have

exp(ai − ŝi) ∼ ε
− 2

n−2

0 >> 1.

By the scaling (5.34),∣∣∣∣∣
∫

r̂i≤|x|≤eai

〈x,�Ki(x)〉u
2n

n−2

i (x)dx

∣∣∣∣∣
= βtiM̂

− 2β
n−2

i

∣∣∣∣∣
∫

δ≤|y|≤exp(ai−ŝi)
Q(y)ûi(y)

2n
n−2dy

∣∣∣∣∣
= βtiM̂

− 2β
n−2

i

(∫
Rn

−Q(y)Û(y)dy
)

(1 + o(1)),

(5.36)

where o(1) is small provided that both δ and ε0 be small. Thus, by
(5.20), (5.35) yields

(5.37) wi(si) ≥ c1 t
1/2
i exp(βŝi/2) ≥ c2(ε0)t

1/2
i exp(βai/2)

for some c2(ε0) > 0.
By (5.22),(5.32) and (5.37),

(5.38)


2(si − ai) ≤ bi − ai

|si − (1 − β
n−2)ai + 1

n−2 log ti| ≤ c(ε0)
|bi − (1 − 2β

n−2)ai + 2
n−2 log ti| ≤ c(ε0).

for some constant c(ε0) > 0. Hence we have

ai ≤
(
1 − 2β

n− 2

)−1[
si +

2
n− 2

log ti
]

+ c

≤ log[R−2
i M

− 2
n−2

i ] + c,

(5.39)
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and

si ≤
1
2
(bi − ai) + ai + c

≤(1 − β
n−2)

(1 − 2β
n−2)

si +
1

(n− 2)(1 − 2β
n−2)

log ti + c

≤ log[R−1
i M

− 2
n−2

i ] + c,

(5.40)

where Ri is defined in (5.2). These estimates together with Lemma 5.1
and (5.22) imply

wi(s) ≤ wi(si) exp
[n− 2

2
(si − s)

]
≤ c1 t

1
2
i exp

(
−n− 2

2
s
)

exp
[n− 2

2
si +

1
2
βai

]
≤ c(ε0) exp

(
−n− 2

2
s
)

exp

{
n−2

2 bi + log ti
1 − 2β

n−2

}(5.41)

for ai ≤ s ≤ si, and

wi(si) exp
[n− 2

2
(s− si)

]
≤wi(s)

≤wi(si) exp
[n− 2

2
(s− si)

](5.42)

for si ≤ s ≤ bi. Using (5.41), it follows

ui(x) ≤c(ε0) exp

{
n−2

2 si + log ti
1 − 2β

n−2

}
|x|−n+2

=c(ε0)(tiM−1
i )

1

1− 2β
n−2 |x|−n+2

(5.43)

for exp(ai) ≤ |x| ≤ exp(si), and by Lemma 5.1,

(5.44) cwi(si) exp
[
−n− 2

2
si

]
≤ ui(x) ≤ c1(ε0) wi(si) exp

[
−n− 2

2
si

]
for exp(si) ≤ |x| ≤ exp(si) and some c1(ε0). Since ui(x) ∼ exp(−n−2

2 si)
for |x| = exp(si), (5.44) leads to

(5.45) ui(x) ∼ exp
(
−n− 2

2
si

)
∼Mi
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for exp(si) ≤ |x| ≤M
− 2

n−2

i . Now (5.39), (5.40), (5.44) and (5.45) imply

(5.46) ui(x) ≤ c (tiM−1
i )

1

1− 2β
n−2 |x|−n+2

for R−2
i M

− 2
n−2

i ≤ |x| ≤ R−1
i M

− 2
n−2

i , and

(5.47) ui(x) ≤ cMi

for R−1
i M

− 2
n−2

i ≤ |x| ≤M
− 2

n−2

i ∼ esi .

Finally, we want to estimate ui(x) for |x| ≥ M
−2

n−2

i . Set s∗i to be a
local minimum point of wi(s) in (si, 0) if there is one. Otherwise s∗i = 0.
we claim

s∗i → 0 if and only if LiM
− 2

n−2

i → 0 and i→ +∞.

Moreover, if s∗i → 0, then es
∗
i ∼ LiM

−2
n−2

i .
(5.48)

First suppose LiM
−2

n−2

i → 0 and s∗i ≥ c > 0. Set

ũi(y) = M−1
i ui(M

− 2
n−2

i y).

By Lemma 5.1,

(5.49) ũi(y) ≤ c |y|2−n for 1 ≤ |y| ≤M
2

n−2

i ,

because s∗i ≥ c > 0. The scaled ũi(y) converges to

U(y) = [λ(λ2 + |y − q|2)] 2−n
2

for λ > 0 and q ∈ R
n. Then by Remark 5.3 (below), we have

(5.50)
∫

Rn

�Q(y)U
2n

n−2 (y)dy = 0.

Note ũi satisfies ∆ũi + K̃i(y)ũ
n+2
n−2

i = 0 and

K̃i(y) = Ki(M
− 2

n−2

i y).

Clearly,

y · �K̃i(y) = tiM
− 2β

n−2

i [Q(y) +O(|y|β−1)]
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and Ln−2
i = t−1

i M
2β

n−2

i . Thus, the Pohozave identity yields

(n− 2)β
2n

∫
Rn

Q(y)U
2n

n−2 (y)dy

= lim
i→+∞

n− 2
2n

Ln−2
i

∫
|y|≤M

2
n−2

i

〈y,�K̃i〉ũ
2n

n−2

i (y)dy

= lim
i→+∞

Ln−2
i

∫
|y|=M

2
n−2

i

(
n− 2

2
ũi
∂ũi

∂r
+
∣∣∣∣∂ũi

∂r

∣∣∣∣2 r
− 1

2
| � ũi|2r +

n− 2
2n

K̃i(y)ũ
2n

n−2

i r

)
dσ → 0,

(5.51)

because the boundary term = O(M−2
i ). By (5.50) and (K2),∫

Q(y)U
2

n−2 (y)dy �= 0.

Thus, (5.51) yields a contradiction.
Conversely, we assume s∗i → 0. Then as the second inequality in

(5.38), we have

(5.52) s∗i =
(
1 − β

n− 2

)
si − 1

n− 2
log ti +O(1),

which yields

(5.53) es
∗
i ∼ LiM

− 2
n−2

i ,

and it implies LiM
− 2

n−2

i → 0 as i → +∞. Hence, (5.48) is proved.
Clearly, (5.13) and (5.14) follows from Lemma 5.1 and (5.48). Therefore,
we have proved Step 1.

Step 2. Recall that ũi(x) = M−1
i ui(M

− 2
n−2

i x). After passing to a
subsequence, ũi(x) converges to U(x− q) in C2

loc(R
n\{0}) with

(5.54) U(x) =
(

λ

λ2 + |x|2
)n−2

2

.

Now we can estimate the difference of ũi and U(x − q) more precisely
if we rescale U(x− q) and translate the position of its maximum point
suitably.
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If q �= 0, then there is a local maximum point qi of ũi with limi→∞ qi
= q. For suitable ai → 1 and λi → 1, we let the function Ui(x) =

aiλ
−n−2

2
i U(λ−1

i (x− qi)) > 0 satisfy

(5.55)

�Ui + K̃i(0)U
n+2
n−2

i = 0 in R
n,

Ui(qi) = max
Rn

Ui = ũi(qi)

with K̃i(x) = Ki(M
− 2

n−2

i x), and

(5.56) ∇(ũi(qi) − Ui(qi)) = 0.

Note that λi and ai are uniquely determined because they satisfy

(5.57)

 aiλ
−n−2

2
i U(0) = ũi(qi) and

K̃i(0) = a
− 4

n−2

i n(n− 2).

If q = 0, let δo > 0 be a small number which is independent of i and
will be chosen later. Then there is qi = qi(δ0) such that

lim
i→∞

qi = 0, and

(5.58)
∫
|x−qi|=δo

(x− qi)ũi ds = 0,

since ũi(x) converges to U(x) in C2
loc(R

n \ {0}). For suitable ai → 1

and λi → λ, we may let the function Ui = aiλ
−n−2

2
i U1(λ−1

i (x− qi)) > 0
satisfy

(5.59)



�Ui + K̃i(0)U
n+2
n−2

i = 0 in R
n,∫

|x−qi|=δo

Ui ds =
∫
|x−qi|=δo

ũi ds,∫
|x−qi|=δo

(x− qi)Ui ds = 0.

Set Ui as above, let gi(x) = ũi(x) − Ui(x). Then gi satisfies

�gi + b(x)gi = Q̃(x)U
n+2
n−2

i ,
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where

b(x) =K̃i(x)
ũ

n+2
n−2

i − U
n+2
n−2

i

ũi − Ui
,

Q̃(x) =K̃i(0) − K̃i(x).

Let fi(x) be defined as follows.

fi(x) = |x|−n−2
2 for 0 ≤ |x| ≤ R−2

i ,

fi(x) = {L−n+2
i +R−n+2

i |x|−n+2 + max
|y|=M

2
n−2

i

|ũi(y) − Ui(y)|}

for R−2
i ≤ |x| ≤M

2
n−2

i ,

and
Ni = max

|x|≤M
2

n−2
i

f−1
i (x)|gi(x)|.

Let xi be a point satisfy |xi| ≤ M
2

n−2

i and satisfy Ni = f−1
i (xi)|gi(xi)|.

To prove part (ii), it suffices to show supi≥1Ni <∞.
Assume that Ni is unbounded. Without loss of generality, we may

assume lim
i→∞

Ni = +∞. Let ri = min(Li,M
2

n−2

i ). By (5.1), (5.11),

(5.12), (5.13) and (5.14), we can see that ũi satisfies

(5.60) ũi(x) ≤ c |x|−n−2
2 for |x| ≤M

2
n−2

i ,

ũi(x) ≤ c(tiM−1
i )γMi|x|−n+2

= c R−n+2
i |x|−n+2 for R−2

i ≤ |x| ≤ R−1
i ,

(5.61)

(5.62) ũi(x) ≤ c U(x), for R−1
i ≤ |x| ≤ ri, and

(5.63)

If LiM
− 2

n−2

i is bounded, then ũi(x) ≤ c L−n+2
i for ri ≤ |x| ≤M

2
n−2

i .

We note that if LiM
− 2

n−2

i is unbounded, then wi(s) has no local min-

imum for si ≤ s ≤ 0. Thus, ri = M
2

n−2

i and by (5.13), we have for
|x| = ri,

(5.64) ũi(x) ∼M−2
i >> L−n+2

i ,
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i.e., (5.63) does not hold in this case.
Since Ni is unbounded, we have by (5.60), (5.61) and (5.63),

(5.65) ri ≥ |xi| ≥ R−1
i .

By Green’s identity, we have for ri ≥ |x| ≥ R−1
i

gi(x) =
∫
|η|≤ri

G(x, η)(b(η)gi − Q̃(η)U
n+2
n−2

i ) dη

−
∫
|η|=ri

∂G(x, η)
∂ν

gi(η) ds
(5.66)

and

∇gi(x) =
∫
|η|≤ri

∇xG(x, η)(b(η)gi − Q̃(η)U
n+2
n−2

i ) dη

−
∫
|η|=ri

∂∇xG(x, η)
∂ν

gi(η) ds,
(5.67)

where G(x, η) is the Green function of −� on {x : |x| ≤ ri}. Since we

assume
n− 2

2
≥ β > 1, it implies n ≥ 4. By the inequality gi ≤ Nifi

and G(x, η) ≤ cn|x− η|2−n, we have the following estimates for R−1
i ≤

|x| ≤ ri. Their proofs are elementary and are omitted here. By (5.60),
we have

|b(η)gi(η)| ≤ c |η|−n+2
2 for |η| ≤ R−2

i .

Hence

(5.68)
∫
|η|≤R−1

i

G(x, η)b(η)gi dη = O
(
R−n+2

i |x|−n+2
)
.

By (5.62) and (5.63), we have

ũi(x) ≤ c U(x) for R−1
i ≤ |x| ≤ ri,

which implies

|b(η)| ≤ c(1 + |η|)−4 for R−1
i ≤ |η| ≤ ri.
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Hence

∫
R−1

i ≤|η|≤ri

G(x, η)b(η)gi dη

= O
[ ∫

R−1
i ≤|η|≤ri

G(x, η)U
4

n−2

i Nifi dη
]

= NiO
[
R−n+2

i

{ |x|−n+4(1 + |x|)−2 n > 4
log(2 + |x|−1)(1 + |x|)−2 n = 4

+ (1 + |x|)−2(L−n+2
i + max

|η|=M
2

n−2
i

|gi(η)|)
]

= O(1)(1 + |x|)−2Nifi(x).

