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Optimal unions of scaled copies of domains and
Pólya’s conjecture

Pedro Freitas, Jean Lagacé and Jordan Payette

Abstract. Given a bounded Euclidean domain Ω, we consider the sequence of optimisers
of the kth Laplacian eigenvalue within the family consisting of all possible disjoint unions of
scaled copies of Ω with fixed total volume. We show that this sequence encodes information
yielding conditions for Ω to satisfy Pólya’s conjecture with either Dirichlet or Neumann boundary
conditions. This is an extension of a result by Colbois and El Soufi which applies only to the
case where the family of domains consists of all bounded domains. Furthermore, we fully classify
the different possible behaviours for such sequences, depending on whether Pólya’s conjecture
holds for a given specific domain or not. This approach allows us to recover a stronger version
of Pólya’s original results for tiling domains satisfying some dynamical billiard conditions, and a
strenghtening of Urakawa’s bound in terms of packing density.

1. Introduction and main results

1.1. Pólya’s conjecture for Laplace eigenvalues

For d≥2 let Ω⊂Rd be a bounded open set with Lebesgue measure |Ω|. We
consider the Dirichlet eigenvalue problem{

Δu+λu=0 in Ω
u≡0 on ∂Ω.

It is well known that the eigenvalues of the above problem are discrete and form a
sequence

0<λ1(Ω)≤λ2(Ω)≤λ3(Ω) . . .↗∞
accumulating only at infinity. Moreover, if the boundary ∂Ω is Lipschitz, the Neu-
mann problem {

Δu+μu=0 in Ω
∂νu≡0 on ∂Ω,
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where ν denotes the outer unit normal vector of Ω, also has discrete spectrum and
forms a nondecreasing sequence

0 =μ0(Ω)≤μ1(Ω)≤ . . .↗∞.

Note that we choose the convention to start numbering Neumann eigenvalues with
0 instead of with 1, which allows for a cleaner statement of our theorems. Both the
Dirichlet and Neumann eigenvalues satisfy so-called Weyl asymptotics

λk =μk+O
(
k1/d

)
= 4π2

(ωd |Ω|)2/d k
2/d+O

(
k1/d

)
,

where ωd denotes the volume of the unit ball in Rd. If Ω has smooth bound-
ary and satisfies some dynamical conditions, namely that the measure of periodic
trajectories in the billiard flow is zero, the eigenvalues also satisfy two-term Weyl
asymptotics [21] and [35]

(1) λk = 4π2

(ωd|Ω|)2/d
k2/d+ 2π2

d

ωd−1 |∂Ω|
(ωd |Ω|)

d+1
d

k1/d+o
(
k1/d

)
and

(2) μk = 4π2

(ωd|Ω|)2/d
k2/d− 2π2

d

ωd−1 |∂Ω|
(ωd |Ω|)

d+1
d

k1/d+o
(
k1/d

)
.

The regularity assumption on the boundary can be weakened, see [22] for a precise
description of the required conditions. From these asymptotic formulae it is clear
that given a domain Ω for which (1) and (2) hold there exists k∗=k∗(Ω) such that
for all k≥k∗,

(3) μk(Ω)< 4π2

(ωd|Ω|)2/d k
2/d <λk(Ω).

Furthermore, the Rayleigh–Faber–Krahn [16] and [24] and the Hong–Krahn–Szegő
[25] inequalities imply that the right-hand side inequality holds for λ1 and λ2,
while the Szegő–Weinberger [37] and the Bucur–Henrot [12] inequalities ensure the
inequality on the left-hand side for μ1 and μ2. In this paper, we investigate a
conjecture of Pólya.

Open problem. (Pólya’s conjecture) For all Ω⊂Rd and all k∈N,

(4) μk(Ω)≤ 4π2

(ωd|Ω|)2/d k
2/d ≤λk(Ω).
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In 1961 Pólya proved that the above inequalities do hold for all domains which
tile the plane, and conjectured that this would be true for general domains [34] –
see [23] for the proof for general tiling domains with Neumann boundary conditions.
Pólya’s result was later extended to tiling domains in higher dimensions by Urakawa,
who also obtained lower bounds for all Dirichlet eigenvalues of a domain based on
its lattice packing density [36].

For general domains, the best results so far remain those by Berezin [5] and Li
and Yau [30] in the Dirichlet case, while for Neumann eigenvalues the corresponding
result was established by Kröger [26]. In either case, these are based on sharp
bounds for the average of the first k eigenvalues of the Laplacian, namely,

1
k

k−1∑
j=0

μj(Ω)≤ 4π2d

d+2

(
k

ωd|Ω|

)2/d
≤ 1

k

k∑
j=1

λj(Ω).

From these inequalities and an estimate in [26] it follows that, for individual eigen-
values,

λk(Ω)≥ d

d+2
4π2

(ωd|Ω|)2/d k
2/d,

and

μk(Ω)≤
(
d+2

2

)2/d 4π2

(ωd |Ω|)2/d k
2/d,

which both fall short of (4).
Note that inequalities (3) lead naturally to a strenghtening of Pólya’s conjec-

ture, which we also investigate.

Open problem. (Strong Pólya’s conjecture) For all Ω⊂Rd and all k∈N,

μk(Ω)< 4π2

(ωd|Ω|)2/d k
2/d <λk(Ω).

As mentioned above, the first two eigenvalues are known to satisfy the strong
Pólya’s inequalities since their extremal values are known. However, for higher
eigenvalues and although some conjectures do exist, there are no other situations
where the extremal values are known. Furthermore, numerical optimisations car-
ried out within the last fifteen years by different researchers using different methods
have made it clear that not much structure at this level is to be expected in the
mid-frequency range, in the sense that extremal sets are not described in terms of
known functions – see [1] and [32] for the Dirichlet and [1] for the Neumann prob-
lems respectively; see also [3] and [10] for the same problem but with a perimeter
restriction. In the planar case, it has also been shown that, except for the first four
eigenvalues, the Dirichlet extremal domains are never balls or unions of balls [9].



14 Pedro Freitas, Jean Lagacé and Jordan Payette

Recently, it has been shown that the Faber–Krahn inequality may be used to extend
the range of low Dirichlet eigenvalues for which Pólya’s conjecture holds [18]. For
instance, in dimensions three and larger, eigenvalues up to λ4 also satisfy Pólya’s
conjecture, with the number of eigenvalues which may be shown to do so by this
method growing exponentially with the dimension.

These findings prompted the study of what happens at the other end of the
spectrum, in the high-frequency regime, in the hope that some structure could be
recovered there. The first of such results proved that, when restricted to the par-
ticular case of rectangles, extremal domains converge to the square as k goes to
infinity [2]. In other words, they converge to the domain with minimal perimeter
among all of those in the class of rectangles with fixed area, and indeed, just like
with the first eigenvalue, the geometric isoperimetric inequality plays a role in the
proof. This was followed by an extension of these results to higher-dimension rect-
angles in both the Dirichlet and Neumann cases [6], [7], [20] and [31]. In the case
of general planar domains with a perimeter restriction, it was shown in [11] that
extremal sets converge to the disk with the same perimeter as k goes to infinity, thus
again displaying convergence to the geometric extremal set. Some results regarding
existence of convergent subsequences within classes of convex domains and under a
measure restriction were also obtained in [28].

The connection between the problem of determining extremal domains for the
kth eigenvalue and Pólya’s conjecture was established in 2014 by Colbois and El
Soufi [14]. There they showed that the sequences of extremal values (λ∗

k)d/2 (Dirich-
let) and (μ∗

k)d/2 (Neumann) are subadditive and superadditive, respectively. As a
consequence of Fekete’s lemma, both sequences λ∗

k/k
2/d and μ∗

k/k
2/d are convergent

as k goes to infinity and, furthermore, Pólya’s conjecture is seen to be equivalent to

lim
k→∞

λ∗
k

k2/d = 4π2

(|Ω|ωd)2/d
and lim

k→∞

μ∗
k

k2/d = 4π2

(|Ω|ωd)2/d
,

in the Dirichlet and Neumann cases, respectively.
A major obstacle in attacking the general Pólya’s conjecture is that it is not

even known if there exists an open domain minimising λk or maximising μk for k≥3
under volume constraint. This prevents one from using properties of the minimisers
to argue in favor of the conjecture. Our aim will be to restrict ourselves to the study
of classes of domain within which we are able to show existence of extremisers, but
within which the subadditivity and superadditivity results of Colbois and El Soufi
still hold. Note that subadditivity or superadditivity for the optimal eigenvalues do
not hold for all families of domains – if we take as a family of domains rectangles
of unit area, the extremisers always exist but the optimal Dirichlet eigenvalues are
λ∗

1=2π2, λ∗
3=5π2 and λ∗

4=35π2/(2
√

6)≈7.144π2, see [2].



Optimal unions of scaled copies of domains and Pólya’s conjecture 15

1.2. Suitable families of domains

Before stating our results, let us define precisely the class of domains under
consideration in this paper. Given r∈(0,∞) and Ω⊂Rd, we denote by rΩ any
subset of Rd obtained from Ω as a result of a homothety with scale factor r and an
isometry.

Definition 1.1. Let Ω1, ...,Ωn be bounded, connected, open subsets of Rd.
We denote

R :=R(Ω1, ...,Ωn) :=
{

N⊔
i=1

riΩni : N ∈N, ni ∈{1, ..., n} , ri > 0
}
.

The sets Ω1, ...,Ωn are called the generators for R. The above notation is to be
understood in the sense that all sets Υ∈R are subsets of Rd all of whose connected
components are of the form riΩni for 1≤i≤N . We denote by ν(Υ) the number of
connected components of Υ, by |Υ| its volume and we slightly abuse notation by
denoting by |∂Υ| the (d−1)-dimensional Hausdorff measure of the boundary. We
also observe that the family R is closed under disjoint union and homothety, up to
rearrangement. Whenever the Neumann eigenvalue problem is discussed, it is also
assumed the generators have Lipschitz boundary.

One particular instance of this type of families, namely, those generated by
rectangles, was used recently to study the possible asymptotic behaviour of extremal
sets in the case of Robin boundary conditions [19]. We note that in the definition
we could allow a countably infinite number of connected components. We are,
however, interested in optimisers and it will be clear that sets with an infinite
number connected components can never be one, see Lemmas 2.1 and 2.2.

