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PRESCRIBING SCALAR CURVATURE ON SV,
PART 1: APRIORI ESTIMATES

CHIUN-CHUAN CHEN & CHANG-SHOU LIN

Abstract

In this paper, we describe great details of the bubbling behavior for a se-
quence of solutions w; of

n+2
Lw; + Riwi’“2 =0 on S",

where L is the conformal Laplacian operator of (S™, gg) and R; = n(n—2)+
t: R, Rect (S™). Ast; | 0, we prove among other things the location of
blowup points, the spherical Harnack inequality near each blowup point and
the asymptotic formulas for the interaction of different blowup points. This
is the first step toward computing the topological degree for the nonlinear
PDE.

1. Introduction

This is the first of a series of papers to study the problem of pre-
scribing scalar curvature on S™, the n-dimensional sphere with n > 3.
Let go be the metric on S™ induced from the flat metric of R**!, and R
be a given C! positive function on S™. We are interested in the ques-
tion whether there exists a metric g conformal to gg such that R is the
scalar curvature of g. Set g = cnwﬁgo for a suitable positive constant
cn- Then the question above is equivalent to finding a smooth positive
solution of

(1.1) Lw+ Rwi? =0 on 8",

Received October 9, 2000.

67



68 CHIUN-CHUAN CHEN & CHANG-SHOU LIN

where L = Ay — M
(S™, go). In general, the same question can be studied in any Rieman-
nian manifold. For a compact Riemannian manifold and a constant R,
this problem is called the Yamabe problem, which was solved in early
80s through the works by Trudinger [22], Aubin [1] and Schoen [19].
For a historic account, we refer the readers to Lee and Parker [14] and
references therein. For the last three decades, Equation (1.1) has been
continuing to be one of major subjects in nonlinear elliptic PDEs. For
recent developments, see [1], [2], [3], [5], [6], [7], [8], [9], [10], [11], [12],
[14], [15], [16], [17], [18], [19], [20], [21] and the references therein.

is the conformal Laplacian operator of

In [5], Chang-Gursky-Yang considered Equation (1.1) when n = 3
and R is a positive Morse function on $%. Under some nondegenerate
conditions on the critical points of R, Chang-Gursky-Yang were able
to obtain the apriori bound for positive solutions of Equation (1.1).
Furthermore, they computed the Leray-Schauder degree d for Equation
(1.1) by the following formula

(1.2) d=— |1+ Z (=1)ind®) |

pel—

where I'™ = {p € $3 | p is a critical point of R satisfying Ay R(p) < 0}
and ind(p) is the Morse index of the Hessian of R at p. When the right-
hand side of (1.2) is assumed to be nonzero, the existence of positive
solutions to Equation (1.1) was previously obtained by Bahri-Coron [3]
and Schoen-Zhang [21]. However, the degree-counting formula (1.2)
provides us more information about Equation (1.1). Particularly, it
tells us when the concentration phenomenon for solutions of (1.1) could
occur. Li [16] proved the apriori bound for Equation (1.1) on S* and
derived the formula for the Leray-Schauder degree by adding the effect
of the interaction of multiple blow-up points. In this series of papers,
we will generalize the results of [5] and [16] on S® and S* to higher
dimensions.

As in our previous works [8], [9], it is more convenient for us to
study (1.1) in R™. Without loss of generality, we may assume that the
north pole of S™ is not a critical point of R. By using the stereographic
projection 7 from S™ to R™, we set u(z) = ZnT_Q(l + |x|2)2_an(7r_1(x))
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for x € R". Then u(z) satisfies

(1.3) {Au(x) + K@i =0 m R,

u(@) = O(|]*") at oo,
where K (z) = R(n~(x)) for x € R™.

When K (x) is a constant, solutions of (1.1) can be classified com-
pletely. See [13] and [4]. For nonconstant R(x), it is well-known that
existence of solutions depends on K in a very subtle way. So, through-
out the paper and [10], we always assume 0 < a < K(x) < b and K (z)

has a finite set of critical points {qi,... ,qn}. Near each g;, by Taylor’s
expansion, K (x) can be written as

K(z) = K(g;) + Qj(z — ¢;) + R;(),

where Q;(z) is a C'! homogeneous function of degree B; > 1, ie.,
Q;(A\z) = MiQ;(x) for A > 0 and R; satisfies

lim |z — gj| % Rj(z) = lim |z — g;|' %[ R;|(z) = 0.
T—qj T—qj

Here, (3; is not necessarily an integer. Of course, if K(z) € C*°, then
B; must be an integer.

(Ko) |[v Qj(x)\ > Cllx\ﬁj’l for some ¢1 > 0.
Let Uy (z) = (1+ |zf2)" "2

(K1) At each critical point ¢;, according to 3;, K satisfies one of
the following conditions (i), (ii) and (iii):

(i) If B; < n, Q; satisfies

S VQs (w4 OV ()|, (0

(1.4) 1 0.
Jen Qj(z + U (2)dx

for any & € R™.

(ii) If Bj = n, then

(1.5) Qj(x)do # 0

Sn—1
provided that there exists a vector £ € R" satisfying

(1.9 | vaste+ v wn=o.
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(iii) If B; > n,
(L7) | =0 9K =g 0.

We note that all integrals in (1.4)—(1.7) are L*(R"). In [5], [9] and
[16], we knew that only part of critical points of K might be blowup
points for certain solutions. Denote by I'” those critical points of K.
More precisely:

Definition 1.1. Assume that K satisfies (K0). We say ¢; € I'" if
and only if K satisfies one of the following conditions (i), (ii) and (iii)
at g; according to (3;:

(i) If Bj < n, there exists £ € R™ such that
on
vVQ;(z+ U ?(z)de =0 and
Qj(z+ U *(x)dx < 0.
R

ii) If B; = n, there exists £ € R” satisfying
J

/VQ]az—i-ﬁU” *(z)dz =0 and

(1.9)
Qj(x)do < 0.
Snfl
(iii) If 8; > n,
(1.10) | @0 9K~ g <o

Clearly, the notion ¢; € I'” and conditions (K0)-(K1) are invariant
under the conformal transformations.We list several examples of @) to
explain conditions (K0) and (K1).

Example 1.2.

1. Qy) = Z?:l ajng-. Clearly a; # 0 for all j iff (K0) holds. It is

easy to see that £ = 0 is the only vector satisfying fRn vQ(y +
2n

U (y)dy = 0 and [, Q U" 2( )dy = cn 5y a; for some

positive constant ¢,,. Thus, (KO) and (K1) hold for a Morse func-

tion R on S™ satisfying AR(q) # 0 for any critical point ¢ of R.
And g eI'" iff AR(q) <0
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2. Qy) =37, ajyg?,aj #0, for j =1,2,... ,n. Clearly, no £ € R"
2n
satisfies [p, VQ(y + &)Uy (y)dy = 0.

3. Q) = ¥t — > 2y]2 For A > -2 Q(y) satisfies (KO)
and (1. 4) In fact there are exactly two solutions £ = +&y of

fRn VQ y+§)U ( )dy - O) Where 50 - (50,1) 9t 70) fOI' some
0,1 > 0. Direct computations show

[aw+ U2 (y)dy = [ew- U (y)dy < 0.

The main purpose of our work is to show that homogeneous functions
Qj(x) for ¢ € '™ completely determine the structure of solutions of
(1.1). Conditions (K0) and (K1) are already enough for our purpose.
However, in order to make our presentation transparent here, each Q;
at g; € I'” is assumed to satisfy

(K2) For each ¢; € I'™ with §; < n, assume that

(1.11) Q](a:—i—§)U" 2( Jdz < 0 whenever

/ VQi(@ + U (2)dx = 0.

To state our main theorem, we introduce the notion A~. Assume
(KO) and (K1). Let A~ be a collection of subsets of I'” such that a
subset A of I'™ is an element in A~ if and only if A satisfies the following
conditions.

1. The number of the elements in A > 2.

2. For any two elements ¢; # ¢ in A, the exponents (3; and [

satisfies
1 n 1 2
65 ﬂk —2’
where
(1.12) B; = min(Gj,n).

Now we can state a special case of the Main Theorem we are going
to prove in this paper and the subsequent one [10].

71
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Theorem 1.1. Assume that K satisfies (KO) and (K1) such that (3;

n—2
of Q; at each critical point q; in I'™ satisfies 3; > —5 In addition,
we assume
1 1 2

o= T
ﬁj B n—2

for q; # q. € I'". Then there ewists a constant ¢ > 0 such that for any
solution w of (1.1), we have

(1.13)

(1.14) ¢t <w(y) <c forye S

Let d denote the Leray-Schauder degree for the nonlinear map w +
n+2

L=Y(Rwn-2) on C%%(S™) with 0 < o < 1. Moreover, if (K2) holds

additionally, then d satisfies

(115) d=— |1+ 3 (<) deg Fy+ > JJ ()" deg F)|

jer- AcA— keA

where deg F; denotes the standard topological degree of the mapping
Fi(z) = vQj(z) from S™1 to R"\{0}, and I'" and A~ are defined
as above.

We remark that the assumption 3; > "T_Q in Theorem 1.1 is an also
necessary condition for the existence of apriori bounds for solutions of
Equation (1.1). In [11], we constructed blowing up solutions of (1.1)
for some K satisfying (K0) and (K1) with 3; < 272, To establish
the apriori bound (1.14), the first step is to understand the details of
blowing-up behavior of a sequence of solutions w; near each blow-up
point. In [8], [9] for a sequence of local solutions u; of

n+2

(1.16) Au; + Ki(z)u > =0 in By = {x | |z] < 2}

where 0 is assumed the only blowup point, we have completely classified
types of concentrations of u; according to the flatness 8 of @) at the
blowup point 0. In particular, if an < (B < n then

(1.17) wi(z) ~ M, "
in any compact set of B1\{0}, where

21 it B<n—2
T if B>n—2,
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and M; is the maximum of u; in By. Hereafter, the notation a; ~ b;
for two sequences of positive numbers denotes that the ratio a;/b; is
bounded above and below by two positive constants independent of 1.
Thus, w;(z) | 0 in C2.(B1\{0}). The result (1.17) is important when
global solutions u; of Equation (1.3) are considered, because those local
maxima must satisfy certain rules according to (1.17). Together with

the Pohozaev identity, we must have ﬂ—l; + é = ﬁ for some blowup

points ¢; and g,. The apriori bound (1.14) then follows from this. We
will give a complete proof of this result in Section 10 of the paper. When
n—2 < f3; < n for any critical point g;, the apriori bound was obtained
previously in [15].

The degree counting formula (1.15) is more difficult to prove. Usu-
ally, there are two ways to establish the Leray-Schauder degree. One is
to approach the nonlinear term in Equation (1.1) by subcritical expo-
nents. Another one is to deform the curvature function R, e.g., replace
R in Equation (1.1) by R =1+ t(R — 1) for 0 <t < 1. For the latter
case, if one can show for any ¢ > 0, solutions of (1.1) with R replaced
by R; are uniformly bounded for ¢ < ¢t < 1, then the Leray-Schauder
degree is the same for each t # 0. Thus, for our purpose, it suffices to
compute the Leray-Schauder degree for small £ > 0. In the situation
when ¢ is small enough, the degree theory developed by Chang-Yang [6]
can be applied very well. But, Chang-Yang was only able to prove the
degree counting formulas (1.2) for the class of Morse functions. More
seriously, as we will see, the degree formula in [6] did not count all pos-
sible solutions. Roughly speaking, their results only covered the case
when solutions of (1.1) possess at most one blow-up point as ¢ tends to
zero. Later in this paper, we will prove that under assumptions (KO)
and (K1), if a sequence of solutions w; of (1.1) with Ry, as the scalar
curvature blows up as t; — 0, then the number of blow-up points must
be greater than one. Therefore, solutions obtained in [6] only consist of
bounded solutions as ¢ — 0. We also remark that if the degree 3; for
each ¢g; € I'” is no less than n—2, then any sequence of solutions of (1.1)
with R replaced by R;, remains uniformly bounded as t; — 0. In this
case, A~ is an empty set and the degree-counting formula (1.15) reduces
tod = —[1+ Z:jep_(—l)"Jrl deg F;]. When R is a Morse function on
S3, this is the degree counting (1.2).

In this paper, we consider a sequence of solutions u; of (1.3) with
curvature functions K; set by

(1.18) Ki(x) =n(n —2) + t; K (z),
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where we assume t; — 0. Here, K is a C! function satisfying the
nondegenerate conditions (K0)—(K1). Solutions u; are always assumed
to blow up at some points of R™. The main purpose of this article is to
study blowup behavior of u; near a blowup point and to study the effect
due to the interaction between different blowup points. This is the first
step for computing the degree-counting formula. Based on these, we
will construct all possible blowup solutions of (1.1) as ¢; | 0 in [10] and
then we are able to compute the “local degree” for each blowup solution.
In [10], we will give a complete proof of the degree formula. From the
analytic point of view, the main difference between this paper and [9]
are: First, we consider the degenerate case lim;_.o, K; = constant here,
which can not be covered by the results for nondegenerate lim;_,., K;
in [9]. Second, we allow the number 3; defined in (K0) to be greater
than or equal to n in this paper, while we assume 1 < 3; < n — 2 in
[9]. Third, we also consider the interaction between different blow-up
points here, while we mainly study local behavior near a blow-up point
in [9].

The first interesting question concerning a sequence of blowup so-
lutions is to find the location of blowing up points. A general result
states that if K; converges to K in C', then any blowup point must be
a critical point (see [21], [16], [8]). Obviously, this result could not be
of any help for our present situation because the limit function of K; is
identically a constant. Nevertheless, by using more delicate estimates
than the nondegenerate case, we are still able to prove the following.

Theorem 1.2. Suppose K satisfies (KO0) and w; is a sequence of
solutions of (1.3) with K = K; given in (1.18). Then s7K(q) = 0 for
any blowup point q of u;.

Throughout the paper, we let {qi,...,qn} be the set of blowup
points for {u;}, and g; be the degree of Q; of K at gj. To analyze the
blowup behavior of u; more accurately, the important step is to show the
isolatedness of blowup points, that is, to prove the spherical Harnack
inequality (1.19):

(1.19) max u;(z) <c¢ min wi(z) for 0 <r <.
|z—gj|=r lz—q;|=r

For nondegenerate case, the spherical Harnack inequality (1.19) was
proved even for local solutions. See [8], [9] of the reference. For the
degenerate case, we do not know whether the spherical Harnack in-
equality holds or not for local solutions. In Section 4, we study the
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situation when it fails. Due to the analysis there and the effect of inter-
actions of different blowup points, nevertheless, the spherical Harnack
inequaltiy is proved for global solutions.

Theorem 1.3. Suppose that K satisfies (KO) and (K1). Assume

2(n—2
Bj > M for each gj € I'". Then any blowup point is isolated.
n

Furthermore, if B; <n+1 at a blowup point q;, then u; satisfies
(1.20) i) <c v — g 7T

for |z — qj] < 0g with some positive constants oy and c.

By the theory of elliptic equations and the scaling property of Equa-
tion (1.3), inequality (1.20) implies (1.19). Hence, we also call (1.20)
the spherical Harnack inequality. We note that in Theorem 1.3, (K1) is
required only for those ¢; where 8; < n — 2.

For each blowup point g;, we let M; ; and g; ; denote the local max-
imum and a local maximum point of u; near g;, that is,

(121) Mi,j = ’LLZ'(qu) = max uz($),
lz—q;]|<do

where dp is a small positive number such that the distance of g; and
qr are greater than 2dy. The following theorem is concerned with the
asymptotic relations of M; ; for different blowup points. Let [ denote
the nonnegative positive integer such that q1,... , ¢ are simple blowup
points and ¢;11, ... , gy are not simple blowup points. For the notion of
simple blowup points, we refer the reader to [8], [9] or Section 2 of this
paper.

Theorem 1.4. Assume that K satisfies (KO) and (K1) and assume
8 of Q > ”T_Q at any q € T'—. Let {qj};-”:1 be the set of blowup points
for u;, and M;;,q;; and | be defined as above. Then m > 2,1 > 1
and By = ... = B > B; for | +1 < j < m. Furthemore, the following
conclusitons hold:

(i) We have g € '™ for 1 < j <m and there exists a constant ¢ > 0

such that
_2
an;z if B <n+1,
-2 1
(1.22) ‘qm' — qj\ <c Mi7jn;2 (]og MiJ)n if ﬁj =n-+1,
M, if B;>n+1
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2

Moreover, the limit vector & = lim; 400 M,"; *(gij — qj) satisfies
(1.8) if Bj < n, and satisfies (1.6) if n < ﬁ] < n+1

Assume that | = 1. We index q; according to the ordering of

Bj:PL>Poe=...=0y > Bus1 > ... = B for some positive
integer l1. Then
1 2
1.23 — = :
(1.23) pf P2 n—2
M; ; satisfies
(1.24)
_ 261
. ) n—2 .
tljlﬁhl Zf ﬁl 7£ n 1 + O anj 1]\41—1 ,

tiM; ;" log M1 if Bi=n

and

—28;

(1.25) ;M7 = (14 o(1)n;aM; ' M7 for2<j<m,

where

n(n

—2)18" lgj — el "

(1.26) 77j,k =

and

105 ’

By fon Qs + U (w)da
(1.27) by = with §=1imi_ o0 M; J(qm’ —q;) if Bi<n
”ISleJ if Bj=n

Jpn2

Assume | > 2. Then 31 =

2,6‘1

(1.28) t:M, "% = (1+0(1

and

2[3]-

(1.29) ;M /7> = (1+0(1))

q],vKHw—q\ My if Bj>n

.= <n—2 and M;; satisfies

Z N5 M 1Mk for1<j<lI,
k 1k4j

l
an,kMiTklMile forl+1 <7 <m.
k=1
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Theorem 1.4 gives us rather complete information about blowup
solutions, that is, the local maxima of blowup solutions must satisfy the
necessary conditions (1.24) and (1.25), or (1.28) and (1.29). Conversely,
in [10] we will construct such blowup solutions satisfying these relations
and compute the contribution of these solutions to the Leray-Schauder
degree of Equation (1.1). We note that the third term of the right hand
side of (1.15) corresponds to the effect of multiple blowup points.

The paper is organized as follows: In Section 2—Section 9, we con-
sider the degenerate case for Equation (1.3), that is, K;(z) = n(n—2)+
tK (x) with ¢; | 0. In Section 2, main results for local solutions are
stated and their proofs are given in the subsequent sections. There are
two main issues in Section 2. The first one is the quantity L;, which
is associated with each “good” local maximum point of solutions. The
quantity L; is introduced in Sections 2 and will play an important role
because it decides how large of the range where u; behaves “simply”.
We will give its proof in Sections 3 and this is the major step where the
method of moving planes is applied. Another important issue in Sec-
tion 2 is the spherical Harnack inequality (1.20). We will see that when
the flatness 6 > "T_Q, the spherical Harnack inequality always holds. See
Theorem 2.4. The case 8 < "772 is the difficult one for our analysis, even
when the Harnack inequality holds. In the general principle, we can ob-
tain the local bubbling informations through the Pohozaev identities.
However, we have to compute each term in the identity very accurately
and the Harnack inequality itself is not enough for us to achieve this
goal. We need a sharper estimate for the error term of the solution and
the approximation bubbles. This is a very delicate analysis because in
general the solutions might lose the energy more than one bubble. In
Section 5, we show that a method of ODE surprisingly gives us fine
estimates when the spherical Harnack inequality is validated. Together
with suitably chosen comparision functions, we complete the proof of
our desired estimate in Sections 5. See Theorem 2.7. This is one of
two difficult jobs in the paper. These estimates for the error term are
required in the proof of Lemma 7.1 in Section 7. Lemma 7.1 exactly
tells us how, through the Pohozaev identities, the local informations
can be put together to obtain more global one. Section 4 will deal with
the situation when the spherical Harnack inequaltiy (2.19) fails. Here,
we employ a technique of Schoen to localize blowup points. Combined
with the method of moving planes developed in Section 3, this provides
a clear picture for the case when the Harnack inequality does not hold.
Based on the analysis in Section 4 and Lemma 7.1, Theorem 1.3 and
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Theorem 1.4 are proved in Section 8 and Section 9, respectively. We
will prove Theorem 1.2 in Section 6 as a direct consequence of results
in Section 2. Finally, we will prove the apriori bound of Theorem 1.1 in
Section 10.
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2. Estimates for local solutions

For the convenience of the reader, we briefly review some of previous
results from [8] and [9], which would be useful later. Let u; be a solution
of

n+2

(2.1) Au; + Ki(z)u > =0 in Q,

where €2 is an open set in R™. Let xy be a blowup point. Following
Schoen’s idea, a blowup point x( is called simple if there exists a constant
¢ > 0 and a sequence of local maximum points x; of u; such that

1——+00
and
(2.3) wi(z; +x) < ¢ Uy, (x) for |z| <o,

2
where rg > 0 is independent of i, \; = wu;(z;)” "2 tends to zero as
i — +oo and
n—2

A 5
> for z € R™.

