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Abstract
We construct Lie superalgebras osp(2n + 1 | 4n + 2) and osp(2n | 4n) starting with

certain classes of anti-structurable algebras via the standard embedding Lie superalgebra
construction corresponding to (ε, δ)-Freudenthal Kantor triple systems.
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1 Introduction

1.1 (ε, δ)-Freudenthal Kantor triple systems, δ-Lie triple systems, and Lie
(super)algebras

We are concerned in this paper with triple systems which have finite dimension over a field
Φ of characteristic 6= 2 or 3, unless otherwise specified.

In order to render this paper as self-contained as possible, we recall first the definition of
a generalized Jordan triple system of second order (for short GJTS of 2nd order).

Definition 1.1. A vector space V over a field Φ endowed with a trilinear operation V ×
V × V → V , (x, y, z) 7−→ (xyz) is said to be a GJTS of 2nd order if the following conditions
are fulfilled:(

ab(xyz)
)

=
(
(abx)yz

)
−
(
x(bay)z

)
+
(
xy(abz)

)
(1.1)

K
(
K(a, b)x, y

)
− L(y, x)K(a, b)−K(a, b)L(x, y) = 0 (1.2)

where

L(a, b)c := (abc) and K(a, b)c := (acb)− (bca)

Definition 1.2. A Jordan triple system (for short JTS) satisfies (1.1) and (abc) = (cba),
∀a, b, c ∈ V .

We can generalize the concept of GJTS of the 2nd order as follows (see [10, 11, 13, 15, 32]).

Definition 1.3. For ε = ±1 and δ = ±1, a triple product that satisfies the identities(
ab(xyz)

)
=
(
(abx)yz

)
+ ε
(
x(bay)z

)
+
(
xy(abz)

)
(1.3)

K
(
K(a, b)x, y

)
− L(y, x)K(a, b) + εK(a, b)L(x, y) = 0 (1.4)

where

L(a, b)c := (abc), K(a, b)c := (acb)− δ(bca) (1.5)

is called an (ε, δ)-Freudenthal-Kantor triple system (for short (ε, δ)-FKTS).



184 N. Kamiya and D. Mondoc

Remark 1.4. Note that K(b, a) = −δK(a, b).

Definition 1.5. An (ε, δ)-FKTS U is called unitary if the identity map Id is contained in
κ := K(U,U), i.e., if there exist ai, bi ∈ U such that ΣiK(ai, bi) = Id.

Let U be an (ε, δ)-FKTS and let Vk, k = 1, 2, 3, be subspaces of U . We denote by
(V1, V2, V3) the subspace of U spanned by elements (x1, x2, x3), xk ∈ Vk, k = 1, 2, 3.

Definition 1.6. A subspace V of U is called an ideal of an (ε, δ)-FKTS U if the following
relations hold: (V,U, U) ⊆ V , (U, V, U) ⊆ V , (U,U, V ) ⊆ V . U is called simple if ( , , ) is
not a zero map and U has no nontrivial ideal.

We denote the triple products by (xyz), {xyz}, [xyz], and 〈xyz〉 upon their suitability.

Remark 1.7. We note that the concept of GJTS of 2nd order coincides with that of (−1, 1)-
FKTS. Thus we can construct the simple Lie algebras by means of the standard embedding
method (see [5, 10, 11, 12, 13, 15, 16, 17, 22, 32]).

Remark 1.8. We note that the two pairs of identities (1.3-1.4) and (1.6) are equivalent[
L(a, b), L(x, y)

]
= L

(
(abx), y

)
+ εL

(
x, (bay)

)
(1.6a)

K
(
K(a, b)x, y

)
−K

(
(yxa), b

)
−K

(
a, (yxb)

)
= 0 (1.6b)

where ε = ±1, δ = ±1 and L(a, b),K(a, b) are defined by (1.5).
Indeed, from (1.3) and (1.4) follows (1.6b). Conversely, from (1.6a) and (1.6b) it follows

that (1.4) holds.