(5.69)

Note that for (5.69), we have used R−n+2
i |x|−n+2 = o(1)L−n+2

i for
|x| ≥ 1,

∫
|η|≤ri

G(x, η)Q̃(η)U
n+2
n−2

i dη

= O

[
1

(1 + |x|)n−2
+

1
(1 + |x|)n−β

]
L−n+2

i

= o(1)Nifi(x),

(5.70)

where

|Q̃(η)| =
∣∣∣∣Ki(0) −Ki(M

− 2
n−2

i η)
∣∣∣∣

≤ c tiM
− 2β

n−2

i |η|β
= c L−n+2

i |η|β.

(5.71)
∫
|η|=ri

∂G(x, η)
∂ν

gi(η) ds = O
[

max
|η|=ri

|gi(η)|
]
.

From (5.62) and (5.63), there is ĉ > 0 such that

max
|η|=ri

|gi(η)| ≤ ĉ min
|x|≤M

2
n−2

i

fi(x).

Putting these estimates together, we obtain

gi(x) =O
[
(1 + |x|)−2Nifi(x) + max

|η|=ri

|gi(η)|
]

=O
[
(1 + |x|)−2 + o(1)

]
Nifi(x)

(5.72)
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for ri ≥ |x| ≥ R−1
i . Similarly, we have the following estimates for

derivatives:

(5.73)
∫
|η|≤R−1

i

∇xG(x, η)b(η)gi dη = O
(
R−n+2

i |x|−n+1
)
,

∫
R−1

i ≤|η|≤ri

∇xG(x, η)b(η)gi dη

= O
[ ∫

R−1
i ≤|η|≤ri

∇xG(x, η)U
4

n−2

i Nifi dη
]

= NiO
[
R−n+2

i |x|−n+3(1 + |x|)−2

+ (1 + |x|)−3(L−n+2
i + max

|η|=M
2

n−2
i

|gi(η)|)
]

= O(1)(1 + |x|)−2Nifi(x),

(5.74)

∫
|η|≤ri

∇xG(x, η)Q̃(η)U
n+2
n−2

i dη

= O(1)[log(2 + |x|)(1 + |x|)−n+1

+ (1 + |x|)−n−1+β]L−n+2
i ,

(5.75)

(5.76)
∫
|η|=ri

∂∇xG(x, η)
∂ν

gi(η) ds = O
[
r−1
i max

|η|=ri

|gi(η)|
]

for ri ≥ |x| ≥ R−1
i . It follows from these estimates

∇gi(x) =O
[
R−n+2

i |x|−n+1 + (1 + |x|)−2Nifi(x)

+ r−1
i max

|η|=ri

|gi(η)|
]

=O
[
R−n+2

i |x|−n+1 + ((1 + |x|)−2 + o(1))Nifi(x)
](5.77)

for ri ≥ |x| ≥ R−1
i .

Let x = xi in (5.72). We obtain

Nifi(xi) = |gi(xi)| ≤ c[(1 + |xi|)−2 + o(1)]Nifi(xi)

for some c independent of i. Hence xi must be bounded and

|xi| ≤ c1
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for some c1 independent of i.
Since R−1

i ≤ |xi| ≤ c1, we have

fi(xi) =

L−n+2
i +R−n+2

i |xi|−n+2 + max
|y|=M

2
n−2

i

|ũi(y) − Ui(y)|
 .

Note that Li << Ri. For any r > 0, if |x| ≥ r, then

(5.78)
fi(x)
fi(xi)

≤ 2 +
(
Li

Ri

)n−2

r−n+2.

By (5.72) and (5.78), |gi(xi)|−1gi(x) satisfies for |x| ≥ r > 0,

|gi(x)|
|gi(xi)| ≤ c (1 + |x|)−2 fi(x)

fi(xi)

≤ c

[
(1 + |x|)−2 +

(
Li

Ri

)n−2

r−n+2

]
.

After passing to a subsequence, the sequence gi(xi)−1gi(x) converges in
C2

loc(R
n \ {0}) to a function φ which satisfies

(5.79)

{
�φ+ n(n+ 2)U

4
n−2φ = 0 in R

n \ {0},
|φ| ≤ c (1 + |x|)−2,

where U is given in (5.54). Since φ(x) is bounded, by the regularity of
elliptic equations, φ satisfies (5.79) in R

n. Now we show that φ �≡ 0.
Since xi is bounded, without loss of generality, we may assume xi → x0.
If x0 �= 0, then φ(x0) = 1. Obviously, φ(x) �≡ 0 in R

n. Now we assume
x0 = 0. Let δ1 be a small positive number. For yi = δ1|xi|−1xi, we have
by (5.77) and the fact |xi| > R−1

i that

|gi(yi) − gi(xi)| ≤
∫ |yi|

|xi|
|∇gi(s|xi|−1xi)|ds

≤ c(R−n+2
i |xi|−n+2 + δ1Nifi(xi))

≤ 1
2
Nifi(xi) ≤ 1

2
|gi(xi)|

if Ni is large and δ1 is small. This implies

|gi(xi)−1g(yi)| ≥ 1
2
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for large i and consequently,

min
|x|=δ1

|φ(x)| ≥ 1
2
.

We conclude that φ �≡ 0.
By Lemma 3.2,

φ =
∑

γjψj

with ψ0 = n−2
2 U + (x − q) · ∇U(x − q) and ψj = ∂U

∂xj
, 1 ≤ j ≤ n. By

(5.56) and (5.59), we have either q �= 0, φ(q) = 0 and ∇φ(q) = 0 or
q = 0,

∫
|x|=δo

φds = 0 and
∫
|x|=δ0

xjφds = 0, 1 ≤ j ≤ n, which implies
γj = 0 for 0 ≤ j ≤ n. We obtain a contradiction. Hence Ni must be
bounded. The proof of Theorem 2.7 is complete. q.e.d.

Proof of Lemma 5.2. We follow the notations in the proof of Theo-
rem 2.7. Recall that ûi(y) converges to Û(y) in C2

loc(R
n\{0}), where Û

satisfies (5.16). By the Pohozaev identity

(5.80)
n− 2
2n

∫
|x|≤1

〈x,∇K̂i〉û
2n

n−2

i dx = P (1, ûi),

where
K̂i(x) = Ki(M̂

− 2
n−2

i x), M̂i = e−
n−2

2
ŝi ,

and

P (r, ûi) =
∫
|x|=r

(
n− 2

2
ûi
∂ûi

∂ν
− 1

2
r|∇ûi|2

+r
∣∣∣∣∂ûi

∂ν

∣∣∣∣2 +
n− 2
2n

rK̂iû
2n

n−2

i

)
dσ.

Since ûi(x) ≤ c|x|−n−2
2 , the left hand side of (5.80) tends to 0 as i→ ∞,

which implies
P (1, U) = lim

i→∞
P (1, ũi) = 0.

Since P (r, u) ≡ constant < 0 for any singular solution u of (5.16), Û
is smooth at 0. Hence

Û(y) =

(
λ̂

λ̂+ |y − q̂|2

)n−2
2

.
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Since
d

dr
ûi(r)r

n−2
2 |r=1 = 0,

we have
d

dr
Û(r)r

n−2
2 |r=1 = 0.

By a straightforward computation, we have

d

dr
Û(r)r

n−2
2 =

d

dr

1
|Sn−1|

∫
Sn−1

(rλ̂)
n−2

2 dσ

(λ̂2 + |ry − q̂|2)n−2
2

=
(n− 2)λ̂

n−2
2 r

n−4
2

2|Sn−1|
∫

Sn−1

(λ̂2 + |q̂|2 − r2)dσ

(λ̂2 + |ry − q̂|2)n
2

.

Thus, r0 =
√
λ̂2 + |q̂|2 is the only critical point of Û(r)r

n−2
2 and

d2

dr2
(Û(r)r

n−2
2 ) |r0< 0.

(5.18) follows readily.
We want to prove that Û(y) satisfies

(5.81)
∫

Rn

�Q(y)Û(y)
2n

n−2dy = 0,

and

(5.82)
∫

Rn

Q(y)Û(y)
2n

n−2dy ≤ 0.

By a simple scaling argument, we have (5.22), i.e.,

ai − ŝi ≤ c (ε0).

Hence, by (5.33),

(5.83) si − ŝi > si − ai ≥ 1
n− 2

(− log ti − βŝi) − c.

Recall that

M̂i = exp
(
−n− 2

2
ŝi

)
and L̂i =

(
t−1
i M̂

2β
n−2

i

) 1
n−2

.
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By (5.83),

ri ≡ esiM̂
2

n−2

i ≥ c

(
t−1
i M̂

2β
n−2

i

) 1
n−2

= cL̂n−2
i .

Applying Lemma 5.1, we have

(5.84) ûi(y) ≤ c |y|2−n

for 1 ≤ |y| ≤ esiM̂
2

n−2

i = ri. Since ûi satisfies

∆ûi + K̂iû
n+2
n−2

i = 0 for |y| ≤ M̂
2

n−2

i ,

where
K̂i(y) = Ki(M̂

− 2
n−2

i y).

Let ej , 1 ≤ j ≤ n, be the standard orthorgonal base for R
n. Applying

Pohozaev’s identities, we have

n− 2
2n

∫
B(0,ri)

〈ej ,�K̂i〉û
2n

n−2

i (y)dy

=
∫

∂B(0,ri)
〈ej ,�ûi〉∂ûi

∂ν
− 〈ej , ν〉 | � ûi|2

2

+
n− 2
2n

〈ej , ν〉K̂iû
2n

n−2

i dσ

= O(r−n+1
i ),

(5.85)

by (5.85) and the gradient estimate. From (5.28), we have

n− 2
2n

∫
B(0,ri)

〈y,�K̂i〉û
2n

n−2

i (y)dy

= −|Sn−1|
2

w2
i (si)(1 + o(1)).

(5.86)

Since tiM̂
− 2β

n−2

i = L̂−n+2
i and

�K̂i(y) = tiM̂
− 2β

n−2

i (�Q(y) + o(1)|y|β−1) for |y| ≤ M̂
2

n−2

i ,

(5.84) and (5.85) yield

lim
i→+∞

∣∣∣∣∣L̂n−2
i

∫
B(0,ri)

tiM̂
− 2β

n−2

i

((
∂Q(y)
∂yj

)
+ o(1)|y|β−1

)
û

2n
n−2

j (y)dy

∣∣∣∣∣
=
∣∣∣∣∫

Rn

∂Q

∂yj
Û

2n
n−2 (y)dy

∣∣∣∣ ≤ c L̂−1
i → 0
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as i→ +∞, which is (5.81).
To prove (5.82), we note

(y,�K̂i(y)) = tiM̂
− 2β

n−2

i (βQ(y) + o(1)|y|β).

Thus, (5.86) yields

β

∫
Rn

Q(y)Û
2n

n−2 (y)dy = lim
i→+∞

(
L̂n−2

i

∫
B(0,ri)

(y,�K̂i)û
2n

n−2

i (y)dy

)
= −n(n− 2)|Sn−1|

4
lim

i→+∞
(L̂n−2

i w2
i (si))

≤ 0,

which is (5.82). The proof of Lemma 5.2 is complete. q.e.d.

Remark 5.3. The proof of (5.19) holds also for ũi of (5.49), when

LiM
− 2

n−2

i → 0. Because the left hand side of (5.85) = n−2
2n tiM

− 2β
n−2

i ×(∫
δ≤|y|≤M

2
n−2

i

〈ej ,�Q(y)〉U 2n
n−2 (y)dy +O(1)

∫
|y|≤δ

|y|β−1−ndy

)
,

(5.85) yields∣∣∣∣∫
Rn

�Q(y)U
2n

n−2 (y)dy
∣∣∣∣ ≤ c Ln−2

i (M
− 2

n−2

i )(n−1) → 0

as n→ +∞, which is (5.50).