The following elementary facts about scaling properties of volumes and eigen-
values will be used repeatedly in this paper:

• |rΥ|=rd|Υ|;
• |r∂Υ|=rd−1|∂Υ|;
• λk(rΥ)=r−2λk(Υ);
• μk(rΥ)=r−2μk(Υ);

It is easy to see from the first two points that the generator Ωj minimising the
isoperimetric ratio

I(Υ) := |∂Υ|d

|Υ|d−1

among Ω1, ...,Ωn also does so in R. The first, third and four bullet points imply
that the quantities λk(Υ)d/2|Υ| and μk(Υ)d/2|Υ| are invariant by homothety.
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Definition 1.2. We define the extremal eigenvalues

λ∗
k(R)= inf

Υ∈R
|Υ|≤1

λk(Υ)

and
μ∗
k(R)= sup

Υ∈R
|Υ|≥1

μk(Υ).

We shall say that a domain Υ∈R is a minimiser for λ∗
k(R) or that it realises λ∗

k(R)
if |Υ|≤1 and if λk(Υ)=λ∗

k(R). Similarly, a domain can be a maximiser for μ∗
k(R)

or it realises μ∗
k(R). Note that an extremiser necessarily verifies |Υ|=1.

In Section 2, we show that these families R of domains are suitable for the study
of asymptotic eigenvalue optimisation. By suitable, we understand that for every k,
there exists Υ∈R realising the extremal eigenvalues, and that the results of [14], [33]
and [38] describing the extremal eigenvalues and their associated extremisers still
hold within the families R. Existence of the extremisers is proved in Lemmas 2.1
and 2.2.

The properties of extremal eigenvalues and their associated extremisers are the
subject of Theorems 2.3–2.7. They rely on the fact that two properties are needed
for the proofs of these theorems: closedness under homotheties, and under disjoint
unions. Of specific use is Corollary 2.5, which says that it is sufficient to study the
limit of the sequence of optimal eigenvalues if one wants to get universal bounds
within a family R.

1.3. A trichotomy for Pólya’s conjecture

In Section 3, we restrict our search to families R generated by a single domain
Ω. There is no loss of generality here: we will first show that if Pólya’s conjecture
holds within two families R(Ω1) and R(Ω2) in either its standard or strong form,
then it also holds in R(Ω1,Ω2).

Our aim is to characterise the structure of the set of optimisers in R(Ω) de-
pending on whether Pólya’s conjecture holds or fails in R. This gives, in principle, a
way to investigate the conjecture for a given domain, since Ω∈R(Ω). We note that
Pólya’s conjecture remains open for except in very restrictive classes of domains.
Indeed, it is only known in the following situations:

• Domains that tile Rd [23] and [34];
• For Dirichlet boundary conditions, domains of the form Ω1×Ω2⊂Rd1×Rd2 ,

d1+d2=d where d1≥2 and Ω1 itself satisfies Pólya’s conjecture (for instance by
tiling Rd1) [27].
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• For Dirichlet boundary conditions, domains of the form Ω=Ω1×Ω2⊂Rd1×
Rd2 , d1≥3, Ω1 itself satisfies Pólya’s conjecture and Ω2 is convex, then Ω satisfies
the strong Pólya conjecture [29].
Notably, even in the case of the ball in Rd where we have explicit formulae for the
eigenvalues the status of the conjecture is unknown.

Our main theorem is as follows.

Theorem 1.3. The following trichotomy holds: either

(1) the generator Ω realises λ∗
k(R) infinitely often and Pólya’s conjecture for

Dirichlet eigenvalues holds for all Υ∈R(Ω);
(2) the generator Ω realises λ∗

k only finitely many times, Pólya’s conjecture for

Dirichlet eigenvalues holds for all Υ∈R(Ω) and, for infinitely many k∈N,

λ∗
k(R)d/2

k
= (2π)d

ωd
,

or

(3) the generator Ω realises λ∗
k only finitely many times, Pólya’s conjecture for

Dirichlet eigenvalues does not hold for Ω and, for infinitely many k∈N,

λ∗
k(R)d/2

k
= inf

j

λ∗
j (R)d/2

j
.

The same trichotomy holds replacing all instances of Dirichlet with Neumann, of λ

with μ, and inf with sup.

In Theorem 3.4, we furthermore obtain an indication of when Ω can realise
λ∗
k(R) or μ∗

k(R) infinitely often. Namely, we show that as soon as there exists a
subsequence {kn} such that the number of connected components of the domain
realising λ∗

kn
, respectively μ∗

kn
has slower than linear growth, then Ω realises λ∗

k,
respectively μ∗

k infinitely often. This, in combination with Lemmas 2.6 and 2.7
allows us to understand the propagation of extremal domains in R as k→∞.

Finally, when the generator Ω satisfies the two-term Weyl law (1) or (2), we
obtain the following list of equivalences with the strong Pólya conjecture

Theorem 1.4. Suppose that Ω⊂Rd is such that the two-term Weyl law (1)
holds. Let Ω∗

k=
⊔

i≤Nk
ri,kΩ be a sequence of domains realising λ∗

k(R). Suppose that

|Ω∗
k|=1 and ri,k≥rj,k whenever i<j. The following are equivalent:

(1) The strong Pólya conjecture for Dirichlet eigenvalues holds in R(Ω).
(2) The largest coefficient r1,k→1 as k→∞.

(3) The largest coefficient r1,k→1 along a subsequence.

The same equivalence hold replacing all instances of Dirichlet with Neumann, λ

with μ, and the two-term Weyl law (1) with (2).
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Comparing those equivalent statements to the trichotomy in Theorem 1.3, it is
clear that if the strong Pólya conjecture holds, Ω realises λ∗

k(R) infinitely often. On
the other hand, if Ω does realise λ∗

k(R) infinitely often, it is the case that r1,k→1
along a subsequence. Theorem 1.4 indicates that for domains Ω that satisfy a
two-term Weyl law the strong Pólya conjecture for R(Ω) is equivalent to weaker
statements than those needed to imply Pólya’s conjecture in Theorem 1.3.

1.4. Density lower bounds for Dirichlet eigenvalues

In the paper [36], Urakawa obtained a lower bound for Dirichlet eigenvalues
in terms of the lattice packing density of a domain Ω. As an application of our
construction, we obtain in Section 4 similar results for the asymptotic packing
density defined as follows.

Given a set Ω and n∈N , we define the n-th propagation of Ω as the set

Ω(n) =
n⊔

�=1

1
n1/d Ω.

Definition 1.5. Given two bounded domains Ω and V with volume 1, an
integer n∈N and a real number ρ∈(0, 1], a packing of Ω(n) into V of density ρ is an
isometric quasi-embedding f :Ω(n)→ρ−1/dV . Here, we call a map a quasi-embedding
if it is injective on the interior of its domain. Note furthermore that Ω, and hence
any element in R, is canonically equipped with a Riemannian metric. The term
isometry is to be understood as “preserving Riemannian metrics”.

An asymptotic packing of Ω into V is a triple P={(ni, ρi, fi)}i∈N where {ni}i∈N

is a strictly increasing sequence of integers, {ρi}i∈N⊂(0, 1] converges to the asymp-
totic density ρP ∈(0, 1] and each fi is a packing of Ω(ni) into V of density ρi.

The packing number or packing density of Ω into V is

ρΩ,V =sup {ρP | P is an asymptotic packing of Ω into V }.

The packing number or packing density of Ω is

ρΩ =sup {ρΩ,V | V is a bounded domain with volume 1}.

Definition 1.6. A domain D⊂Rd is a tile or is said to tile Rd if there is an
isometric quasi-embedding F :
i∈ND→Rd, called the tiling, which is surjective.

Remark 1.7. The lattice packing density of Urakawa [36] is always smaller
or equal to this packing density, as it is equivalent to considering only V that are
parallelepipeds, as well as having P constrained more strictly. It is not hard to
find examples of concave, simply connected domains that have a higher asymptotic
packing density than their lattice packing density.
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We obtain the following theorem for a lower bound on Dirichlet eigenvalues in
terms of this asymptotic density.

Theorem 1.8. For every Ω⊂Rd open and bounded, with |Ω|=1, the lower

bound

inf
k

λ∗
k(R(Ω))d/2

k
≥ ρΩ

(2π)d

ωd

holds.

Obviously, the previous Theorem allows us to recover Pólya’s theorem as a
corollary.

Corollary 1.9. (Pólya [34]) If Ω tiles Rd, then Pólya’s conjecture holds for

any domain in R(Ω).

Proof. If Ω tiles Rd, then ρΩ=1 (see Proposition 4.2). Then Theorem 1.8
implies the result. �

We also obtain the following strengthening of Pólya’s theorem for domains that
are said to simply tile Rd and for which the two-term Weyl law (1) holds, in which
case the strong Pólya conjecture holds.

Definition 1.10. Let V ⊂Rd be a domain of volume 1. A domain Ω is a V -tile
or is said tile V if there is an asymptotic packing P={(ni, 1, fi)}i∈N of Ω into V

with constant packing density 1.

Theorem 1.11. Let V be a domain in Rd of unit volume satisfying the two-

term Weyl law (1). If Ω tiles V , then Ω realises λ∗
k(R(Ω)) infinitely often and

satisfies the strong Pólya conjecture. The same holds for Neumann eigenvalues, if

V satisfies (2) instead.

1.5. Computational results

In Section 5, we investigate numerically the set of extremisers for Dirichlet
eigenvalues within families R generated by the disk, the square, and a rectangle
with aspect ratio 5. We chose these domains to see if the markers for the Pólya
conjecture differed between the rectangles, for which the conjecture is known to
hold, and the disk, for which it’s not. In all four cases, we look for extremisers up
to eigenvalue rank 66 000.

We investigate the number of connected components of the extremising set, in
view of Theorem 3.4. In all the cases we are studying, we see that this number is
bounded by 5, up to rank 66 000. Recall that for Pólya’s conjecture to hold, we
only need for a subsequence of the extremisers to have a strictly sublinear growth
for their number of connected components.
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We also investigate the asymptotic log-density of the number of times the
generator can be Ω∗

k. For a set J⊂N, we define its counting function as

NJ(x) :=# {j ∈J : j≤x}

and its log-density as

(5) FJ (x) := log(NJ(x))
log x .