For an (ε, δ)-FKTS U , we denote

S(a, b) := L(a, b) + εL(b, a), A(a, b) := L(a, b)− εL(b, a)

where L(a, b) is defined by (1.5).

Remark 1.9. We note that S(a, b) = εS(b, a).

Then S(a, b) (resp., A(a, b)) is a derivation (resp., anti-derivation) of U .
Indeed, we note that the identities (1.7) and (1.8) are valid.[

S(a, b), L(c, d)
]

= L
(
S(a, b)c, d

)
+ L

(
c, S(a, b)d

)
(1.7)[

A(a, b), L(c, d)
]

= L(A(a, b)c, d)− L
(
c, A(a, b)d

)
(1.8)

Definition 1.10. For δ = ±1, a triple system (a, b, c) 7→ [abc], a, b, c ∈ V is called a δ-Lie
triple system (for short δ-LTS) if the following identities are fulfilled:

[abc] = −δ[bac]

[abc] + [bca] + [cab] = 0[
ab[xyz]

]
=
[
[abx]yz

]
+
[
x[aby]z

]
+
[
xy[abz]

]
where a, b, x, y, z ∈ V . An 1-LTS is a LTS, while a −1-LTS is called an anti-LTS, by [11].
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Proposition 1.11 (see [11, 15]). Let U(ε, δ) be an (ε, δ)-FKTS. If J is an endomorphism
of U(ε, δ) such that J〈xyz〉 = 〈JxJyJz〉 and J2 = −εδId, then (U(ε, δ), [xyz]) is an LTS (if
δ = 1) or an anti-LTS (if δ = −1) with respect to the product (1.9):

[xyz] := 〈xJyz〉 − δ〈yJxz〉+ δ〈xJzy〉 − 〈yJzx〉 (1.9)

Corollary 1.12. Let U(ε, δ) be an (ε, δ)-FKTS. Then the vector space T (ε, δ) = U(ε, δ) ⊕
U(ε, δ) becomes an LTS (if δ = 1) or an anti-LTS (if δ = −1) with respect to the triple
product (1.10):[(

a
b

)(
c
d

)(
e
f

)]
=

(
L(a, d)− δL(c, b) δK(a, c)

−εK(b, d) ε
(
L(d, a)− δL(b, c)

))(e
f

)
(1.10)

Remark 1.13. Thus we can obtain the standard embedding Lie algebra (if δ = 1) or Lie
superalgebra (if δ = −1), L(ε, δ) = D(T (ε, δ), T (ε, δ))⊕ T (ε, δ), associated to T (ε, δ), where
D(T (ε, δ), T (ε, δ)) is the set of inner derivations of T (ε, δ), i.e.,

D
(
T (ε, δ), T (ε, δ)

)
:=

{(
L(a, b) δK(c, d)
−εK(e, f) εL(b, a)

)}
span

T (ε, δ) :=
{(

x
y

) ∣∣∣ x, y ∈ U(ε, δ)
}

span

Remark 1.14. L(ε, δ) = L−2⊕L−1⊕L0⊕L1⊕L2 is the 5-graded Lie (super)algebra such
that L−1 ⊕ L1 = T (ε, δ), D(T (ε, δ), T (ε, δ)) = L−2 ⊕ L0 ⊕ L2, and [Li, Lj ] ⊆ Li+j . This Lie
(super)algebra construction is one of the reasons to study nonassociative algebras and triple
systems.