Remark 5.4. If LiM
− 2

n−2

i ≥ c > 0 for some constant c > 0, then

(5.13) yields ui(x) ≤ c M−1|x|2−n for M
− 2

n−2

i ≤ |x| ≤ 1. By passing to
a subsequence, Miui(x) converges to a positive harmonic function h(x)
in C2

loc(B2\{0}). We claim

If lim
i→+∞

LiM
− 2

n−2

i = +∞, then h(x) =
a

|x|n−2
+O(|x|) near 0

for some a > 0.
(5.87)

Let h(x) = a
|x|n−2 + b+O(|x|) for a > 0 and b ∈ R. By applying the
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Pohozaev identity, we have

n− 2
2n

∫
|x|≤1

〈x,�Ki(x)〉u
2n

n−2

i (x)dx

=
∫
|x|=1

(
n− 2

2
∂ui

∂r
u+ r

∣∣∣∣∂ui

∂r

∣∣∣∣2
−1

2
| � ui|2r − n− 2

2n
Ki(x)u

2n
n−2

i

)
dσ

(5.88)

By scaling, it is easy to see the left hand side of (5.88)

=
(n− 2)β

2n
L2−n

i

(∫
Rn

Q(y)U
2n

n−2 (y)dy + o(1)
)
,

and the right hand side = −cnabM−2
i (1 + o(1)). Since∫

Rn

�Q(y)U
2n

n−2 (y)dy = 0

by (5.50), (K1) yields
∫

Rn Q(y)U
2n

n−2 (y)dy �= 0. Hence, if

lim
i→+∞

Ln−2
i M−2

i = +∞,

then ab = 0, i.e., b = 0. Thus, the claim (5.87) is proved.

6. Preliminary results of global solutions

From now on, ui(x) is considered to be a solution of (1.3) defined in
the whole R

n. Theorem 1.2 implies that after passing to a subsequence,
{ui} blows up only at finite points. We will prove this later and for
the proof of Theorem 1.2, we assume first that {q̂j}m

j=1 is the set of
blowup points for {ui} with m ≥ 1, and ui → 0 on any compact subset
of R

n\{q̂1, . . . , q̂m}. Let l ≤ m be the nonnegative integer such that
q̂1, . . . , q̂l are simple-like blowup points and q̂l+1, . . . , q̂m are non-simple-
like blowup points. For the definition of simple-like blowup points, see
the end of Section 2. If there are no simple-like blowup points, we let
l = 0.

For each blowup point q̂j , we define the local maximum Mi,j and the
local maximum point in the following ways. Let δ0 be a small positive
number such that the distance d(q̂j , q̂k) from q̂j to q̂k is greater than
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2δ0. If ui loses energy of one bubble near q̂j , that is, if (2.17) holds,
then Mi,j and q̂i,j are defined by

(6.1) Mi,j = ui(q̂i,j) = max
|q̂j−x|≤δ0

ui(x).

Let Li,j = Li(q̂i,j) be the number defined in (2.15). If ui loses energy
of more than one bubble at q̂j , then there are two cases. The first
one is described in (ii) of Theorem 2.5. In this case, q̂i,j denotes the
local maximum point zi in the statement of (ii) of Theorem 2.5, and
Mi,j = ui(q̂i,j). Note that in this case, q̂j is a simple-like blowup point,

(6.2) lim
i→+∞

Li,jM
− 2

n−2

i,j = +∞, and lim
i→+∞

(
|q̂i,j − q̂j |M

2
n−2

i,j

)
= +∞

by Theorem 2.5. The second case is described in Theorem 2.7. In this
case, Mi,j and Li,j are defined as in (2.28) and (2.29), and q̂i,j is defined

to be q̂j +M
− 2

n−2

i,j zi, where zi is in the statement of Theorem 2.7.
By Theorem 2.1, Theorem 2.5, and Theorem 2.7 and the remark

after Definition 2.9, q̂j is a simple-like blowup point if and only if

(6.3) Li,jM
− 2

n−2

i,j ≥ c > 0.

Also, for j ≤ l, we have

(6.4) min
|x−q̂j |≤δ0

ui(x) ∼M−1
i,j .

For l + 1 ≤ j ≤ m, we have then

(6.5) min
|x−q̂j |≤δ0

ui(x) ∼ L2−n
i,j Mi,j

and

(6.6) ui(x) ≤ c|x− q̂j |−
n−2

2

for |x− q̂j | ≤ δ0 since they are non-simple-like blowup points.

One important situation is that for some j,

(6.7) lim
i→+∞

Li,jM
− 2

n−2

i,j = +∞

occurs. We claim
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(6.8) If (6.7) holds for some j, then q̂j is the only simple-like blowup
point, that is, l = 1.

Proof of (6.8). If ui(x) satisfies the assumption of Theorem 2.7 at
qj , then mi ∼M−1

i,j by (6.4). Set h(x) to be the limit of m−1
i ui(x). Since

limi→+∞ Li,jM
− 2

n−2

i,j = +∞, (5.87) yields that h(x) = a
|x−qj |n−2 for some

a > 0. By Lemma 6.1 (below), qj is the only simple-like blowup point.
So, we might assume either qj is a simple blowup point or qj is the one
described by (ii) of Theorem 2.5. We note that for both cases, by letting
an empty set E, R = Ri, l = δLi,j and l0 = +∞, Lemma 3.5 yields∫

Ri≤|x|≤L∗+i,j(δ)
v

n+2
n−2

i (y)dy ≤ c1(R−2
i + ε),

where vi(y) = M−1
i,j ui(qi,j +M

− 2
n−2

i,j ), Ri is given in (2.14), and L∗
i,j(δ) =

min(δLi,j , λM
2

n−2

i,j ) for some fixed δ > 0. Now let x0 be another
simple-like blowup point, i.e., either x0 is a simple blowup point or
the one in case (ii) of Theorem 2.5. Say x0 = q1 �= qj . In any
case, there is a small neighborhood ω of q0 such that minω ui(x) ∼
M−1

i,1 . Clearly, minω ui(x) ∼ min|x−qj |≤1 ui(x). Hence Mi,j ∼ Mi,1. Let

ω∗
i = {y | qi,j + M

− 2
n−2

i,j y ∈ ω}. Then, vi(y) ≤ c for y ∈ ω∗. Since

limi→+∞ Li,jM
− 2

n−2

i,j = +∞, Li,j >> |qj − q1|M
2

n−2

i,j for large i. There-

fore, by choosing λ ≥ 2|qj − q1|, we have L∗
i,j(δ) = λM

2
n−2

i,j , and

0 < c2 ≤
∫

ω
u

2n
n−2

i (x)dx

=
∫

ω∗
i

v
2n

n−2

i dy ≤ c

∫
ω∗

i

v
n+2
n−2

i (y)dy

≤ c

∫
Ri≤|x|≤L∗

i,j(δ)
v

n+2
n−2

i (y)dy

≤ c c1(R−2
i + ε).

Clearly, this yields a contradiction. Then (6.8) is proved.

One important consequence of (6.8) is that if l = 1 and j ≥ 2 or if
l ≥ 2 and j ≥ 1, the inequality (6.6) always holds near q̂j . From it, we

have Ln−2
i,j ∼ t−1

i M
2βj
n−2

i,j which follows definition of Li,j . To show (6.6)
holds in these cases, it suffices for us to consider the case l ≥ 2. By
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(6.8), limi→∞ Li,jM
− 2

n−2

i,j < ∞ for all j. If (6.6) does not hold near q̂j ,
then Theorem 2.5 and (2.21) imply that q̂j is a simply blowup point.

However, Theorem 2.2 implies |q̂i,j − q̂j |M
2

n−2

i,j ≤ c. Together with the
fact that q̂j is a simply blowup point, (6.6) holds at q̂j . Then it yields
a contradiction again. Hence we prove the claim.

Now, we prove Theorem 1.2.

Proof of Theorem 1.2. Recall that {q1, · · · , qN} are the critical points
of K̂. Let q be a blowup point of {ui}. We want to prove �K̂(q) = 0.
We may assume q �= ∞. Now suppose that q is not a critical point
of K̂. Then by Corollary 2.3 and (6.8), we conclude that after passing
to a subsequence, q is the only simple-like blowup point. Therefore,
�K̂(q̂) = 0 for any other blowup point q̂ �= q, and it implies there
are at most finite blowup points {q̂1, · · · , q̂m} which are contained in
{q1, · · · , qN} ∪ {q}. Also by the Harnack inequality, ui → 0 uniformly
on any compact subset of R

n \ {q̂1, · · · , q̂m}.
Let Mi,j and q̂i,j be defined as above. We may assume q̂1 = q. Then

(6.9) ui(x) ≤ c M−1
i,1 |x− q̂1|2−n

for x �∈
m⋃

j≥2

B(q̂j , δ0), and by (6.6),

(6.10) ui(x) ≤ c |x− q̂j |−
n−2

2

holds for |x − q̂j | ≤ δ0 and j ≥ 2. Let e1 = (1, 0, · · · , 0) and Ωi =

R
n\

m⋃
j=1

B(q̂j , δ0). We may assume e1 =
�K̂(q̂1)
| � K̂(q̂1)|

. By the Pohozaev

identity, ∫
B(q̂1,δ0)

∂Ki(x)
∂x1

u
2n

n−2

i (x)dx = −
∫

Rn\B(q̂1,δ0)

∂Ki

∂x1
u

2n
n−2

i dx

≤
m∑

j=2

∫
B(q̂j ,δ0)

| �Ki|u
2n

n−2

i (x)dx

+
∫

Ωi

| �Ki|u
2n

n−2

i dx

≤c ti


m∑

j=2

δ
βj−1
0 +M

− 2n
n−2

i,1

 ,

(6.11)
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where inequalities (6.9) and (6.10) are used.
On the other hand, since q̂1 is a blowup point,

(6.12)
∫

B(q̂1,δ0)
u

2n
n−2

i (x)dx ≥ cn > 0

for some constant cn > 0. Since βj > 1 for j ≥ 2, (6.11) implies

cn ti ≤
∫

B(q̂1,δ0)

∂Ki

∂x1
u

2n
n−2

i (x)dx ≤ c ti


m∑

j=2

δ
βj−1
0 +M

− 2n
n−2

i,1

 ,

which obviously yields a contradiction when δ0 is small. The proof is
finished q.e.d.

From now on, by passing to a subsequence, we may assume the
blowup points are {q1, · · · , qm} ⊂ {q1, · · · , qN} and ui → 0 uniformly
on any compact subset of R

n \ {q1, · · · , qm}. Let l ≤ m be the non-
negative integer such that q1, . . . , ql are simple-like blowup points and
ql+1, . . . , qm are non-simple-like blowup points. Set

(6.13) mi = inf
Rn

(ui(x)(1 + |x|)n−2).

Since ui(x) → 0 for x �∈ {q1, . . . , qm}, mi → 0 as i→ +∞. Let

hi(x) = m−1
i ui(x) for x ∈ R

n.

Then hi(x) is bounded in C2
loc(R

n\{q1, . . . , qm}). After passing to a
subsequence, hi(x) converges to h(x) in C2

loc(R
n\{q1, . . . , qm}). Since

mi → 0, h(x) satisfies{
∆h(x) = 0 in R

n\{q1, . . . , qm},
h(x) > 0.

By the Liouville Theorem, we have

(6.14) h(x) =
m∑

j=1

µj

|x− qj | ,

where µj ≥ 0 and
m∑

j=1

µj �= 0.

Lemma 6.1. µj > 0 if and only if qj is a simple-like blowup point.
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Proof. Let qj be a simple-like blowup point. By (6.4),

mi ∼M−1
i,j .

Thus,

1
mi

∫
|x−qj |≤δ0

Ki(x)u
n+2
n−2

i (x)dx

≥ c1 Mi,j

∫
|x−qj |≤δ0

u
n+2
n−2

i dx ≥ c2 > 0.

It implies µj > 0.
Conversely, if qj is not a simple-like blowup point, then by (6.6) and

(6.5),

(6.15)

ui(x) ≤


|x− qj |−n−2

2 for |x| ≤M
− 2

n−2

i

M−1
i |x− qj |−n+2 for M

− 2
n−2

i ≤ |x− qj | ≤ LiM
− 2

n−2

i

L2−n
i Mi for LiM

− 2
n−2

i ≤ |x− qj | ≤ δ0,

where for the simplicity of notations, Mi and Li denote Mi,j and Li,j ,
respectively. Hence

(6.16) mi ∼ L2−n
i Mi.