We have that for every ε>0,

lim
x→∞

FJ(x)=α> 0 ⇐⇒ NJ(x)≥xα−ε

for x large enough. In particular, for J the set of ranks k for which the gener-
ator realises λ∗

k, limx→∞ FJ(x)=α>0 implies that the cardinality of J is infinite.
The log-density in all cases we investigated seemed to converge quite quickly to a
constant greater than 0.8, albeit not the same constant for the disk and the vari-
ous rectangles. It would be an interesting line of investigation to understand the
geometric properties that influence the value of this constant.

Acknowledgements. We would like to thank Iosif Polterovich for useful discus-
sions. We would also like to thank the anonymous referee whose comments helped
improve the clarity of our exposition. P.F. was partially supported by the Fundação
para a Ciência e a Tecnologia (Portugal) through project UIDB/00208/2020. J.L.
was partially supported by ESPRC grant EP/P024793/1 and NSERC postdoctoral
fellowship. J.P. was partially supported by the NSERC Alexander-Graham-Bell
scholarship.

2. Eigenvalue optimisation within a family

Recall that for Ω1, ...,Ωn, each of volume 1, we investigate the family of domains

R(Ω1, ...,Ωn) :=
{⊔

i∈I

riΩni : I countable, ni ∈{1, ..., n} ,
∑
i∈I

rdi <∞
}
.

Our first two results concern the existence of eigenvalue extremisers in this
restricted collection R. We recall that for any domain Υ, we denote its number of
connected components by ν(Υ).

Lemma 2.1. For all k, there exists a domain Ω∗
k∈R of volume 1 such that

λk(Ω∗
k)=λ∗

k(R).

For any minimising domain Υ for λ∗
k(R), ν(Υ)≤k.
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Proof. Fix k≥1. For any j∈N∪{∞}, denote

λ
(j)
k = inf {λk(Υ) : Υ∈R, |Υ| ≤ 1, ν(Υ)= j} .

Of course, λ∗
k(R)=infj λ

(j)
k .

Our first step is to show that if j>k, then λ
(j)
k ≥λ

(l)
k for some l≤k; It follows

in particular that the previous infimum is a minimum.
The argument for this first step will follow the proof of [8, Lemma 8]. In-

deed, consider Υ=
⊔

i∈I riΩni∈R with |Υ|=1 and ν(Υ)=j. Suppose without loss of
generality that

λ1(rjΩnj )≤λ1(rj′Ωnj′ ) whenever j≤ j′

Let
l=min

{
k,max

{
m :λ1(rmΩnm)≤λk(Υ)

}}
≤ k,

and
Υ̃ = r1Ωn1
. . .
rlΩnl

.

Note that if ν(Υ)=∞, m is still finite since rj→0 as j→∞, and observe that λk(Υ̃)≤
λk(Υ). Since |Υ̃|≤1, we can dilate it to a set Υ̂ of volume 1 whose eigenvalues are
all smaller than the ones of Υ̃, so that λk(Υ̂)≤λk(Υ). Taking the infimum of this
inequality over all appropriate sets Υ and recalling that ν(Υ̂)=l≤k<j=ν(Υ), we
get indeed

λ
(l)
k ≤λ

(j)
k .

We therefore deduce that
λ∗
k = min

1≤j≤k
λ

(j)
k .

Our second step is to show that for every 1≤j≤k, either there exists a min-
imiser Υ(j)∈R for λ

(j)
k or λ

(j)
k ≥λ

(j−1)
k .

The statement is obvious for λ(1)
k , as there is only a finite number of set, namely

Ω1, ...,Ωn to verify. For j>1, consider a minimising sequence

Υ(j)
p =

j⊔
i=1

ri,pΩni,p

of sets in R which can all be taken to have volume 1, i.e.

λ
(j)
k = lim

p→∞
λk(Υ(j)

p ).

Assume without loss of generality 1>r1,p≥...≥rj,p for each p. If rj,p→0 as p→∞,
then for p large enough, λ1(rj,pΩnj,p)≥λ

(j)
k . This implies that λk(Υ(j)

p \rj,pΩnj,p)=
λk(Υ(j)

p ) but ν(Υ(j)
p \rj,pΩ)=j−1, hence λ

(j)
k ≥λ

(j−1)
k . If rj,p �→0 as p→∞, then the
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set {ri,p}1≤i≤j,p∈N belongs to a compact interval [ε, 1−ε]⊂(0, 1). For every 1≤i≤j

let (r(j)
i , n

(j)
i ) be an accumulation point of {(ri,p, ni,p)}p∈N, then set

Υ(j) =
j⊔

i=1
r
(j)
i Ω

n
(j)
i

∈R.

By continuity of the k-th eigenvalue and of the volume as functions of the variables
r1, ..., rj , the set Υ(j) has volume 1 and verifies λk(Υ(j))=λ

(j)
k .

We proved that there is a set of indices J⊆{1, ..., k} such that for all j∈J , there
exists a minimiser Υ(j) of λ(j)

k , whereas λ
(i)
k ≥minj∈J λj

k for all i /∈J . Therefore,

λ∗
k = min

1≤j≤k
λ

(j)
k ,

is realised by the set Ω∗
k :=Υ(j) for any (say, the smallest) index j realising the

previous minimum, thus completing the proof. �

We now show the equivalent lemma for Neumann eigenvalues.

Lemma 2.2. For all k≥1, there exists a domain Ω∗
k∈R such that

μk(Ω∗
k)=μ∗

k(R).

For any maximising domain Υ for μ∗
k(R), ν(Υ)≤k.

Proof. The first step of this proof is easier in the setting of Neumann eigenval-
ues. Indeed, no maximising sequence {Υn} for μ∗

k(R) can have ν(Υn)>k infinitely
often, since ν(Υ)>k implies immediately μk(Υ)=0.

For the second step, since the supremum for μ∗
k(R) is taken over domains of

volume larger or equal to 1, we need to verify both that no connected component
of a maximising sequence converges to 0 and that none grows unbounded. This last
possibility is easily excluded by restricting our attention to maximising sequences
of domains which all have volume 1.

Suppose that there is a maximising sequence with the volume of a connected
component converging to 0. In other words, there is a maximising sequence

Υp =
q⊔

i=1
ri,pΩni,p

with the following properties.
• For all p, the number of connected components q is smaller than k.
• Arranging r1,p≤r2,p≤. . .≤rq,p, we have that r1,p→0 as p→∞.
• The eigenvalues μk(Υp) increase and converge to μ∗

k(R) as p→∞.
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We will write Υp=r1,pΩn1,p∪Ξp, each of them having volume rd1,p and 1−rd1,p re-
spectively.

From [26], we know that there is a constant Ck such that for all k and all
domains Υ, μk(Υ)<Ck. There is an r0 such that for all l, r−2

0 μ1(Ωl)≥Ck. For p

large enough so that r1,p<r0, we have r−2
1,pμ1(Ωn1,p)>Ck, hence μk(Υp)=μk−1(Ξp).

For any η∈(0, r0), consider the following sequence of domains of volume 1 in
R:

Υ̃(η)
p = ηΩ1


(
1−ηd

1−rd1,p

)1/d

Ξp.

Without loss of generality, we have supposed η<1.
For p large and since η<r0,

μk(Υ̃p) =μk−1

⎛⎝( 1−ηd

1−rd1,p

)1/d

Ξp

⎞⎠
=
(

1−rd1,p
1−ηd

)2/d

μk(Υp)

= 1
(1−ηd)2/d

μk(Υp) (1+O (r1,p)) .

Hence,

μk(Υ̃p)−μk(Υp)=
(

1+O (r1,p)
(1−ηd)2/d

−1
)
μk(Υp)

≥ 2ηdμk(Υ1)
d

(1+O (r1,p))

Since μ∗
k(R)>μk(Υ̃p) this implies that for p large enough, μk(Υp)≤μ∗

k(R)−
d−1ηdμk(Υ1), contradicting the fact that it was a maximising sequence.

The same compactness argument as in the Dirichlet case then implies the
existence of a maximisers. �

Note that both of these proofs show existence but say nothing about unique-
ness. Despite this possible lack of uniqueness, in this paper we shall write Ω∗

k to
denote any extremiser of λk or of μk on R.

Lemma 2.3. The sequence {
λ∗
k(R)d/2

}
k∈N

is subadditive, that is for every j1, ..., jp such that j1+. . . jp=k, we have

λ∗
k(R)d/2 ≤λ∗

j1(R)d/2+. . .+λ∗
jp(R)d/2.
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Proof. The proof here follows that of [14, Theorem 2.1]. Fix k≥1 and let
j1, ..., jp∈N be such that j1+...+jp=k. By Lemma 2.1, for each 1≤q≤p, there
exists Ω∗

jq
∈R with volume 1 such that

λ∗
jq (R)=λjq (Ω∗

jq ).

Let

Υq :=
(
λ∗
jq

(R)
λ∗
k(R)

)1/2

Ω∗
jq ,

which implies that λjq (Υq)=λ∗
k(R) and that

|Υq|=
(
λ∗
jq

(R)
λ∗
k(R)

)d/2

.

Define the domain

Υ=
p⊔

q=1
Υq.

Since the spectrum of a disjoint union is the union of the spectra, we have

N(λ∗
k(R); Υ)=

p∑
q=1

N(λ∗
k(R); Υq)=

p∑
q=1

N(λ∗
jq (Υq); Υq)≥

p∑
q=1

jq = k

where N is the eigenvalue counting function

(6) N(λ; Υ) :=# {k :λk(Υ)≤λ} .

It follows that λk(Υ)≤λ∗
k(R). Since |Υ|−1/dΥ has volume 1 we have λ∗

k(R)≤
λk(|Υ|−1/dΥ)=λk(Υ)|Υ|2/d, thus

|Υ| ≥
(
λ∗
k(R)

λk(Υ)

)d/2

≥ 1,

whence

1≤
p∑

q=1
|Υn|=

1
λ∗
k(R)d/2

p∑
q=1

λ∗
jq (R)d/2.

Multiplying both sides of this inequality by λ∗
k(R)d/2 finishes the proof. �

Lemma 2.4. The sequence {
μ∗
k(R)d/2

}
k∈N

is super-additive, that is for every j1, ..., jp such that j1+. . . jp=k, we have

μ∗
k(R)d/2 ≥μ∗

j1(R)d/2+. . .+μ∗
jp(R)d/2.
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Proof. Suppose on the contrary that there exist j1, ..., jp, k∈N such that j1+
...+jp=k and

μ∗
k(R)d/2 <μ∗

j1(R)d/2+. . .+μ∗
jp(R)d/2,

that is

1<
p∑

q=1

(
μ∗
jq

(R)
μ∗
k(R)

)d/2

.