(2.4) Ux(z) = <)\2+|$2

For any A > 0, by elementary calculation, Uy (x) satisfies
n+2

AUy +n(n—2)Uy 2 () =0 in R

We note that the definition of a simple blowup point is different from
the original one given by Schoen. However, it is not difficult to prove
that these two definitions are equivalent.
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Instead of (2.3), the inequality
(2.5) wi(z; 4+ ) < ¢ uya;) |72
is often used when xq is a simple blowup point. Also, by (2.4), we have
(2.6) Us(z) < (2Jz))" "% for z #0,
which implies that if zq is a simple blowup point, then
(2.7) ui(x; +x) <c ]:U|_nT_2 for |x| < rg.

A blowup point x is called isolated if (2.7) holds for some ¢ and ¢ > 0.
It is easy to see a simple blowup point must be isolated. The inequality
(2.7) is important because it implies that the Harnack inequality holds
for each sphere with center x;, i.e., there exists a positive constant ¢ > 0
such that

(2.8) max uj(x) <c¢ min wu;(z)
le—z;|=r le—z;|=r
for 0 <r <rg.

Suppose that xg is a blowup point of u;. Theorem 1.3 in [8] states
that g is a simple blowup point if K;(x) — K(x) in C! and K; satisfies
for some constant c either (i) | 7 K;(z)| < cif n =3 or (ii)

(2.9 |7 Kilw)| < | v Kiw) P

if n > 4 in a neighborhood of x¢ for 1 < j < [ =n — 2. Also see [15]
for the same conclusion when global solutions are considered. We make
some remarks here. First, if K; = n(n —2) + t;K with K satisfying
(2.9), then (2.9) holds for K; also with the same constant c¢. Thus
Theorem 1.3 in [8] can apply to our case. Second, if K is smooth and
| 7 K(20)| > ¢ > 0, then obviously condition (2.9) holds for K; also.
Actually, from the first step of the proof of Theorem 1.3 in [8], the
smoothness assumption of K can be removed if z is not a critical point
of K. Even when xg is a critical point, it is not necessary to assume
that K is smooth. In this case, condition (2.9) can be replaced by

crfe — x| < | v K(2)] < eafar — wo| 7!
(2.10) in a neighborhood of z( for some constants
cg >cp and B> 1.
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Thus, Theorem 1.3 of [8] can be restated as follows:

A~

Theorem A. Let u; be a solutions of (2.1) with K; = n(n—2)+t;K
and xg € Q be a blowup point of u;. Assume that either xg is not a
critical point off(' or xg s a critical point ofk and K satisfies (2.10)
for some B >n —2. Then xq is a simple blowup point.

Obviously, if xg is a simple blow-up point, then there are no blowup
points in a small neighborhood of xy. If we further assume that K has a
discrete set of critical points in 2, then by Theorem A, u; has a discrete
set of blowup points at most. Hence, throughout Section 2 to Section 5,
we always assume that u; is a solution of

n+2 _
Au; + Ki(z)u]?(z) =0 on B\{0},
(2.11) u;(x) is uniformly bounded in any compact

set of Bo\{0},

where By = {z : |z| < 2}, and K;(x) = n(n—2) + ;K where K satisfies
(2.10) with g = 0 for x € By and some 3 > 1. Here, solutions u; is
assumed to blow up at 0. Let MZ denote the maximum of u; and x; be
a maximum point of u;, i.e.,

(2.12) M; = ui(a;) = max u;(z) — +00
|z|<2

as ¢ — 4oo. Clearly x; — 0. If 8 =1 or 8 > n — 2, by Theorem A,
(2.3) holds for some constant ¢ > 0. When 1 < < n — 2, the situation
is more complicated as shown in [9].

A solution u; may have local maximum points beside x;. Let z; be
any local maximum point of u; with u;(z;) — +o0o. Then by assumption
(2.11), lim; .o z; = 0. Let v;(y) be the scaled function defined by

2

(2.13) vi(y) = M; ug(z + M, "“2y) with M; = u(%).

2
Obviously, v;(y) is well-defined for |y| < M;*~? when i is large. In the
paper, we will always reduce the arguments to the situation when

vi(y) is uniformly bounded in any compact set of
(2.14) R™, that is, for any € > 0, there exists a sequence of
R; — +o00 such that

lvi(y) — Ur(y)| < elh(y) for [y| < R;.
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In this case, by passing to a subsequence, v;(y) converges to Uj(y) in
C2 (R"), where Uy (y) is given in (2.4) with A = 1.
For such “good” local maximum point z;, we set

. _ 2 Y N 28 1
(2.15)  Ly(zi) = min [(¢; 'ug(zi) 72 2] ) n2, (8 (i) 72 ) 72
where 3 = B if < n and 3 is any positive number in (n —1,n)
if 5 > n. One of the main themes for local solutions is to know if the
2

scaled vector M Z-m z; is bounded. This is closely related to the quantity

L;(z;). To see this, let us assume [ < n for simplicity. In this case, if
n—2
lim w;(z)|z| 2 = +oo, then

1——+00
2 2 B 28 28
wi(2) 72 |2 P = (ui(zi) 72 [za]) P (2) "2 = o(1)uy(z) 72
and , )
Li(z) = (t; 'uiz) 72 |z ) 7.
On the other hand, if

lim uz(z:l)\zl|nT_2 < 400,

i——+00
then it is easy to see

28 1
Li(z) ~ (t; tug(z) w=2) o2,

The quantity L;(z;) plays an important role for us to understand
the bubbling profile of u;. Our first result concerns with L;(x;) and
the simple blowup at 0. We recall z; is a maximum point of u; and
M; = ui(z;) is the maximum of u;. See (2.12).

Theorem 2.1. Suppose u; is a solution of (2.11) and K satisfies
(2.10) for some 8 > 1. Assume (1.4) in addition if 3 < n —2. Then
after passing to a subsequence, 0 is a simple blow-up point if and only
if there exists a constant ¢ > 0 independent of i such that

N2
]Min_2 <c Lz(:m)

for all 1.

T
An interesting case is when the ratio M, "~ L(z;) tends to +oo as

i — +oo. If u; is a global solution of (1.3), by applying the method of
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moving planes, we can prove that 0 is the only simple blowup point.
See (6.8).

A2
On the other hand, when the ratio M, "~ L(z;) is bounded, we have
the following result.

Theorem 2.2. Let u; and K satisfy the assumptions of Theorem 2.1
and let x;, M; and L;(z;) be defined in (2.12) and (2.15), respectively.
Suppose that there is ¢ > 0 such that

2
Ll(l‘l) <c Min72,

then Mz\xll%ﬁ is bounded and 3 < n — 2. Furthermore, if assume in

addition that K satisfies (KO) with @ being the homogeneous function
2

and lm & = & exists with & = M;" *x;, then & satisfies

1——+00

2n

(2.16) VQ(x + U ? (z)dx = 0.
R”l

The following consequence of Theorem 2.2 is important when we
come to determine the position of blowup points for global solutions of
(1.3).

Corollary 2.3. Let u; and K; satisfy the assumptions of Theo-

rem 2.1. Assume that either 7K (0) # 0 or 7K (0) = 0 with > n—2,
2
then lim L;(x;)M, "* = 4o0.
1——+00

Both proofs of Theorem 2.1 and 2.2 are given in Section 3, where the
application of the reflection method are discussed. By Theorem A, the
flatness B of K at 0 determines the bubbling behavior of w;. Conven-

tionally, u; is said to lose the energy of one bubble at 0 if u; converges
to 0 in CL (B2 \ {0}) and

2n_ S bl
2.17 lim u' " (x)dr = (") ,

where S, is the Sobolev best constant. Clearly, if u; blows up at 0
simply, then u; lost one bubble.

Theorem 2.4. Assume that K satisfies (K0) and (K1) at 0 with
”7_2 < B, and u; is a solution satisfying (2.11). Then u; loses the energy
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2

of only one bubble at 0. Suppose in addition that @ Lz(%)MZ—m <
11— 100
+00. Then there exists a constant ¢ > 0 such that

(2.18) ui(x) <e |x|2_Tn for|z| < 1.

2

Set & = ]\}[mel Then after passing to a subsequence, the limit & =
lim & satisfies (1.8).
1——+00

When 3 < ”772, it is possible that (2.18) does not hold and it is also
possible that u; loses energy of more than one bubble even (2.18) holds.
We first consider the case when inequality (2.18) does not hold. There
are two alternatives in this case.

Theorem 2.5. Assume that K satisfies (K0) and (K1) at 0, and u;
is a solution of (2.11). Suppose

(2.19) lim sup(ui(z)|z]"2 ) = +00.

i——+00
Then one of the followings holds:

(i) The origin is a simple blowup point and consequently, an isolated
blowup point. More precisely, we have

wilw; + ) < ¢ Up,(2) for|a| <1, and
(2.20)

~ n—=2
1——+00

2

where \; = Mi_m.

(ii) The origin is not a simple blowup point and is not an isolated
n —

blowup point. In this case, we have § < and there exists a

local maximum point z; of u; satisfying
(2.21)
n—2

n—2 .
wi(z;)|zi| 2 — o0 and Li(z;)ui(z;)” 2 — 00 asi — +0o0

such that for any § > 0, u;(x) is a simple blowup with center z;
for x & B(0,6|z]), i.e.,

(2.22) ui(w) < c Uy(z — 2)
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2

for |xz| > 0|zi|, where N\j = u;(z;)” "=2. Also, for x & B(zi,0|zil),
we have

(2.23) wi@)|z|"T < e

with ¢ = ¢(0) independent of i. Moreover, u;(z;) = o(1)M;, where
o(1) tends to 0 as i — +oo and M; = lm‘axul-(:n).
z|<2
Remark 2.6. Two consequences follow from Theorem 2.5. First,
since (2.22) implies
(2.24) ‘n|11n ui(z) ~ ui(z) 7,
z|=1

the spherical Harnack inequality (2.18) holds if u;(z) > ¢ > 0 on Bj for
some c¢ independent of i. Second, by (2.21),

llim Ll(zz)ul(zz)f%ﬂ = +4o00.

1——+00
We will see later that this implies if u; is a sequence of global solutions,
then the number of the type of blowup points described in (ii) of Theo-
rem 2.5 is at most one. See (6.8). By using this fact, we then are able to
apply Lemma 7.1 to get rid of the blowup point of the type of behavior
in case (ii) of Theorem 2.5. This is indeed Theorem 1.3.

When wu; converges to zero in Cf (B2\{0}), we say u; loses energy

of more than one bubble near 0 if

: 2 S 2

(2.25) zl}_'_moo et w7 (x)dx > (n(n—2)> .
In this case, we have § < "772 by Theorem A and Theorem 2.4. It is
easy to see the blowup described in (ii) of Theorem 2.5 belongs to this
case. Actually, when 8 < "T_Q, it is possible for u; to lose infinite energy.
See [11] for the existence for such solutions.

To estimate w; more accurately when it satisfies (2.18) and loses
energy of more than one bubble, let

1

(2.26) W) = 55

u;do
|z|=r

be the spherical average of u;, and

(2.27) wi(s) = ﬂi(r)rnT_2 with r = e°.
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Obviously, w;(s) is well-defined for s < 0. Since 0 is a blowup point,
w; has at least one maximum point. Let s; < 0 be the local maximum
point of w;, which is nearest to zero. Set

(2.28) M; = e U5,
28\
- n—2
(2.29) Li = (ti MZ' > )
oy 1
(2.30) Ri=L],v= [~z and
T n—2
=2
2.31 U=M 1w (| M2z ).
( ) ? 7 ? 7

Then we have the following estimates:
Theorem 2.7. Suppose that K satisfies (K0O) and (K1) at 0 with
—2
1<p< n , and u; is a solution of (2.11) which converges uniformly

to zero in any compact set of Ba\{0} and satisfies (2.18) and (2.25).
Define wy, s;, M;, L, R; and u; as above. Then lim M; = +oo and

1—+00

there are ¢ > 0, a; — 1,z; € R™ and A\; > 0 such that the following hold:

(i) lm A; =X and lim z; = z, where \ and z salisfy
1—00 1——+00

(2.32) 1=)+ 2%
Set &€ = \/Az. Then € satisfies (1.8).
(ii) w; satisfies
(2.33) Ui(x)| < c |z~ = for |z| < R;2, and
(2.34)
[ui(x) — aiUx, (x — 2)|

<o (L™ R T 4 max ) [ti(y) — ailx, (y — #)),
|y‘:Min72

2
2 )
for R < <|z| < M/"2.
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__2_
Remark 2.8. If L;M; "~ < c for some constant ¢ > 0, then from

the proof of Theorem 2.7, we will see that w;(y) < c¢;L; "2 for some
2
constant ¢; when |y| = M;""?. Thus, the third term in the right hand
_2
side of (2.34) can be absorbed by L;"*? when L;M, "2 < c.

To extend the notion of simple blowup to cover the case when wu;
loses energy of more than one bubble, we modify (2.3) as follows. Let
B, (y) denote {z : |z —y| <r}.

Definition 2.9. Assume 0 is a blowup point. The blowup point 0
is called simple-like if there exist ¢ > 0, ro > 0, a sequence of numbers
{Ai}, a sequence of points {z;} and a sequence of balls {B,,(y;)} such
that lim; oo A; = 0, lim; o0 2; = lim; oo y; = 0, lim;— oo ri)\i_l =0, and

wi + 2) < Uy, (&) on Byy(0)\ By, (3).

According to the definition, it is not difficult to see that there are
exactly three types of simple-like blowup point: simple blowup, the
blowup described in (ii) of Theorem 2.5, and the blowup in Theorem 2.7

2

when L; > CMZ-m for some constant ¢ > 0. On the other hand, if 0
is non-simple-like, then by Theorem 2.5, inequality (2.18) holds and 0
must be isolated.

Remark 2.10. When the assumption (K1) is concerned in the
theorems of this section, (K1) is required only when 8 < n — 2.

3. Applications of the method of moving planes

In this section, we will collect some well-known results and prove
some lemmas which will be used in the proofs of the theorems in Sec-
tion 2. In the proofs, we often assume there is a sequence of local
maximum points z; of u; such that the scaled function v; in (2.13) sat-
isfies (2.14). By applying the method of moving planes, we can improve
the result of (2.14). When K satisfies if the nondegenerate conditions
(K0) and (K1) with 1 < 8 < n — 2, we proved that w;(z; + x) could

2
be bounded by ¢ Uy, (z) with \; = ul(zz)fﬁ for |z| < L;M; "2. See
Lemma 3.1 in [9]. Actually the proof there can apply to the degener-
ate case. In the following, we give a brief sketch of the proof for the
convenience of readers. In fact, Lemma 3.1 below deals with the case
more general than the one considered in [9], namely, u; is allowed to
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have very large values, compared with wu;(z;), in some small region. Let
d(B,0) denote the distance from the origin to a ball B.

Lemma 3.1. Suppose that u; is a solution of (2.11), z; is a local
mazximum point of u; and v; is given as in (2.13). Let B be a closed
ball in R™ with d(B,0) > 0 and € be a positive (small) number. Suppose
that there is a sequence of R; — +00 as i — +oo such that

lvi(y) — Ui(y)| < eUi(y)

for |yl < R; and y ¢ B. Then there exists § = 0(e,d(B,0)) > 0 such
that

(3.1) Efgi”"(y) < (1+2€)Us(r)

2
for 0 <r < L¥(5), where L} (6) = min(0L;(z), M;"™*).

Proof. When B is an empty set and 1 < 8 < n—2, this is Lemma 3.1
in [9]. Thus, we only sketch the proof below. For the details, we refer
the interested readers to [9].

Let e; = (1,0,---,0) and 7 = d(B,0). We may assume the center
of B is rgej for some rg > 7. Let

7'255

R

F(x) + Teq,

T >n—2 2z

(3.2) vi(x) = (m UZ(W +7e1),
_ T\ 7'230
Ul(.%') = (m> 2U1(‘x|2+7'€1).

By a straighforward calculation, we have

n—2
_ A 5
U S A
1(.%) ()\2+|CC—330|2> ’
2 e
where A = ——— and 29 = — . Also we have F~1(B) = {x :
2 +1 2 +1

r=F(y),y € B} C {(x1,22, - ,2,) : 11 > 0},d(F(B),0) > 0 and
U; satisfies
n+2

Av; + I?l(ﬁ)f)zm =0

_ 2
for x ¢ F~Y(B), where K;(z) = K;(2; + M, "7 F(x)).
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Now assume that the conclusion of Lemma 3.1 does not hold. Then
by passing to a subsequence, there is a sequence of positive number r;
such that r; < Lf(0) and
(3.3) min v;(y) > (1 + 2€)Us(rs),

ly|<r;

where 0 = §(g) will be chosen later. By the assumptions, it is easy to see
r; > R; — 400 as i — +oo. Since by (3.2), 9;(x) uniformly converges
to Uy (z) in C2 (R™\{0}), ¥; has a local maximum at some point g; near
zg. Now we are going to apply the method of moving planes to obtain
a contradiction.

For any A < 0, let ¥\ = {z | 21 > A}, T\ = {z | z1 = A} and
z* denote the reflection point of x with respect to Ty. We also let
¥ =3San{z | |z| > 72(r; — 7)7'}. In the following, we will choose

|0

a number )\ satisfying —|zg| < Ao < — and show that for A < Ag,

there exists ig = ig(Ag) such that
(3.4 5i(2) < 5u(a)

for x € E’)\, A < Ao and i > ip. This yields a contradiction to the fact
that ; has a local maximum near xg. Note that the local maximum
point ¢; tends to xg as ¢ — oo.

Let wy(z) = 7;(x) — 0;(2*). Then w), satisfies

(3.5) Awy + bA(x)w)\(x) = Q)\(x) in Zl)\,

where
n+2 n+2

(vi(z)n=2 — (Bs(a*)"2)
vi(x) — vi(z?)
Qu(z) = (K;(a) — Ky(x)) vi(a*)" 2.