Applying (6.16), a straightforward computation shows

1
mi

∫
|x−qj |≤δ0

Ki(x)u
n+2
n−2

i (x)dx ≤ c

mi

{
M−1

i +m
n+2
n−2

i

}
→ 0.

Here we have used miMi ∼ L2−n
i M2

i → +∞ as i → +∞ by (6.2).
Therefore, µj = 0. q.e.d.

From Lemma 6.1, we immediately have l ≥ 1. The next lemma tell
us that there are some constraints for a collection of critical points to
be a set of blowup points.

Lemma 6.2.

(i) If l ≥ 2, then we have βj >
n−2

2 for all j, or βj = n−2
2 for all

j, or βj <
n−2

2 for all j. Moreover, β1 = β2 = . . . = βl always
holds, β1 > βj for j ≥ l+ 1 if βj >

n−2
2 for all j, and β1 < βj for

j ≥ l + 1 if βj <
n−2

2 for all j.
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(ii) If l = 1, then we have βj >
n−2

2 for 2 ≤ j ≤ m, or βj <
n−2

2
for 2 ≤ j ≤ m, or βj = n−2

2 for 2 ≤ j ≤ m. Furthermore, if

β1 ≤ n−2
2 , then βj <

n−2
2 for 2 ≤ j ≤ m. If βj >

n− 2
2

for
2 ≤ j ≤ m, then β1 > βj for j ≥ 2.

Proof. We prove (i) first. Since l ≥ 2, by (6.8), the inequality (6.6)

holds near any qj and L2−n
i,j ∼ tiM

− 2βj
n−2

i,j . By (6.8) again and the fact

q1, . . . , ql are simple-like blowup points, we also have Li,j ∼ M
2

n−2

i,j for
1 ≤ j ≤ l. Thus, Mi,j satisfies

(6.17) L2−n
i,j ∼ tiM

− 2βj
n−2

i,j for 1 ≤ j ≤ m,

(6.18) mi ∼ L2−n
i,j Mi,j for 1 ≤ j ≤ m,

and by Lemma 6.1

(6.19) Mi,j = o(1)Mi,k for 1 ≤ j ≤ l and k ≥ l + 1.

By (6.17) and (6.18), for j �= k,

(6.20) M
1− 2βj

n−2

i,j ∼M
1− 2βk

n−2

i,k ,

which implies that there are only three possibilities: βj >
n−2

2 for all j,
or βj = n−2

2 all j, or βj <
n−2

2 for all j. Since Mi,j ∼Mi,k if 1 ≤ j, k ≤ l,
by (6.20), we have βj = βk. Again by (6.20) and (6.19), we obtain the
inequalities: β1 > βj for j ≥ l + 1 if β1 >

n−2
2 , or β1 < βj for j ≥ l + 1

if β1 <
n−2

2 .
To prove (ii), we note that by (6.15), (6.17) and (6.18) holds for

2 ≤ j ≤ m. Thus, (6.20) holds for j �= k ≥ 2, and then we have
βj >

n−2
2 for all j ≥ 2, or βj = n−2

2 for all j ≥ 2, or βj <
n−2

2 for all
j ≥ 2.

By (6.19) and

mi ∼M−1
i,1 >> L2−n

i,1 Mi,1 ≥ tiM
1− 2β1

n−2

i,1 ,

we have for j ≥ 2,

M
1− 2βj

n−2

i,j >> M
1− 2β1

n−2

i,1 .
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Hence, if β1 ≤ n−2
2 , we have βj <

n−2
2 for all j ≥ 2. If βj ≥ n−2

2 for
j ≥ 2, then β1 >

n−2
2 and for j ≥ 2(

2βj

n− 2
− 1
)

logMi,1 <<

(
2βj

n− 2
− 1
)

logMi,j

<<

(
2β1

n− 2
− 1
)

logMi,1,

which implies β1 > βj . q.e.d.

7. Estimates for the Pohozaev identity

As in Section 6, let q1, . . . , ql denote all the simple-like blowup
points, and let ql+1, . . . , qm denote the non-simple-like blowup points.
Also, letMi,j , qi,j and Li,j be defined as in Section 6. Recallm−1

i ∼Mi,1.
Hereafter, h(x) denotes the limit of Mi,1ui(x). By Lemma 6.1,

h(x) =
l∑

j=1

µj

|x− qj |n−2
,

where µj > 0. For 1 ≤ j ≤ l, the regular part of h at qj is denoted by

hj(x) =
l∑

k=1,k �=j

µk

|x− qk|n−2
.

The Pohozaev identity plays an important role when we come to
study the interaction of different blowup points. Therefore, we have to
compute the terms appearing in the Pohozaev identity very precisely.
For example, we consider the case when qj is not a simple-like blowup
point. Then h(x) of Section 6 is smooth at qj . By a direct computation,
the Pohozaev identity leads to

n− 2
2n

∫
|x−qj |≤δ0

〈x− qj ,�Ki(x)〉u
2n

n−2

i dx

=
∫
|x−qj |=δ0

(
n− 2

2
ui
∂ui

∂ν
− 1

2
δ0| � ui|2

+δ0|∂ui

∂ν
|2 +

n− 2
2n

δ0Kiu
2n

n−2

i

)
dσ

= o(1)M−2
i,1 ,
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because h(x) = lim
i→+∞

Mi,1ui is smooth at qj . However, it does not

show any information about Mi,j . The following lemma improves the
estimate.

Lemma 7.1. Suppose βj ≥ 2(n−2)
n for all j. Then the following

hold:

(1) For m ≥ j ≥ l + 1, we have

n− 2
2n

∫
|x−qj |≤δ0

�Ki(x)u
2n

n−2

i (x)dx

= −(1 + o(1) + c1(δ0))(n− 2)|Sn−1| � h(qj)M−1
i,1 M

−1
i,j

+ o

(
tiM

− 2βj
n−2

i,j

)
+O

(
δn−1
0 tiM

−2n
n−2

i,1

)
, and

(7.1)

n− 2
2n

∫
|x−qj |≤δ0

〈x− qj ,�Ki(x)〉u
2n

n−2

i (x)dx

= −(1 + o(1) + c2(δ0))
(n− 2)2

2
|Sn−1|h(qj)M−1

i,1 M
−1
i,j

+ o

(
tiM

− 2βj
n−2

i,j

)
+O

(
δn−1
0 tiM

− 2n
n−2

i,1

)
,

(7.2)

where o(1) → 0 as i→ +∞, c1(δ) and c2(δ) → 0 as δ → 0.

(2) If l ≥ 2, then 1 ≤ j ≤ l,

n− 2
2n

∫
|x−qj |≤δ0

�Ki(x)u
2n

n−2

i dx

= −(1 + o(1) + c1(δ))(n− 2)|Sn−1| � hj(qj)M−1
i,1 M

−1
i,j

+ o

(
tiM

− 2βj
n−2

i,j

)
+O

(
δn−1
0 tiM

− 2n
n−2

i,1

)
,

(7.3)
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and

n− 2
2n

∫
|x−qj |≤δ0

〈x− qj ,�Ki(x)〉u
2n

n−2

i dx

= −(1 + o(1) + c2(δ))
(n− 2)2

2
|Sn−1|hj(qj)M−1

i,1 M
−1
i,j

+ o

(
tiM

− 2βj
n−2

i,j

)
+O

(
δn−1
0 tiM

− 2n
n−2

i,1

)
.

(7.4)

Proof of Lemma 7.1. For each qj considered here, ui(x) satisfies

(7.5)


ui(x) ≤ c |x− qj |−

n−2
2 for |x− qj | ≤ δ0

L2−n
i,j ∼ miM

−1
i,j ∼ tiM

− 2βj
n−2

i,j , and

βj < n− 2,

due to (6.8) and Corollary 1.3, where mi is the minimum of ui in (6.13).
We separate our argument into two cases which require different esti-
mates. Case (I) is when ui loses energy of one bubble only and Case
(II) is when ui loses energy of more than one bubble.

For Case (I), let

(7.6) ũi(x) = M−1
i,j ui(qi,j +M

− 2
n−2

i,j x).

Then by Lemma 3.5 and (7.5), we have

(7.7) |ũi(x) − Ui(x)| ≤ c L−n+2
i,j for |x| ≤ δ0M

2
n−2

i,j .

(Note that in this case, qi,j is the local maximum given in (2.12)), where
Ui is the solution of

(7.8) ∆Ui +Ki(qi,j)U
n+2
n−2

i = 0 in R
n

with Ui(0) = max
Rn

U1(x) = 1.

For Case (II), we can apply Theorem 2.7 to estimate the difference

between ũi and aiUλi
. In this case, βj <

n− 2
2

always.
In the following, let

L∗
i,j = min(Li,j , δ0M

2
n−2

i,j ) and li = δ0M
2

n−2

i,j
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for the simplicity of notations. Let Ui denote the solution of (7.8) for
Case (I) and denote aiUλi

for Case (II). Set gi(x) = ũi(x)−Ui(x). Then
gi satisfies

(7.9) �gi + pKi(qi,j)U
p−1
i gi = (Ki(qi,j) − K̃i(x))ũ

p
i +H1,

where p =
n+ 2
n− 2

, K̃i(x) = Ki(qi,j +M
− 2

n−2

i,j x), and

(7.10) H1(x) = Ki(qi,j)[U
p
i − ũp

i + pUp−1
i gi].

To estimate the term H1, we consider Case (I) first. By Lemma 3.5,
we have

(7.11) |H1(x)| ≤ c1U
p−2
i |gi|2 ≤ c2U

p−2
i

(
tiM

− 2βj
n−2

i,j

)2

when |x| ≤ L∗
i,j , and

(7.12) |H1(x)| ≤ c1 (miM
−1
i,j )p

when L∗
i,j ≤ |x| ≤ δ0M

2
n−2

i,j .
For Case (II), we apply Theorem 2.7 to obtain

|H1(x)| ≤ c|x|−n+2
2 for |x| ≤ R−2

i

|H1(x)| ≤ cR−n−2
i |x|−n−2 for R−2

i ≤ |x| ≤ R−1
i

|H1(x)| ≤ cUp−2
i |gi|2 ≤ c2U

p−2
i (R−2n+4

i |x|−2n+4 + L−2n+4
i,j )

for R−1
i ≤ |x| ≤ L∗

i,j

|H1(x)| ≤ c L
−(n−2)p
i,j for L∗

i,j ≤ |x| ≤ δ0M
2

n−2

i,j ,

(7.13)

where Ri = Lγ
i,j and γ = (1 − 2βj

n− 2
)−1.

Let

∂λUi = −n− 2
2

Ui(x) − x · �Ui

and

∂λũi(x) = −n− 2
2

ũi(x) − x · �ũi(x).
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Multiplying (7.9) by �Ui, we have

∫
|x|≤li

∇Ui(�gi + pKi(qi,j)U
4

n−2

i gi) dx

=
∫
|x|≤li

(Ki(qi,j) − K̃i(x))ũ
p
i∇ũi dx

+
∫
|x|≤li

(Ki(qi,j) − K̃i(x))ũ
p
i (∇Ui −∇ũi) dx

+
∫
|x|≤li

H1(x)∇Ui dx

≡ I + II + III.

(7.14)

Multiplying (7.9) by ∂λUi, we have

∫
|x|≤li

∂λUi(�gi + pKi(qi,j)U
4

n−2

i gi) dx

=
∫
|x|≤li

(Ki(qi,j) − K̃i(x))ũ
p
i ∂λũi dx

+
∫
|x|≤li

(Ki(qi,j) − K̃i(x))ũ
p
i (∂λUi − ∂λũi) dx

+
∫
|x|≤li

H1(x)∂λUi dx

≡ Ia + IIa + IIIa.

(7.15)

Let y = M
− 2

n−2

i,j x. By integration by parts,

I =
1

p+ 1

∫
|x|≤li

∇xK̃iũ
p+1
i dx

+O

(∫
|x|=li

|Ki(qi,j) − K̃i(x)|ũp+1
i ds

)

=
1

p+ 1
M

− 2
n−2

i,j

∫
|y|≤δ0

∇yKiu
p+1
i dy

+O
(
δn−1
0 tiM

− 2
n−2

i,j (mi)
2n

n−2
)
,

(7.16)
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By scaling, we have

Ia =
1

p+ 1

∫
|x|≤li

〈x,∇xK̃i〉ũp+1
i dx

+O

(∫
|x|=li

li|Ki(qi,j) − K̃i(x)|ũp+1
i ds

)

=
1

p+ 1

∫
|y|≤δ0

〈y,∇yKi〉up+1
i dy

+O(δn−1
0 ti(mi)

2n
n−2 ).