From Lemma 2.2, for every 1≤q≤p there exists Ω∗
jq
∈R with volume 1 such that

μjn(Ω∗
jq

)=μ∗
jq

(R). We set

Υ=
p⊔

q=1
Υq where Υq =

(
μ∗
jq

(R)
μ∗
k(R)

)1/2

Ω∗
jq .

It follows that μjq (Υq)=μ∗
k(R) and that

|Υ|=
p∑

q=1
|Υq|=

p∑
q=1

(
μ∗
jq

(R)
μ∗
k(R)

)d/2

> 1.

From this and since |Υ|−1/dΥ has volume 1, we have

μk(Υ)< |Υ|2/dμk(Υ)=μk

(
|Υ|−1/dΥ

)
≤μ∗

k(R).

Consequently μk(Υ)<μjq (Υn) for each q and we deduce, recalling that the spectrum
of Υ is the union of the spectra of the Υq’s,

k+1≤N(μk(Υ); Υ)=
p∑

q=1
N(μk(Υ); Υq)≤

p∑
q=1

jq = k,

where the counting function is defined as in (6) but for Neumann eigenvalues. This
contradiction yields the claim. �

Corollary 2.5. We have

L := lim
k→∞

λ∗
k(R)d/2

k
= inf

k

λ∗
k(R)d/2

k
> 0

and

+∞>M := lim
k→∞

μ∗
k(R)d/2

k
=sup

k

μ∗
k(R)d/2

k
> 0.
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Proof. For the Dirichlet case, that the limit exists and is equal to the infimum
follows from Fekete’s lemma applied to the subadditive and nonnegative sequence
ak=λ∗

k(R)d/2. That the limit is positive is a consequence of the works of Berezin [5]
and Li and Yau [30] proving that

λ
∗ d/2
k

k
≥
(

d

d+2

)d/2 (2π)d

ωd
.

For the Neumann case, that the limit exists in R and is equal to the supremum
follows from Fekete’s lemma applied to the super-additive and linearly bounded
sequence ak=μ∗

k(R)d/2, where the linear boundedness results from Kröger’s estimate
[26](1)

μ
∗ d/2
k

k
≤ d+2

2
(2π)d

ωd
.

That the limit is positive follows from μk(Ω)≤μ∗
k and from Weyl’s asymptotic law

lim
k→∞

μk(Ω)d/2

k
= (2π)d

ωd
. �

Pólya’s conjecture therefore holds in R(Ω) if and only if

L= (2π)d

ωd
=M

and thus reduces to finding a subsequence of extremisers Ω∗
k such that

lim
k→∞

λk(Ω∗
k)d/2

k
= (2π)d

ωd
= lim

k→∞

μk(Ω∗
k)d/2

k
.

The following lemma is an adaptation of a famous result of Wolf and Keller
[38] to the class R. Our proof however differs somewhat from the original proof.

Lemma 2.6. For every k∈N,

λ∗
k(R)d/2 =min

{
min
j

λk(Ωj)d/2, min
j1+...+jp=k

p∑
q=1

λ∗
jq (R)d/2

}
.

Furthermore, for any Ω∗
k realising λ∗

k(R), there exists a partition j1+. . .+jp=k such

that

Ω∗
k =

p⊔
q=1

αqΩ∗
jq :=

p⊔
q=1

√
λ∗
k(R)

λ∗
jq

(R)Ω∗
jq .

(1) In Kröger’s article, Neumann eigenvalues are numbered starting with 1 so that μ1=0.
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Proof. If λ∗
k is realised by one of the Ωj , we are done. Suppose it is not. By

Lemma 2.1, any minimiser for λk has at most k connected components. One also
sees that the largest eigenvalue smaller or equal to λ∗

k(R) of each component has
to be equal to λ∗

k(R). If not it would be possible to decrease λ∗
k(R) by shrinking

slightly a component for which that’s not the case. This means slightly expanding
the other components, thus decreasing the eigenvalue.

In other words, if Ω∗
k is an optimal domain for λ∗

k(R), then each of its p com-
ponents (p≤k) will have some eigenvalue rank jq such that

Ω∗
k =
p

q=1Υq, Υq =αqΩnq ,

where
p∑

q=1
αd
q =1,

p∑
q=1

jq = k,

and
λj1(Υ1)= . . .=λjp(Υp)=λ∗

k(R).

Furthermore, each of these Υq realises λ∗
jq

, otherwise it could be replaced by a
domain who does while improving the eigenvalue. The identities between the eigen-
values of the different components may now be written as

α2
qλjp(Ωnp)=α2

pλjq (Ωnq ), q=1, ..., p−1,

or
αd
qλ

d/2
jp

(Ωnp)=αd
pλ

d/2
jq

(Ωnq ), q=1, ..., p−1, .

Summing up these identities for j from 1 to p−1,(
p−1∑
q=1

αd
q

)
λ
d/2
jp

(Ωnp)=αd
p

p−1∑
q=1

λ
d/2
jq

(Ωn1).

Hence

(1−αd
p)λ

d/2
jp

(Ω)=αd
p

p−1∑
q=1

λ
d/2
jq

(Ωnq )

and

αd
p =

λ
d/2
jp

(Ωnp)
p∑

q=1
λ
d/2
jq

(Ωnq )
.



28 Pedro Freitas, Jean Lagacé and Jordan Payette

We finally obtain
λk(Ω∗

k) = α−2
p λjp(Ωnp)

=
(

p∑
q=1

λ
d/2
jq

(Ωnq )
)2/d

,

yielding the desired result. �

A corresponding statement for Neumann eigenvalues is proved by Poliquin
and Roy-Fortin [33] by closely mirroring Wolf and Keller’s proof, and the result is
recollected and somewhat generalised by Colbois and El Soufi [14]. We include their
proof in our formalism for completeness.

Lemma 2.7. For every k∈N,

μ∗
k(R)d/2 =max

{
max

j
μk(Ωj)d/2, max

j1+...+jp=k

p∑
q=1

μ∗
jq (R)d/2

}
.

Furthermore, for any Ω∗
k realising μ∗

k(R), there exists a partition j1+. . .+jp=k such

that

Ω∗
k =

p⊔
q=1

αqΩ∗
jq :=

p⊔
q=1

√
μ∗
k(R)

μ∗
jq

(R)Ω∗
jq .

Proof. Once again, if μk is realised by one of the Ωj , we are done. A rather
simple induction argument reduces the problem to the case p=2 and Ω∗

k=Υ1
Υ2
into two nonempty unions of connected components, so that |Υ1|, |Υ2|>0 and |Υ1|+
|Υ2|=|Υ∗

k|=1.
Choose k+1 of the N(μ∗

k(R),Ω∗
k) lowest and linearly independent eigenfunc-

tions on Ω∗
k, say u0, ..., uk ordered according to their eigenvalues, in such a way

that every eigenfunction with eigenvalue strictly smaller than μ∗
k(R) is chosen and

that every eigenfunction is supported in either Υ1 or Υ2.(2) We have in particular
μk(uk)=μ∗

k(R)≥μk(Ω)>0, where the last inequality follows since Ω is connected.
For every 0≤l≤k, the function ul is not identically zero on at least one of the two
Υq’s; without loss of generality, assume that uk is not identically zero on Υ1. No-
tice that if the number of ul’s which are not identically zero on Υ1 is j1+1, then
μj1(Υ1)=μk(uk).

Since the spectrum of Ω∗
k=Υ1
Υ2 is the (ordered) union of the spectra of Υ1

and Υ2, and since the ul’s span any eigenfunction on Ω∗
k with eigenvalue strictly

smaller than μ∗
k(R), the number of ul’s which are not identically zero on Υ2 is j2=

k−j1. Considering the (j2+1)-th eigenfunction on Υ2 we get μj2(Υ2)≥μ∗
k(R)>0;

in particular j2≥1. We claim that in fact μ∗
k(R)=μj2(Υ2); to see this, suppose on

(2) Recall that u0 is necessarily a locally constant function.
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the contrary that μ∗
k(R)<μj2(Υ2). Then consider any sufficiently small deformation

Ω′ (with volume 1) of Ω∗
k obtained by contracting Υ1 to Υ′

1 and dilating Υ2 to Υ′
2,

so as to have

μj2−1(Υ′
2)<μj2−1(Υ2)≤μj1(Υ1)<μj1(Υ′

1)<μj2(Υ′
2)<μj2(Υ2).

Hence μk(Ω′)=μj1(Υ′
1) and thus μk(Ω′)>μ∗

k(R). This contradicts the maximality
of Ω∗

k. As a result μj1(Υ1)=μj2(Υ2)=μ∗
k(R)>0. Since μj(D)>0 if and only if

j≥ν(D), we deduce ji≥ν(Υi)≥1. That we have a partition follows from j2 :=k−j1.
We claim that the normalised domain |Υ1|−1/dΥ1 realises μ∗

j1
(R). Suppose dif-

ferently: There exists a maximiser Ω∗
j1

(with volume 1) such that μj1(|Υ1|−1/dΥ1)<
μj1(Ω∗

j1
)=μ∗

j1
(R), from which it follows that

(7) μ∗
k(R)=μj1(Υ1)= |Υ1|−2/dμj1(|Υ1|−1/dΥ1)< |Υ1|−2/dμ∗

j1(R).

Consider the domain

Ω̃ = Υ̃1
Υ2 =
(
μ∗
j1

(R)
μ∗
k(R)

)1/2

Ω∗
j1
Υ2.

Equation (7) implies that its volume is strictly greater than |Υ1||Ω∗
j1
|+|Υ2|=1.

The j1+1 first eigenvalues coming from Υ̃1 have eigenvalue at most μ∗
k(R), the

(j1+1)-th eigenvalue μj1(Υ̃1) being equal to this value. Together with the same
j2=k−j1 eigenfunctions on Υ2 as before, we deduce that μk(Ω̃)=μ∗

k(R). Therefore
the (k+1)-th eigenvalue of the normalised domain |Ω̃|−1/dΩ̃ is strictly larger than
μ∗
k(R), which is a contradiction to the maximality of Ω∗

k. A similar argument
implies that the normalised domain |Υ2|−1/dΥ2 realises μ∗

j2
(R). Incidentally, |Υi|=

(μ∗
ji

(R)/μ∗
k(R))d/2. �

3. A trichotomy
In this section, we set out to prove Theorem 1.3. Note that all of the results

of the previous sections have a Dirichlet and Neumann version, where the only
difference is that the inequalities are reversed. As such, we will only prove the
Dirichlet case of Theorem 1.3, and only state the corollaries in term of the Dirichlet
eigenvalues. However, since we rely only on the formal properties obtained in the
previous section, all the results also apply for Neumann eigenvalues, reversing the
inequalities when needed and changing the proofs mutatis mutandis.