By (3.2) and (3.3), we have for |z| = 72(r; — )7},

bk(l’) = I?Z(IL‘)

r, —T

(3.6) i(z) > ( )niQ min v; > (14 ¢)U1(0)

T lyl<ri

for i large. On the other hand, @;(2~1%0) converges to U;(0~1%0l) =
U1(0) uniformly for || = 72r; !, where 2~1%l and 0~17! are the reflec-
tion points of z and 0 with respect to the hyperplane 1", . Hence
—|o

there exists —|zg| < Ao < such that

7@ < (1+5)01(0)
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for |x| = 72(r; — )71, A < A and large i. Together with (3.6), it implies
for |z| = 72(r; — 7)71,

wy(z) > %Ul (0)

for A < Ag and large i. In the following, we fix this Ag. Then there is a
small ¢y such that

(3.7) wy(z) > gmo) > cor; 26z, 0)

holds for |z| = 72(r; — 7)7', A < A and large i, where G*(x,y) is

1 1 )
y—af a7

GA(:L" y) = Cn(

the Green function of —A on Xy = {z : 21 > A}.
If A <0 and |A;| is large, then we have

(3.8) (@) = ;"GN (@,0)

for A < A,z € ¥} and large i. For the details, see [9].
For A > Ay, let @ = max(0,Q,), L; = Li(z;) and
(3.9) ha(z) = aly "GN @,0) = [ GNa,m)QF (n) dn,
Z5
where a is a positive number to be chosen later. Obviously, h) satisfies

Ahy=QF >Q,  inX).

For A < \g and 7 € Xy, since || > || and |n}| > [Xo| > @ > 0,
one has by (3.2)
()] < e (L4 )~ 2.

Here, we use F~!(B) C X, also. For ) € &), we have

2 7_2 _ 2

nl > 72 =) = TLI6) = M

(2

To estimate the integral term in (3.9), we note

QL) < ex(LHP ) DK (s M, 72 F(P))— Kzt M, ™2 F(n))].
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By (2.10), when n € ¥/,
(3.10)
2
|Ki(zi + M; "*F(n)) — Ki(2)]

_% 51 _2<B—21> 51
<ct;M; "FMm)| 1z + M, " [F(n)

__2 _2(8-1) .
<estiM; " (14 [n|7h) {!Zﬁ“ +M; " (1+ In!”’)}

< eaLZM(1 A+ [P,

7_2

_2 .
where || > ?MZ "% is used and 3 is the number in (2.15). Thus, we

have
(B QL) < esLy R+ )1+ )T,

By (3.11), following the computation in the proof of Lemma 3.1 in [9],
we obtain

(3.12) GMa,m)QY (n)dn < esL; " T2G*(2,0)
=)

for x € ¥/, where cg is a constant depending on the constants in (2.10),
7 and n only.
Set a = 2¢6 in (3.9). Then

(3.13) 0< g[L(zi)]_”“G/\(m,O) < ha(x) < a[L(z)] " P2G (x,0).

Recall that r; < §L;(2;). Choose § to be sufficiently small such that
cod~ "2 > 2a. Then by (3.7) and (3.8), for i large,

wy(x) > hy(x)

holds for z € X} if A = A1, and holds for |z| = 7%(r; — 7)~! and
A < XA. It follows that h) satisfies the assumptions of Lemma 2.1 in
[9] with A\; < A < Ao when i is large. Applying Lemma 2.1 in [9],
wx(x) > ha(z) > 0 for z € ¥\ and A < A\g. Hence, (3.4) is proved, and
then the proof of Lemma 3.1 is finished. q.e.d.

Note that if u; is a global solution defined in the whole space R,
then we can choose

(2

L (8) = min(L{(8). AV )
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for any A > 0. Inequality (3.1) is very useful when the Harnack in-
equality holds for v; on each sphere |y| = r. Actually, under some extra
condition on wu;, we can derive the spherical Harnack inequality from
(3.1) itself by using the Green representation formula. We will explain
this in Lemma 3.4, which tells us how to derive the Harnack inequality.
Before that, we have to state two well-known lemmas. For their proofs,
see [9].
Lemma 3.2. Suppose ¢(x) satisfies
4

AG(x) +n(n +2)U 2 ¢(x) =0 in R"

with ¢(x) — 0 as |y| — oco. Then ¢(x) can be written as

d(x) = cotbo(x) + Y cjib;()
j=1

for somec; €R, j=0,1,...,n, wherewj(:z:):gUlforlgjgn and
Ly
-2
bo(z) = ”2 Ui+ VU

Lemma 3.3. Suppose that u is a positive smooth solution of

Au + K(ac)u%g =0 in B,,

where |K(x)| < b. Then there exists a small €, > 0, depending on b and
n only, such that if HUHLQ—"Q < €, then the Harnack inequality

n—

u(z) < ¢ u(y)
holds for |x|,|y| < r/4, where ¢ > 0 depends on b and n only.

In Lemma 3.4, we consider a more general setting, which is needed
later. Assume that 0 < a < K(x) <b, u is a solution of

(3.14) Au+ K(ac)u%rg =0,u>0 for |z| <ly,
and U is the solution of

n+2
AU + KoUn—2 =0,U >0 in R,

3.15
(8.15) U(0) = max U = 1
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where K is a positive constant. Let B, = {x : |z| < r}.

Lemma 3.4. Let u, U and ly be as above. Suppose 0 < o < 1,
l
R< go, and E C BR/2 such that

(3.16) lu(z) —U(z)| < oU(x)
for x € BR\E,
(3.17) /x|<R K (2) — Ko|Ur5de < o,
(3.18) / Uizde < o, and
E
(3.19) minu(z) < (14 0)U(r)

|z|=l

for some l € [R, lzo] Then there is a constant ¢ depending on n and b
only such that

\ z
(3.20) / Wi dr < el (R2 4 0+ (-)"2),
R<|z|<l lo

Furthermore, if

(3.21) u(z) < ey (R2 40+ (li)”_Q)_l, and
(3.22) g‘u:r}n u(z) < ez U(r)

for R < r <1 where ca = ca2(n,a,b) is a small positive constant and
c3 > 0, then

(3.23) u(z) < eqU(x)

!
for |x| < = and x ¢ E, where ¢4 depends on cy and c3.

[\
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Proof. For r >0, let B, = {z : |z| < r}. Let G(z,n) be the Green
function of the Laplacian operator —A on the ball Bj, with zero bound-
ary value. Let zo be a point satisfy |xo| = [ and u(wo) = minjy<; u(z).
By the Green identity and (3.19),

(3.24) (1+0)U(z0) > u(zg) > ; Gl(wo, ) K (n)un2 (n)dn,
and

Uzo) = | Glao,n)KoUr—2 dn + Ul(l)
(3.25) By

nt2
< G(xo,n)KoUr=2 dn + Ul(lp)
By,

Hence there is ¢,, depending on n only such that

n

nt2
a ¢, A (14 |n)) " 2un=2 dn

n+2

(3.26) < u(zo) — /BR\E G(xo,m)K(n)ur—2 dn

n+2

< (1+0)U(zo) - /B  GlomE @ i

By the assumptions (3.16) and (3.17), there is ¢4 depending on n and b
only such that

n+2
/ G(x0777)K(7])un—2 d77
Bg\E
BRr\E
) nt2
— |K () — KolUn-=2} dp

Br
2
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Together with (3.25), it leads to

Cn (1 + 17 z]) 7" 2 dn
g 3%0
G(xo,m)KoUn=2 dn + ¢4l o
BZO\BR
2 x() -l-U lo)]

l
<ec (0 +R 2+ (%)n_z),

where ¢5 depends on n and b only. Obviously the inequality (3.20)
follows immediately.
Let €y be the number in Lemma 3.3 and ¢o be a small number such
that
0205(cna)_1 < €.

If u(z) < co(R2 40+ (li)”_z)_1 for g < |z| <, then
0

2n n+2
un=2dn < un=2dn [ max wu| < €.
F<In|<t 2<nl<t F<Inl<t

By Lemma 3.3, the Harnack inequality holds for v on {z : |z| = r} with
l
R<r< 7 The inequality (3.23) then follows from it and (3.22) for

R <r < L. Together with (3.16), (3.23) holds for all |7| < L and z ¢ E.
q.e.d.

Let z; be a local maximum point and v; be the scaled solution in
(2.13) such that (2.14) holds and U;(y) be the solution of (3.15) with
Ky = K;(z;). In the next step, we are going to estimate the difference
between v; and U;(y). By (2.14), for any € > 0, we have a sequence of
R; — 400 such that

lvi(y) — Ui(y)| < eUi(y) for |y < R;.
By Lemma 3.1, there exists dgp = dp(e) > 0 such that

(3.27) fﬁlﬁ vi(y) < (1+2e)Us(r)

for 0 < r < L¥(6p). Then Lemma 3.4 yields the following important
result.
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Lemma 3.5. Let v; and U; be described as above. Suppose that
there is a sequence of positive number l; < L¥(do) such that
(3.28) vi(y) < e for |yl <.
Then there exists a small d > 0 such that

(3.29) vi(y) < éUi(y), and

(3.30) vi(y) — Usly)| < &ar; ™+

for ly| < r; = dl; where d is a constant depending on n only. Further-
2

more, let Q;(y) = Ki(z) — Ki(zi + M, "“2y). Then forr <,

n+2
(3:31) ], QU vty | < e
ly|<r
and
n+2
(3.32) ( |< 2 () (y dy’<clr ntl
ly|<r

for 1 < j <n, where j(x) are given in Lemma 3.2.

Proof. Without loss of generality, we might assume R; << [;. Oth-
erwise, (3.29)-(3.30) hold automatically. By Lemma 3.1, (3.27) holds
for 0 <r < ;. Since K; = n(n —2) + t;K, we have

/ ’I?z(fl/‘) - KZ(Zz)|U%(fE)dl' <ct; <e,
|z|<R;

for t; small, where IN(Z(x) = K; (zi + M;%m) Thus, v; satisfies as-
sumptions (3.16) ~ (3.19) with an empty set E, R = R;, | = dl; and
lg = Mlﬁ Let d be small such that
a(R2+e+d"?) < e
where ¢y is the constant in (3.21). Then by (3.28), we have
vi(y) < (R 2 +e+d" 3 for |yl <l

Then (3.29) follows immediately from Lemma 3.4. The inequality (3.30)
can be proved by the same argument as in Lemma 3.3 of [9]. Hence, we
omit the proof here.
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To Prove (3.31) and (3.32), we let w; = v;i(y) — Ui(y). Then wj
satisfies

~ ~ n+2
(3.33) Aw; + bi(y)wi(y) = Qi(y)U;"* (),
where
( e S
- . ,Un— U‘n—
bZ - Kl t > b
(y) (y) p—"
(3.34) 2

Kz(y) =K; (Zz + Mi_my>, and
Qiy) = Ki(z) — Ki(y).

Multiplying (3.33) by 1, one has

~ 6’LU¢ 8 i
/ wi(Ad}j + bﬂ[Jj)dy + / (@Z)j B — ’wzawj> do

ly|<r ly|=r v v

(3.35) _ ng2
= QiU 4jdy

ly|<r

for 0 < j < n. Let r; = dl;. By (3.30), we have for |y| < r;,

(336) vi(y) — Usly)| < éri ™™

To estimate the first term of (3.35), we recall

n+2

_4
Ad}j + 2K¢(Z’¢)Ui"72 1][)]- =0,

n —

and then

~ ~ ni2 ntl
wil &+ biy) =(Kily) = Ki=)) (0 = U7 )
2

+ Ki(z) (vznf2 U —

Hence for j = 0, we have as in (3.10)
|wi (Ao + bitko)|
(337 <e{rF L) A+ ) 4 T 4 )

< 2e 2214 y)) 2,
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where [¢o(y)| < ¢(1 + |y[)>™ and 3 < n are used. Similarly, by
i)l < e(L+]y))' ™" for 1< j <m,

we have

(3.38) i Aty + Bitsy)| < e r?* 1+ )7,

By applying (3.37) and (3.38), we have
‘ / wi( Ay + bty )dy \ =0o(r*™)
for j =0, and
| / wi( Ay + i)y | = O(' ")

for 1 <j <n. When |y| = r, we have

| 7 oi(y)| < clyl  oily) = O(ly['™™)

by the gradient estimate. Therefore, the boundary term of (3.35) is
bounded by O(r?~") for j = 0 and is bounded by O(r!=") for 1 < j < n.
Both (3.31) and (3.32) then follow from (3.35). q.e.d.
Proof of Theorem 2.2. We prove Theorem 2.2 by contradiction.
~ n—2
Suppose lim M; |x;| 2 = 4oo0. If § > n — 2, by the definition (2.15)
1—+00

.2
and the assumption that L;(z;)M,; "~ is bounded, we have

.2 L
(3.39) Li(x;) = (ti_lMi”‘Q\xiP’ﬂ) -2
If1 <8 <n-—2 then

O L2 2 1-8
— n—2 — — n—2 n—2
N g = g (N )
. 2B
<t7'M,

which implies (3.39) also.
Let v;(y) be defined as (2.13) with z; = x;. Obviously, v;(y) <1 for

2

ly| < Mzm By Lemma 3.5, there exists a do > 0 such that (3.29)—
(3.32) hold with di; replaced by doL;(x;). Recall the quantity Q; in
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Lemma 3.5. We may assume lim;_, 1o ‘gggi; =e = (1,0,...,0).
Then

—2

Qi = K; (fﬁz + Mzmy) — Ki(w;)
-2 R __2 ~
(3.40) = t; M2 (VK (i), y) + c(6,0)t; M; "2| 7 K (2;)|]y]

S .
= M| 7 K (i) lys + (6, i)tiM; "7 | 7 K(wi) [y

N2
for |y| < 0M;"~*|x;|, where ¢(d,4) could be arbitrarily small if 7 is large
and ¢ is small. Therefore, we can choose ¢ small enough so that

_~ n+2 L2
/| (—Q)U 2 (y)v (y)dy > ¢ t;M; "2 [a]P
y|<r;

= ¢ (Li(xi))*™

(3.41)

.2
for some ¢ > 0 where r; = 6M,""*|x;|. For the simplicity of notations,
we let [; = 0o L;(x;). If r; > 1;, then by (3.41), we have

- n+2
(3.42) / QU @l )ldy = e (L)
YISt
If [; > 7, as in (3.10), we have
. nt2
/ QiU (y)en () dy
ri <|y|<l;

.28
<o (L) 0 ) dy
ri<|y|<l;
= 0(1)L,(x,)27"

Together with (3.41), it implies that (3.42) holds also in the case of
li > ri.
On the other hand, by (3.32), we have

+

nrs
n

- 2
QiU 2 dy| < c1Li(x;) "

‘ ly|<l;

2
This contradicts (3.42). Hence we conclude M,""?|z;| is bounded.
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a2
Suppose 8 > n — 2. Since M;""*|z;| is bounded, we have

L2 L2 -5 28
M2 |xi|1—6 — <Mzn2 |x2‘) M2

Hence,
lim L (x)M; % > ¢; lim ¢! = +o0,

1——400 i——400

which yields a contradiction to our assumptions. Thus, § < n — 2 must
hold.

To prove (2.16), we let w;(y) = 1" *(vi(y) — Ui(y)) where I; =
2Li(x;). Then w; satisfies (3.33) with Q;(y) replaced l?_Qéi in the
right hand side. By (KO0),

Qily) = Ki(z;) — K; (1:1 + Mzﬁy>
= —t; [Q(z + Mfﬁy) - R(xi - Mf?y)]
+ (Ki(zi) — Ki(0))

= ;7 [Q(&+ ) + o) Iyl + 1]

+ (Ki(xi) — Ki(0)),

(3.43)

N2
where & = M, *z;. By (3.30) of Lemma 3.5, w;(y) is uniformly
bounded in R™. After passing to a subsequence, we may assume that
2
(R™). Since 3 <n —2 and M;""*|z;| is
23

w;(y) converges to w(y) in CE,

bounded, we have LZ-_”Jr2 ~ tiMi_m. We may assume
L -28
c= lim ;1! 2M"~2 >0

i—00

exists. Multiplying both sides of (3.33) by v¢; = gg?, we have by inte-
J
gration by parts,

n+2

/ l?Q@(y)Ui“wj(y)dyZ/ wi Ay + bily) ) dy
By, B

Owi 81%
+ /aB, (i, —w )do

99
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By (3.30), the boundary term = O(I; ') — 0 as i — +o0, and

\A%+a@wm<ﬁ(wm<ﬂ+m+mﬂaﬁﬂw%@>
< o1+ [yl) 0.

Thus, by Lebseque’s convergence theorem, the right hand side converges
to

/n w( Ay + n(n + 2)U1”%21/Jj>dy = 0.

Together with (3.43), it implies

n+2

0= lim 12Qi () U2 i (y)dy
imtoo /B,
n+2 8U1( )
= Czilinoo Q(fz YU () Dy, dy
(n - 2)

_ Q@+y)aU?2<My

2n

n—2
— + d,
/nay] E+y)U 2 (y)dy

where U is defined in (1.4). Here, we have used the fact that ;(y) is
odd in y;, and

/B (Ki(wi) — Ki(0)) (y) Uy (y)dy = 0.

The proof of Theorem 2.2 is complete. q.e.d.

Proof of Theorem 2.1. Note that in Section 8, (2.16) is also proved
when # < n + 1. This holds only for global solutions. See Lemma 8.1.
Let x; and MZ be the maximum point and the maximum of u; defined
n (2.12). We first prove the “if” part. Assume there is a constant ¢ > 0
such that

2

(3.44) Li(w;) > eM;"

Let v;(y) be the scaled solution defined in (2.13) with z; = x;. Obviously,
2

vi(y) <1 for |y| < Mlﬁ By Lemma 3.1, Lemma 3.5 and (3.44), there
exists a small positive number § > 0 such that v;(y) < ¢ Ui(y) for
2

ly| < 5Mim and for some ¢ > 0. Therefore, 0 is a simple blow-up
point.
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To prove the “only if” part, we assume
.2
(3.45) lim LZ(.CCZ)MZ " = .

i——+00

Suppose that 0 is a simple blowup point. Then there exists positive
constants ¢ and dp < 1 such that

(3.46) vi(y) < e Ur(y)

.2
for |y| < doM,"~*. Following the notations of Lemma 3.5, we let w;(y) =

vi(y) — Ui(y) and vo(y) = "32Ui(y) +y - wUi(y). By the gradient
estimate, we have by (3.46), | v v;(y)| = O(Jy|~""!) for |y| > 1. Thus,

(3.47) / . (wo% - awo)da = O(F7"2) = O(M;2),

Wi
ov

2
where 7; = 6oM;"*. To estimate the first term of (3.35), we have by
Lemma 3.5

/ wi (Ao + bibo)dy =/ wi (Ao + bibo)dy

i Br,

+ / wi (Ao + bito)dy,
Bf‘i \Bri

where r; = dgL;(x;). By Theorem 2.2, we have 1 < § < n — 2. Similar
to (3.37), we have by the fact 5 < n — 2 that

[wi (Ao + bitpo)| < eri (L + Jy])

for 1 <r <r;. Hence

— O(Ti_n+1).

'/B wi (Ao + bibo)dy

We note that Lemma 3.5 is crucial in the estimate above. By applying
[0i(y)] + |Ui(y)] < elyl™ 2 and [tho(y)] < cly| 7"+ for r; < Jy| < 74,

= O(r;"Jrl).

/ w; (Ao + bibo)dy
B’%'\BM'
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Together with these two estimates, we have

= O(r; ™).

(2

(3.48) ‘/B wi( Ao + biho)dy

.2
By Theorem 2.2, & = M;"?x; is bounded. We may assume § =
lim &;. Then & satisfies

i——400

2n

(3.49) - vQ(y + U (y)dy = 0.

Also, the right hand side of (3.35) converges to

.28 SR
lim ¢ MR QiU *vo(y)dy
(3.50) e Br

n+2

== Qu+ U (y)o(y)dy.

Recall that 1o (y) = ”szUl (y) + y v Ui(y). From integration by parts,
(3.49) and - VQ(y) = BQ(y), we have

n+2

-/ Qy + U (y)vo(y)dy
_n— 2

(3.51) =52 [ v v+ U Wiy

Bn—2) W

= o - Qly + U (y)dy # 0.