(7.17)

To estimate the terms II, III, IIa and IIIa, we consider Case (I)
first. By (7.7) and integration by parts,

|II| ≤c
∫
|x|≤li

{|(∇xK̃i)ũ
p
i | + |(Ki(qi,j) − K̃i(x))∇xũ

p
i |}|(ũi − Ui)| dy

+ c

∫
|x|=li

|(Ki(qi,j) − K̃i(x))ũ
p
i (ũi − Ui)| ds

≤c
∫
|x|≤L∗

i,j

L−2n+4
i,j

(1 + |x|)n−βj+3
dx+O(δn−1

0 tiM
− 2

n−2

i,j m
2n

n−2

i )

≤O

L−2n+4
i,j


1, βj < 3

logLi,j , βj = 3
L

βj−3
i,j , βj > 3

+ δn−1
0 tiM

− 2
n−2

i,j m
2n

n−2

i


= o(tiM

− 2βj
n−2

− 2
n−2

i,j ) +O(δn−1
0 tiM

− 2
n−2

i,j (mi)
2n

n−2 )

(7.18)

as i→ ∞. Here we have used the fact Mi,j |qj − qi,j |n−2
2 is bounded and

the following estimates:

(7.19)


ũi(x) ∼ miM

−1
i,j for |x| ≥ L∗

i,j , and

|Ki(qi,j) − K̃i(x)| ≤ c1 tiM
− 2βj

n−2

i,j (1 + |x|βj )

| � K̃i(x)| ≤ c1 tiM
− 2(βj−1)

n−2

i (1 + |x|βj−1).
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Similarly, we have

|IIa| ≤c
∫
|x|≤li

|〈x,∇x[(Ki(qi,j) − K̃i(x))ũ
p
i ]〉(ũi − Ui)| dy

+ c

∫
|x|=li

|(Ki(qi,j) − K̃i(x))ũ
p
i (ui − Ui)| ds

≤c
∫
|x|≤L∗

i,j

L−2n+4
i,j

(1 + |x|)n−βj+2
dx+O(δn−1

0 tim
2n

n−2

i )

≤O

L−2n+4
i,j


1, βj < 2

logLi,j , βj = 2
L

βj−2
i,j , βj > 2


+O(δn−1

0 tim
2n

n−2

i )

= o(tiM
− 2βj

n−2
− 2

n−2

i,j ) +O(δn−1
0 ti(mi)

2n
n−2 )

(7.20)

as i→ ∞. Here we have used the fact that by (7.5) and mi → 0, which
implies

(7.21) L−1
i,j ∼ o(M

− 1
n−2

i,j ).

For the terms III and IIIa, we have by (7.11) and (7.12),

|III| ≤ c

∫
|x|≤L∗

i,j

(
tiM

− 2βj
n−2

i,j

)2
1

(1 + |x|)5 dx+O(δn−1
0 tiM

− 2
n−2

i m
2n

n−2

i )

≤O

L−2n+4
i,j


1, n < 5

logLi,j , n = 5
Ln−5

i,j , n > 5

+ δn−1
0 tiM

− 2
n−2

i m
2n

n−2

i


= o(tiM

− 2βj
n−2

− 2
n−2

i,j ) +O(δn−1
0 tiM

− 2
n−2

i m
2n

n−2

i ),

(7.22)

and

|IIIa| ≤ c

∫
|x|≤L∗

i,j

(
tiM

− 2βj
n−2

i,j

)2
1

(1 + |x|)4 dx+O(δn−1
0 tim

2n
n−2

i )

≤O

L−2n+4
i,j


1, n < 4

logLi,j , n = 4
Ln−4

i,j , n > 4

+ δn−1
0 tim

2n
n−2

i


= o(tiM

− 2βj
n−2

i,j ) +O(δn−1
0 tim

2n
n−2

i )

(7.23)
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as i→ ∞. Thus for Case (I), from (7.16), (7.18) and (7.22), we obtain

∫
|x|≤li

∇Ui(�gi + pKi(qi,j)U
4

n−2

i gi) dx

=
1

p+ 1
M

− 2
n−2

i,j

∫
|y|≤δ1

∇yKiu
p+1
i dy + o(tiM

− 2βj
n−2

− 2
n−2

i,j )

+O(δn−1
0 tiM

− 2
n−2

i,j (mi)
2n

n−2 )

(7.24)

as i→ ∞. From (7.17), (7.20) and (7.23), we have

∫
|x|≤li

∂λUi(�gi + pKi(qi,j)U
4

n−2

i gi) dx

=
1

p+ 1

∫
|y|≤δ0

〈y,∇yKi〉up+1
i dy + o(tiM

− 2βj
n−2

i,j )

+O(δn−1
0 ti(mi)

2n
n−2 )

(7.25)

as i→ ∞.

For Case (II), we have 1 < βj <
n− 2

2
and n > 4. By using (ii) of

Theorem 2.7, we decompose II and IIa into three terms respectively.

II =
∫
|x|≤R−1

i

+
∫

R−1
i ≤|x|≤L∗

i,j

+
∫

L∗
i,j≤|x|≤li

≡II1 + II2 + II3

and

IIa =
∫
|x|≤R−1

i

+
∫

R−1
i ≤|x|≤L∗

i,j

+
∫

L∗
i,j≤|x|≤li

≡IIa
1 + IIa

2 + IIa
3

From integration by parts, (7.19), the fact Mi,j |qj − qi,j |n−2
2 is bounded

and Theorem 2.7,
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II1 = − 1
p+ 1

∫
|x|≤R−1

i

∇xK̃iũ
p+1
i dx

+O
[∫

|x|=R−1
i

tiM
− 2βj

n−2

i,j R
−βj

i ds
]

+
∫
|x|≤R−1

i

(Ki(qi,j) − K̃i(x))ũ
p
i∇Ui dx

= − 1
p+ 1

(∫
|x|≤R−2

i

+
∫

R−2
i ≤|x|≤R−1

i

)
+O(tiM

− 2βj
n−2

i,j R
−n+1−βj

i )

+O

(
tiM

− 2βj
n−2

i,j (1 +R
−βj

i )
∫
|x|≤R−1

i

|x|−n−2
2

pM
− 2

n−2

i,j dx

)

=O

(
tiM

− 2βj
n−2

i,j R
−2βj+2
i + tiM

− 2βj
n−2

i,j R
−n+1−βj

i + tiM
− 2βj+2

n−2

i,j R
−n−2

2
i

)
.

IIa
1 =

−1
p+ 1

∫
|x|≤R−1

i

〈x,∇xK̃i〉ũp+1
i dx

+O
[ ∫

|x|=R−1
i

R−1
i tiM

− 2βj
n−2

i,j R
−βj

i ds
]

+
∫
|x|≤R−1

i

(Ki(qi,j) − K̃i(x))ũ
p
i ∂λUi dx

=
−1
p+ 1

(∫
|x|≤R−2

i

+
∫

R−2
i ≤|x|≤R−1

i

)
+O(tiM

− 2βj
n−2

i,j R
−n−βj

i )

+O

(
tiM

− 2βj
n−2

i,j (1 +R
−βj

i )
∫
|x|≤R−1

i

|x|−n−2
2

p dx

)

=O

(
tiM

− 2βj
n−2

i,j R
−2βj

i + tiM
− 2βj

n−2

i,j R
−n−βj

i + tiM
− 2βj

n−2

i,j R
−n−2

2
i

)
.

Recall that R−1
i = L−γ

i,j = o

M
− 1

n−2

1− 2βj
n−2

i,j

. Thus,

II1 = o(tiM
− 2βj

n−2
− 2

n−2

i,j )

IIa
1 = o(tiM

− 2βj
n−2

i,j )

as i→ ∞ if βj ≥ 2(n− 2)
n

. Here is the place we need βj ≥ 2(n− 2)
n

.
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From integration by parts and Theorem 2.7,

|II2| ≤ c tiM
− 2βj

n−2

i,j

∫
R−1

i ≤|x|≤L∗
i,j

|x|βj−1

(1 + |x|)n+2

· (R−n+2
i |x|−n+2 + L−n+2

i,j ) dx

≤ c(tiM
− 2βj

n−2

i,j )2


1, βj < 3

logLi,j , βj = 3
L

βj−3
i,j , βj > 3


= o(tiM

− 2βj
n−2

− 2
n−2

i,j ), and

(7.26)

|IIa
2 | ≤ c tiM

− 2βj
n−2

i,j

∫
R−1

i ≤|x|≤L∗
i,j

|x|βj

(1 + |x|)n+2

· (R−n+2
i |x|−n+2 + L−n+2

i,j ) dx

≤ c(tiM
− 2βj

n−2

i,j )2


1, βj < 2

logLi,j , βj = 2
L

βj−2
i,j , βj > 2


= o(tiM

− 2βj
n−2

− 2
n−2

i,j ).

(7.27)

For II3 and IIa
3 , we have

|II3| ≤c tiM− 2βj
n−2

i,j

∫
L∗

i,j≤|x|≤li

|x|βj−1(L−n+2
i,j )p+1 dx

=O[δn+βj−1
0 tiM

− 2
n−2

i,j (Mi,jL
−n+2
i,j )p+1]

=O[δn−1
0 tiM

− 2
n−2

i,j (mi)p+1], and,

(7.28)

|IIa
3 | ≤c tiM

− 2βj
n−2

i,j

∫
Li,j≤|x|≤li

(L−n+2
i,j )p+1 dx

=O[δn+βj

0 ti(Mi,jL
−n+2
i,j )p+1]

=O[δn−1
0 ti(mi)p+1].

(7.29)
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To estimate III, note that n ≥ 4 and then

|III| ≤c
[∫

|x|≤R−2
i

|x|−n+2
2 dx+

∫
R−2

i ≤|x|≤R−1
i

R−n−2
i |x|−n−2 dx

+
∫

R−1
i ≤|x|≤L∗

i,j

1
(1 + |x|)5 (R−2n+4

i |x|−2n+4 + L−2n+4
i,j ) dx

+
∫

L∗
i,j≤|x|≤li

L−n−2
i,j

(1 + |x|)n−1
dx

]
≤ c
[
R−n+2

i +R−n−2
i R4

i

+

R−2n+4
i

{
Rn−4

i , n > 4
logRi, n = 4

+ L−2n+4
i,j


1, n < 5

logLi,j , n = 5
Ln−5

i,j , n > 5


+ L−n−2

i,j M
2

n−2

i,j

]
,

and

|IIIa| ≤ c

[∫
|x|≤R−2

i

|x|−n+2
2 dx+

∫
R−2

i ≤|x|≤R−1
i

R−n−2
i |x|−n−2 dx

+
∫

R−1
i ≤|x|≤L∗

i,j

1
(1 + |x|)4 (R−2n+4

i |x|−2n+4 + L−2n+4
i,j ) dx

+
∫

L∗
k,i≤|x|≤li

L−n−2
i,j

(1 + |x|)n−2
dx

]
≤ c
[
R−n+2

i +R−n−2
i R4

i

+
(
R−2n+4

i

{
Rn−4

i , n > 4
logRi, n = 4

+ L−2n+4
i,j

{
logLi,j , n = 4
Ln−4

i,j , n > 4

)
+ L−n−2

i,j M
2

n−2

i,j

]
.

Since Ri = Li,jL
2βj
n−2

/(1− 2βj
n−2

)

i,j ≥ Li,jL
2βj
n−2

i,j , L−n+2
i,j ∼ tiM

− 2βj
n−2

i,j and L−1
i,j =

o(M
− 1

n−2

i,j ), we have

R−n+2
i ≤ L−n+2

i,j L
−2βj

i,j = o(tiM
− 2βj

n−2
− 2βj

n−2

i,j ), and
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R−2n+4
i max(Rn−4

i , logRi) ≤ R−n+2
i = o(tiM

− 2βj
n−2

− 2
n−2

i,j ),

L−2n+4
i,j


1, n < 5

logLi,j , n = 5
Ln−5

i,j , n > 5
≤ L−n+2

i,j


L−n+2

i,j , n < 5
L−3

i,j logLi,j , n = 5
L−3

i,j , n > 5,

L−2n+4
i,j

{
logLi,j , n = 4
Ln−4

i,j , n > 4 ≤ L−n+2
i,j

{
L−2

i,j logLi,j , n = 4
L−2

i,j , n > 4,

L−n−2
i,j M

2
n−2

i,j ≤ L−n+2
i,j o(1)M

− 4
n−2

i,j M
2

n−2

i,j .