We start with the following proposition, allowing us to consider classes of do-
mains generated by a single domain Ω. As such, when no confusion arises we may
write R for R(Ω) once a generating domain is fixed.

Proposition 3.1. If Pólya’s conjecture holds within R(Ω1) and R(Ω2), then
it holds within R(Ω1,Ω2). The same is true of the strong Pólya conjecture.
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It is clear that it is sufficient to show that if Pólya’s conjecture holds for two
domains Υ1∈R(Ω1) and Υ2∈R(Ω2), then it holds for the disjoint union of these two
domains Υ1
Υ2. This will rely on the following abstract lemma about superlinear
sequences.

Lemma 3.2. Let {ak :k∈N} and {bk :k∈N} be two increasing sequences satis-

fying

ak ≥
k

A
and bk ≥

k

B
for some A,B>0. Denote ck the sequence obtained as the arrangement in increasing

order of all elements in {ak}
{bk}, repeated with multiplicity. Then,

ck ≥
k

A+B
.

The same holds when all inequalities are replaced with strict inequalities.

Proof. Without loss of generality, we assume that ck=ap for some 1≤p≤k. We
distinguish two cases: p=k and 1≤p<k. In the former situation, we have that

ck = ak ≥
k

A
>

k

A+B
.

In the second case, it follows that ap≥bj for all j, 1≤j≤k−p. We then have

k

A+B
= p+(k−p)

A+B

≤ Aap
A+B

+Bbk−p

A+B

≤ ap = ck,(8)

where the last line holds from the fact that ap≥max{ap, bk−p}, hence it is also
greater than any convex combination of both. This concludes the proof, and it is
readily seen that if the inequalities in the statement of the lemma were strict, then
the second line in (8) would be a strict inequality. �

To prove Proposition 3.1, apply the previous lemma with ak=λk(Ω1)d/2, bk=
λk(Ω2)d/2, A= ωd|Ω1|

(2π)d , and B= ωd|Ω2|
(2π)d .

Let us now define the set J :=J(Ω)⊂N of indices where the generator Ω realises
λ∗
k(R(Ω)), that is

J(Ω) := {k∈N :λk(Ω)=λ∗
k(R(Ω))} .

Clearly, J is never empty since 1∈J(Ω) for any Ω.

Proposition 3.3. Suppose J(Ω) is infinite, so that there exists a sequence

j1<j2<...↗+∞ such that Ω=Ω∗
jn

(R(Ω)) for all n. Then Pólya’s conjecture is true

for every Υ∈R(Ω).
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Proof. On the one hand, Weyl’s law implies

lim
n→∞

λjn(Ω)
j
2/d
n

= 4π2

ω
2/d
d

.

On the other hand, since Ω realises λ∗
jn

(R) for every n, it follows from Corollary 2.5

lim
n→∞

λjn(Ω)
j
2/d
n

= inf
k

λ∗
k(R)
k2/d = 4π2

ω
2/d
d

.

We therefore conclude that λk(Υ)d/2 k−1≥(2π)dω−1
d for every Υ∈R with volume 1,

which is Pólya’s conjecture. �

The following theorem characterises when J is finite.

Theorem 3.4. The set J(Ω) is finite if and only if there exists a constant c

such that for all k, ν(Ω∗
k)≥ck.

Proof. If J is infinite, it is clear that such a constant c does not exist. Con-
versely, suppose that the set J={k∈N : λk(Ω)=λ∗

k(R)} is finite. This implies that
any minimiser realising λ∗

k(R) is of the form

Ω∗
k =

⊔
j∈J

nk,j⊔
m=1

rk,jΩ∗
j .

The number of connected components of Ω∗
k is

(9) ν(Ω∗
k)=

∑
j∈J

nk,j ,

and referring to Lemma 2.6 we get

(10) λ∗
k(R)d/2 =

∑
j∈J

nk,jλ
∗
j (R)d/2.

Corollary 2.5 states that there is a constant c such that λ∗
k(R)d/2≥c′k. Let j′=

max J , combining (9) and (10) we obtain

ν(Ω∗
k)≥

1
λj′(Ω)d/2

∑
j∈J

nk,jλ
∗
j (R)d/2

≥ c′

λj′(Ω)d/2
k.

The proof is completed by taking c=c′λj′(Ω)−d/2. �

Considering that all known results in the literature point to the validity of
Pólya’s conjecture, we are thus naturally led to the following, stronger, conjecture.
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Open problem. For every domain Ω⊂Rd there exists a subsequence

λ∗
kn

(R(Ω)), with minimisers Ω∗
kn

such that

ν(Ωkn)= o (kn) .

That this open problem is a potentially strictly stronger statement than Pólya’s
conjecture follows from this partial converse to Proposition 3.3.

Proposition 3.5. Suppose J(Ω)⊂N is finite. Then,

inf
k

λ∗
k(R(Ω))d/2

k
=min

j∈J

λj(Ω)d/2

j
≤ (2π)d

ωd
.

Furthermore, for infinitely many j∈N

λ∗
j (R(Ω))

j
= inf

k

λ∗
k(R(Ω))

k
.

Before starting with the proof, let us observe two things about this statement.
First, it means that infk λ∗

k(R(Ω))d/2k−1 is realised. Second, it means that if Ω
is a minimiser in R(Ω) only for finitely many k’s and if Pólya’s conjecture holds,
then Pólya’s bound is attained since the realised minimum of λ∗

k(R(Ω))d/2 would
be exactly (2π)dkω−1

d .

Proof. Let

L′ =min
j∈J

λj(Ω)d/2

j
.

It exists as J is finite, and L′≥L. For any k �∈J , a set which realises λ∗
k(R) necessarily

has several connected components. It results from Lemma 2.6 that

λ∗
k(R)d/2 =

∑
j∈J

njλj(Ω)d/2

where {nj :j∈J} are nonnegative integers such that∑
j∈J

njj = k.

Therefore
λ∗
k(R)d/2

k
= 1

k

∑
j∈J

njλ
d/2
j ≥ 1

k

∑
j∈J

njjL
′ =L′,

which immediately implies

L= inf
k

λ∗
k(R)d/2

k
≥L′ =min

j∈J

λj(Ω)d/2

j
≥L.
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Furthermore, since λk(Ω)≥λ∗
k(R) for every k∈N and since Weyl’s law implies

that
lim
k→∞

λk(Ω)d/2

k
= (2π)d

ωd
,

we get from Corollary 2.5 that indeed

min
j∈J

λj(Ω)d/2

j
= lim

k→∞

λ∗
k(R)d/2

k
≤ (2π)d

ωd

Finally, recall that for any set Υ we defined Υ(n) :=n1/d⊔n
�=1 Υ. We see that

|Υ|=|Υ(n)| and that for all j, λj(Υ)d/2j−1=λnj(Υ)d/2(nj)−1. Therefore, if j is an
eigenvalue rank such that

λj(Ω)d/2

j
= inf

k

λ∗
k(R)d/2

k
,

then for all n∈N
λnj(Ω(n))d/2

nj
= inf

k

λ∗
k(R)d/2

k

so that the infimum is attained infinitely often. �

Proof of Theorem 1.3. We have proved in Proposition 3.3 that if J is infinite,
then Pólya’s conjecture holds. The two other parts of the trichotomy are proved by
Proposition 3.5. �

We now turn our attention to the proof of Theorem 1.4, in the case where the
domain Ω satisfies the two-term Weyl law (1).

Proof of Theorem 1.4. In all generality, clearly (2) implies (3), and (1) implies
(3). Indeed, (1) places us in the first possibility of the trichotomy Theorem 1.3,
which implies (3). We shall show that the assumption that a two-term Weyl law
holds can be used to infer that (1) implies (2) and that (3) implies (1).

Proof of (1) implies (2). Write the sequence of minimisers, all of volume 1, as

Ω∗
k =

νk⊔
q=1

rk,qΩ,

where νk :=ν(Ω∗
k)<∞ by Lemma 2.1. Suppose that the rk,q coefficients are in

decreasing order,
rk,1 ≥ . . .≥ rk,νk

.

It follows from Lemma 2.6 that for every 1≤q≤νk there is jq :=jq(k)∈J such that

rk,q =
(
λjq (Ω)
λ∗
k(R)

)1/2

,
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and j1+. . .+jνk
=k. It follows from Weyl’s law that

lim
k→∞

rk,1 =1 ⇐==⇒ lim
k→∞

j1(k)
k

=1.

Suppose that the righthand side of the previous equivalence does not hold, i.e. that
there exists δ>0 and a subsequence, that we still label with k, such that for all k,
j1(k)≤(1−δ)k. For all ε>0, it follows from the two-term Weyl law that there exists
a rank N such that for all j>N ,

(11) λj(Ω)d/2 ≥ (2π)d

ωd
j+

⎛⎝ (2π)ωd−1

4ω
2d−1

d

d

|∂Ω|−ε

⎞⎠
︸ ︷︷ ︸

:=A−ε

j
d−1
d .

For all k, let Q:=Q(k) be defined as

Q :=
{

0 if jq≤N for all 1≤q≤νk,

max {q :jq>N} otherwise.

We define

Υk :=
Q⊔

q=1
rk,qΩ and Ξk :=

νk⊔
q=Q+1

rk,qΩ.

We claim that ν(Ξk) is bounded in k. Indeed, it follows from the strong Pólya
conjecture that there exists M such that for all j>M ,

λj(Ω)d/2

j
<

λjq (Ω)d/2

jq

for all q>Q. Writing
jQ+1+. . .+jνk

= j′ >ν(Ξk),

it follows from Lemma 2.6 that if j′≥M , then

λj′(Ξk)d/2 =λ∗
j′(R)d/2

≤
νk∑

q=Q+1
jq
λj′(Ω)d/2

j′

<

νk∑
q=Q+1

λjq (Ω)d/2

=λj′(Ξk)d/2,
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a contradiction. Hence, ν(Ξk)≤j′<M , and

(12) k0 :=
Q∑

q=1
jq ≥ k−M

Recall that we assumed that there is δ>0 such that j1<(1−δ)k, and it follows
from (12) that, up to choosing δ a bit smaller, j1<(1−δ)k0. Let R:=R(k) be
defined as

R :=max
{
r : 2≤ r≤Q and 1

k0

Q∑
q=r

jq >δ

}
,

and we denote

δk := 1
k0

Q∑
q=R

jq.