1.2 δ-structurable algebras

The existence of the class of nonassociative algebras called structurable algebras is an impor-
tant generalization of Jordan algebras giving a construction of Lie algebras. Hence from our
concept, by means of triple products, we define a generalization of such class to construct Lie
superalgebras as well as Lie algebras. Our start point briefly described in a historical setting
is the construction of Lie (super)algebras starting from a class of nonassociative algebras.
Hence within the general framework of (ε, δ)-FKTSs (ε, δ = ±1) and the standard embedding
Lie (super)algebra construction studied in [5, 6, 10, 11, 12, 17] (see also references therein) we
defined δ-structurable algebras (see [18]) as a class of nonassociative algebras with involution
which coincides with the class of structurable algebras for δ = 1 as introduced and studied in
[1, 2]. Structurable algebras are a class of nonassociative algebras with involution that include
Jordan algebras (with trivial involution), associative algebras with involution, and alterna-
tive algebras with involution. They are related to GJTSs of 2nd order, or (−1, 1)-FKTSs, as
introduced and studied in [20, 21] and further studied in [3, 4, 19, 26, 27, 28, 29, 30] (see
also references therein). Their importance lies with constructions of 5-graded Lie algebras
L(ε, δ) = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2, [Li, Lj ] ⊆ Li+j . For δ = −1, the anti-structurable
algebras (see [18]) are a class of nonassociative algebras that may similarly shed light on
the notion of (−1,−1)-FKTSs hence, by [5, 6], on the construction of Lie superalgebras and
Jordan algebras as it will be shown.

Throughout the paper, it is assumed that (A,− ) is a finite-dimensional nonassociative
unital algebra with involution (involutive anti-automorphism, i.e., x = x and xy = y x for
x, y ∈ A) over Φ. The identity element of A is denoted by 1.
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Remark 1.15. By [1] we have A=H⊕S, where H={a∈A | a=a} and S={a∈A | a=−a}.

Suppose x, y, z ∈ A. Put [x, y] := xy − yx, [x, y, z] := (xy)z − x(yz). Note that (1.11) is
valid.

[x, y, z] = −[z, y, x] (1.11)

Let Lx, Rx be defined by Lx(y) := xy,Rx(y) := yx, x, y ∈ A. For δ = ±1, define (1.12)
and (1.13).

δVx,y := LLx(y) + δ
(
RxRy −RyRx

)
(1.12)

δBA(x, y, z) :=δ Vx,y(z) = (xy)z + δ
[
(zy)x− (zx)y

]
, x, y, z ∈ A (1.13)

Definition 1.16. +BA(x, y, z) is called the triple system obtained from the algebra (A,− ).
We call −BA(x, y, z) the anti-triple system obtained from the algebra (A,− ).

We will write for short Vx,y :=δ Vx,y, BA := (δBA,A).

Remark 1.17. The upper left index notation is chosen in order not to be mixed with the
upper right index notation of [1] which has a different meaning.

Definition 1.18. A unital nonassociative algebra with involution (A,− ) is called a struc-
turable algebra if the following identity is fulfilled:[

Vu,v, Vx,y
]

= VVu,v(x),y − Vx,Vv,u(y) (1.14)

for Vu,v = +Vu,v, Vx,y = +Vx,y, u, v, x, y ∈ A, and we will call (A,− ) an anti-structurable
algebra if identity (1.14) is fulfilled for Vu,v =−Vu,v, Vx,y =−Vx,y.

Remark 1.19. If (A,− ) is structurable, then, in the terminology of [21], the triple system
BA is called a GJTS and by [7], BA is a GJTS of 2nd order, i.e., satisfies the identities (1.3)
and (1.4).

Definition 1.20. If (A,− ) is anti-structurable, then we call BA an anti-GJTS.

Put Tx := Vx,1 for x ∈ A. Then, by (1.12), Tx = Lx + δRx−x for x ∈ A, thus Th = Lh,
h ∈ H.

Remark 1.21. (i) If u = h ∈ H and x, y ∈ A, (1.14) becomes (1.15).[
Lh, Vx,y

]
= Vhx,y − Vx,hy (1.15)

(ii) Suppose − is the identity map and hence A is commutative. If (A,− ) is δ-structurable,
then A is a Jordan algebra, by [18]. Conversely, by [24, Section 3], any Jordan algebra satisfies
(1.15) if Vx,y = +Vx,y for x, y ∈ A, hence it is structurable. By (1.15) and [18], any Jordan
algebra is anti-structurable if it satisfies ((hx)y)z − h((xy)z) = (x(yh))z − (xy)(hz) for
h, x, y, z ∈ A.