Putting these estimates together, we have by L−n+2
i,j ∼ tiM

− 2βj
n−2

i,j and

L−1
i,j = o(M

− 1
n−2

i,j ),

(7.30) |III| = o(tiM
− 2βj

n−2
− 2

n−2

i,j ), and |IIIa| = o(tiM
− 2βj

n−2

i,j )

From (7.26) ∼ (7.30), we obtain (7.24) and (7.25) for Case (II) also.
By Lemma 6.1, after passing to a subsequence of {ui}, Mi,1ui con-

verges to h =
∑l

j=1
µj

|x−qj |n−2 . From integration by parts and the facts

�(∇Ui) + pKi(qi,j)U
p−1
i ∇Ui = 0,

�(∂λUi) + pKi(qi,j)U
p−1
i ∂λUi = 0,

the left hand sides of (7.24) and (7.25) are equal to

(7.31)
∫
|x|=δ0M

2
n−2

i,j

(
∂gi

∂r
∇Ui − gi

∂∇Ui

∂r

)
dσ

and

(7.32)
∫
|x|=δ0M

2
n−2

i,j

(
∂gi

∂r
∂λUi − gi

∂(∂λUi)
∂r

)
dσ,

respectively.
For 1 ≤ j ≤ l, since qj is a simple-like blowing-up point, we have

(7.33) mi ∼M−1
i,j .

When j ≥ l + 1, Li,jM
− 2

n−2

i,j → 0 as i→ ∞. Thus,

(7.34) M−1
i,1 >> M−1

i,j .
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Now assume j ≥ l + 1. On
{
x : |x| = δ0M

2
n−2

i,j

}
,

gi = ũi +O(M−2
i,j ) and ∇gi = ∇ũi +O(M

−2− 2
n−2

i,j ).

By (7.34), we have on
{
x : |x| = δ0M

2
n−2

i,j

}
,

gi(x) = (1 + o(1))M−1
1,i M

−1
i,j h(qj +M

− 2
n−2

i,j x),

∇xgi(x) = (1 + o(1))M−1
i,1 M

−1− 2
n−2

i,j ∇yh(qj +M
− 2

n−2

i,j x),

where y = qj +M
− 2

n−2

i,j x. We have∫
|x|=δ0M

2
n−2

i,j

∂gi

∂r
∇Ui

= −(1 + o(1) + c1(δ0))
n− 2
n

|Sn−1|∇yh(qj)M−1
i,1 M

−1− 2
n−2

i,j ,

−
∫
|x|=δ0M

2
n−2

i,j

gi
∂∇Ui

∂r
= −(1 + o(1) + c2(δ0))

× (n− 1)(n− 2)
n

|Sn−1|∇yh(qj)M−1
i,1 M

−1− 2
n−2

i,j ,∫
|x|=δ0M

2
n−2

i,j

∂gi

∂r
∂λUi

= −(o(1) + c3(δ0))
n− 2
n

|Sn−1|∇yh(qj)M−1
i,1 M

−1
i,j ,

−
∫
|x|=δ0M

2
n−2

i,j

gi
∂∂λUi

∂r

= −(1 + o(1) + c4(δ0))
(n− 2)2

2
|Sn−1|∇yh(qj)M−1

i,1 M
−1
i,j ,

where cj(δ0) → 0 as δ0 → 0. Hence as i→ ∞

−
∫
|x|=δ0M

2
n−2

i,j

(
∂gi

∂r
∇Ui − gi

∂∇Ui

∂r

)
dσ

= −(1 + o(1) + c(δ0))(n− 2)|Sn−1|∇yh(qj)M−1
i,1 M

−1− 2
n−2

i,j ,

(7.35)



prescribing scalar curvature on Sn 153

and ∫
|x|=δ0M

2
n−2

i,j

(
∂gi

∂r
∂λUi,λ − gi

∂∂λUi,λ

∂r

)
dσ

= −(1 + o(1) + c̃(δ0))
(n− 2)2

2
|Sn−1|h(qj)M−1

i,1 M
−1
i,j ,

(7.36)

where c(δ0), c̃(δ0) → 0 as δ0 → 0. Now from (7.24), (7.25), (7.35) and
(7.36), we obtain (7.1) and

n− 2
2n

∫
|x−qi,j |≤δ0

〈x− qi,j ,�Ki(x)〉u
2n

n−2

i (x)dx

= −(1 + o(1) + c2(δ0))
(n− 2)2

2
|Sn−1|h(qj)M−1

i,1 M
−1
i,j

+ o

(
tiM

− 2βj
n−2

i,j

)
+O

(
δn−1
0 tiM

− 2n
n−2

i,1

)
.

By (7.1) and the fact Mi,j |qj − qi,j |n−2
2 is bounded,∫

|x−qj |≤δ0

〈x− qj ,�Ki(x)〉u
2n

n−2

i (x)dx

=
∫
|x−qj |≤δ0

〈x− qi,j ,�Ki(x)〉u
2n

n−2

i (x)dx

+
∫
|x−qj |≤δ0

〈qi,j − qj ,�Ki(x)〉u
2n

n−2

i (x)dx

=
∫
|x−qi,j |≤δ0

〈x− qi,j ,�Ki(x)〉u
2n

n−2

i (x)dx

+ o(1)M−1
i,1 M

−1
i,j + o

(
tiM

− 2βj
n−2

i,j

)
+ o

(
δn−1
0 tiM

− 2n
n−2

i,1

)
.

We obtain (7.2).
When l ≥ 2 and 1 ≤ j ≤ l, after passing to a subsequence of {ui}, we

have ∞ > limLi,jM
− 2

n−2

i,j = c > 0. Therefore on
{
x : |x| = δ0M

2
n−2

i,j

}
,

we have

gi(x) ∼ Ui(x),

gi(x) = (1 + o(1))
[
M−1

i,1 M
−1
i,j h(qj +M

− 2
n−2

i,j x) − 1
|x|n−2

]
,

∇xgi(x) = (1 + o(1))
[
M−1

1,i M
−1
i,j ∇yh(qj +M

− 2
n−2

i,j x) +
(n− 2)x

|x|n
]
,
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From these estimates, we obtain

∫
|x|=δ0M

2
n−2

i,j

(
∂gi

∂r
∇Ui − gi

∂∇Ui

∂r

)
dσ

= −(1 + o(1) + c(δ0))(n− 2)|Sn−1|∇yhj(qj)M−1
i,1 M

−1− 2
n−2

i,j ,

(7.37)

and ∫
|x|=δ0M

2
n−2

i,j

(
∂gi

∂r
∂λUi,λ − gi

∂∂λUi,λ

∂r

)
dσ

= −(1 + o(1) + c̃(δ0))
(n− 2)2

2
|Sn−1|hj(qj)M−1

i,1 M
−1
i,j ,

(7.39)

where hj = h − µj

|x−qj |n−2 , c(δ0), c̃(δ0) → 0 as δ0 → 0. Putting these
estimates into (7.24) and (7.25), we obtain (7.3) and (7.4). q.e.d.

8. Isolated blowing up

Proof of Theorem 1.3. Suppose that there exists a blowup point q
which is not isolated. Then by Theorem 2.1, Corollary 2.3, Theorem 2.4,
Theorem 2.5 and (6.8), q is the only simple-like blowup point. Thus

l = 1, q = q1 and β1 <
n− 2

2
. By (ii) of Theorem 2.5,

(8.1) ui(x) ≤ c|x− q1|−
n−2

2

for x ∈ Bi = {x | |x− q1| ≤ δ|q1 − qi,1|}, where c is independent of δ if

δ ≤ 1
2
, and

(8.2) ui(x) ≤ c1Uλi
(x− qi,1)

for x �∈ Bi, where λi = ui(qi,1)
−

2
n− 2 and c1 = c1(δ).

In particular, we have

(8.3) mi ∼M−1
i,1 = ui(qi,1)−1.

Now, let {qj}m
j=2 be the other blowup points, and Ωi =

m⋃
j=1

B(qj , δ0).

Then, (8.3) implies

ui(x) ≤ cM−1
i,1 (1 + |x|)2−n
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for x �∈ Ωi. By the Pohozaev identity,

(8.4)
∫

Rn

〈x− q1,�Ki〉u
2n

n−2

i (x)dx = 0, and

(8.5)
∫

Rn

〈ei,�Ki〉u
2n

n−2

i (x)dx = 0,

where ei =
�K̂(qi,1)
| � K̂(qi,1)|

. By (8.1) and (8.2), we have

∣∣∣∣∣
∫
|x−q1|≤δ0

〈x− q1,�Ki〉u
2n

n−2

i (x)dx

∣∣∣∣∣
≤ c ti

{∫
Bi

|x− q1|β1−ndx

+
∫

B(q1,δ0)\Bi

|x− q1|β1U
2n

n−2

λi
(x− qi,1)dx

}
≤ c ti|qi,1 − q1|β1 ,

(8.6)

where lim
i→+∞

(
u(qi,1)|qi,1 − q1|

n−2
2

)
= +∞ is used. As in (4.29), we can

obtain the lower bound

(8.7)
∫

B(q1,δ0)
〈ei,�Ki〉u

2n
n−2

i (x)dx ≥ c2 ti|qi,1 − q1|β1−1,

provided that δ is small enought.

On the other hand, we have

(8.8)

∣∣∣∣∣
∫

Rn\Ωi

〈x− q1,�Ki〉u
2n

n−2

i (x)dx

∣∣∣∣∣ = O(1)tiM
− 2n

n−2

i,1 ,

(8.9)

∣∣∣∣∣
∫

Rn\Ωi

〈ei,�Ki〉u
2n

n−2

i (x)dx

∣∣∣∣∣ = O(1)tiM
− 2n

n−2

i,1 ,
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and by (7.2) of Lemma 7.1,

−
m∑

j=2

∫
B(qj ,δ0)

〈x− q1,�Ki〉u
2n

n−2

i (x)dx

=
m∑

j=2

[
−
∫

B(qj ,δ0)
〈qj − q1,�Ki〉u

2n
n−2

i (x)dx

−
∫

B(qj ,δ0)
〈x− qj ,�Ki〉u

2n
n−2

i (x)dx

]

= (1 + ε)(n− 2)|Sn−1|
m∑

j=2

(
〈qj − q1,�h(qj)〉

+
n− 2

2
h(qj)

)
·M−1

i,1 M
−1
i,j +O(1)tiM

− 2n
n−2

i,1 ,

= −(1 + ε)
(n− 2)2

2
|Sn−1|

m∑
j=2

h(qj)M−1
i,1 M

−1
i,j +O(1)tiM

− 2n
n−2

i,1

(8.10)

with some small ε. By (7.3) and (8.10),

m∑
j=2

∣∣∣∣∣
∫

B(qj ,δ0)
〈ei,�Ki〉u

2n
n−2

i (x)dx

∣∣∣∣∣
≤ c

m∑
j=2

M−1
i,1 M

−1
i,j +O(1)tiM

− 2n
n−2

i,1

≤ c1

m∑
j=2

∫
B(qj ,δ0)

〈x− q1,�Ki(x)〉u
2n

n−2

i (x)dx

+O(1)tiM
− 2n

n−2

i,1 .

(8.11)

Note that h(x) =
µ1

|x− q1|n−2
. Hence, we can use the following identity

in (8.10)

(8.12) 〈qj − q1,�h(qj)〉 = −(n− 2)h(qj).
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By (8.5) ∼ (8.11), we have

c3 ti|qi,1 − q1|β1−1

≤
∫

B(q1,δ0)
〈ei,�Ki〉u

2n
n−2

i (x)dx

≤ c

m∑
j=2

M−1
i,1 M

−1
i,j +O(1)tiM

− 2n
n−2

i,1

≤ c1

∣∣∣∣∣
∫

Rn\B(q1,δ0)
〈x− q1,�Ki〉u

2n
n−2

i (x)dx

∣∣∣∣∣
+O(1)tiM

− 2n
n−2

i,1

= c1

∣∣∣∣∣
∫

B(q1,δ0)
〈x− q1,�Ki〉u

2n
n−2

i (x)dx

∣∣∣∣∣
+O(1)tiM

− 2n
n−2

i,1

≤ c2

{
ti|qi,1 − q1|β1 + tiM

− 2n
n−2

i,1

}
.