There is no loss of generality in assuming δ<1/3. That the jq are in decreasing
order ensures that in that case δ<δk<1−δ. Recall that for all 1≤q≤Q, jq>N

hence (11) holds. It is a consequence again of Lemma 2.6 that

λ∗
k(R)d/2 ≥

Q∑
q=1

λjq (Ω)d/2

≥
Q∑

q=1

[
(2π)d

ωd
jq+(A−ε) j

d−1
d

q

]

≥ (2π)d

ωd
k+(A−ε)

Q∑
q=1

j
d−1
d

q +O(1) .(13)

We study the sum in the last line of the previous display. It follows from subaddi-
tivity of the function x �→xα for α<1, and from kα0 =kα+O(kα−1) that

Q∑
q=1

j
d−1
d

q ≥
(

R−1∑
q=1

jq

) d−1
d

+

⎛⎝ Q∑
q=R

jq

⎞⎠
d−1
d

≥
(
(1−δk)

d−1
d +δ

d−1
d

k

)
k

d−1
d +O

(
k−1/d

)
It is a simple exercise to see that the function x �→xα+(1−x)α, α<1 being concave
and symmetric on [0, 1] and δ<δk<1−δ imply that

(1−δk)
d−1
d +δ

d−1
d

k ≥ (1−δ)
d−1
d +δ

d−1
d ≥ 1+

(
21/d−1

)
δ=: 1+cdδ,
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and cd>0. Putting this back into (13), it follows that

λ∗
k(R)d/2 ≥ (2π)d

ωd
k+(A−ε) (1+cdδ)k

d−1
d +O(1) .

Choosing
ε= cdδA

2(1+cdδ)
gives, for k large enough, that

λ∗
k(R)d/2 ≥ (2π)d

ωd
k+
(
A+Acdδ

3

)
k

d−1
d .

However, since

λk(Ω)d/2 = (2π)d
ωd

k+Ak
d−1
d +o

(
k

d−1
d

)
,

we have that for k large enough, λk(Ω)d/2<λ∗
k(R)d/2, a contradiction. Hence, for

any δ>0 there are no subsequences along which j1(k)<(1−δ)k for all k. It is readily
seen that rk,1 converges to 1.

Proof of (3) implies (1). Assume that the Strong Pólya conjecture doesn’t hold
for R(Ω). It follows from Lemma 2.6 that it cannot hold for Ω, so that there is a
rank j such that

(14) λj(Ω)d/2 ≤ (2π)d

ωd
j.

By assumption there is a subsequence, labeled by k, such that

Ω∗
k =(1−εk)Ω
Υk,

with εk→0. From Lemma 2.6, for every k there exists a rank jk such that

(15) λ∗
k(R)d/2 =(1−εk)−dλjk(Ω)d/2,

and that Ω=Ω∗
jk

. It follows from Corollary 2.5 and equation (15) that jk→∞. By
the two-term Weyl law (1), there is A>0 such that

λjk(Ω)d/2 = (2π)d

ωd
jk+Aj

d−1
d

k +o
(
j

d−1
d

k

)
,

hence there exists a constant C>0 such that for every k large enough,

(16) λjk(Ω)d/2− (2π)d

ωd
jk ≥Cj

d−1
d

k .
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We now show that for large enough k, Ω is in fact not a minimiser for λjk amongst
R. Write jk=nkj+r, with j as in (14) and 0≤r<j. Consider the domain Ω′ defined
as

(17) Ω′ =
(
λr(Ω)
λj(Ω)

)1/2

n
−1/d
k Ω


(
nk⊔
q=1

n
−1/d
k Ω

)
.

We have constructed Ω′ explicitly so that the first component in (17) has n2/d
k λj(Ω)

as its rth eigenvalue, and all the other components have n
2/d
k λj(Ω) as its jth eigen-

value, it then follows that

λjk(Ω′)d/2 =nkλj(Ω)d/2.

Furthermore,

|Ω′|=
(

1+
(
λr(Ω)
λj(Ω)

)d/2 1
nk

)
.

Combining these equalities with (14), we deduce that

|Ω′|λjk(Ω′)d/2 ≤
(

1+
(
λr(Ω)
λj(Ω)

)d/2 1
nk

)
(2π)d

ωd
nkj

=
(

1+
(
λr(Ω)
λj(Ω)

)d/2
j

jk−r

)
(2π)d

ωd
(jk−r)

= (2π)d

ωd
jk+O(1)

This combined with estimate (16) implies that for k large enough, |Ω′|λjk(Ω′)d/2<
λjk(Ω)d/2, contradicting optimality of Ω for λjk . �

For the next few results we shall assume that Ω is a minimiser only finitely many
times, namely Ω=Ω∗

k if and only if k∈J={j1, ..., jp}⊂N. Our goal is to investigate
what the minimisers can be in such a case. We shall continue to write simply L=
infk k−1λ∗

k(Rd/2). We shall say that a minimiser Ω∗
k realises L if λk(Ω∗

k)d/2 k−1=L.
Recall that for a set Υ∈R and n∈N , the n-th propagation of Υ is the set

Υ(n) =
n⊔

�=1

1
n1/d Υ.

Observe that |Υ|=|Υ(n)| and that λk(Υ)d/2 k−1=λnk(Υ(n))d/2 (nk)−1 for any n∈N.

Definition 3.6. A minimiser Ω∗
k propagates as a minimiser in R if for every

n∈N we have Ω∗ (n)
k =Ω∗

nk. A minimiser Ω∗
k weakly propagates as a minimiser in R

if there exist a sequence of integers n1<n2<...↗+∞ and a corresponding sequence
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of minimisers in R of the form

(18) Ω∗
k′
i
= riΩ∗ (ni)

k 
Υi.

Proposition 3.7. A minimiser Ω∗
k realises L if and only if it propagates as a

minimiser in R(Ω).

Proof. Fix k∈N and a minimiser Ω∗
k. We have λ∗

nk(R)≤λnk(Ω(n)
k )=n2/dλk(Ω∗

k).
Fix n>1. Whether or not nk belongs to J , there exist nonnegative integers n1, ..., np

such that nk=
∑p

i=1 niji and

λ∗
nk(R)d/2 =

p∑
i=1

niλ
d/2
ji

≥
p∑

i=1
nijiL=nkL.

Therefore we have

(19) L≤ λ∗
nk(R)d/2

nk
≤

λnk

(
Ω(n)

k

)d/2
nk

= λk(Ω∗
k)d/2

k
.

In view of this, it follows that Ω∗
k realises L if and only if for every n∈N both

inequalities in (19) are equalities.
In turn, this is equivalent to only the second inequality being an equality for

every n. Indeed, the latter would imply that the sequence n �→λ∗
nk(R)d/2 (nk)−1 is

constant, but we know that it converges to L as n→∞ hence the first inequality
being an equality too.

Now for any fixed n, the equality λ∗
nk(R)d/2 (nk)−1=λnk(Ω(n)

k )d/2 (nk)−1 is
equivalent to the claim that Ω(n)

k realises λ∗
nk(R). Consequently, the second inequal-

ity in (19) being an equality for every n∈N means precisely that Ω∗
k propagates as

a minimiser. �

Lemma 3.8. A minimiser Ω∗
k propagates as a minimiser in R(Ω) if and only

if it weakly propagates as a minimiser in R(Ω).

Proof. The “only if” part is trivial. For the “if” part, consider a sequence of
minimisers Ω∗

kj
as in equation (18). It follows from Lemma 2.6 that for each j∈N,

the set Ω∗ (nj)
k realises λ∗

njk
(R). As a consequence of this and of Corollary 2.5, we

compute

λk(Ω∗
k)d/2

k
=

λk

(
Ω∗ (nj)

k

)d/2
njk

=
λ∗
njk

(R)d/2

njk
−→

j→+∞L.

This means that Ω∗
k realises L. Proposition 3.7 thus implies that Ω∗

k propagates as
a minimiser in R. �
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Let us consider the sets

KL :=KL(Ω) := {k∈N : λ∗
k(R)d/2 k−1 =L} and JL :=JL(Ω)=J(Ω)∩KL(Ω).

We observe that KL is closed under finite sums.
Continuing with the assumption of finite J , Proposition 3.5 implies that the

set is not empty. Set jL=max JL. Proposition 3.7 implies that the minimiser
Ω=Ω∗

j associated to j∈JL propagates as a minimiser in R. One might expect these
minimisers to be special, for instance to have a minimum numbers of connected
components among minimisers of a given eigenvalue functional, if not to be unique.
These expectations are even more vivid for the propagations of Ω∗

jL
. The next result

investigates these possibilities.

Lemma 3.9. Assume JL(Ω) is finite and set jL :=max JL(Ω). Let j∈JL(Ω).
If there exist n∈N and a minimiser Ω∗

nj �=Ω∗ (n)
j , then {j}�JL(Ω). If furthermore

ν(Ω∗
nj)≤ν(Ω∗ (n)

j ), then j<jL. If instead ν(Ω∗
nj)>ν(Ω∗ (n)

j ), then there exists j′∈
JL(Ω) such that j′<j.

Proof. Both Ω∗ (n)
j and Ω∗

nj realises λ∗
nj(R). As a result of Lemma 2.6 we have

a decomposition

(20) Ω∗
nj =

p⊔
i=1

ni⊔
m=1

riΩ∗
ji with

p∑
i=1

niji =nj

which induces the equality

λ∗
nj(R)d/2 =

p∑
i=1

niλ
∗
ji(R)d/2.