Clearly, the last identity is fulfilled by an associative algebra.
(iii) If x ∈ A and Tx(1) = 0, then x = 0, by [18].

Definition 1.22. For s ∈ S and h ∈ H, we say that (A,− ) is S skew-alternative if [s, x, y] =
−[x, s, y] while (A,− ) is H skew-alternative if [h, x, y] = −[x, h, y] for x, y ∈ A.
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Remark 1.23. If (A,− ) is S skew-alternative, then by [1], [s, x, y] = −[x, s, y] = [x, y, s], s ∈
S, x, y ∈ A. If (A,− ) is H skew-alternative, then by (1.11), [h, x, y] = −[x, h, y] = [x, y, h],
h ∈ H, x, y ∈ A.

Proposition 1.24 (see [18]). If (A,− ) is structurable, then (A,− ) is S skew-alternative. If
(A,− ) is anti-structurable, then (A,− ) is H skew-alternative.

Remark 1.25. Let (A,− ) be a δ-structurable algebra and let Der(A,− ) be the set of deriva-
tions of A that commute with −. By Remark (iii) above TA ∩Der(A,− ) = 0 and so we may
define the structure algebra Str(A,− ) := TA ⊕ Der(A,− ). This algebra plays an important
role in the structure study of structurable algebras (see [1]) and may play a role in the
structure study of anti-structurable algebras (theory to be presented elsewhere).

1.3 Examples

For examples of structurable algebras, we refer to [1, 2].

Definition 1.26. Let (B,U) and (B′, U ′) be two triple systems. A linear map µ of U into
U ′ is called a homomorphism if µ satisfies µ(B(x, y, z)) = B′(µ(x), µ(y), µ(z)), x, y, z ∈ U .
Moreover, if µ is bijective, then µ is called an isomorphism and (B,U) and (B′, U ′) are said
to be isomorphic.

Definition 1.27. Let (A,− ) be a unital nonassociative algebra over Φ with involution −

and let (Aop,− ) denote the opposite algebra, i.e., the algebra with multiplication defined by
x ·opy = yx, x, y ∈ A, where in the right-hand side of the equality the multiplication is done
in A.

Remark 1.28. The algebras (A,− ) and (Aop,− ) are isomorphic under the map x 7→ x.

Let Lx, Rx be defined by Lx(y) := xy,Rx(y) := yx, x, y ∈ A. For δ = ±1, define (1.16)
and (1.17).

δV op
x,y := RRx(y) + δ

(
LxLy − LyLx

)
(1.16)

δBop
A (x, y, z) :=δ V op

x,y(z) = z(yx) + δ
[
x(yz)− y(xz)

]
, x, y, z ∈ A (1.17)

Proposition 1.29. A is a δ-structurable algebra if and only if Aop is a δ-structurable algebra.

Proof. Clearly, Bop
A is the triple system obtained from the algebra (Aop,− ), and so BA and

Bop
A are isomorphic under the map x 7→ x, by (1.13) and (1.17).

Let Mm,n(Φ) denote the vector space of m × n matrices over Φ and for x ∈ Mm,n(Φ)
denote by x> the transposed matrix.

Lemma 1.30. (Mm,n(Φ), {x, y, z}) is a (−1, δ)-FKTS, where {x, y, z} is defined by (1.18).

{x, y, z} := xy>z + δ
(
zy>x− zx>y

)
, x, y, z ∈Mm,n(Φ) (1.18)

Proof. It is straightforward calculation to show that the identities (1.3) and (1.4) hold.

Theorem 1.31. Mn,n(Φ) with the involution x 7→ x> is a δ-structurable algebra.

Proof. It is a direct consequence of Lemma 1.30.

Example 1.32. (Mm,n(C), {x, y, z}) is a (−1, δ)-FKTS, where {x, y, z} is defined by (1.19)

{x, y, z} := xy>z + δ
(
zy>x− zx>y

)
, x, y, z ∈Mm,n(C) (1.19)
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Indeed, it is straightforward calculation to show that the identities (1.3) and (1.4) hold.
Hence Mn,n(C) with the involution x 7→ x> is a δ-structurable algebra.