(8.13)

Therefore,

(8.14) |qi,1 − q1|β1−1 ≤ c M
− 2n

n−2

i,1 .

Recall that β1 <
n− 2

2
. Then (8.14) yields a contradiction to the as-

sumption that limi→+∞(|qi,1 − q1|M
2

n−2

i,1 ) = +∞. We have proved that
every blowup point must be isolated.

To prove the second part, let us assume that qj is a blowup point
with βj < n+1 and limi→+∞ supB(qj ,δ0)(ui(x)|x− qj |n−2

2 ) = +∞. Since
(ii) of Theorem 2.5 is excluded, qj must be a simple blowup point. Thus,
ui lose the energy of only one bubble at qj and then, qi,j is the local
maximum point defined by (6.1). By the assumptions, we have

(8.15) lim
i→+∞

(
|qi,j − qj |M

2
n−2

i,j

)
= +∞ and

(8.16) ui(x) ≤ c Uλi
(x− qi,j) for |x− qj | ≤ δ0,

where λi = M
− 2

n−2

i,j . Applying Theorem 2.2, (8.14) implies

lim
i→+∞

Li,jM
− 2

n−2

i,j = +∞.
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Hence qj is the only simple-like blowup point. By repeating the same
argument as above, we can reach the same conclusion as (8.14), that is,

|qi,j − qj |βj−1 ≤ c M
− 2n

n−2

i,j

for some constant c > 0. Since βj < n + 1, the inequality yields a
contradiction to (8.15). Hence (1.20) is proved. q.e.d.

Set qi,j to be the local maximum point of ui defined by (1.21) and

ξi = M
2

n−2

i,j (qi,j − qj). Let ξ be any limit of ξi. Then we claim:

Lemma 8.1. ξ satisfies

(8.17)
∫

Rn

�Qj(y + ξ)U
2n

n−2

1 (y)dy = 0.

Proof. If Li(qi,j)M
− 2

n−2

i,j is bounded where Mi,j = ui(qi,j), then
(8.17) is proved by Theorem 2.2. So, we may assume

lim
i→+∞

Li(qi,j)M
− 2

n−2

i,j = +∞.

Thus, qj is the only simple-like blowup points. Hence Lemma 7.1 can
be applied to all blowup point qk, k �= j. For the simplicity, we assume
j = 1. By using (7.2) of Lemma 7.1, (8.4), (8.5), (8.10) and (8.11), we
have the same conclusion as (8.13), i.e.,∣∣∣∣∣

∫
B(q1,δ0)

�Ki(x)u
2n

n−2

i (x)dx

∣∣∣∣∣
≤ c1

∣∣∣∣∣
∫

B(q1,δ0)
〈x− q1,�Ki〉u

2n
n−2

i (x)dx

∣∣∣∣∣
+O(1)tiM

− 2n
n−2

i,1

≤ c2 ti

{∫
B(q1,δ0)

|x− q1|β1u
2n

n−2

i (x)dx+M
−2n
n−2

i,1

}

≤ c3 ti

M
− 2n

n−2

i,1 log(Mi,1) if β1 = n

M
− 2β∗

1
n−2

i,1 if β1 �= n,

(8.18)
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where β∗1 = min(β1, n). On the other hand, by the scaling and (1.20),
we have ∫

B(q1,δ0)
�Ki(x)u

2n
n−2

i (x)dx

=
(∫

Rn

�Q1(y + ξ)U
2n

n−2

1 (y)dy + o(1)
)
tiM

− 2(β1−1)
n−2

i,1 .

(8.19)

Since β1 − 1 < n, (8.17) follows from (8.18) and (8.19) readily. q.e.d.

9. Asymptotic behaviors of Mi,j

Proof of Theorem 1.4. We first prove (1.22). By (1.20) in Theo-
rem 1.3, we only need to consider the case βj ≥ n+1. Suppose βj ≥ n+1
and (1.22) does not hold. Then we have |qi,j − qj |n−2

2 Mi,j → ∞ as

i→ ∞. By Theorem 2.2 and (6.7), j = l = 1. Let ei =
∇Ki(qi,1)
|∇Ki(qi,1)| . By

(7.1) and (7.2), ∫
|x−q1|≤δ0

〈x− q1,∇Ki〉u
2n

n−2

i dx

≥ c1

m∑
k=2

{
M−1

i,1 M
−1
i,k + o(tiM

−2β1
n−2

i,k )
}

+O(tiM
−2n
n−2

i,1 ),

for some c1 > 0 and∫
|x−q1|≤δ0

〈ei,∇Ki〉u
2n

n−2

i dx

= O
( s∑

j=2

{
M−1

i,1 M
−1
i,j + o(tiM

−2β1
n−2

i,k )
})

+O(tiM
−2n
n−2

i,1 )

as i→ ∞. On the other hand,∫
|x−q1|≤δ0

〈x− q1,∇Ki〉u
2n

n−2

i dx

≤ c ti|qi,1 − q1|β1 + c tiM
− 2n

n−2

1,i
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and∫
|x−q1|≤δ0

〈ei,∇Ki〉u
2n

n−2

i dx

≥ cti|qi,1 − q1|β1−1 − c1

tiM
− 2n

n−2

i,1 (− log |qi,1 − q1|) β1 = n+ 1

tiM
− 2n

n−2

i,1 β1 > n+ 1

≥ cti|qi,1 − q1|β1−1 − c1

tiM
− 2n

n−2

i,1 (logMi,1) β1 = n+ 1

tiM
− 2n

n−2

i,1 β1 > n+ 1

for some c > 0 and c1 > 0. Putting the estimates above together, we
obtain

|qi,1 − q1|β1−1 ≤ c|qi,1 − q1|β1 + c

tiM
− 2(β1−1)

n−2

i,1 (logM1,i) β1 = n+ 1

tiM
− 2n

n−2

1,i β1 > n+ 1.

Since |qi,1 − q1| → 0 as i→ ∞, we conclude

|qi,1 − q1| = O(M
− 2

n−2

i,1 (logMi,1)
1
n ) for β1 = n+ 1

|qi,1 − q1| = O(M
− 2

n−2
n

β1−1

i,1 ) for β1 > n+ 1.

From these, we conclude that (1.22) holds.
Now we prove m ≥ 2. Suppose m = 1. Then q = q1 is the only

blowup point and it must be simple. If β1 < n, then by Theorem 1.3,

(9.1) |qi,1 − q1| ≤ c M
− 2

n−2

i,1 .

By the Pohozaev identity,∣∣∣∣∣
∫
|x−q1|≤δ0

〈x− q1,�Ki〉u
2n

n−2

i (x)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
|x−q1|>δ0

〈x− q1,�Ki〉u
2n

n−2

i (x)dx

∣∣∣∣∣
≤ c1tiM

− 2n
n−2

i,1 .

(9.2)

By scaling and (9.1), it is not difficult to see that the left hand side of
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(9.2) is ∣∣∣∣∣
∫
|x−q1|≤δ0

〈x− q1,�Ki〉u
2n

n−2

i (x)dx

∣∣∣∣∣
= tiM

− 2β1
n−2

i,1

∣∣∣∣∫
Rn

Q(y + ξ)U
2n

n−2

1 (y)dy
∣∣∣∣

≥ c1 tiM
− 2β1

n−2

i,1 .

for some c2 > 0, where ξ = lim
i→+∞

M
2

n−2

i,1 (qi,1 − q1). Thus, it yields a

contradiction to β1 < n.

If β1 = n, the left hand side of (9.2) is greater than c1M
− 2β1

n−2

i,1 logMi,1

for some c1 > 0, which also yields a contradiction. Now we assume
β1 > n. The Pohozaev identity gives

(9.3)
∫

Rn

〈x− q1,�K̂(x)〉u
2n

n−2

i (x)dx = 0.

Since Mi,1ui(x) → µ1

|x− q1|n−2
for some µ1 > 0 and

Mi,1ui(x) ≤ c

|x− qi,1|n−2

for some constant c > 0, by multipling both sides of (9.3) by M
2n

n−2

i,1 and
using (1.22), we obtain∫

Rn

〈x− q1,�K̂(x)〉|x− q1|−2ndx = 0,

a contradiction to our assumptions. Hence m ≥ 2 is proved. Let

{q1, . . . , ql, ql+1, . . . , qm} be indexed by the ordering β1 = . . . = βl >
βl+1 = . . . = βl1 > βl1+1 ≥ . . . ≥ βm as in Lemma 6.2. To find
the asymptotic behavior of Mi,j , we consider the case l = 1 first. Let
hi(x) = Mi,1ui(x). Then hi(x) converges to µ1|x − q1|2−n for some
µ1 > 0 by Lemma 6.1. To compute µ1, we use

µ1(n− 2)|Sn−1| = lim
i→+∞

(
−
∫
|x−q1|=δ0

∂hi

∂ν
dσ

)

= lim
i→+∞

Mi,1

∫
|x−q1|≤δ0

Ki(x)u
n+2
n−2

i (x)dx

= n(n− 2)
∫

Rn

U
n+2
n−2

1 (y)dy = (n− 2)|Sn−1|.

(9.4)
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From (9.4), µ1 = 1, that is,

(9.5) h(x) =
1

|x− q1|n−2
.

In (7.2), since after passing to a subsequence, the left hand side is of

order O(tiM
− 2βj

n−2

i,j ), we may drop the term o(tiM
− 2βj

n−2

i,j ) in the right hand
side. Let Ω = ∪m

j=1B(qj , δ0). When β1 < n, together with (7.1) and
(7.2), the Pohozave identity implies

n− 2
2n

∫
B(q1,δ0)

〈x− q1,�Ki〉u
2n

n−2

i (x)dx

= −
m∑

j=2

n− 2
2n

(∫
B(qj ,δ0)

〈x− q1,�Ki〉u
2n

n−2

i dx

+
∫

Rn\Ω
〈x− q1,�Ki〉u

2n
n−2

i dx

)

= −(1 + o(1) + c1(d0))
(n− 2)2

2
|Sn−1|

m∑
j=2

(
|q1 − qj |2−nM−1

i,1 M
−1
i,j + o(tiM

− 2βj
n−2

i,j )

)

+O(tiM
− 2n

n−2

i,1 ),

(9.6)

where (9.5) is used. On the other hand, the left hand side of (9.6) is
equal to

β1

(n− 2
2n

)
tiM

− 2β1
n−2

i,1

(∫
Rn

Q1(y + ξ)U
2n

n−2

1 (y)dy
)

(1 + o(1)).

Thus, we have

(9.7) tiM
− 2β1

n−2

i,1 =
l1∑

j=2

η1,jM
−1
i,1 M

−1
i,j (1 + o(1)),

where

(9.8) η1,j =
n(n− 2)|Sn−1||q1 − qj |−n+2

β1|
∫
Q(y + ξ)U

2n
n−2

1 (y)dy|
.
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When β1 = n, we have

tiM
− 2n

n−2

i,1 logMi,1 =
l1∑

j=2

η1,jM
−1
i,1 M

−1
i,j ,

where

(9.9) η1,j =
(n− 2)|Sn−1||q1 − qj |−n+2∣∣∫

Sn−1 Q(y)dσ
∣∣

by noting that the left hand side of (9.6) will give

n
(n− 2

2n

)
tiM

− 2n
n−2

i,1

(∫
Sn−1

Q(y)dσ
)

logMi,1(1 + o(1)).

When β1 > n, we have

lim
i→+∞

(
M

2n
n−2

i,1

∫
Rn\⋃m

j=2 B(qj ,δ)
〈x− q1,�K̂〉u

2n
n−2

i dx

)
=
∫

Rn\⋃m
j=2 B(qj ,δ)

〈x− q1,�K̂〉|x− q1|−2ndx

for any δ > 0. By letting δ → 0, we have

tiM
− 2n

n−2

i,1 = (1 + o(1))
l1∑

j=1

η1,jM
−1
i,1 M

−1
i,j ,

where

(9.10) η1,j =
n(n− 2)|Sn−1||q1 − qj |−n+2∣∣∣∫
Rn〈x− q1,�K̂〉|x− q1|−2ndx

∣∣∣ .
Thus, (1.24) is proved.