We claim that there is an index h such that jh �=j and nh>0. Otherwise the
only positive ni would be nl where jl=j; It would follow from (20) that nl=n and
that ri=n

−1/d
l , hence Ω∗

nj=Ω(n)
j . This is a contradiction with our assumptions,

hence the claim.
Since j∈JL, Ω∗ (n)

j realises L and so does Ω∗
nj . We compute

L=
λnj(Ω∗

nj)d/2

nj
= 1

nj

p∑
i=1

niλ
∗
ji(R)d/2

= 1
nj

p∑
i=1

niji
λ∗
ji

(R)d/2

ji
≥ 1

nj

p∑
i=1

nijiL=L,

which implies that λ∗
ji

(R)d/2j−1
i =L for every i such that ni>0, so in particular for

i=h. This means jh �=j satisfies jh∈JL, hence {j}�JL.
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Assume now moreover ν(Ω∗
nj)≤ν(Ω∗ (n)

j )=n. By the pigeonhole principle and
– in case the previous inequality is an equality – by Ω∗

nj �=Ω∗ (n)
j , at least one of

the connected components of Ω∗ (n)
j has volume strictly greater than n−1. Put

differently, if h is the index of such a component then rh>n−1/d. We compute

L=
λ∗
jh

(R)d/2

jh
=

rdh λjh(rhΩ∗
jh

)d/2

jh

=
rdh λ

∗
nj(R)d/2

jh
>

n−1λ∗
nj(R)d/2

jh
= j

jh

λ∗
nj(R)d/2

nj
= j

jh
L,

which means that j<jh and a fortiori that j<jL.
Assume now instead ν(Ω∗

nj)>ν(Ω∗ (n)
j )=n. The pigeonhole principle now im-

plies that at least one connected component has volume strictly less than n−1.
The same argument as before with the direction of inequalities inverted yields the
existence of j′=jh∈JL such that j>j′. �

A consequence of this last lemma is that for n∈N, the domain with the least
number of connected components realising the eigenvalue λ∗

njL
(R) is unique and is

given by the propagation Ω∗ (n)
jL

.
Another consequence of the proof is that KL is generated by JL, that is any

k∈KL is a finite sum of elements in JL. Indeed, given k∈KL\JL and a minimiser
Ω∗

k, the propagation Ω∗ (jL)
k realises λ∗

jLk(R). The connected components of this
propagation are thus contracted copies of minimisers canonically associated with
JL and so are the ones of Ω∗

k, hence the result. The minimisers Ω∗
ji

=Ω with ji∈JL
are thus the building blocks of any minimiser realising L.

4. Bounds from packings

We have just seen that the failure of Pólya’s conjecture for a domain Ω im-
plies that infinitely many minimisers in R(Ω) are realised by propagators Ω(n)=
∪n
j=1n

−1/dΩ. It is thus natural to study the spectrum of those propagators, notably
by geometrically realising them as subsets of other domains, that is by packing the
Ω(n)s into others domains. This packing idea leads to the main result in this section,
to wit an estimate from below on L=infk∈N λ∗

k(R)d/2 k−1 in term of the “packing
density” of Ω. Recall that this packing density was defined in Definition 1.5.

We start by proving a few properties of this packing density.

Lemma 4.1. Given three bounded domains Ω, V and W ,

ρΩ,W ≥ ρΩ,V ρV,W .
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Proof. Given any ε>0, there exist a packing g of Ω(m) into V of density ρg>

ρΩ,V −ε and an asymptotic packing P={(ni, ρi, fi)}i∈N of V into W with asymptotic
density ρP >ρV,W −ε. It is very clear how g and P can be “composed” to yield an
asymptotic packing of Ω into W with asymptotic density ρgρP >ρΩ,V ρV,W −O(ε).
The lemma readily follows. �

Proposition 4.2. Let Ω and V be two bounded domains in Rd with volume 1.
Suppose that Ω tiles Rd and that the upper Minkowski dimension of ∂V is strictly

smaller than d. Then ρΩ,V =1 and thus ρΩ=1.

Remark 4.3. We recall that the upperbox dimension or upper Minkowski
dimension of a set S⊂Rd could be defined as

dup(S) := d−lim inf
r→0+

log |S(r)|
log r

where S(r):={y∈Rd : ‖y−S‖<r} is the r-neighbourhood of S.

Proof. For simplicity, suppose 0∈int(V )⊂Rd and consider that any homothety
to be performed below is with respect to 0. We shall also think of the tiling F as a
mere quasi-inclusion and we will not use F in our notations.

Since V is bounded, there exists R>0 such that V ⊂rV for all r≥R. Conse-
quently, we have the sequence of inclusions

V ⊂RV ⊂R2V ⊂R3V ⊂ ...

Without lost of generality, take R∈N.
Denote Ωi the i-th component Ω in the disjoint union 
i∈N Ω. For n∈N, let

In⊂N be the largest set such that Ωi⊂nV for every i∈In. This set is finite as its
cardinality is at most |nV |/|Ω|=n. Because of the previous paragraph, IRi⊂IRi+1

for every i∈N. For i∈N, set ni=# IRi .
Because Ω and hence Ω are bounded, the latter is contained in an open ball B

of diameter D. Let

(nV )2D = {p∈nV : dist(p, (nV )c)≥ 2D}.

We claim that the set (nV )2D\∪i∈In Ωi is empty. Suppose otherwise; then there
exist a point x in this nonempty set and, since Ω is a tile, an index i∈(In)c such
that x∈Ωi⊂Bi. The definition of In implies Ωi∩(nV )c �=∅, so there exists y in
this latter intersection and thus in Bi. It follows that dist(x, y)<2D, which is a
contradiction. This proves the claim, and consequently (nV )2D⊂∪i∈InΩi⊂nV .
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By assumption on ∂(nV ), the volume of the 2D-neighbourhood of ∂(nV ) grows
like o(nd), so that the volume of (nV )2D grows like nd−o(nd). From the set in-
clusions obtained in the previous paragraph, the same asymptotic is true for the
growth of the volume of ∪i∈In Ωi, that is of � In.

Consider the asymptotic packing P={(ni, ρi, fi)}i∈N given by ni=� IRi , ρi=
ni/n

d and
fi : Ω(ni) ∼=
i∈IRi n

−1/d
i Ωi ↪−→n

−1/d
i nV = ρ

−1/d
i V.

From the previous paragraph we get ρP =limi→∞ ρi=1, thus ρΩ,V =1. �

The previous result suggests to define another, a priori smaller notion of pack-
ing density, namely the lower packing number or lower packing density of Ω is

ρΩ = inf {ρΩ,V |V bounded domain, |V |=1, dupperbox(∂V )<d } .

Corollary 4.4. For any bounded domain Ω⊂Rd,

ρΩ = ρΩ,V > 0

for any bounded tile V ⊂Rd whose boundary has upperbox dimension strictly less

than d.

Proof. Let W⊂Rd be any bounded domain whose boundary has upper Min-
kowski dimension strictly less than d. Then from the two previous results we get
ρΩ,W ≥ρΩ,V ρV,W =ρΩ,V . Taking the infimum over all W yields the equality claimed
in the statement.

To prove the inequality, let’s take V =[0, 1]d. Since Ω is bounded, there clearly
is some ρ∈(0, 1] such that Ω can be packed in ρ−1/dV . Since V (id) fully pack V

for each integer i, by “composing” packings we deduce that there is at least one
asymptotic packing of Ω into V with constant density ρ>0, and a fortiori we get
ρΩ,V >0. �

Remark 4.5. In the few last results, the assumption on the upperbox dimen-
sion – which guaranteed that the boundary had vanishing Lebesgue measure – was
not superfluous. Indeed, given any ε>0, it is possible to find a bounded tile Vε⊂Rd

with volume 1 such that |int(Vε)|<ε, for instance by applying a suitable symmetric
adaptation of Knopp’s construction of a Osgood “surface” on the sides of a cube;
the packing density of a typical domain Ω into Vε would thus be smaller than ε.
We leave the details to the industrious reader.

We are now in a position to prove a lower bound on

L := infk λ∗
k(R)d/2 k−1

for the Dirichlet Laplacian eigenvalue problem in the class R(Ω).
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Lemma 4.6. Assume that KL={k∈N : λ∗
k(R)d/2 k−1=L} is non-empty. Then

(21) L≥ ρΩ
(2π)d

ωd
.

Proof. Using Lemma 2.6 in a way we already repeatedly used it before, we
deduce from the assumption KL �=∅ that JL={k∈KL : λk(Ω)=λ∗

k(R)}�=∅. Pick
some j∈JL.

Let ε>0 and consider an open bounded domain V with volume 1 such that
ρΩ,V ≥ρΩ−ε/2. Consequently, there exist an asymptotic packing P={(ni, ρi, fi)}i∈N

of Ω into V such that ρP =limi→∞ ρi≥ρΩ−ε.
The isometric quasi-embedding fi :Ω∗ (ni)

j →ρ
−1/d
i V allows us to view Ω∗ (ni)

j

as a genuine subset of ρ−1/d
i V . Considering the well-known fact that any Dirichlet

eigenvalue functional Υ �→λk(Υ) is decreasing with respect to inclusion, namely that
Υ1⊂Υ2 implies λk(Υ1)≥λk(Υ2), it follows that

λnij

(
Ω∗ (ni)

j

)d/2
≥λnij

(
ρ
−1/d
i V

)d/2
.

The left-hand side is equal to niλj(Ω∗
j )=nijL, whereas the right-hand side equals

ρi λnij(V )d/2. Therefore

L≥ ρi
λnij (V )d/2

nij
.

Since limi→∞ ρi=ρP ≥ρΩ−ε and because of Weyl’s asymptotic law, taking the limit
i→+∞ on the right-hand side yields

L≥ (ρΩ−ε) (2π)d

ωd
.

As this is true for any ε>0, the result follows. �

Theorem 1.8 follows as a corollary of the previous Lemma.

Proof of Theorem 1.8. The set J={k∈N : Ω realises λ∗
k(R)} is either infinite or

finite. If it is infinite, Proposition 3.3 implies Pólya’s conjecture and a fortiori (21)
as ρΩ≤1. If instead it is finite, then Proposition 3.5 implies that KL is non-empty
and the claim follows from the previous lemma. �

We now prove that if a domain V of unit volume satisfies a two-term Weyl law
for Dirichlet eigenvalues, then all V -tiles satisfy the strong Pólya conjecture.

Proof of Theorem 1.11 for Dirichlet eigenvalues. Fix a rank j for which Ω re-
alises λ∗

j . Since Ω is a V -tile, there is an asymptotic packing P={(ni, 1, fi)}i∈N
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of Ω into V with constant packing density 1. Since V satisfies the two-term Weyl
law (1), there is M∈N such that

λm(V )d/2

m
>

(2π)d

ωd
∀m≥M.

Consider i∈N sufficiently large so that nij≥M , and consider the (full) packing
fi :Ω(ni)→V . Invoking the monotonicity of Dirichlet eigenvalues we thus get

λj(Ω)d/2

j
= λnij(Ω(ni))d/2

nij
≥ λnij(V )d/2

nij
>

(2π)d

ωd
.