The last term does not vanish due to (K1).
~ 28
Recall L;(x;)" "2 ~ t;*M;"~2. Putting (3.50), (3.51) and (3.48) to-

gether these estimates, we have

Li(z)* ™ <ec

_ nt2
/B QiU o (y)dy

< e (Li(x) ™ 4 M%),

which yields a contradiction to (3.45). Therefore, the proof of Theo-
rem 2.1 is complete. q.e.d.
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4. The method of localizing blow-up points

In this section, we will employ the method of localization of blow-up
points to prove Theorem 2.4 and Theorem 2.5. This technique was due
to R. Schoen. In the previous work [9], we have used this method to
prove the isolatedness of blow-up points. For other applications of this
method, see [17], [18]. We begin with the following lemma.

Lemma 4.1. Let §, o0 and € be small positive numbers and R > 1.
Then there exist positive constants R = R(d,0) and Cy = Cy(0,0, R, )
independent of i such that the following statements hold:

(i) If ui(yo)|yo|nT_2 > Cy, then there exists a local mazimum point
z € B(yo,20|yo|) of u; such that

(4.1) ui(yo) < ui(z)

and the rescaled function

vi(y) = ui(z)_lui(ui(z)fﬁy + 2)

satisfies
(4.2) {the origin 0 is the only local mazximum point of v;

m B(0,4R), and |Ui — U1|CQ(B(0,4R)) < 0'(4R)2_n.

(ii) Let {Z;}j;l denote all local mazimum points of u; in the ball By
which satisfy u&z})]z}]ﬂTf2 > Cp and (4.2) with z = 2; Assume
ui(2}) > wi(z) -+ > wi(zL). Then

-2

(a) ui(y) < 2Coly|~"% for y & Q; where Q; = UjB(z;-,%\z}\).
Furthermore,

. . . 2
|25 — 2| > 4Ru;(25) n—2

for j # k.
(b) wi(x) < 2ul(z;) holds for x € B(Z;,25|Z§|) and

(4.3) |z;| <celzi| for j<k<s;.

103



104 CHIUN-CHUAN CHEN & CHANG-SHOU LIN

Lemma 4.1 can be proved by the blow-up method of Schoen and the
method of moving planes, Lemma 3.1. See Lemma 4.1-Lemma 4.4 in
[9]. In fact, we can prove more in Lemma 4.2 below. In the following,

z;- is indexed by the ordering u;(z}) > ... > u;(2).

Lemma 4.2. Let {z; }j;l be the local mazimum points in Lemma 4.1

and d > 0 be a small number. Then we have the following statements if
the positive constant Cy in Lemma 4.1 is large enough.

(i) The inequality
n—1

Li(25) = (dui(z5) "2 |zj]) =2

holds for 1 < j < s;.
(i) Let
Lf(z;) = min(Li(z;-), uz(z;)m)
and . . . . 2
Dj ={y: |y — zj| < cLi(2)ui(z5) "2}
with ¢ small. Then
when k > j.

Proof. We follow notations in Section 3. Let v; be defined in (2.13)
with z; = z; and U; be the solution to (3.15) with Ko = K;(z;).
We may assume Cp is very large. If 1 < 8 < n, by (2.15) and

uz(z;)\z;\nT_Z > Cp, we have

L2 o L2 .28 .28
ui(25) 72 |25V 0 = (us(2) 72 |2 ) P (20) e < w(2h)
and
- _ 2 . g 1
(4.4) Li(25) = (t; 'ui(2)) 72|25~ F) 72,

If 6 > n and Li(z}) # (t7 "ui(z}) 72 |21[1=%)72, then by (2.15),

n—1

L . .
Li(z}) = (7 ()72 ) 77 = (i) 72| A2

for large i since 3 > n — 1, that is, (i) holds in this case. Hence in

order to prove (i), we may assume L,(zé) = (t;lui(z;-)%kﬂl_ﬁ)ﬁ
and 1 < 8 <n.



PRESCRIBING SCALAR CURVATURE ON S"
Let 6 be small enough, M; = ul(z;), L; = Ll(z;) and

ri = 5min(Li,Mi%]z;]).
. Then by (b) of part (ii) in Lemma 4.1,
vi(y) <2 for |y| <.
By Lemma 3.1, Lemma 3.4 and Lemma 3.5, we have
vi(x) < ¢ Ui(x)

and
vi(2) — Ui(z)] < e ry 2"

for |x| < r;, where ¢ is a constant independent of § and . For the sake of
simplicity, 6 always denotes a small positive number, but could change

from line to line. Assume VK(Z;) is in the direction e; = (1,0,--- ,0).
oU;
Let ¢ = ——. By (3.32) of Lemma 3.5,
o
~ nt2
(4.5) QiUin_Q Prde| < Cﬂ“i_n—"_l.

|| <r;

By (3.40), we have

“Quly) = M, 72|y K (D) + o(D)]y])

for |y| < r;, where o(1) could be arbitrarily small if § is small. Since
¥1(y)y1 > 0, we have

. n+2
Qi UZ‘7L72 YPrdy
B,

2
> cot M; "2 |25

(4.6)

for some ¢y > 0. Since we assume Lz(z;) = (t;luz(z;)%kﬂl_ﬁ)ﬁ, it
follows from (4.5) and (4.6) that

(4.7) L™ < egry ™

Since r; < L;, Cp is large and L; — +00 as i — 400, we conclude r;/L;

is small from (4.7). Thus r; = 5ul(z;)%]z;| Since both ¢; and ¢y are
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independent of § and 4, part (i) of Lemma 4.2 follows from (4.7) if § is
chosen to be small enough.
We prove (ii) by contradiction. Assume that after passing to a se-

quence, there exists j; < k; such that z}% € D;Z and both ul(z; )|z§z|nT_2

and ul(z}ﬁ)]z,’ﬂ\nT_g tend to 4+o0o0. For simplicity of notations, we let
z;i = z}z and w; = z}% Recall that u; satisfies

(4.8) ul(wz) S ul(zl)

Let M; = u;(z;) and v;(y) be the solution in (2.13) scaled with respect
2

to the local maximum point z;. Since M;"~2|z;]| — +oo and (4.2) holds,
we have for any ¢ > 0, by Lemma 3.1

(4.9) min vi(y) < (1+20)Ua(r)

if i is large and 0 < r < 4doL}(%;) with some dy = do(c) > 0. Let
2

li = doL}(z;). Applying Lemma 3.5 with an empty set E, Iy = Mim
and [ = [;, there is a constant ¢; independent of ¢ and ¢

n42
(4.10) / v (y)dy < 0,
R<|y|<y;
provided that dg < o3 and R > o3,
Set )
B ={a | |z — wi| < ui(w;) "2}
and

_ 2
B ={y | M; " (y + z) € Bi}.
By (ii) of Lemma 4.1 and (4.8),

2 2
AR < wi(w;) =2z —wi| < M|z — w;| < cLj(z)

because w; € D;. By (ii) of Lemma 4.1, we have |z;| = o(1)|w;| and

2 2

2 _2
Mi"*2ui(wi)_m << Mini2 \wl|
2
= (1+0(1))M;" |z — w;i| < cLj(z).

Thus, Bz Q 2Dz
Since ui(x) < ui(w;) < wi(z;) for x € B;, we have v;(y) < 1 for
y € B;. Since by Lemma 4.1, 0 is the unique local maximum of v;(y)
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for |y| < 4R, we have B; C {y | R < |y| < I;} if the constant ¢ in D; is
small. Again by (i) of Lemma 4.1, we have for some constant ¢ > 0,

2n 2n n+2
0<ex< / u' ? (z)dex = / v dy < / v (y)dy
B; B; B;
nt2
< / v (y)dy < c10,
R<y|<l;

which yields a contradiction if ¢ is small enough. Therefore, (ii) is
proved. q.e.d.

Proof of Theorem 2.4. Let L; = L;(z;) and M; = u;(x;). Suppose
2

that L, M; " — +o0, then by Theorem 2.1, 0 is a simple blowup point

and wu; loses the energy of one bubble at 0. Therefore, we suppose that
2

lim L;M; " < 4oc.

1——+00
2
By Theorem 2.2, M, ? ]xZ\TQ is bounded, f < n —2 and £ =
.2
lim M.""?x; satisfies (2.16). From the definition (2.15) of L;, we have

1——+00 v
1

. 28
Li(x;) ~ (ti_lMi”*Z>"72. Applying Lemma 3.1 and Lemma 3.5, u;
satisfies

(4.11) a M7 a2 < wugx) < eoM7 P

for
2

V= R
M; "7 <|x| <6(t; M )2
1

. 28 _
with a small § > 0. Let r; = 5(t;1Mi"*2 2) " Then, we have

23

~1l—
(4.12) min u;(z) ~ M, "%,

|z|=r

Now suppose

n—2
lim sup(ui(x)]:r\ 2 >:+oo.
1—+00 7~
B,

Let z; = 2%, where 2! is the local maximum point in Lemma 4.2. Let
2

M; = wu;(2;). Since Mzm|zz| > () is very large, we have

28 ( 1 _

(4.13) Li(z) < (t;lMF)H,
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and by (i) of Lemma 4.2,

_2
(4.14) Min_2 ’Z,’ << Lz(zz)

Since w;(z) is a positive superharmonic function, there exists a small
constant ¢ > 0 such that

(4.15) ui(z; +x) >c M;l(|:n|2_” —(3/2)>™)

2
for M, "% <|z| < % In particular, we have

1--28

(4.16) min ui(z) > MW" > o, M, 72,

|x—2;| <min(#;,1)

2\ —=

28 _
where 7; = (t; 1M~ "~*. Since u;(x) has the only maximum point

x; in the region {z | |z| < r;}, we have by (4.14)
r, < |ZZ| << 721',

namely, the ball B, (0) is contained inside of the ball B(z;, ;). Hence,
if 7; is bounded, by (4.12), (4.16) and the maximum principle, we have

128
M, "? ~ min u; > min u;
|z|=r; |z—2z| <P
1--28
> ct;M; "2,

First we consider the case when (3 > ”T_Q Since § > ”T_Q and M; is the
maximum of u;, it implies M; ~ M;. Hence, the function v;(y) rescaled
with respect to the center z; satisfies

vi(y) <

2
for some constant ¢ > 0 and |y| < M;""*. Thus, v;(y) ~ Ui(y) for

ly| < 0L;(z) by Lemma 3.4. Particularly, we have

R _2 n—2
M; ~ MUy (|| M) = My(M;|zi| 2 )2 = o(1)M;

which obviously yields a contradiction.
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For the case 8 = 52, we have by (4.14), (4.15) and the maximum
principle,

28

t; = tiMi "2~ min U;
|z|=r
> min  w; > Mz,
|x—24i] <2|2;]
which implies
P = (t7 MY < ).

But by (4.14), |z;| << #; for large i. Thus, we obtain a contradiction
and then (2.18) is proved.

Once that (2.18) is established, (1.8) follows from Lemma 5.2 of
Section 5. Also, from (2.18), the energy outside the region, where w;
is not simple, tends to zero. Therefore (2.17) is obtained, and then
Theorem 2.4 is proved. q.e.d.

Proof of Theorem 2.5. Suppose that u; satisfies

lim sup(ui(l‘)mngg) = +o0.
1—+400 5
B,

Assume that 0 is not a simple blowup point. Then § < n — 2 by
Corollary 2.3. Let 6, R, Cp and the local maximum points {z; }381:1 of u;
satisfy the assumptions of Lemma 4.1 and Lemma 4.2. We will prove
s; = 1 for 4 large.

Let z; = 24, L; = Li(2;), M; = u;(z;) and v;(y) be the scaled function
defined in (2.13). We claim

2

(4.17) lim L;M; "% = +o0.
1—-+00
We prove (4.17) by contradiction. Suppose
__2_
lim L;M, "2 < +oc.
1——+00

Then for any small number ¢ > 0, by Lemma 3.1 and Lemma 3.5, there
is a small positive number dy = dy(o) such that

(4.18) min vi(y) < (1+0)Us(r)

for 0 <r <dyL;, and

(4.19) / v 2 (y)dy < cr(c+ R+ (—
R<[z|<doL;



110 CHIUN-CHUAN CHEN & CHANG-SHOU LIN

where R is very large and ¢; is a positive constant independent of o and
2
i. Note that L} (dp) = min(doL;, M;""*) = doL; due to the assumption
2
L;<c M[Li? .
Let €2; be the set in Lemma 4.1. Let o be a small positive number,

which will be chosen later. For |z| > d|z| and z ¢ Q;, we have by
Lemma 4.1,

wi(@)|z]T < 2C) < 2My|=|"T

for ¢ large, which implies that

ui(x) < e M;
for some ¢ = ¢(§) > 0. If z € §;, then for some 7,

ui(x) < 2uz(z;) < 2u;(2).
Hence, there is ¢; = ¢1(§) > 0 such that
(4.20) ui(z) < a1 M;
for |x| > 0|z;].
If 0 and dy are small and R is large, then by (4.19) and (4.20),

Lemma 3.5 can be applied to obtain the Harnack inequality for v;(y) on
each sphere |y| = r < doL; if the annulus {y | § < |y| < 2r} does not

2 5
intersect with the set {y ||y + M 22| <M |zl|} In particular,
(4.21) vi(y) < ¢ Ui(y),

2
holds for 2M,;"~?|z;| < |y| < doL;, where ¢ is a constant independent of
i and J. Let

_2
(422) r; = doLlMl n2
Going back to the function u;, (4.21) implies
(4.23) ui(zi + @) + [2]| 7 u(zi + @) < M P

for 26|z < |z| < ;.
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Let ¢; = | v K(2)|™' v K(z) and e
Pohozaev identity,
/B(zi,ri)

/ |:<6, V%)
OB(zi,rs)

n—2
2n

2n

(e, VK»U?CLT

n—2
2n

(4.24) Oui

+

By (4.23), the right hand side of (4.24) is dominated by r; "1 M, 2.

o

lim Applying the

i——400

€;.

2n

(e, V) K;u"?| do.

To

find a lower bound, we decompose B(z;, ;) into four parts: A; = {z |
2
|z — zi] < M; " Ro}, Ay = {w | |z] < 30]ail}, Az = {x | 30|z < [2] <
_ 2
2|z, |z — x| > M; " Ro} and Ay = {z | 2|z| < |z| < 15}, where Ry is

a positive number.
For z € As, we have by Lemma 4.1

Then

2n

(4.25)

J.

For x € A3, we have

J.

By (4.19) and v;(y) < ¢1(0), we have

2n

(4.26)

|V Kilu! 2 (z)dx < c ti]z]°

_2n_
/ |7 K;|u]?de < ¢ t¢|zi|ﬁ_1/ v;
As Ro<ly|<doL;

2

wi(z) < 2Co|lz| =77

K;lu 2 (z)dx < co(8]2 ﬁ_lti.
| v Kilu;

(z)dx.

2n
n—2
/ b
As

2n
n—2

(y)dy

< e tilzi" N (e2(8)7 + Ry,

where the estimate,

2n

7
/ROS|?JSR

v (y)dy < c

is used.

/ ly|~*"dy < cRy™
Ro<|y|<R

111
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For z € Ay, we apply (4.21)
wi(z) < eM; x>

Hence

_2n_
[ 19 K @)
Ay
_2n_
<ct;M, ”_2/ I i 2
(4.27) Ay
_2n_
S c thl n—2 ‘Zi|f(n+1)+ﬁ

—2n

n—2\ n_2
= o (Bl (Ml )
For x € Ay, we have a positive ¢y > 0 such that
2n_
(4.28) / (e, VR (2)dz > colts|=]P ).
Aq

If we chose o, dy to be small and Ry to be large, then by (4.25) ~ (4.28),
the left hand side of (4.24) has

on_
(4.29) / (e, VKi)u*dx > (CO/Q)ti|zi|5_1
B(zi,m4)

when i is large. Combining the estimates of both sides of (4.24), one
has

2
-1 —n—+1 -2 _ —n—+1 -2
iz <ery"TIMTE = e L7 MR

namely,
Li(zi) " < erLi(zi) ",
which obviously yields a contradiction. Hence (4.17) is proved.
If s; > 1, then by (4.17), Lf(z)ui(z}) 72 > 1 with Li(2) =
min(Li(zi),ui(zi)ﬁ) defined in Lemma 4.2. Since 2} ¢ D%, we have
|25 > ¢o for some ¢ > 0. On the other hand, by (2.11) and the Harnack

inequality, we have u; converges to 0 uniformly on any compact subset

of By \ {0}. Thus,

ui(24) < ‘HllaX ui(z) — 0 as i — +oo,
x|=co
which yields a contradiction again. Therefore, s; = 1. We note that
x; # z; because 0 is not a simple blowup point. The other conclusions
of Theorem 2.5 follow from (4.17) and the lemmas in Section 3. Hence,
the proof of Theorem 2.5 completely finished. qg.e.d.
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5. An ODE approach

In this sectin, we consider a sequence of solution u; of (2.11) such
that

sup (ul(:z:)|x|n7_2) < ¢; and wu;(x) converges
(5.1) |z[<1
to 0 in C2_(B1\{0}).

From (5.1) and the theory of elliptic equations, it is easy to see

max u;(x) < ¢ min u;(z)

|z|=r |z|=r
for 0 <r < 4 and some ¢ > 0 depending on ¢; only. Let @;(r), w;(s), s;,
M; and L; are defined in (2.26) ~ (2.31), respectively. By (5.1), w;(s) <
c1 for s < 0. Throughout this section, we set

(5.2) Ri=L] and y=

By a straightforward computation, w; satisfies

n+2

—9\2 _
(5.3) wl — (n 5 ) wi + K;(s)w? =0 for s <0,

where

n+2
2

Ki(s) = |0Bes (0)| " tw, "% (s) /|x=es K;(z) (u(x)|x]%) " do

and Bes(0) is the ball with radius e® and center 0. Since we assume K;
is bounded between two positive constants, by (5.1), there are ¢ and b
such that K;(s) satisfies

(5.4) 0<a<K(s)<b.

From (5.3) and (5.4), there is a constant ca > 0 such that if s is a local
maximum point of w;, then

(5.5) wi(s) > ca > 0.

In particular, we have w;(s;) > c2 > 0. Since u;(z) converges to zero in
C2.(B1\{0}), si — —oo as i — +oo. Thus, we have by (5.5),

(5.6) lim M; = 4o0.

1——+00
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We can obtain some basic estimates for w; as in the following. For
the proof, see [9]. Let w; be denoted by w.

Lemma 5.1. There is a small number ¢g > 0 and large M such
that the following statements hold:

(i) Suppose that w(s) is nonincreasing in (So, 1) with w(s,) < €.
Then there exists a constant ¢ depending on a and b only such
that

w(s,)

2
5.7 — 5, < 1
(5.7) s1 SO_n—Qng(sl)+c

holds. Futhermore, if s1 is a local minimum point of w, then

2 w(So)
. 5, > .
(5.8) 51802 log w1

(ii) Suppose that w(s) is nondecreasing in (s1,s2) with w(sz) < €.
Then there exists a constant ¢ depending on a and b only such
that

2 w(s2)

5.9 —51 < 1
( ) 52 Sl_n—Qng(sl)+c

holds. Futhermore, if s1 is a local minimum point of w, then

2 w(s2)
) — 51 > )
(5.10) s2— 512 ——log w(s1)

Proof Theorem 2.7. The proof of Theorem 2.7 is very long. So, we
devide it into two steps. The first step is to estimate u; via Lemma 5.1,
and the second step can refine the estimate further by using comparison
functions. First, we want to prove

Step 1. There is a constant ¢ such that

(5.11) ui(x) < ¢ (tM; ") x|

2 2
for R;2M; "2 < |z| < R;7'M; "2 and v = (1 — 2B y-1

(5.12) ui(z) < ¢ M;
_ 2 __2
for R;lMZ n—2 < ’l‘| < Mz n—2’

2
(5.13) wi(z) < eM; Ho| ™" for M, "2
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__2
if LzMZ ne2 > ¢ >0, and

__2_ __2
<ec Mi_1|x\_"+2 for M, "7 <|x| < L;M; "*
(5.14)  wu;(x)

__2
<e ML for LiM, TP < x| <1,

2

provided that lim; 4 LiMiﬁ =0.