To prove (1.25), we note βj < n− 2 for j ≥ 2. By (1.24), tM
− 2n

n−2

1,i =
O(M−1

i,1 M
−1
i,j ). Hence if we let d tend to 0 suitably, (7.2) implies

βj
n− 2
2n

tiM
− 2βj

n−2

i,j

∣∣∣∣∫
Rn

Qj(y + ξ)U
2n

n−2

1 (y)dy
∣∣∣∣

= (1 + o(1))
n− 2
2n

∫
B(qj ,δ)

〈x− q1,�Ki〉u
2n

n−2

i dx

= (1 + o(1))
(n− 2)2

2
|Sn−1||q1 − qj |−n+2M−1

i,1 M
−1
i,j ,
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which is (1.25).
To prove (1.28), it is enough to prove (1.28) for j = 1. As the proof

of (9.5), we have

(9.11) h(x) =
l∑

k=1

µk

|x− qk|n−2

and

(9.12) µ1 = 1.

Since Mi,kui(x) also converges to h̃(x) where

h̃(x) =
1

|x− qk|n−2
+

l∑
j �=k

µ̃j

|x− qj |n−2
,

we have

(9.13) µk = lim
i→+∞

Mi,1

Mi,k
.

Since l ≥ 2, we recall that Theorem 2.2 and Lemma 6.2 imply βj < n−2
for all j. By (7.4), we have for j = 1

β1
n− 2
2n

tiM
− 2β1

n−2

i,1

(∫
Rn

Q1(y + ξ)U
2n

n−2

1 (y)dy
)

(1 + o(1))

= −(n− 2)2

2
|Sn−1|h1(q1)M−1

i,1 M
−1
i,1

= −(n− 2)2

2
|Sn−1|

 l∑
j=2

µj

|qj − q1|n−2
M−1

i,1

M−1
i,1

= −n− 2
2

|Sn−1|
l∑

j=2

1
|qj − q1|n−2

M−1
i,1 M

−1
i,j ,

where the last equality comes from (9.13). Clearly, (1.28) follows imme-
diately. Identity (1.29) also follows from (7.2) and (9.13) immediately.
Thus, the proof of Theorem 1.4 is complete. q.e.d.

10. Apriori estimates

In this final section, we are going to prove the apriori bound of
Theorem 1.1. Here, we consider a sequence of blowing up solutions of
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Equation (1.3) with K = Ki more general than the one in previous sec-
tions. We assume that Ki converges to a function, say K, in C1, and for
simplicity, assume Ki has the same set of critical points {q1, q2, . . . , qN}.
Let Qi,j(y) be the homogeneous function in (K0) for Ki at qj . Assume
that K satisfies (K0) ∼ (K1) and Qi,j(y) → Qj(y) in C1. Let βi,j be
the degree of Qi,j and

(10.1) βj = lim
i→+∞

βi,j >
n− 2

2

for all j such that qj ∈ Γ−, where Γ− is defined in Section 1.
By results of [8], [9], it is known that any blowup point is isolated.

Without loss of generality, the point +∞ is assumed not to be a blowup
point. Let {q1, . . . , qm} be the set of blowup points such that q1, . . . , ql
are all simple blowup points and ql+1, . . . , qm are non-simple blowup
points. Following the same proof of Lemma 6.1 and part (i) of Theo-
rem 1.4, we have l ≥ 1 and m ≥ 2. Another important result in [8], [9]
is that qj is simple if and only if βj ≥ n − 2. This result follows from
Theorem 1.3 of [8], [9] when βj �= n − 2. For the case βj = n − 2, it
follows from the following lemma similar to Lemma 7.1.

Lemma 10.1. For 2 ≤ j ≤ m if l = 1 and 1 ≤ j ≤ m if l ≥ 2, we
have

n− 2
2n

∫
|x−qj |≤δ

�Ki(x)u
2n

n−2

i (x)dx

= −(1 + o(1) + c1(δ))

· (n− 2)|Sn−1|
(
n(n− 2)
K(qj)

)n−2
2

� h̃j(qj)M̂−1
i,1 M̂

−1− 2
n−2

i,j

+ o(M̂
− 2βi,j

n−2

i,j ) +O(δn−1M̂
− 2n

n−2

i,1 ),

(10.2)

n− 2
2n

∫
|x−qj |≤δ

〈x− qj ,�Ki〉u
2n

n−2

i (x)dx

= −(1 + o(1) + c2(δ))

· (n− 2)2

2
|Sn−1|

(
n(n− 2)
K(qj)

)n−2
2

h̃j(qj)M̂−1
i,1 M̂

−1
i,j

+ o(M̂
− 2βi,j

n−2

i,j ) +O(δn−1M̂
− 2n

n−2

i,1 ),

(10.3)
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where

h(x) = lim
i→+∞

M̂i,1ui(x) =
l∑

j=1

µj

|x− qj |n−2
,

h̃j(x) = h(x) if j ≥ l + 1, and

h̃j(x) = h(x) − µj

|x− qj |n−2

if 1 ≤ j ≤ l and l ≥ 2.

Here, M̂i,j and qi,j are the local maximum and a local maximum
point of ui near qj satisfying

(10.4) M̂i,j = ui(qi,j) = max
|x−qj |≤δ0

ui(x)

We can prove Lemma 10.1 by the same argument as in Lemma 7.1, but

the proof is simpler because βj >
n− 2

2
for all j. The position qi,j also

satisfies (1.22) for some constant c > 0. When βj ≤ n−2, it was proved
in [9]. When βj > n − 2, it is a consequence of Lemma 10.1, as shown
in the previous sections.

Another important consequence of Lemma 10.1 is the asymptotic
behavior of M̂i,j which is similar to Theorem 1.4.

Theorem 10.2. Assume that K satisfies (K0) and (K1) and βj >
n−2

2 for all qj ∈ Γ−. Let q1, . . . , ql are simple blowup points and
ql+1, . . . , qm are not simple blowup points. Set

Mi,j =
(
n(n− 2)
K(qj)

)n−2
4

M̂i,j

where M̂i,j is the local maximum in (10.4). Then m ≥ 2, l ≥ 1, β1 =
. . . = βl > βj for j ≥ l + 1, and the following hold:

(i) If l = 1 and qj is indexed by the ordering β1 > β2 = . . . = βl1 >
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βl1+1 ≥ . . . ≥ βm, then

|b1|
(

n(n−2)
K(q1)

)n
2
M

− 2β∗
1

n−2

i,1 if β1 �= n(
n(n−2)
K(q1)

)n
2
M

− 2β1
n−2

i,1 logMi,1 if β1 = n


= (1 + o(1))n(n− 2)|Sn−1|

l1∑
j=2

(
n(n− 2)
K(q1)

)n−2
4

·
(
n(n− 2)
K(qj)

)n−2
4

|q1 − qj |−n+2M−1
i,1 M

−1
i,j

(10.6)

and

|bj |
(
n(n− 2)
K(qj)

)n
2

M
− 2βj

n−2

i,j

= (1 + o(1))n(n− 2)|Sn−1|
(
n(n− 2)
K(q1)

)n−2
4

·
(
n(n− 2)
K(qj)

)n−2
4

M−1
i,1 M

−1
i,j

(10.7)

for 2 ≤ j ≤ m.

(ii) If l ≥ 2, then β1 = . . . = βl = n− 2,

|bj |
(
n(n− 2)
K(qj)

)n
2

M−2
i,j

= (1 + o(1))n(n− 2)|Sn−1|
l∑

k=1,k �=j

(
n(n− 2)
K(qj)

)n−2
4

·
(
n(n− 2)
K(qk)

)n−2
4

|qj − qk|−n+2M−1
i,j M

−1
i,k

(10.8)

for 1 ≤ j ≤ l and,

|bj |
(
n(n− 2)
K(qj)

)n
2

M
− 2βj

n−2

i,j

= n(n− 2)|Sn−1|(1 + o(1))
l∑

k=1

(
n(n− 2)
K(qj)

)n−2
4

· n(n− 2)
K(qk)

|qj − qk|−n+2M−1
i,j M

−1
i,k

(10.9)
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for l + 1 ≤ j ≤ m where bj is given in (1.27).

Now we are in the position to prove the apriori bound of Theo-
rem 1.1. In fact, we are going to prove the result for more general
situations. Let A = {qk1 , . . . , qkm} be a subset of Γ− where βk1 ≥ βk2 ≥
. . . ≥ βkm . A is called admissible if m ≥ 2 and one of the following
conditions holds:

(i) n �= βk1 > βk2 and

(10.10)
1
β∗k1

+
1
β∗k2

=
2

n− 2
,

where β∗j = min(βj , n).

(ii) There exists an integer l ≥ 2 such that

(10.11) n− 2 = βk1 = βk2 = . . . = βkl
> βkl+1

≥ . . . ≥ βm.

For an admissible set A of case (i), for simplicity, assume it is
{q1, . . . , qm} with β1 > β2 = . . . = βl1 > βl1+1 ≥ . . . ≥ βm,, we de-
fine η = η(A) by

η(A) = (n(n− 2)|Sn−1|)
2β∗

1
n−2

(
n(n− 2)
K(q1)

)β∗
1−n

2

l1∑
j=2

(
n(n− 2)
K(qj)

)−(1+
(n+2)β∗

1
2(n−2)

)

|bj |1−
2β∗

1
n−2 |q1 − qj |2−n.

(10.12)

For A = {q1, . . . , ql, . . . , qm} of case (ii), we associate with a l× l matrix
ηij(A):

(10.13) ηjk(A) =


|bj |
(

n(n−2)
K(qj)

)n
2 if j = k

−n(n− 2)|Sn−2|
(

n(n−2)
K(qj)

)n−2
4

·
(

n(n−2)
K(qk)

)n−2
4 |qj − qk|−n+2 if j �= k.

Now we can state our main theorem.

Theorem 10.3. Assume that K satisfies (K0) ∼ (K1) with βj >
n−2

2 for any qj ∈ Γ−. For any admisible set A, assume η(A) �= 1 for
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case (i) and the first eigenvalue of η(A) is not zero for case (ii). Then
there is a constant c > 0 such that for any solution w of Equation (1.1),

c−1 ≤ w(p) ≤ c

holds for any p ∈ Sn.

Proof. Suppose ui(x) blows up at some point. Let

A = {q1, . . . , ql, . . . , qm}
be the blowup set of ui. Two cases are discussed separately.

Case 1. If l = 1, by (10.7), we can solve M−1
i,j in term of M−1

i,1 for
2 ≤ j ≤ l1, and substitute it into (10.6). If β1 = n, then the additional
term logMi,1 makes two sides of (10.6) unbalanced. Thus, β1 �= n.
Also, it is easy to see that the exponent of M−1

i,1 of the right hand side

of (10.6) is equal to 1 +
(

2β2

n− 2
− 1
)−1

. Hence, we have

(10.14)
2β∗1
n− 2

= 1 +
1

2β2

n−2 − 1
,

which implies

(10.15)
1
β∗1

+
1
β2

=
2

n− 2
.

Then A is admissible. Applying equality (10.14) and comparing the
coefficients of both sides of (10.6) with each other, we have

η = 1 + o(1),

where η is given by (10.12) with A = {q1, q2, . . . , qm}.

Case 2. l ≥ 2. Since lim
i→+∞

Mi,1

Mi,j
= λj > 0 for 1 ≤ j ≤ l, by (10.8),

we have
l∑

k=1

ηjkλk = 0,

where ηjk is given by (10.13) and A = {q1, . . . , ql, . . . , qm}. Therefore,
the first eigenvalue of (ηjk) is equal to 0.

Since both cases yield a contradiction to the assumptions, the apriori
bound is established. q.e.d.
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We note that the assumptions of Theorem 1.1 imply there exist
no admissible subsets of Γ−. Hence, Theorem 1.1 is special case of
Theorem 10.3. The asymptotic formulas (10.6) ∼ (10.9) will be very
helpful when we come to compute the degree for the nonlinear Equation
(1.1).
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