Remark 1.33. By [17], the following construction of Lie superalgebras is obtained by the
standard embedding method. If U(−1,−1) :=M2n,m(Φ) with the product (1.18), then the
corresponding standard embedding Lie superalgebra is osp(2n | 2m) = D(n,m) (as defined
by [8, 9]), hence the standard embedding Lie superalgebra of the anti-structurable algebra
M2n,2n(Φ) is osp(2n | 4n). Similarly, if U(−1,−1) :=M2n+1,m(Φ) with the product (1.18),
then the corresponding standard embedding Lie superalgebra is osp(2n+ 1 | 2m) = B(n,m)
(as defined by [8, 9]), hence the standard embedding Lie superalgebra of the anti-structurable
algebra M2n+1,2n+1(Φ) is osp(2n+ 1 | 4n+ 2).

The construction of these Lie superalgebras and the correspondence with extended Dynkin
diagrams is the subject of the next section. The study of the structure theory of anti-
structurable algebras, the Peirce decomposition (as defined by [14, 23]), will be considered
as future work. Moreover, let U be an anti-structurable algebra and associative algebra, then
U is a (−1,−1)-FKTS. The details will be described in a future paper.

2 Anti-structurable algebras and extended Dynkin diagrams

Let U :=Ml,l(Φ) with the product (1.18) and δ = −1, that is, {x, y, z} is defined by (2.1)

{x, y, z} := xy>z − zy>x+ zx>y, x, y, z ∈Ml,l(Φ) (2.1)

Then from the previous section this triple system is a simple unitary (−1,−1)-FKTS obtained
from anti-structurable algebra (U,> ). Hence by the methods of the standard embedding
associated to U we can obtain the standard embedding Lie superalgebra as follows from the
following proposition: the Lie (super)algebras notations and extended Dynkin diagrams are
those of [8].

Proposition 2.1. Let (U,> ), U := Ml,l(Φ) be anti-structurable algebras and let L(U) =
⊕2
l=−2Ll be the standard embedding Lie superalgebra. Then L(U), L−2 ⊕L0 ⊕L2, L0 and the

corresponding extended Dynkin diagrams with ⊗ roots deleted are

(i)


L(U) = B(n, l) = osp(l | 2l)

L−2 ⊕ L0 ⊕ L2 = Cl ⊕Bn,

L0 = Al−1 ⊕Bn ⊕ λΦ

for l = 2n+ 1

◦
α0

> ◦
α1

. . . ◦
α2n

⊗
α2n+1

. . . ◦
α3n

> ◦
α3n+1

(ii)


L(U) = D(n, l) = osp(l | 2l)

L−2 ⊕ L0 ⊕ L2 = Cl ⊕Dn,

L0 = Al−1 ⊕Dn ⊕ λΦ

for l = 2n

◦
α0

> ◦
α1

. . . ◦
α2n−1

⊗
α2n

. . . ◦
α3n−2

�
�
�

Q
Q
Q

◦
α3n−1

◦
α3n
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Proof. From κ = {x>z + z>x}span = {A | A> = A, A ∈ Ml,l(Φ)} and somewhat long
calculations, it follows that (U :=Ml,l(Φ), { }) defined by (2.1) are simple unitary (−1,−1)-
FKTSs. Then the standard embedding Lie superalgebras follows from [17]. Moreover, since
L1 = L−1⊕L1 is an anti-LTS and L0 = L−2⊕L0⊕L1 = Der(L−1⊕L1), it is a straightforward
calculation to check that L0 is obtained from the extended Dynkin diagram of L(U) by
deleting the root αl, while L0 is isomorphic to the corresponding Dynkin diagram (αl deleted)
⊕λΦ.

Remark 2.2. These results mean that the correspondence between anti-structurable alge-
bras and extended Dynkin diagrams is a useful concept for the structure theory of triple
systems.
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