Recall w;(s) = ﬂi(r)r%2 with s = logr < 0. Let 3; be a local

maximum point of w;. By (5.5), w;(8;) > ¢ > 0. Set @;(x) = f:TQuz(ﬁx)
with #; = e%. Then ;(x) < c|x\277n for 0 < |z| < #;'. By passing to
a subsequence, @;(z) converges to U(z) in C2_(R™\{0}). In Lemma 5.2
(below), we will show that U(z) = [AA2 + |z — d|2)71]n772 for some

A>0and ¢ € R A direct computations show that U (?")7“%2 has a

unique critical point at r = /A2 4 |¢|2, which is also nondegenerate.
From here, we deduce that for each large 4, w;(s) has a sequence of local
maximum point s;; and local minimum point s;; for j =1,2,... , N (7).
Such that the following holds:

8ji < 854 < Sj+1i With sy, = si, w(s) is decreasing

5.15
(5:15) for s € (sj4,5;,;) and w(s) is increasing for s € (s;;,5;j+1,)

for 1 < j < N(i). Furthermore, w(s;;) — 0 as i — +oo for j =
1,2,...,N(i), and,

Sj+1,i — 85, and s;; — 85, — +00 as ¢ — +00
(5.16) for any j =1,2,...,N(i). Consequently, M;;/M;i1; — 0
as ¢ — 4oo for y € {1,2,... ,N(9)}.

Note that N(i) > 1 due to the assumption that wu; loses the en-
ergy of more than one bubble. For j = 1,2,... ,N(i), we set 4;(x) =

n—2

r;i ui(rjx) withrj; = e and U to be the limit of @; in C2 (R™\{0}).

Then we have

Lemma 5.2. Let U be described as above. Then

n—2

(5.17) Ulz) = (M) ,
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where
(5.18) 1= +1g)%

Furthermore, if set £y = \/X(j, then &y satisfies

(5.19) [ Q&+ U7 )y =0 and

2n

(5.20) [ QU+ U™ (y)dy <0.

The proof of Lemma 5.2 will be given at the end of this section. Now,
we go back to the proof of Step 1. By the remark above, we denote
s; and s; to be the local maximum point 5y(;; and local minimum
point sy, respectively. Since w;(s;) — 0 as i — +o0, there are
8 < a; < s8; < b; < s; such that w;(a;) = w;(b;) = €o, where ¢ is the
small positive number in Lemma 5.1. By a simple scaling argument,

(5.21) si —b; < c3=c3 ()

for some constant c3 independent of i. By Lemma 5.1,

2 €0
n—9 log wi(ﬁz) <s; —aj, by — s
(5.22)
2 €0
< 1 .
) ngi(&-) +c

To obtain some estimate for s; — a; and b; — s;, we need to find upper
and lower bounds for w;(s;). First, we show that

(5.23) (min u;) ! max u; — 1 and r; = efi.

|z|=r; |z|=r;
uniformly as ¢ — oo. To see it, let Z; be any sequence of points with
|#;| = ri. Let hi(n) = u;i(2;) " tui(rm). Since wy(s;) — 0 as i — +oo,
after passing to a subsequence, h;(n) converges to h(n) in C2_(R™\{0})
and satisfies

(5.24) Ah(n) =0 in R™\{0}.
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Let h(r) be the spherical average of h. Since s, is a local minimum point
of w;, we have

(5.25) %(E(T)T"T’Q) —0 at r=1.

By the Liouville Theorem, (5.25) implies

{Mm—aw2“+a

5.26
( ) a=b>0

Clearly, from it we obtain (5.23) and

(5.27) |V il (z) = —;(rs)(1 + o(1))

for |x| = r; as i — 4o0. By (5.23) and (5.27), the Pohozaev identity
implies

Plriu) =15 Suf(s) — 3 (U5 2) wisn)}

(5.28) 2 2\ 2
+ (1) (wf” (s;) + wi (s,)),
where
n—2 2n_
(5.29) Plriug) — / (x- K2 () da.
2n ‘xlg,’,.
Hence,
(1+ o(1)wi(s;) = — cnPr(ri, ui)
2n
< [ lllvE@WT b
(5 30) e%i <|z|<r;
: 2n

b [ el v K@y o
|| <ei
=0 + 1.
Since | 7 K;i(x)| < c|z|%~1, by (5.1),
|I2| < ¢ t;exp(Ba;).
By Lemma 5.1, we have for a; < s < s;

n—2 n—2

(8; — 8)| S wils) < wils;) exp[ (si — 5)}

c wi(s;) exp[
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Therefore

2n_ S5
uﬂ3cmw*@»men/ expl(—n + 8)s] ds
2n @i

< c tiw] 2 (s;) exp(ns;) exp[(—n + B)a).

By Lemma 5.1 again,

w;(a;) exp <(n — 2)2% — Si)) <wj(s;)

<c w;(a;) exp (

(n— 2)2&1 - Si)) '

These estimates imply

2n

(5.31) 1| < ¢ tieg™? exp(Bay).

Hence, we obtain

1 .
(5.32) wi(s;) <ctlexp (ﬁ;Z) :
Together with (5.22), it implies
1
(533) S; — a4 Z m(— log ti — ﬁal) — 0(50).

To obtain a lower bound for w;(s;), we recall §; < a; < s; to be the
next local maximum point of w;. Set

2
(5.34) i (y) = M; 'y (M, "2y),

where M; = exp(—”féi). By Lemma 5.2, by passing to a subsequence,

(R™\{0}) with

t;(y) converges to U(y) in C2

loc

n—2

5\ 2
@*‘<&+w—@w>

-l
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Let 7; = d exp §; for a small § > 0. By (5.28) and (5.31),
(5.35)

wz‘2 (s;) >

on
/ (. VK@) ul? (x)da
7<) <e%i

2n_ 2n_
—c ti/ |x|’6ui"*2 (z)dx +ti/ |g;|3ui”*2 (z)dx
|z <7 eti<|z|<r;

>cnt; / (z, vK)a*dx
7 <|z|<e%:

Since w;(a;) = €o, by the scaling property of U(y), we have

2n

2n_
— 7 —el? exp(ﬁai)} )

_ 2
exp(a; — 8;) ~ gy " ? >> 1.
By the scaling (5.34),

/ (o, VK (@) ul (2)de
71 <|z|<e%i

2n
/ Qy)is(y) ™2 dy
0<|y|<exp(a;—3§;)
28

=t ([ ~QuOtidy ) 1+ o)

.28

where o(1) is small provided that both ¢ and ey be small. Thus, by
(5.20), (5.35) yields
(5.37) wils;) > e )" exp(83:/2) > caleo)t)’” exp(Bai/2)
for some cy(ep) > 0.
By (5.22),(5.32) and (5.37),
2(s; —a;) < b —a;
(5.38) |s; — (1= 725)ai + 715 log t:| < c(e0)
Ibi — (1 — 255)a; + 25 log ti| < c(eo).

pra
for some constant c¢(ey) > 0. Hence we have

(5.39)
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and
1
S, §§(bi —a;)+a;+c
(1— L) 1
(5.40) < =2+ logt; + ¢
(1-2)" (m-20-2)

2

<log[R;'M; "] +e,

)

where R; is defined in (5.2). These estimates together with Lemma 5.1
and (5.22) imply

-2
wi(s) < wilsi) exp[ "5 (s — 9)]
< 1 n-—2 n—2 1
(5.41) sal eXP(— 5 3) exp[72 s+ iﬂaz}
n—2 n=2p; + logt;
< c(eo) exp(— 5 s) exp {2125}
T n—2
for a; < s <s;, and
-2
wi(§i)exp[n (s —§Z‘)} <w(s)
(5.42) L
<wis;) exp| "= (s - 5,)

for s; < s < b;. Using (5.41), it follows

n—2
=5, + logt; _
ui(z) <c(eo) exp {W} Edias
(5.43) =
1
=ceo) (1) o]
for exp(a;) < |z| < exp(s;), and by Lemma 5.1,

n—2

(5.44) cw;(s;)exp [— n-2 z]

si] < i) < eleo) wils) exp [~ "5 s,

for exp(s;) < || < exp(s;) and some c;(€g). Since u;(x) ~ exp(—"52s;)

for |x| = exp(s;), (5.44) leads to

n—2
2

(5.45) ui(x) ~ exp(— si) ~ M;
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2

for exp(s;) < |z| < M; "2. Now (5.39), (5.40), (5.44) and (5.45) imply
1
(5.46) wi(z) < ¢ (M) s |2

__2 __2
for R;?M; "2 < || < R;'M, "2, and

(5.47) ui(x) < cM;

__2_ __2_
for Ry "M, "2 < |z| < M, "% ~ e,
=2
Finally, we want to estimate u;(x) for |z| > M,"*. Set s to be a

local minimum point of w;(s) in (s;,0) if there is one. Otherwise s} = 0.
we claim

2
s; — 0 if and only if L;M, "* — 0 and i — +o0.
(5.48)

—2
. * —
Moreover, if s¥ — 0, then e ~ L;M/" 2.

2

First suppose LiMiﬁ — 0 and s; > ¢ > 0. Set

2

Wily) = My ug(M; "R y).
By Lemma 5.1,

_2_
(5.49) ui(y) <c |y|2_" for 1< |yl < Mi”*Q’

because sf > ¢ > 0. The scaled u;(y) converges to

2—n
2

U(y) = MO+ Jy — )]
for A > 0 and ¢ € R™. Then by Remark 5.3 (below), we have

(5.50) [ QWU )y =0

n+2

Note u; satisfies Au; + IN(Z(y)ﬂZ"f2 =0 and

2

Ki(y) = Ki(M; "y).
Clearly,
y- VEKi(y) = t:M; "?[Q(y) + Oy’ )]
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28

and L?fz =t; 1Mim. Thus, the Pohozave identity yields
(n — 2)5 _2n_
- Un72 d
T Qy)Un=2(y)dy
= Jim "2 (R ()
(5.51) n—2_0ou ||
= lim L"2 / — .
lﬂlinoo ! |y|:Mi% ( 2 i or + or

1 - n—2~ _2n
- §| \V4 ui|2r + WKZ(Z/)U: 27“) do — 0,
because the boundary term = O(M; ?). By (5.50) and (K2),

/Q@Wﬁ%w@¢&

Thus, (5.51) yields a contradiction.
Conversely, we assume s; — 0. Then as the second inequality in
(5.38), we have

. _ B 1
(5.52) st = (1 n72>sz —— logt; +O(1),
which yields
. 2
(5.53) e’ ~ LiM; "%,

_2
and it implies L;M, "> — 0 as i — +oo. Hence, (5.48) is proved.
Clearly, (5.13) and (5.14) follows from Lemma 5.1 and (5.48). Therefore,

we have proved Step 1.
_2
Step 2. Recall that @;(z) = M; 'u;(M; "~2z). After passing to a
subsequence, u;(z) converges to U(x — q) in C2 _(R™\{0}) with

loc

(5.54) U(z) = (M) o

Now we can estimate the difference of w; and U(z — ¢) more precisely
if we rescale U(x — ¢) and translate the position of its maximum point
suitably.
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If ¢ # 0, then there is a local maximum point ¢; of u; with lim; .. ¢;
= q. For suitable a; — 1 and \; — 1, we let the function U;(z) =

_n=2
ai; 2 Uz —qi)) > 0 satisfy

~ n+t2
) .
(5.55) AU; + Kz(O)UZ f 0 in Rn,
Ui(qi) = max Ui = ui(q;)

with K;(z) = Ki(Miiﬁx), and
(5.56) V(ui(gi) — Ui(gi)) = 0.

Note that A\; and a; are uniquely determined because they satisfy

n—2

Cbi)\i 2.U(0 :17,1 3 and
557 (0) = i(a)

K;(0) =a; "?n(n—2).

If ¢ =0, let , > 0 be a small number which is independent of i and
will be chosen later. Then there is ¢; = ¢;(do) such that

lim ¢; =0, and

1— 00

(5.58) / (x — qi)u;ds =0,
|‘T—‘Ii|:§o

since U;(z) converges to U(x) in C2_(R™\ {0}). For suitable a; — 1

_n-2
and \; — A, we may let the function U; = a;\; 2 Ul()\i_l(ac —q)) >0
satisfy

n+2

AU; + K;(0)U;* =0 inR",
Ui ds = / i ds,
(5.59) /|:c—qi|=5o lz—q:|=d0

/ (x — ¢;)U;ds = 0.
|x_Qi|:60

Set U; as above, let g;(x) = u;(x) — U;(x). Then g; satisfies

n+2

Agi +b(x)g; = Qv(x)U,-nd,
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where
nt2 n+2
- ’,L‘L’n—Q_U.n—Q
b(a) =Ki(x) -t
(@) =Fi(o) "=

Let f;(z) be defined as follows.

fim) =lz|"T  for 0 < |z < R
file) = {L;"*? + Ry "2 a2 4 max_ [ui(y) — Ui(y)|}
‘y|:Mim

2
for R; % < |z| < M;" 2,

and

Ni= max, 7))

2
Let x; be a point satisfy |z;| < M;"~? and satisfy N; = f; (z:)]gi(2:)].
To prove part (ii), it suffices to show sup;~; IV; < oo.
Assume that N; is unbounded. Without loss of generality, we may

2
assume lim N; = +oo. Let r; = min(L;, M;""*). By (5.1), (5.11),
1—00

(5.12), (5.13) and (5.14), we can see that u; satisfies

_ 2
(5.60) ui(z) <c |:v\_72 for |z| < M2,

i) < e(ti M) Myl

5.61

(5:61) =c Rz for R7 < |z| < Ry,
(5.62) ui(x) <cU(x), for R;l < |z| < 7y, and
(5.63)

2 2
If L;M, "* is bounded, then @;(z) < ¢ L;”H for r; <|z| < M.
_2
We note that if L;M; "~* is unbounded, then wj;(s) has no local min-
2
imum for s; < s < 0. Thus, r; = M,"? and by (5.13), we have for

|$| = Ti
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i.e., (5.63) does not hold in this case.
Since N; is unbounded, we have by (5.60), (5.61) and (5.63),

(5.65) ri > || > R L

By Green’s identity, we have for r; > || > R, 1

5(0) = [ Glan)blnygi — QU
[n|<r;

(5.66) 8G(am)
_ L) () ds
/77|=T¢ v (77)
and
Voile) = [ VaGlaa) 00 - QU

oV.G(x,
n=r:

ov

where G(z,n) is the Green function of —A on {xz : |x| < r;}. Since we

assume > [ > 1, it implies n > 4. By the inequality ¢g; < N;f;

and G(z,1) < ¢l —n[>™", we have the following estimates for R; ' <
|z| < r;. Their proofs are elementary and are omitted here. By (5.60),

we have
_n+2 _
b(m)gi(n)] < c|n|~"= for n] < R; 2.
Hence
(5.68) /| . Gz, mb(n)gs dn = O(R;" 2|2 7"F2).
n|<R;

By (5.62) and (5.63), we have
ui(z) < cU(z) for Ry <|z| <y,
which implies

()] < c(1+[n)~* for Ry' < |n| <74

125
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Hence
(5.69)

| Gl dn
Ry <|nl<r;

_4
= O[ » G(x,n)Ui”_QNifi dn]
Ri S|77|S7’z

ol { BT

log(2+ |z (1 +|z])™2 n=4
+ (L4 |2z)7HL7 2+ max (gi(n)])]

Inl=M;" "2
= O0(1)(1 + |z)) 2Ny fi(z).

Note that for (5.69), we have used Ri_”+2\x|*”+2 = 0(1)Li_n+2 for
lz| > 1,

~ n+2
/ G QU dy
[n|<r;

(5.70) B 1 1 Coio
- {u D e \a:|>"ﬂ] L
= o(1)N; fi(x),

where

@l = |0 - K1)

_ 28
<ctM; "nl’
—c L;n+2|77|5.
0G(x,
sy [ T ds = 0f wax o).
[n|=r; ov Inl=r;
From (5.62) and (5.63), there is ¢ > 0 such that

max g;(n)| < ¢ min_ fi(z).
[n|=r; |x|<MpTZ

Putting these estimates together, we obtain
gi(x) =O[(1 + |z|) >N fi(a) + max |g;(n)]]
(5.72) Inl=r;
=O[(1+ |=]) 7+ o(1)| Ny fi(=)
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for ; > |z| > R;'. Similarly, we have the following estimates for
derivatives:

613 [ V.Glambngdy = O(R el ),
[nI<R;

(5.74)
/ . VoG, m)b(n)gi dn
Ry <In|<r;

4
= O[ » VIG(Z‘,T])U;L72 N'sz d?]]
Ri <Inl<r;

— NZ-O[R;”+2|$]_"+3(1 + \x!)_z

() PR max ()]
Inl=M;"~*

=01+ |z) 2N, f;(x),

~ n+2
/ V. Glz, QU dy
"’7|<T1

(5.75) - = O(1)[log(2 + |=[)(1 + |z|) ™+
(U [T,
w ; s =O[r; ! max |g;
(5.76) /In:n ov gi(n)d O[ b nl=r |gz(?7)|]

for 7; > |2| > R;*. Tt follows from these estimates
Vgi(x) =O[R7" 2|71 + (1 + |2]) Nifi(w)
(5.77) +ri
=O[R7"™ a7 4 (L4 [2) 7 + o(1) Nifi(w)]

for r; > |x| > R;l.
Let x = z; in (5.72). We obtain

Nifi(w:) = lgi(xi)| < e[(1+ |2i]) 72 + o(L)]N; fi(w:)
for some ¢ independent of . Hence x; must be bounded and

|zi| < e
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for some ¢y independent of .
Since R;l < |x;| < ¢1, we have

file) = S L2 4 Ry 4 max [wi(y) — Us(y))

n—2
‘y|:Min

Note that L; << R;. For any r > 0, if |z| > r, then

n—2
1) fys ()
By (5.72) and (5.78), |g:(z;)|~tgi(x) satisfies for |z| > r > 0,
|9i(@)] o fi(z)
|9i ()] e+l fi(z;)

<c

—2 & 2 —n+2
(I+|z))=+ 7 T .

After passing to a subsequence, the sequence g;(z;)~'g;(x) converges in
C2 _(R™\ {0}) to a function ¢ which satisfies

loc

(5.79) Ad+n(n+2)Un7¢ =0 in R™\ {0},
' ol < (1+|2)72,

where U is given in (5.54). Since ¢(z) is bounded, by the regularity of
elliptic equations, ¢ satisfies (5.79) in R™. Now we show that ¢ # 0.
Since x; is bounded, without loss of generality, we may assume x; — xo.
If xo # 0, then ¢(xo) = 1. Obviously, ¢(x) # 0 in R”. Now we assume
zg = 0. Let §; be a small positive number. For y; = 51|xi|_1xi, we have
by (5.77) and the fact |z;| > R; ' that

lyil
0i(9) — gales)] < / RS

< (R |72 4 SN fi(4))
1 1

< SNifi(mi) < Slgi(wi

< INfie) < Sloted)

if V; is large and 07 is small. This implies

_

lgi() " g (wi)l = 5
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for large ¢ and consequently,

min [¢(z)| >

|lz|=61

DN | =

We conclude that ¢ # 0.
By Lemma 3.2,

¢:§:w%

with g = %U—l—(x—q)-VU(x—q) and ¢; = gTUj,l < j <n. By
(5.56) and (5.59), we have either ¢ # 0,¢(q) = 0 and Ve(q) = 0 or
q =0, Qx‘zég ¢ds = 0 and fm:% xjpds = 0, 1 < j < n, which implies
v; = 0 for 0 < j < n. We obtain a contradiction. Hence N; must be
bounded. The proof of Theorem 2.7 is complete. q.e.d.