Considering Proposition 3.5, this implies that Ω realises λ∗
k infinitely often. Using

Corollary 2.5, we deduce

L := inf
k

λ∗
k(R)d/2

k
= inf

j∈J

λ∗
j (R)d/2

j
.

It also means that L is not attained among the indices in J . We claim that L

is not attained in R at all, from which the last part of the theorem readily results.
Suppose otherwise, so that there exist k∈N and Ω∗

k∈R such that λk(Ω∗
k)k−1=L.

By Lemma 2.6, any connected component of Ω∗
k is a (contracted copy of some)

minimiser Ω∗
m. Note in particular that m∈J . From Proposition 3.7 follows that Ω∗

k

propagates as a minimiser, hence Ω∗
m weakly propagates as a minimiser by definition.

Lemma 3.8 implies that Ω∗
m propagates as a minimiser, and so Ω∗

m realises L by
Proposition 3.7. This is a contradiction. �

The proof of Theorem 1.11 for Neumann eigenvalues is a bit more subtle and
this is due to the fact that Neumann eigenvalues do not behave in any simple
way under inclusion. This is also why Theorem 1.8 or modifications of it fail in
that situation: the behaviour under inclusion depends on the eigenfunctions of the
Laplacian. When the quasi-embeddings are actually surjective, however, we can
adapt [13, Theorem 63] to our needs.

Lemma 4.7. Let V1, ..., VN ,W⊂Rd be domains with Lipschitz boundaries. As-

sume that F :V :=
N
j=1Vj→W is an isometric quasi-embedding, which induces a

pullback map F ∗ :H1(W )→H1(V ) between Sobolev spaces. Denote EV (k)⊂H1(V )
and EW (k)⊂H1(W ) the subspaces generated by the first k Neumann eigenfunctions

on V and W , respectively. Then for any fixed k∈N, there is a nonzero ϕ∈EW (k)
such that F ∗ϕ is L2-orthogonal to EV (k−1) and

μk(V )≤
‖ϕ‖2

L2(W )

‖F ∗ϕ‖2
L2(V )

μk(W ).

Proof. Let {fk}k∈N and {gk}k∈N be L2-orthonormal bases of Neumann eigen-
functions on V and W respectively, numbered in increasing order of their eigenvalue.
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Since F is an isometric quasi-embedding, we can define pushforwards F∗fk∈L2(W )
by extension by 0 outside the image of F , and {F∗fk}k∈N are still L2-orthonormal.
Given k∈N, consider a nonzero linear combination ϕ=

∑k
j=0 ajgj , so that

‖ϕ‖2
L2(W )=

∑k
j=0 a

2
j . The requirement that it be L2-orthogonal to the first k func-

tions F∗fj uniquely specifies ϕ up to a multiplicative constant; we note that F ∗ϕ

is then L2-orthogonal to the first k functions fj . On the one hand, we have∫
W

‖∇ϕ‖2 dm=
k∑

i,j=0
aiaj

∫
W

〈∇gi,∇gj〉 dm=
k∑

j=0
a2
jμj(W )≤μk(W )‖ϕ‖2

L2(W ),

while on the other hand∫
W

‖∇ϕ‖2 dm=
∫
V

‖∇F ∗ϕ‖2 dm≥μk(V )‖F ∗ϕ‖2
L2(V )

due to the fact that f0, ..., fk−1, ϕ∈H1(V ) generates a k-dimensional subspaces and
the variational characterisation of μK(V ) as the infimum over such subspaces of
the maximum of the Rayleigh quotient over elements of the subspace. The claim
readily follows. �

Corollary 4.8. In the context of the previous lemma, if we further assume

that F is surjective, then μk(V )≤μk(W ) for all k.

Proof. Since the boundary of V has vanishing Lebesgue measure (being Lips-
chitz) and since F is an isometry, it follows that ‖ϕ‖2

L2(W )=‖F ∗ϕ‖2
L2(V ). �

We now have all the necessary ingredients to prove Theorem 1.11.

Proof of Theorem 1.11 for Neumann eigenvalues. The proof follows the same
scheme as the proof of Theorem 1.11 for Dirichlet eigenvalues, using everywhere the
corresponding results; notably, monotonicity is replaced by the Corollary 4.8 and
Lemma 2.6 is replaced by Lemma 2.7. �

5. Computational results

The proposed way of approaching Pólya’s conjecture for a given domain Ω
generates a sequence of extremal sets made up of copies of Ω. As we have seen,
this sequence encodes information as to whether the generator set Ω satisfies the
conjecture, which goes beyond whether the corresponding eigenvalues satisfy in-
equalities (4). These include the behaviour of the number of connected components
of the sequence of extremal sets and the behaviour of the largest scaling coefficient
r1,k, for instance.

In this section, we present an investigation of the set of ranks for which the
generator is a minimiser for the Dirichlet eigenvalues, and how the above indicators
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evolve. We chose as generators the disk, the square, and a rectangle of aspect ratio
1:5. The reasons for choosing these generators are as follows.

• The exact values of the eigenvalues are known, and can be computed to high
accuracy even at high ranks. This would not necessarily be the case if we had to
approximate eigenvalues using, say, finite element methods.

• It is not known whether or not the disk satisfies Pólya’s conjecture, as opposed
to rectangles. This means that we can compare the evolution of the indicators in
comparison for those two settings.

To generate the set of minimisers, we proceed in two steps. The first one
consists in creating a list of eigenvalues for the generators; for the square and
the rectangle this is not a problem since eigenvalues are given by sum of squares
of integers. For the disk the first step consists in generating the zeros of Bessel
functions. We denote by jν,k the k-th zero of the Bessel function Jν . The generation
of the list of jν,k was done using the Chebfun MATLAB package [15]. Two things
were important to consider:

• Bessel functions of high rank ν are very small (under machine precision) but
strictly positive for a large interval starting at 0. Root finding algorithms would
nevertheless find zeros in that range.

• All zeros have to be accounted for under a given value.
The first point is addressed by using the well-known fact that the first zero of the
Bessel functions Jν is always located at some x>ν, and Jν is sufficiently large within
that range that no spurious zeros are found. The second point is addressed by using
the property that if ν′>ν, then for all k∈N, we have that jν′,k>jν,k. Hence, we can
choose as natural stopping points the first zero of a Bessel function of rank N . We
then find all jν,k∈[ν, jN,1] and we can be assured that no zeros have been skipped.
The following pseudo-code will generate the list of Dirichlet eigenvalues of the disk
(keeping in mind that the multiplicity of the eigenvalues coming from Bessel zeros
of rank ν≥1 is 2, and those coming from J0 have multiplicity 1).

Algorithm 5.1: GenerateDiskEigenvalues(N)

bound=First root of JN above N

evalues=All roots j2
0,k between 0 and bound

for ν=1 to N

do evalues=evalues+2 copies of all roots j2
ν,k between ν and bound

return (evalues)

To find the roots, we used the routine associated with the chebfun type of the
aforementioned Chebfun package.

To find the minimisers, we used an approach based on Theorem 2.6. For
some eigenvalue rank, say k, the minimiser is either the generator, or, for any
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partition of the set of connected components into two subsets, these two subsets
themselves realise λ∗

j (R) and λ∗
j′(R) for some j+j′=k. Furthermore, in any such

case λ∗
k=λ∗

j +λ∗
j′ . We therefore can find the minimisers recursively, if we have a list

of the eigenvalues of the generator, and a list of previous minimisers. The following
pseudocode will generate such a list under these conditions; it is defined recursively
and outputs a pair consisting of the list of minimal eigenvalues and a list of the
ranks each connected component making up the minimiser at rank k minimises
themselves, according to Theorem 2.6.

Algorithm 5.2: {minevs,ranks}(generatorevs, k)

min=generatorevs[k]
minrank=k

for j=1 to k/2
do if minevs[j]+minevs[k−j]<min

then
{
min=minevs[j]+minevs[k−j]
minrank=j

minevs[k]=min

if minrank==k

then ranks[k]={k}
else ranks[k]=ranks[minrank]∪ranks[k−minrank]

The trichotomy in Theorem 1.3 indicates that if the generator itself is a min-
imiser infinitely often in R, then Pólya’s conjecture holds in this case, as well as for
any disjoint union of it. As such, we investigate the log-density of the number ranks
for which the generator itself is a minimiser, that is, the function defined in (5).

Theorem 1.4 tells us that another indicator to verify is the largest homothety
coefficient rk of the minimiser, and that the strong Pólya conjecture is equivalent
to this coefficient converging to 1 as k→∞. As seen in the proof of Theorem 1.4,
this is implied also by the rank of the maximal eigenvalue supported by one of the
connected component growing asymptotically like k.

We show these relevant quantities for the case of the disk in Figure 1, with the
corresponding values for the square being shown in Figure 2 for comparison. At a
first glance, the qualitative behaviour for these two examples appears to be similar,
with the only major difference that is visible is that the logarithmic density for
the disk as a minimiser in the corresponding sequence appears to be approaching a
value somewhat below that of the square.

In view of Theorem 3.4, another interesting indicator is the number of con-
nected components of the minimisers. As we have proved, if it grows at o(k) rate, k
being the eigenvalue rank, then Pólya’s conjecture holds. In the range of eigenvalues
that we investigated, Figure 3 shows that for the disk, square and a rectangle with
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Figure 1. Logarithmic density, largest value of coefficient rk, largest rank of an eigenvalue on one
connected component and the corresponding logarithmic plot, in the case of the disk.

Figure 2. Same as in Figure 1, now in the case of the square.
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Figure 3. Histograms of the number of components: from left to right, disk, square, and rectangle
with sides in the proportion of 1:5.

side ratio 1:5, the number of connected components of the minimisers keeps quite
small, both the disk and the square having a maximum of five components, while
the elongated rectangle exhibits at most only three.

Of course, one cannot deduce Pólya’s conjecture from these experiments. How-
ever, they show that from the perspective of the quantities introduced in this paper
the behaviour of the disk up to the range considered is not that dissimilar from that
of the square, for instance, which is known to satisfy Pólya’s conjecture. Further-
more, seeing that the behaviour of these indicators is in line with Pólya’s conjecture
holding, one might hope that it would be easier to prove indirectly results about
the number of connected components of an extremiser, or about convergence to the
generator.
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