Proof of Lemma 5.2. We follow the notations in the proof of Theo-
rem 2.7. Recall that 4;(y) converges to U(y) in CZ_(R™\{0}), where U
satisfies (5.16). By the Pohozaev identity

_9 2
(5.80) n / (2, VR do = P(1, ),
2n Ji<a

where

and

Since u;(x) < c[x\fnTiz, the left hand side of (5.80) tends to 0 as i — oo,
which implies
P(1,U) = lim P(1,u;) = 0.

1—00
~

Since P(r,u) = constant < 0 for any singular solution u of (5.16), U
is smooth at 0. Hence

n—2

. A 2
Uly) ={——3
Aty —4|
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Since p
i (r)r"T o =0,
we have p
%U(T)T”T‘Q\Tzl = 0.
By a straightforward computation, we have
ron—2
d =~ n— d ]. )\ 7d
7U<T) TZ - o n—1 2 (T ) - d n—2
dr dr [SP Jgn-1 (X2 4 |ry — ¢12) "

sn—2 n—

(n— 2N\ T " / (A2 + |3 - r?)do
2|5 st (N4 |y —gP2)2

Thus, 7o = /A2 4 |¢|2 is the only critical point of E(r)ranQ and

d? = n—2
W(U(T)?" 2 ) |7"0< 0.

(5.18) follows readily.
We want to prove that U(y) satisfies

(5.81) | Q) dy =0,
and
(5.82) [ QU dy <o,

By a simple scaling argument, we have (5.22), i.e.,
a; — 8; < ¢ (g9).
Hence, by (5.33),
(5.83) S, — 8 > 8 —a; > 5(— logt; — 33;) — c.

Recall that

1
~ — 2 ~ ~ 28 n—2
M; = exp (—” > 3> and L; = (t;lMi 2) .
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By (5.83),
" —2_ ~ 28 n—2 ~
ri=e%M? >c <ti1Mi"2> = CL;L72.
Applying Lemma 5.1, we have
(5.84) iy) < ey

2
for 1 < |y| < e%M""* = r;. Since 4; satisfies

n+2 R

A nE2 2
Ati; + Kﬂl{hz =0 for |yl < Mi"ﬁ,

where )

Ki(y) = Ki(M; " y).
Let ej, 1 < j < n, be the standard orthorgonal base for R". Applying
Pohozaev’s identities, we have

n—2 o2
/ (e1 TR aT? (y)dy
B(O,Ti)

2n
(585) - /BB(O,”)<€]7VUZ>8V - <6J7 V) 9
-9 . 2n
”Qn (e;, V) Kiti! 2 do
=O(r;™),

by (5.85) and the gradient estimate. From (5.28), we have

n—2 b\ ats
5 (y, VK (y)dy
(5.86) "B
Snfl
s+ o))
NI
Since t; M, "? = L2 and

. .28 N2
VEKi(y) = tiM; " (VQy) +o(L)y|"Th) for |y < M,
(5.84) and (5.85) yield

i 28 () =
i uM"*((§@§+mnmﬁﬁﬁlwm4
B(O,n‘) y]

lim
i——+00
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as i — 400, which is (5.81).
To prove (5.82), we note

28

(y, VEi(y)) = t:M; " (BQ(y) + o(L)]yl”).
Thus, (5.86) yields

B[ QU2 (y)dy = lim (i;” /B o )(wK) 2n(>dy>

Rn ’L—>+OO

n(n — 2)|S""1|

I S L | Ln 2 2
IS i (E2u(s)
<0,

which is (5.82). The proof of Lemma 5.2 is complete.  q.e.d.

Remark 5.3. The proof of (5.19) holds also for u; of (5.49), when
25
LiM, ™~ = — 0. Because the left hand side of (5.85) = %-2¢;M, "% x

</ 22<ej,VQ(y)>Unzn2(y)dy+O(1)/ |yﬁ—1—ndy> 7
P lyl<o

(5.85) yields

2n 2
vRyU H(y)dy‘ <e LM, 7
R

as n — o0, which is (5.50).

__2_
Remark 5.4. If L;M, "~* > ¢ > 0 for some constant ¢ > 0, then

__2
(5.13) yields u;(z) < e M~z|>™" for M, "> < |z| < 1. By passing to
a subsequence, M;u;(z) converges to a positive harmonic function h(x)
in C2_(B2\{0}). We claim

loc

If lim LM"2——|—oo then h(z) = a

(5.87)  i—oo |z |2
for some a > 0.

O(|z|) near 0O

Let h(z) = \xl% + b+ O(Jz|) for a > 0 and b € R. By applying the
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Pohozaev identity, we have

2n Jig<a
n— 2 0u; ou; 2
5.88 =
( ) /m|:1 ( 2 87“ utr (97“
1 5 n—2 2n
—= il — K; no2
vl = 2R ) do

By scaling, it is easy to see the left hand side of (5.88)

_ (”;712)51112—” < . QU™ (y)dy + 0(1>> ’

and the right hand side = —c,abM; *(1 + o(1)). Since

[ QU (y)dy =0

by (5.50), (K1) yields [, Q(y)Un"2 (y)dy # 0. Hence, if

lim LI 2M;? = +o0,

1——+00

then ab = 0, i.e., b = 0. Thus, the claim (5.87) is proved.

6. Preliminary results of global solutions

From now on, u;(z) is considered to be a solution of (1.3) defined in
the whole R™. Theorem 1.2 implies that after passing to a subsequence,
{u;} blows up only at finite points. We will prove this later and for
the proof of Theorem 1.2, we assume first that {g; 7 is the set of
blowup points for {u;} with m > 1, and u; — 0 on any compact subset
of R"\{q1,...,Gm}. Let I < m be the nonnegative integer such that
q1,--- ,q are simple-like blowup points and §;41, - .. , ¢y are non-simple-
like blowup points. For the definition of simple-like blowup points, see
the end of Section 2. If there are no simple-like blowup points, we let
l=0.

For each blowup point §;, we define the local maximum M; ; and the
local maximum point in the following ways. Let g be a small positive
number such that the distance d(g;,qx) from §; to gi is greater than

133
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20g. If w; loses energy of one bubble near ¢;, that is, if (2.17) holds,
then M; ; and §; ; are defined by

(61) Mi,j = ’U,Z(qAZJ) = Amax uz(m)
|G; —|<do
Let L;; = Li(qg;;) be the number defined in (2.15). If u; loses energy
of more than one bubble at ¢;, then there are two cases. The first
one is described in (ii) of Theorem 2.5. In this case, ¢;; denotes the
local maximum point z; in the statement of (ii) of Theorem 2.5, and
M; j = ui(gi ;). Note that in this case, ¢; is a simple-like blowup point,
2

_ 2 2
(6.2) lim L;;M, ""* = +o0o, and 223100 <]cji7j - Qj|Mi’fj_2) = +00

i——+00

by Theorem 2.5. The second case is described in Theorem 2.7. In this
case, M; j and L; ; are defined as in (2.28) and (2.29), and §; ; is defined
2

to be ¢; + M;]m z;, where z; is in the statement of Theorem 2.7.
By Theorem 2.1, Theorem 2.5, and Theorem 2.7 and the remark
after Definition 2.9, ¢; is a simple-like blowup point if and only if

2

(6.3) LijM, " > ¢>0.
Also, for j <[, we have

6.4 i (z) ~ ML
(6.4) |m%1%60uz(w) i

For [ +1 < j < m, we have then

. 2
(6:5) o <60 wi(z) ~ Li ;" My
and
(6.6) wi(x) < clw — ¢~

for |z — ;| < do since they are non-simple-like blowup points.
One important situation is that for some j,
__2_
(67) lim Li7jM~ n=2 — —+00

i——+00 b

occurs. We claim
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(6.8) If (6.7) holds for some j, then §; is the only simple-like blowup
point, that is, [=1.

Proof of (6.8). If u;(x) satisfies the assumption of Theorem 2.7 at
qj, then m; ~ M;jl by (6.4). Set h(z) to be the limit of m; 'u;(z). Since

T2
limy o0 Ly jM; "7 = +00, (5.87) yields that h(z) = for some

= o
a > 0. By Lemma 6.1 (below), ¢; is the only simple-like blowup point.
So, we might assume either g; is a simple blowup point or ¢; is the one
described by (ii) of Theorem 2.5. We note that for both cases, by letting

an empty set F/, R = R;,l = 0L; j and lyp = +00, Lemma 3.5 yields

nt2
/ 0P (y)dy < o1 (B2 + <),
R;<|z|<L*+; ;(5)

2

where v;(y) = Mi*jluz(q” +M "=2) R; is given in (2.14), and L (6) =
2

min(dL; j, )\MZ?) for some fixed § > 0. Now let z¢ be another

simple-like blowup point, i.e., either xy is a simple blowup point or

the one in case (ii) of Theorem 2.5. Say xz9p = ¢1 # ¢;. In any

case, there is a small neighborhood w of ¢p such that ming, u;(z) ~

Mi’_ll. Clearly, min,, u;(x) ~ minj; 4|<1 ui(z). Hence M; ; ~ M;;. Let
2

={y | ¢ +M "2y € w}. Then, v;(y) < c for y € w*. Since
2
lim; 4 oo Li,ij” "2 = 400, Lij >> |q; — ql\MZ»:”‘j-_Q for large 7. There-
2
fore, by choosing A > 2|g; — q1], we have L ;(6) = AM,"*, and

Ri<[al <L ,(8)
<cel(R;%+e).

Clearly, this yields a contradiction. Then (6.8) is proved.

One important consequence of (6.8) is that if [ =1 and j7 > 2 or if
[ > 2 and j > 1, the inequality (6.6) always holds near ¢;. From it, we

ﬁ]
have L”] 2 t_lM "~* which follows definition of L; ;. To show (6.6)
holds in these Cases it suffices for us to consider the case [ > 2. By
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__2
(6.8), lim; oo Li7jMi’j"’2 < oo for all j. If (6.6) does not hold near §;,
then Theorem 2.5 and (2.21) imply that ¢; is a simply blowup point.
2

However, Theorem 2.2 implies |§; j — QJ]M:? < c¢. Together with the
fact that ¢; is a simply blowup point, (6.6) holds at ¢;. Then it yields
a contradiction again. Hence we prove the claim.

Now, we prove Theorem 1.2.

Proof of Theorem 1.2. Recall that {q1, -, qn} are the critical points
of K. Let q be a blowup point of {u;}. We want to prove Vf((q) =0.
We may assume ¢ # oo. Now suppose that ¢ is not a critical point
of K. Then by Corollary 2.3 and (6.8), we conclude that after passing
to a subsequence, ¢ is the only simple-like blowup point. Therefore,
VK (§) = 0 for any other blowup point ¢ # ¢, and it implies there

are at most finite blowup points {q1, - ,¢mn} which are contained in
{q1,--- ,qn} U{q}. Also by the Harnack inequality, u; — 0 uniformly
on any compact subset of R™ \ {G1, -, Gm}

Let M; ; and ¢; ; be defined as above. We may assume ¢; = ¢q. Then

(6.9) ui(x) < ¢ Mo — qi)* ™"

for x & U B(4;,60), and by (6.6),

Jj=2
(6.10) wi(x) <clz—g"T
holds for |z — §;| < dp and j > 2. Let e = (1,0,---,0) and Q; =
n " S VK((jl)
R™\ U B(gj,00). We may assume e; = ————. By the Pohozaev
j=1 | v K(q1)]
identity,
K; = K; 25
/ 0 (x)u{L’Q(m)dx = —/ 0 u] ?dx
Bling) 001 E\B(d1,6) 021
m 2n_
<[ K @
j=2 7 B(dj,00)
(6.11) 20
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where inequalities (6.9) and (6.10) are used.
On the other hand, since ¢; is a blowup point,

on_
(6.12) / uw!'?(z)dx > ¢, >0

B(q1,00)
for some constant ¢, > 0. Since 5; > 1 for j > 2, (6.11) implies

0K, 2n mooa _2n
cn ti < / ‘u 7 (z)de < c ity Zégj Ty M, "% 5,
B(41,60) Y971 =2 ’

which obviously yields a contradiction when Jq is small. The proof is
finished q.e.d.

From now on, by passing to a subsequence, we may assume the
blowup points are {q1,- - ,q¢n} C {q1, -+ ,qn} and u; — 0 uniformly
on any compact subset of R™ \ {q1, - ,¢m}. Let I < m be the non-
negative integer such that qi,...,q are simple-like blowup points and
Qi+1,- - - »Gm are non-simple-like blowup points. Set

(6.13) m; = inf (u; () (1 + )" 72).

Since u;(x) — 0 for x € {q1,... ,qm}, mi — 0 as i — +o00. Let
hi(z) = m; tui(x) for x € R™

Then h;(z) is bounded in CZ_(R™\{q1,...,qm}). After passing to a
subsequence, h;(x) converges to h(x) in C2_(R™\{q1,... ,qm}). Since
m; — 0, h(z) satisfies

Ah(z) =0 in R™\{q1,... ,qm},
h(xz) > 0.

By the Liouville Theorem, we have

(6.14) h(z) = i o)
j=1

|z —q;]’

m
where p1; > 0 and Z,uj # 0.
j=1

Lemma 6.1. p; > 0 if and only if q; is a simple-like blowup point.
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Proof. Let g; be a simple-like blowup point. By (6.4),

my; ~ ]\47;1
Thus,
1 n+2
/ Ki(z)u]*(z)dx
Mi J)jz—q;]<60

n+2

> Mijj/ u! " ?dx > ¢ > 0.
|z—q;]<do

It implies p; > 0.
Conversely, if ¢; is not a simple-like blowup point, then by (6.6) and
(6.5),

(6.15)
- __2_
|z _qj‘—TQ for |z| < M, "?
__2_ __2_
u;i(z) < Mo — g2 for M; "2 §2|$ —qj| < LiM; "
Lzz_nMZ for _[/Z]\JZ_m < |$ - QJ’ < 507

where for the simplicity of notations, M; and L; denote M, ; and L; ;,
respectively. Hence

(6.16) m; ~ L2 " M;.

Applying (6.16), a straightforward computation shows

n+2

1 n—2 c —1 %
— Ki(z)u!?(z)de < — § M, +m] — 0.
lz—gq;1<do

m; mg
Here we have used m;M; ~ L?_”Miz — 400 as i — 400 by (6.2).
Therefore, p; = 0. q.e.d.

From Lemma 6.1, we immediately have [ > 1. The next lemma tell
us that there are some constraints for a collection of critical points to
be a set of blowup points.

Lemma 6.2.

(i) If I > 2, then we have [3; > ”772 for all j, or B; = ”Tﬁ for all
J, or B; < "T_2 for all j. Moreover, 81 = B = ... = §; always
holds, 31 > B; for j > 1+ 1 if B; > "52 for all 3, and 31 < B; for
=1+ 1if B; <252 for all j.
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(ii) If I = 1, then we have B; > ”Tﬁ for2 < 3 < m, or §; < "772

<
for2 < j < m, or B = ”T_Q for 2 < 5 < m. PFurthermore, if

J
B < 252 then §; < 152 <j< s > =2
1 < B35, then B; < 5= for 2 < j < m. If B; > 5 for

2 <j<m, then By > pB; forj > 2.

Proof. We prove (i) first. Since [ > 2, by (6.8), the inequality (6.6)
2,

holds near any ¢; and Lf;" ~ th;]ﬁ By (6.8) again and the fact

2
q1,- .. ,q are simple-like blowup points, we also have L; ; ~ MiTLfQ for
1 < j <. Thus, M;; satisfies

_25
(6.17) L™ ~ M "7 for 1<j <m,
(6.18) mi ~ L2"M;; for 1<j<m,
and by Lemma 6.1
(6.19) M;;=0(1)M;, for1<j<landk>1+1.

By (6.17) and (6.18), for j # k,

_ 2B _ 28

(6.20) M "~ M, "

0]
which implies that there are only three possibilities: (5; > ”T*Q for all j,
or 3 = ”T_Q all j, or 3; < ”T_Q for all j. Since M; ; ~ M; 1, if 1 < j,k <1,
by (6.20), we have 3; = (. Again by (6.20) and (6.19), we obtain the
inequalities: 31 > B for j > [+ 1if B > ”7_2, or fy < Bjforj>1+1
if 51 < nT—Q

To prove (ii), we note that by (6.15), (6.17) and (6.18) holds for
2 < j < m. Thus, (6.20) holds for j # k > 2, and then we have
ﬁj>”T_QforalljZQ,orﬁj:”quorallj22,or,8j<”7_2forall
Jj=>2.

By (6.19) and

231
o~ M s> L2Miy > M,
mg o~ My >> Ly My 2 Uil g T

we have for j > 2,
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Hence, if §; < 727 we have (; < 52 for all j > 2. If 8; > "T*Q for
j > 2, then B > ” andfor]>2

203, 203,
(ﬂ] — 1> log M; 1 << ( 5 — 1> log M; ;
2 ’ n—2 ’

n_
2
<< ( i —1> log M; 1,
n—2

which implies 51 > 3;. q.e.d.

7. Estimates for the Pohozaev identity

As in Section 6, let ¢1,...,q denote all the simple-like blowup
points, and let g;y1,... ,gm denote the non-simple-like blowup points.
Also, let M; ;, g; j and L; ; be defined as in Section 6. Recall m;l ~ M;;.
Hereafter, h(z) denotes the limit of M; ju;(z). By Lemma 6.1,

Z!«%‘-Q\” 2

where p1; > 0. For 1 < j <, the regular part of h at g; is denoted by

l

Z —Qk|” |z — qn=2

k=1,k#

The Pohozaev identity plays an important role when we come to
study the interaction of different blowup points. Therefore, we have to
compute the terms appearing in the Pohozaev identity very precisely.
For example, we consider the case when g; is not a simple-like blowup
point. Then h(x) of Section 6 is smooth at ¢;. By a direct computation,
the Pohozaev identity leads to

2n

n—2
o | e a K e
lz—q;|<do

n—2 Ou 1
lz—g;[=d0 v

. 2n
+50|%“Z 2 60K ul ) do

= O(l)M’i,_12a
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because h(z) = lim M, u; is smooth at g;. However, it does not
1—+00
show any information about M; ;. The following lemma improves the

estimate.
Lemma 7.1. Suppose 3; > w for all 5. Then the following
hold:

(1) Form >j >1+1, we have

2n

(7.1)

n—2 / —
VEKi(z)u] " (z)dz
20 Jiz—g5<éo

= —(1+o(1) + e1(%0))(n — 2)|S™ | 7 hlg;) M1 M}

_ 255 —2n
+o0 <tiMi7jn_2> + 0 ((58_1@Mz~?1_2> , and

n— 2 n2;n2
5 (r —qj, VE;(z))u;* (x)dx
N Jlz—q;]<0

(7.2) =—(1+o(1)+ 62(50))m_22)2

,ﬂ _2n
“+ o0 tiMi7jn72 + O (581157;Mi,1n2> ,

where o(1) — 0 as i — 400, ¢1(d) and c2(6) — 0 as 6 — 0.

’Sﬂﬁl |h(Qj)Mi,_11Mi,_jl

(2) Ifl > 2, then 1 < j <,

(7.3)

— 2 2n
n / VEi(z)u! " d
20 Jje—q;1<60

= —(1+ 0(1) + 1 (8))(n — )| S™| 7 hy(g) M M}

_ﬂ _2n_
+o tiMz‘,sz +0 <56L_1tiMi,1n2> )
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and

2n

-2
n / (& — g VK (2) a2 da
|z—q;|<do

2n

(n—2)* ~1737-1
(7.4) =—(1+4o0(1)+ 02(5))T\S |hji(a;) M,y M, ;
_255 _2n_
+o0 (t,-Miyj“) +0 <5g‘1tiMi71"2) :

Proof of Lemma 7.1. For each ¢; considered here, u;(x) satisfies

ui(x) <eclz— qj|_nT_2 for |z —q;] < do
_ 265
(7.5) LE" ~ M}~ M, "%, and
,Bj <n-—2,

due to (6.8) and Corollary 1.3, where m; is the minimum of u; in (6.13).
We separate our argument into two cases which require different esti-
mates. Case (I) is when u; loses energy of one bubble only and Case
(IT) is when u; loses energy of more than one bubble.

For Case (I), let

2

(7.6) i) = M ui(ai; + M, ;" ).
Then by Lemma 3.5 and (7.5), we have

2
(7.7) |u;(z) — Ui(z)| < ¢ L;jn+2 for [z < doM;";*.

(Note that in this case, g; ; is the local maximum given in (2.12)), where
U; is the solution of

n+2

(7.8) AU; + Ki(qiyj)Ui"_Q =0 in R"

with U;(0) = max Ui(z) = 1.

For Case (II), we can apply Theorem 2.7 to estimate the difference

between u; and a;Uy,. In this case, 3; < always.

In the following, let

-2 2
L:] = min(Li’j, 60Mi73‘72) and ll — 50Mi7}72
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for the simplicity of notations. Let U; denote the solution of (7.8) for
Case (I) and denote a;U), for Case (II). Set g;(z) = u;(x) —U;(x). Then
g; satisfies

(7.9) Agi + pEi(qi) U g = (Ki(g5.5) — Ki(x))@ + Hi,

2 — _2
where p = %7 Ki(r) = K; (%,j M "), and

(7.10) Hy(z) = Ki(q;,;)[UF — @ + pUF ™' gi].

To estimate the term Hj, we consider Case (I) first. By Lemma 3.5,
we have

2
_ 25
(711 |Hi(@)] < aUP 2l < eU?? (uw)

when |z| < L, and

(7.12) |Hy(2)] < e (mi )P

_2
when L <|z| < doM;"*.
For Case (IT), we apply Theorem 2.7 to obtain
[Hy ()] < cle| "3 for |a| < R}
|Hy(z)] < eR;™ 2|2 for R; 2 < |z| < R;*
(7.13)  [Hi(x)| < cUP?|gil? < cUP (R 20 720t 4 20 HY)
for R;y' < |z| < L;;

2
[Hy(z)| < e L "7 for L, < |z| < 6M] 2,

203,
R 1 J \—1
where R; = L/; and v = (1 711—2) .
Let
-2
8)\Ui=—n2 Ui(ﬂ?)—w'vUi

and

n—2._

it (z) = —

ui(x) — x - yu(x).
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Multiplying (7.9) by syU;, we have

_4
/ VU(Lgi + pKilai ) U 2 gi) de
|z|<l;

= [ Wilay) - R ds

(7.14) + / (Kigs) — Ki(@)i (VU; — Viiy) da
|| <l
+ Hy(x)VU;dx
|lz|<l;
= [+ II+1III

Multiplying (7.9) by d\U;, we have

_4
/| WUi(Agi + pKi(qi)U " gi) da
z|<l;

- /| _ Uilaeg) — Rt e
z|<l;

(7.15) n /| | (Ki(gij) — Ki(2)@ (0\U; — 0rity) do
x|<l;
-+ H1 (l‘)a)\Ul dx
|z|<l;
=[O+ I+ I11°

2
Let y = Mi,j”’zx. By integration by parts,

1
P+ 1<

+0(/ |Ki(gi7) — Ki(z)|[a ™ d’5>
(7.16) |z|=l;

1 __2
:]mMm."’2 <o VyKiufH dy
y|<do

V. Kt dx

2n

+ 0(63’1tiMiTj% (mi)-2),
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By scaling, we have

1 ~
I° = (z, Vo Kl da
PH1 iz,
+0 / Li|Ki(gij) — Ki(x)[a? ™ ds
(7.17) ( |z|=l; ’
1 1
= <y7v K1>uf+ dy
R

n—1 2n
+ 0(50 tz(mz) n—2 )

To estimate the terms I, 11, II* and I1I%, we consider Case (I)
first. By (7.7) and integration by parts,

(7.18)

|[11] SC/I Kl_{!(foQ)ﬂfl + |(Kil4iy) — Ki(2)) Vot |} (@ — Us)| dy

+ C/x|li |(Ki(gi;) — Ki(x))uk (u; — U;)| ds

*27’17‘1’4 9 on
<c e+ O M, P m )
B /|:Jc§L;.‘7j (14 |z|)n—Bi+3 (0 tiM; i)
L by <3 __2  2n
S O .[/ZJ-QTH_4 log I/lé]7 Bj =3 + 561—1tiMi’jn—2min—2
Lz‘ﬂé‘_ , Bi>3

_ 2B 2 2

2n

=o(t; M, ;" ") + O(6y M, 2 (my) 72

as 1 — 0o. Here we have used the fact M; j|q; — qi,j|nT_2 is bounded and
the following estimates:

wi(x) ~ szZ_Jl for |z| > L;j, and
~ _ 28
(7.19) |Ki(qi,j) — K1($)| < tiMi’jnfz (1 + ’$|gj)
~ _26-1)
|V Ki(z)] < t; M, n—2 1+ mﬂj—l),
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Similarly, we have

e [ 1o Val(iaig) ~ Rl U dy

o [ (i) - Koo - U ds
lz|=l;

72n+4 2n
<c N E— | 0 (5n_1t‘ n-2
(720) - /m|§L:fj (1 + |x’)n7ﬂj+2 T + ( 0 im; )
1’ BJ < 2 2n

<0 Li_jz”+4 IO%Lz‘,j, Bi =23 | +0(5 Him )
’ 2
Li,]j s Bj > 2
_2B 2 2n
:O(tiMi,jn_2 ")+ O<58_1ti(mi)m)
as i — oo. Here we have used the fact that by (7.5) and m; — 0, which
implies
1
(721) L;]l ~ 0(]\4'1,7],"_2 )
For the terms II] and I1I%, we have by (7.11) and (7.12),

(7.22)

2n

2
_25 1 __2
] < tiM, "7 | s dz + 00y M, " m]
| L”Ama<’” )0+mww+(0 oM )

2n

1, n <5 )
—2n+4 L. _ n—1 . Tn—2 n—2
<O |L;; log L j, n=>5)+6) t; M, m;
’ n—>
Li;° n>5
_ﬂ_ 2 2n

2
— O(tiMi’jn72 n—2 ) + 0(58_1tzMZ n—2 m;zf2 )7

and
(7.23) 2
I11% <c / (tM_]2f> gt o m )
jo|<L ’ (1+ |z[)*
1, n <4

_2n_
<O LZ._J?”JF4 logL;;, n=4,+ 5g_ltimf_2
’ n—4
Li,j , n>4
25]' 2n

= O(tZM;]ﬁ) + O((Sgiltimin72 )
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as ¢ — oo. Thus for Case (I), from (7.16), (7.18) and (7.22), we obtain

_4
/ VUi(Agi + pKi(qi ) U % gi) da
|| <l

28,
(7.24) Vo V, Kl dy + o(t;M, 7 "32)

2 2n
+ O(‘S(TJhlti]W@jW2 (m;)»=2)

as i — oo. From (7.17), (7.20) and (7.23), we have

_4
/| z WUi(Dgi + pKi(qi ;) U % gi) da
z|<l;

Zﬁj

) _26;
(7.25) (y, Vy Ki)yult dy + o(t: M, ;"7?)

1<
2n
+ O8¢5 M i(my)»=2)

as 1 — 00.

-2
For Case (II), we have 1 < 3; < z and n > 4. By using (ii) of

Theorem 2.7, we decompose I] and I1% into three terms respectively.
11 :/ +/ +/
lz|<R;'  JR7'<|z[<Ly; VL, <|2(<l
=1L+ 11, + 113

and

I1° —/ +/ +/
lz|<R;7" JR7'<|z<Ly;  JIL;<|2|<l

=II¢ 4 II§ + I1I§

From integration by parts, (7.19), the fact M; j|¢; — qi7j|n772 is bounded
and Theorem 2.7,

147
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1

L=~ Vo Kl da
' p + ]. |CC‘§R.71 z 17
R
ol R g
jol=R;T
+ | KR_I(Ki(Qi,j) — Ki(2))@' VU, dx
TSty

-— — +/ )+O(t~M. 2 g
p+1(/$|§Ri—2 R;2§|I\§R;1 v, ?
_ 285 5, - 2
+ 0 tiMij"*Q(l + R, ”)/ |g;|—TPMZ,j"*2 dx
’ || <R ’

205 9512 18 e
— =8 =20 -5 H—n+1-p5; — sz
=0 tiMi’j" 2RZ- J -l-tiMm- QRi ’ +tiMi’j 2 R, * .

-1
P+ 1 <

25 _
O[]
TI=1Y

I7¢ = (z, Vo K)ul ™ da

+ (Ki(qij) — f?i(x))u“/f@,\Ui dx
|z|<R;!
28;

! =32 p—Nn—p3;
Tprl Ot M » 2R
pt1 </|x<ﬂz2 ! /Ri2<|z|<Ri1) +O(M,;" R )

28 | .
+o(um 20 +Riﬁf)/ 2|50 da
’ |lz|<R;

Qﬁj 2ﬁj

*% —26; 7=z p—n—0; —nts 552
=O | 8M "R T A MR MR, :

T n—2
_ 26
j "=2 |, Thus,
iz

1

Recall that R;l = L;] =o | M,

_25 2
II]. — O(tiMZ‘7jn72 n72)
_ 255
IIil = O(tZMZ jn—Z)
2(n —2) 2(n — 2)

as i — oo if B; > . Here is the place we need §; > ———.
n
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From integration by parts and Theorem 2.7,

| | _ié |x|ﬁj_1
IL| <ct;M,."” / s
T Jrotgerery, (T |22

. (R;n+2|$’—n+2 + L;}LJrQ) dz
(7.26) s, 1, B;<3
<c(t:M; ;" ?)?q logLij, B =3
’ B:—3
LZ-7J]- , ﬁj >3
28, 5

=o(t;M; ;"% "7?), and

» _28 |
I8 <ct;M, "~ / 1+ [zhnt2
2 154, Ri_lf‘mlSL;:j (1 + |33|)n+2
—n+2),,.[—n+2 —n+2
(BT TR 4 L) da
(7.27) _ 28 b e
<c(tiM; [ )? S log Lij, B =2
my >

2/3]- 2

=o(t;M; j"’2 "2,
For II3 and 11§, we have

25]'

[II3] <c t;M, "~ / 2| (L TP de
Ly ;<Jz|<l;

(7.28) I —n
20[50 ! tiMi,j Q(Mi7jLi,j+2)p+1]
2
=005~ M, ;"2 (my)P*1], and,
_ 26
TI5] <c t; M /"~ / (L; 2+ do
(7 29) ’ L; i <l|z|<l; ’

=00y ti(Mi Ly )P
:O[(Sgilti (mi)p-I—l] .
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To estimate I11, note that n > 4 and then

|[I11] <c \x|*nT+2 dx + Ry 22| "2 da
lz|<R; 2 R 2<|z|<R;* ’

1
+ R'—2n+4 T —2n+4 + L.—'27l+4 d.’IJ
Ry <lej<Ly, (1 ’9?\)5( ’ g i)

—n—2
Lt <el<t, (14 )

S C[R;n+2 + R;n72RZ4

1 n <9y
n—4 ’

+ | R+ { lRi R-’ n i i n L;j2"+4 logLij, n=>5

08 fi, M= sz_5, n>>5

2
—7’L—2 n—2
+ Ly M

and

II11° <c 2|72 dz + R 2|z "2 dw
|z|<R; 2 R72<|z|<R;! !

1
+/ (R727H || =24 4 [ =204 gy
R;1S|$\§L:,J (1 + ’x‘)4 7 ’ ,]

L2
+/ LY P
Lt <lal<t (L4 [a])m=2

S C[Ri—n-‘FQ + RZ—H—QR;L

—4
—2n+4 R? , n> 4 —2n+4 1Og Li,j? n=4
+ (Ri { logR;, n=4 + L sz_4, n>4

_2
+ L;f—QM;j—Q ].

QBJ-

: _ L n—2
Since R; = LwLm-

2[3]-

/(=7=5)

285 265
LT n— —n+2 i T n—-2 -1 _
2 LigLi;™, L ~ 4 7 and Ly =

1
o(M; /"~*), we have

2B; _ 28

_ _ —203; - —
RZ’ n+2 S Li7‘77'1+2Li7j ﬁj — O(tiMiJn 2 n 2)’ and
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QBJ 2

R max(R!*,log R;) < R; "+2—0tM nooney,
17 n<5j L n+2 n <>

L2748 logLij, n=5< L 3logL,j, n=
L% n>5 L}, n>5,
e
2

7-7 )
L—2n+4 { log LZJ’ n=4 L 10g L1J7 n=4

n—4

) Ha >4— n >4,

’Lj’

2
—n—2 n—2 —n+2 n-— 2 n
L M < Ly Po(L)M, 7= MY

_ 28
Putting these estimates together, we have by L;;-”z ~ t; M, j"*2 and
1
-1 _ =
Lij = o(M; ;")
28, o 285

(7.30) (11| = o(t;M; ;"> "), and [III%| = o(t;M,; ;")

From (7.26) ~ (7.30), we obtain (7.24) and (7.25) for Case (II) also.
By Lemma 6.1, after passing to a subsequence of {u;}, M; u; con-

verges to h = Z From integration by parts and the facts

J=1 |z— q \” 2
A(VU;) + pKi(gi ) )UP'VU; = 0,

A(ONUD) + pKi(gi1) U 0\U; = 0,
the left hand sides of (7.24) and (7.25) are equal to

(7.31) / , (Yigy, - VY 4
‘x|:50MiTZ or 87"
and
9y 3(8,\Uz‘)
.32
(7.32) /MOMz (a Ui — > do,
respectively.

For 1 < j <1, since g¢; is a simple-like blowing-up point, we have
-1
(7.33) my ~ M,
__2
When j > 141, L; j M, j"” — 0 as i — oo. Thus,

(7.34) Mt >> M,
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2
Now assume j > [+ 1. On {:c x| = 50Mi"j’2 },

2

gi =T+ O(M?) and Vg = Vi +O(M,, ™).

2
By (7.34), we have on {w el = 50Ml.’jj‘2 },

gi(x):(1+0(1))M111M 1h(‘b M " ),

Vagi(z) = (1 +o(1)) M, 11Mi o 2V h(% M "

2y

2

where y = ¢; + M;ma; We have

/ , Yigy,
jal=do M7 2 OF

—92 [
—(L40(1) + e1(60)) 15"V, hlq)M; ' My

1,

ovVU;
—/ g (14 o(1) + a(60))
lal=doM 2 Or
y (n—1)(n—
n

)\S” YW, h(g) M 1M
dgi
/:v|60M"22 or i

= —(o(1 )+C3(50))T\5" YW, h(g) M IM‘

1,) 7
/ do\U;
- 2 Gi—(7 —
|| =80 M;"? or

(4 o1) + ea00) P D 501w gy M

2

where ¢;(dp) — 0 as 69 — 0. Hence as i — oo

(7.35)

dg; ovVU;
- Ui—gi—— ) d
/|;L‘ =60 M,"” n2 ( or v g or ) ’

—(1+ o(1) + c(d0)) (n — 2)|S" |V h(g;) leM

z),

2¥)

2
n—2
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and

dgi AO\U; 5
Ui — g ’ d
/xlzzsoMZ}QQ (3"’ WA TS gy 7

(7.36) 2y

= —(1+0(1) + ¢(do)) |S" k(g M M}

Z?] )

where ¢(dp),¢(dg) — 0 as dp — 0. Now from (7.24), (7.25), (7.35) and
(7.36), we obtain (7.1) and

n-— 2 n21l2
o™ (z = gij, VKi(2))u" (2)dz
|z—g:,;|<d0
(n—2)°

= —(1+0(1) + &2(60)) |57 gy) My M

255 _2n_
+o0 tz‘Mi’jn_Q +0 <(561_1tiMi71n_2> .

By (7.1) and the fact M; j|q; — q¢,j|nT_2 is bounded,

2n

/ (& — g, VK@)l (¢)da
lz—q;]|<do

2n

= / (= qij, VEi(x)u? (x)dx
lz—q;|<do ,

+/’ (@i — a7, VK@)l (2)de
lz—q;|<do )

=/' (% — gij, VK@)l (2)da

|z—qs,5]<d0
_ 2B _2n_
+o(1)M; ' M +o | t:M; ;" | +0 (53_1tiMi,1n‘2> :

We obtain (7.2).
When [ > 2 and 1 < j <[, after passing to a subsequence of {u;}, we

_ 2 2
have oo > lim L; jM; ;"~* = ¢ > 0. Therefore on {3} Dol =00 M ¢,

we have
gi(x) ~ Us(x),

I = 1
mm=a+dnﬂMﬁMﬁm%+Mm2@—pM4]

- - -2 n—2)x
Vi) = (1 of0)) | MMV bty + 04, + 2.

' [
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From these estimates, we obtain

(7.37)

/ (agZVU 8VU¢> do
|z|= 50M" 2 or or
2

= —(1+0(1) + c(d0)) (n = 2)|1S"~H [Vyhj(g;) M IM o

i 88 Ui,
/ 2 <0g WU; \ — A )\> do
=600 \ O or

(n—2)% e _
2 ‘S 1‘h (qj> lM’Lj ’
where h; = h — W’ ¢(d0),¢(dp) — 0 as d9 — 0. Putting these

estimates into (7.24) and (7.25), we obtain (7.3) and (7.4). q.e.d.

and

(7.39)
—(1+ o(1) + (o))

8. Isolated blowing up

Proof of Theorem 1.3. Suppose that there exists a blowup point ¢
which is not isolated. Then by Theorem 2.1, Corollary 2.3, Theorem 2.4,
Theorem 2.5 and (6.8), ¢ is the only simple-like blowup point. Thus

-2
l=1,¢g=q and (1 < nT By (ii) of Theorem 2.5,

n—2
(8.1) ui(z) <clr—aq|” 2
forx € B ={z | |r — q1] < |1 — ¢i,1|}, where ¢ is independent of ¢ if
1
0 < 3 and

(82) ui(z) < Uy (z — ¢i)
2
for z ¢ B;, where \; = u;(¢;,1) ™ — 2 and c; = ¢1(9).
In particular, we have

(8.3) mj ~ i,_ll = ui(gin) "

Now, let {g;}]L, be the other blowup points, and ; = U B(gj, 60)-

j=1
Then, (8.3) implies

wix) < M (1 + [
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for x & €;. By the Pohozaev identity,

2n
(8.4) / (x —q, VKi)u] ?(z)dr =0, and
2n
(8.5) / (ei, VE)u]* (z)dx = 0,
K (g,
where e; = v A(q 1) . By (8.1) and (8.2), we have

2n

/ (x —q, VEKi)u] " (z)dx
|z—q1]<do

<ct; / z— q | "dx
(8.6) {B-| 1

7

_2n_
+/ |z — U7 (2 — gig)da
B(q1,00)\B;

|51’

<ctilgn—q

where lim (u(qi,l)]qi,l — qﬂanQ> = 400 is used. As in (4.29), we can
1—+400

obtain the lower bound
2n
(8.7) / (e, VKi)u 2 (x)dx > 2 tilgin — a1 1,
B(q1,00)

provided that ¢ is small enought.

On the other hand, we have

(8.8)

2n
/ (z— g1, VK2 (2)de
R7A\Q;

(8.9)
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and by (7.2) of Lemma 7.1,

(8.10)
m 2n
Z/ (@ — g1, VKUl ? (2)da
J: B(q]760)
m 2n_
-y / — g VKl (2)da
7j=2 (qj>50)

2n

— / (x —qj, VE;)u!? (x)dw]
B(qj,%0)

= 2)|S"" 1\2( ~ 0, Vh(g)))

n—2 -2

+ h(%‘)) ' M‘_IM'_‘I +O(M)tiM; "7,

2n
140l g 11211% MM+ Ot M 2

with some small e. By (7.3) and (8.10),

(8.11) =

Note that h(z) =
n (8.10)

(8.12) (9 — @1, Vh(gj)) = —(n — 2)h(g;).
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By (8.5) ~ (8.11), we have

es tilgin — qi 7t

on
< / (e, VEi)u] * (z)dx
B(q1,60)

_2n_

m
<c Z My M+ Ot M,
=2

on_
<c / (r —qu, VEj)u] " (z)dx
(813) Rn\B((Il»(;O)
_2n
+ oM,
2n
=0 / (x —q, VKi)u] ? (x)dx
B(q1,00)
_2n
+O@)t:M; "
_2n_
<e {ti|qz‘,1 —q|™ + tiMi,lnz} .
Therefore,
) _2n
(8.14) g1 — | < e M, "2

Recall that 5, < nT—2 Then (8.14) yields a contradiction to the as-
2

sumption that lim; 4~ (|gi1 — qllMi?) = +00. We have proved that

every blowup point must be isolated.

To prove the second part, let us assume that g; is a blowup point
with 8; < n+1 and lim;— o SUP (g, 5,) (wi (%) ]2 — qj|nT_2) = +o00. Since
(ii) of Theorem 2.5 is excluded, ¢; must be a simple blowup point. Thus,
u; lose the energy of only one bubble at ¢; and then, g;; is the local
maximum point defined by (6.1). By the assumptions, we have

2
(8.15) Aligl <\qm~ - qj]Mi’ij> =400 and
(8.16) ui(x) < ¢ Uy, (x — ¢;,5) for |x — ¢;] < o,

2

where \; = M;]m Applying Theorem 2.2, (8.14) implies

2
: . T n—2 .
lim LmMiJ = 400.

1——+00
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Hence ¢; is the only simple-like blowup point. By repeating the same
argument as above, we can reach the same conclusion as (8.14), that is,

2n

lgij — g1t < e M

for some constant ¢ > 0. Since 3; < n + 1, the inequality yields a
contradiction to (8.15). Hence (1.20) is proved. q.e.d.

Set ¢; ;j to be the local maximum point of u; defined by (1.21) and
2=
i = M (¢i; — qj)- Let £ be any limit of §;. Then we claim:
Lemma 8.1. ¢ satisfies

2n

(817) | VQily U (y)dy = 0.

Proof. 1f L; (qw)M = is bounded where M;; = u;(g;;), then
(8.17) is proved by Theorem 2.2. So, we may assume

2

lim L; (qw)M "2 = o0
i——400
Thus, ¢; is the only simple-like blowup points. Hence Lemma 7.1 can
be applied to all blowup point g, k # j. For the simplicity, we assume
j = 1. By using (7.2) of Lemma 7.1, (8.4), (8.5), (8.10) and (8.11), we
have the same conclusion as (8.13), i.e

B(q1,00)

2n

< / (x — q1, VK)u 2 (z)dx
(q1,00)

2n

(8.18) O(1)t; Mz "

<cot
(11,50

o —on
|z — @ w2 (z)dz + MiT,LlQ}

<cs3 i 2@1

M " 210g Mi,l) if ﬂlzn
MZI"Q if Bl#n
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where $ = min(f1,n). On the other hand, by the scaling and (1.20),
we have

2n 72<BI*1)
< [ @+ Ui+ o<1>> M,

Since B; — 1 < n, (8.17) follows from (8.18) and (8.19) readily. q.e.d.

9. Asymptotic behaviors of 1/, ;

Proof of Theorem 1.4. We first prove (1.22). By (1.20) in Theo-
rem 1.3, we only need to consider the case 3; > n+1. Suppose §; > n+1

and (1.22) does not hold. Then we have |g;; — qj\nT_QMm — 00 as

i — 00. By Theorem 2.2 and (6.7), j =1 =1. Let ¢; = W}{Z% By
i\qi,
(7.1) and (7.2),
on_
/ (x —qi, VEK;)u*dx
[z—q1|<do
m =26
> ey (MM o(tiM ) |
=20
+ Ot M ?),
for some ¢; > 0 and
2n
/ (e;, VEK;)u*dx
|z—q1]|<do
S 1 1 —2B1 —2n
= oD { MM+ otidt i) }) + OMT?)

=2
as i — oo. On the other hand,
_2n_
/ (x —q1, VK;)u*dz
|z—q1|<do

2n

< ctilgii — @’ + CtiM;,im
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and

2n_
/ (ei, VK )u"*dx
|z—q1|<do

2n

‘ﬁl_l ¢ tiMz’,lw2 (—10g2|%',1 —ql) Bi=n+1

> ctilgin — q1 1 el
tiM; " B >n+1
_2n_
_ tM n—2 10 M 1:n+1
2 Ctl|Ql71 - q1|/61 ! —C ' 171 Eé 1/71) ﬁ
tiM; " B1>n+1

for some ¢ > 0 and ¢; > 0. Putting the estimates above together, we
obtain

_2(B1—1)
lgit — i < elgin — i +c tiM "7 (210gM1,i) bi=n+1

tiMl’in_?' 61 >n+1.

Since |gi1 — q1] — 0 as ¢ — oo, we conclude

__2

g1 — @1l = O(Mi,l"’2 (log Mi,l)%) for 1 =n+1
__2 _n

lgin — @] = O(M, " > for B > n + 1.

From these, we conclude that (1.22) holds.
Now we prove m > 2. Suppose m = 1. Then g = ¢; is the only
blowup point and it must be simple. If 31 < n, then by Theorem 1.3,

__2_
(9.1) gin — @] < ¢ M;".
By the Pohozaev identity,

2n

/ (&~ VEyup (@) de
|lz—q1|<do

2n_
[ e v @
|z—q1]>d0o

2n

S C1 tiM;lm .

By scaling and (9.1), it is not difficult to see that the left hand side of
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(9.2) is

2n
/ (@ — g, VKl (2)da
|x—q1]<do

_ﬂ 2n
=t;M; "’ /R Qy+&Uu (y)dy’
_ 281
> tiMijln_Q.
2
for some co > 0, where £ = ,liin M/ 7%(giq — q1). Thus, it yields a
1—+00 ’
contradiction to 81 < n.
_ 281
If 51 = n, the left hand side of (9.2) is greater than ¢ M, ;" * log M;
for some ¢; > 0, which also yields a contradiction. Now we assume

1 > n. The Pohozaev identity gives

2n

(9.3) /n<x —q1, VK (2))u] % (z)dx = 0.

M1

Since M; qu; _
ince M; ju;(z) — P

for some p; > 0 and

C

Miqu(z) < —— S

2n_
for some constant ¢ > 0, by multipling both sides of (9.3) by Mit‘l’z and
using (1.22), we obtain

/ (@ — g1, VR @)z — qu "de = 0,

a contradiction to our assumptions. Hence m > 2 is proved. Let

{¢1,-- @, @41, - ,gm} be indexed by the ordering 51 = ... = 5 >
Biy1 = ... = B, > Biy41 > ... > By as in Lemma 6.2. To find
the asymptotic behavior of M; ;, we consider the case [ = 1 first. Let
hi(z) = M;jui(x). Then h;(z) converges to ui|z — qi|>~™ for some
w1 > 0 by Lemma 6.1. To compute 1, we use

Oh;
p1(n —2)[S" = lim —/ do
1—+400 |z —q1|=60 81/

(9.4) = lim M“/ Ki(x)u] 2 (x)dx
lz—q1]<d0

i—+00 ’
n+2

=n(n=2) [ U@y = (n-2)s"|.

161
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From (9.4), 1 = 1, that is,

1

’n 2°

(95) h(z) = ‘CU*T

n (7.2), since after passing to a subsequence, the left hand side is of
265 285

order O(t iMi,jn ?), we may drop the term o(tz-Mw” ?) in the right hand
side. Let @ = U, B(g;,00). When 81 < n, together with (7.1) and
(7.2), the Pohozave identity implies

n—2 2n
[ - vK @)
2n 13(Q1,50)
_9 20
=— Z n / (x—qi, VEK;)u] *dx
B(g;,%)
2n
+ (x —q1, VEKi)u]*dx
(9.6) R7\Q

1)+ @) "2 5

=—(1+o

m _2;
Z <|CI1 —q5* "M M Lot 'anQ))
=2

2n

+O(t:M; "),

where (9.5) is used. On the other hand, the left hand side of (9.6) is
equal to
2n

i) ([ @+ U7 ) 1+ o),

Thus, we have

26, L
(97) ti Mz 1 ZnL]Mz 1 M (1 + 0(1))7
7j=2
where
n(n —2)|8" Y|q — q;| "2
05) s = 20208 — gy

Bi] [ Qly + U (y)dy]
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When 7 = n, we have

51
tiM; "~ 21ogM“_Zm,J TM
j=2

where
(n— 2)|S”’1HQ1 — g "2

by noting that the left hand side of (9.6) will give

(9.9) My =

_ 2 _2n
”(nzn )t’MMn_Q < - Q(y)dff) log M;1(1+ o(1)).

When (1 > n, we have

on N 2
lim (M;jﬁ / (x —q, VE)u;™ dl’)
1——+00 ]Rn\ U;n:Q B(qué)

=/ (r —q, VK) |z — 1| "dw
R\ U7, B(g;,9)

for any § > 0. By letting § — 0, we have
2n

T n— 1
M " = Z"UM I

where
n(n —2)|S" g — ¢j| "
oo (@ = a1, VK)o = 1] nda

(9.10) m; =

Thus, (1.24) is proved.

2n

To prove (1.25), we note 3; < n—2 for j > 2. By (1.24), tMl_’im =
O(Ml-jllMi’_jl). Hence if we let d tend to 0 suitably, (7.2) implies

25]
5t | [ Qi ouT ()’
n—2 2n
=o'yt [ v da
(n

o\2
— (14 o) P2 gy — gy s

7 7
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which is (1.25).
To prove (1.28), it is enough to prove (1.28) for j = 1. As the proof
of (9.5), we have

l
[
11 — Pk
(9.11) )=
k=1
and
(9.12) w1 = 1.

Since M, ju;(x) also converges to h(z) where

h(z) = Iz — |n2 Z|$_ 2

Jj#k

we have
M; 1
1 = lim —*.
(9.13) M= e My,

Since [ > 2, we recall that Theorem 2.2 and Lemma 6.2 imply 3; < n—2
for all j. By (7.4), we have for j =1

) 251
a2 ([ o+ 007 W) 1+ ol1)
- —“”2>|S”—lrh1<ql>Mi1 M
( n—1 —1 -1
’S ’ Z!q;—qﬂ" 2 zl Mz’,l

—1 -1
_q ’TL 2 Zl i:j’

where the last equality comes from (9.13). Clearly, (1.28) follows imme-
diately. Identity (1.29) also follows from (7.2) and (9.13) immediately.
Thus, the proof of Theorem 1.4 is complete. q.e.d.

10. Apriori estimates

In this final section, we are going to prove the apriori bound of
Theorem 1.1. Here, we consider a sequence of blowing up solutions of
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Equation (1.3) with K = K; more general than the one in previous sec-
tions. We assume that K; converges to a function, say K, in C!, and for
simplicity, assume K; has the same set of critical points {q1, g2, ... ,qn}
Let Q;,j(y) be the homogeneous function in (K0) for K; at ¢;. Assume
that K satisfies (K0) ~ (K1) and Q;;(y) — Q;(y) in C1. Let 8;; be
the degree of (); ; and

n—2
{10.1) b5 =g Big > 5
for all j such that ¢; € I'", where I'” is defined in Section 1.

By results of [8], [9], it is known that any blowup point is isolated.
Without loss of generality, the point 400 is assumed not to be a blowup
point. Let {q1,... ,qm} be the set of blowup points such that q1,... ,q
are all simple blowup points and ¢;11,... ,¢n are non-simple blowup
points. Following the same proof of Lemma 6.1 and part (i) of Theo-
rem 1.4, we have [ > 1 and m > 2. Another important result in [8], [9]
is that q; is simple if and only if 3; > n — 2. This result follows from
Theorem 1.3 of (8], [9] when §; # n — 2. For the case §; = n — 2, it
follows from the following lemma similar to Lemma 7.1.

Lemma 10.1. For2<j<mifl=1and1 <j<mifl>2, we
have

(10.2) (n—2)|5" <n(n_2)>";

2845

N _2n_
n—2 ) + O(én—lMi’ln—Q)’

+o(My,

2n
= —(1+0(1) + c2(9))

(n=2)? g, (n(n—2)
7 19 |<K(qj)

_2n_
+ O(Ml7jn—2 ) + O((Sn—lMi’ln—2 )’

_9 2
n / (x —q;, VEi)u!? (z)dzx
lz—g;[<é

(10.3) 22 o
> hj(g;)M, i,_ll M z_jl

165
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where

1——400

l
j=1 /

%J(:E) =h(z)ifj>14+1, and

ifl<j<landl>2.

Here, Mi,j and ¢; ; are the local maximum and a local maximum
point of u; near g; satisfying

(10.4) M;; = ui(gij) = max u(z)
|z—q;]<d0

We can prove Lemma 10.1 by the same argument as in Lemma 7.1, but
n—2
the proof is simpler because 3; > 5 for all j. The position ¢; ; also

satisfies (1.22) for some constant ¢ > 0. When ; < n —2, it was proved
in [9]. When §; > n — 2, it is a consequence of Lemma 10.1, as shown
in the previous sections.

Another important consequence of Lemma 10.1 is the asymptotic
behavior of M; ; which is similar to Theorem 1.4.

Theorem 10.2. Assume that K satisfies (KO) and (K1) and §; >
"T_Q for all ¢j € T~. Let qi,...,q are simple blowup points and
Qi41y--- 5 Gm are not simple blowup points. Set

n—2
n(n—2)> FA
M= ——-= M; ;
5] ( K((]j) J

where Mi,j is the local mazimum in (10.4). Thenm > 2,1 > 1, B =
.= > B for j > 1+ 1, and the following hold:

(i) Ifl =1 and g; is indexed by the ordering 31 > B2 = ... = [, >
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Bi41 > .. > Bm, then
(i-2)\F 1o
|b1] (anqu) ) M, " if B1 #n
n 28

5 _4P1
(”ﬁ@ﬁ)) F M log My if fr=n

(10.6) B o 1mln — n—1 ! n(n —2) "
= (1+o(1))n(n —2)[S |;< K(q1) )
' <”§?(;])2)> - qj| 7ML M
and
b (<—2>> M
7\ K(g)) "
(10.7) = (1+o(1))n(n —2)|S""| (W) 4
n(n —2) E —1 771
< K(Qj) > Mz,l Mi,j
for2 < j <m.
(i) If1>2, then pr=...=fr=n—2,
n(n—2)\ 2 _
; n—2
. o n(n — n—1 M !
(10.8) = (1+o(1))n(n —2)[S |k_§¢j( K(gj) >
' <W> e g "TEMG M,

for 1 <j <1 and,

n(n—2 3 _ﬂg
’bj‘<§{(q]))> MM"_
l n—2
- nn—2)\ 2
10.9 = n(n — n—1 0 n\mn—a4)
(10.9) (n—2)[S"|(1+ (1))%( o )

nin—2 _ L
. ( ) |q‘7 _ Qk‘ n-l-ZMi’lei’kl

K(a)
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for 1+ 1 < j < m where b; is given in (1.27).

Now we are in the position to prove the apriori bound of Theo-
rem 1.1. In fact, we are going to prove the result for more general
situations. Let A = {qx,,.-. ,q,, } be a subset of I'” where f, > (i, >

. > PBk,,- A is called admissible if m > 2 and one of the following
conditions holds:

(i) n 75 ﬂkl > ﬂk2 and

L1 2
Bt B, n—2

(10.10)

where 37 = min(8;,n).

(ii) There exists an integer | > 2 such that
(10.11) n—2:ﬁk1:ﬁk2:...:ﬁkl>ﬁkl+1Z...Zﬁm.

For an admissible set A of case (i), for simplicity, assume it is

{q1,-- sqm} with 81 > Bo = ... = 8, > Byy1 > ... = Bm,, we de-
fine n = n(A) by

Bl —n
i 2L (n(n —2 2
) = (nfa = 2817 (M=)
(10.12) (4251
lzl (n(n - 2)>_(1+ sl b \Pii;’ 2
|2 g — g
= K(Qj) J J
For A={q,...,q,...,qm} of case (ii), we associate with a [ x [ matrix
15 (A):
1 [ n(n—2) 3 e
|b;] ( ) ) | ifj=k
(1013)  (4) = § —n(n - 2572 (55:2)

n—z

(nzg?;f))> Vg —al T i Ak

Now we can state our main theorem.

Theorem 10.3. Assume that K satisfies (K0) ~ (K1) with 8; >
”7_2 for any q; € I'". For any admisible set A, assume n(A) # 1 for
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case (1) and the first eigenvalue of n(A) is not zero for case (ii). Then
there is a constant ¢ > 0 such that for any solution w of Equation (1.1),

< w(p) <c

holds for any p € S™.

Proof. Suppose u;(x) blows up at some point. Let

A={q, - @, ,qm}

be the blowup set of u;. Two cases are discussed separately.

Case 1. Ifl =1, by (10.7), we can solve Mi’_j1 in term of Mijll for
2 < j <, and substitute it into (10.6). If 5 = n, then the additional
term log M;; makes two sides of (10.6) unbalanced. Thus, 1 # n.
Also, it is easy to see that the exponent of ]\/[l-,_l1 of the right hand side

9 -1
of (10.6) is equal to 1 + ( ﬁ22 - 1> . Hence, we have
/”L —_
2067 1
(10.14) n%2:1+@§—ﬁ
na 1
which implies
1 1 2
10.15 — 4 — = .
( ) By P2 n—2

Then A is admissible. Applying equality (10.14) and comparing the
coefficients of both sides of (10.6) with each other, we have

n=1+o(1),

where 7 is given by (10.12) with A = {q1,q2,... ,¢m}-

M.
Case 2. [>2. Since lim —21 = Aj>0for1<j <l by (10.8),
i—+00 Mi,j
we have l
> miphe =0,
k=1
where 7;;, is given by (10.13) and A = {q1,... ,q, ... ,@m}. Therefore,

the first eigenvalue of (n;1) is equal to 0.
Since both cases yield a contradiction to the assumptions, the apriori
bound is established. q.e.d.
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We note that the assumptions of Theorem 1.1 imply there exist
no admissible subsets of I'". Hence, Theorem 1.1 is special case of
Theorem 10.3. The asymptotic formulas (10.6) ~ (10.9) will be very
helpful when we come to compute the degree for the nonlinear Equation
(1.1).
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