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Abstract

We construct Lie superalgebras osp(2n + 1 | 4n + 2) and osp(2n | 4n) starting with
certain classes of anti-structurable algebras via the standard embedding Lie superalgebra
construction corresponding to (e, §)-Freudenthal Kantor triple systems.
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1 Introduction
1.1 (¢,0)-Freudenthal Kantor triple systems, ¢-Lie triple systems, and Lie
(super)algebras

We are concerned in this paper with triple systems which have finite dimension over a field
® of characteristic # 2 or 3, unless otherwise specified.

In order to render this paper as self-contained as possible, we recall first the definition of
a generalized Jordan triple system of second order (for short GJTS of 2nd order).

Definition 1.1. A vector space V over a field ® endowed with a trilinear operation V' x
VxV =V, (z,y,z) — (xyz) is said to be a GJTS of 2nd order if the following conditions
are fulfilled:

(ab(zyz)) = ((abz)yz) — (z(bay)z) + (zy(abz)) (1.1)

K(K(a,b)z,y) — L(y,z)K(a,b) — K(a,b)L(z,y) =0 (1.2)
where

L(a,b)c := (abc) and K(a,b)c:= (acb) — (bca)

Definition 1.2. A Jordan triple system (for short JTS) satisfies (1.1) and (abc) = (cba),
Ya,b,c e V.

We can generalize the concept of GJTS of the 2nd order as follows (see [10, 11, 13, 15, 32]).
Definition 1.3. For ¢ = £1 and § = +1, a triple product that satisfies the identities

(ab(zyz)) = ((abz)yz) + (z(bay)z) + (zy(abz)) (1.3)

K(K(a,b)z,y) — L(y,z)K(a,b) + K (a,b)L(z,y) =0 (1.4)
where

L(a,b)c := (abc), K(a,b)c:= (acb) — d(bca) (1.5)

is called an (e, §)-Freudenthal-Kantor triple system (for short (e,0)-FKTS).
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Remark 1.4. Note that K(b,a) = —0K (a,b).

Definition 1.5. An (g,§)-FKTS U is called unitary if the identity map Id is contained in
k:= K(U,U), i.e., if there exist a;,b; € U such that ;K (a;,b;) = Id.

Let U be an (g,0)-FKTS and let Vi, k = 1,2,3, be subspaces of U. We denote by
(V1, Va, V3) the subspace of U spanned by elements (z1, z2,z3), 2 € Vi, k =1,2,3.

Definition 1.6. A subspace V of U is called an ideal of an (g,0)-FKTS U if the following
relations hold: (V,U,U) C V., (U,V,U) C V, (U,U,V) C V. U is called simple if (, , ) is
not a zero map and U has no nontrivial ideal.

We denote the triple products by (zyz), {zyz}, [ryz], and (zyz) upon their suitability.

Remark 1.7. We note that the concept of GJTS of 2nd order coincides with that of (—1,1)-
FKTS. Thus we can construct the simple Lie algebras by means of the standard embedding
method (see [5, 10, 11, 12, 13, 15, 16, 17, 22, 32]).

Remark 1.8. We note that the two pairs of identities (1.3-1.4) and (1.6) are equivalent

[L(a,b), L(z,y)] = L((abx),y) + eL(z, (bay)) (1.6a)
K(K(a,b)z,y) — K((yza),b) — K (a, (yzb)) =0 (1.6b)

where e = £1,§ = £1 and L(a,b), K (a,b) are defined by (1.5).
Indeed, from (1.3) and (1.4) follows (1.6b). Conversely, from (1.6a) and (1.6b) it follows
that (1.4) holds.

For an (¢,6)-FKTS U, we denote
S(a,b) := L(a,b) + eL(b,a), A(a,b):= L(a,b) —ecL(b,a)
where L(a,b) is defined by (1.5).
Remark 1.9. We note that S(a,b) = &S(b,a).

Then S(a,b) (resp., A(a,b)) is a derivation (resp., anti-derivation) of U.
Indeed, we note that the identities (1.7) and (1.8) are valid.

[S(a,b), L(c,d)] = L(S(a,b)c,d) + L(c, S(a,b)d) (1.7)
[A(a,b), L(c,d)] = L(A(a,b)c,d) — L(c, A(a, b)d) (1.8)

Definition 1.10. For 6 = £1, a triple system (a, b, c) — [abc],a,b,c € V is called a é-Lie
triple system (for short §-LTS) if the following identities are fulfilled:

[abe] = —d[bac]
[abc] + [bea] + [cab] =0
[ablzyz]] = [[abalyz] + [z[abylz] + [zylabz]]

where a,b,x,y,z € V. An 1-LTS is a LTS, while a —1-LTS is called an anti-LTS, by [11].
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Proposition 1.11 (see [11, 15]). Let U(e,d) be an (¢,0)-FKTS. If J is an endomorphism
of Ule, ) such that J{xyz) = (JxJyJz) and J?> = —d1d, then (U(e,9), [zyz]) is an LTS (if
0 =1) or an anti-LTS (if 6§ = —1) with respect to the product (1.9):

[zyz] :== (xJyz) — §(yJaz) + d(xJzy) — (yJzx) (1.9)

Corollary 1.12. Let U(e,6) be an (g,9)-FKTS. Then the vector space T'(e,d) = Ul(e,d) &
U(e,d) becomes an LTS (if 6 = 1) or an anti-LTS (if § = —1) with respect to the triple
product (1.10):

a\ (c\ (e L(a,d) — 0L(c,b) 0K (a,c) e
Blvlol 6 o

b)\d) \f —eK(b,d) e(L(d,a) — 6L(b,c)) ) \f
Remark 1.13. Thus we can obtain the standard embedding Lie algebra (if § = 1) or Lie

superalgebra (if 6 = —1), L(e,d) = D(T'(,9),T(e,d)) ® T'(e, J), associated to T'(e, ), where
D(T(g,0),T(e,9)) is the set of inner derivations of T'(e, ), i.e.,

D(T(,6),T(g,0)) := { <_6L;((a(’eb)f) iIL{((l)Qj))) }

T(e,8) := { (z) ‘ z,y € U(g,a)}span

Remark 1.14. L(g,0) = L_o® L_1® Ly ® L1 ® Ly is the 5-graded Lie (super)algebra such
that L_1 ® L1 = T(€, (5), D(T(é‘, (5), T(e’;‘, 5)) =L _o® Ly ® Lo, and [sz LJ] - Li+j' This Lie
(super)algebra construction is one of the reasons to study nonassociative algebras and triple
systems.

1.2 J)-structurable algebras

The existence of the class of nonassociative algebras called structurable algebras is an impor-
tant generalization of Jordan algebras giving a construction of Lie algebras. Hence from our
concept, by means of triple products, we define a generalization of such class to construct Lie
superalgebras as well as Lie algebras. Our start point briefly described in a historical setting
is the construction of Lie (super)algebras starting from a class of nonassociative algebras.
Hence within the general framework of (e, 0)-FKTSs (€, = £1) and the standard embedding
Lie (super)algebra construction studied in [5, 6, 10, 11, 12, 17] (see also references therein) we
defined d-structurable algebras (see [18]) as a class of nonassociative algebras with involution
which coincides with the class of structurable algebras for § = 1 as introduced and studied in
[1, 2]. Structurable algebras are a class of nonassociative algebras with involution that include
Jordan algebras (with trivial involution), associative algebras with involution, and alterna-
tive algebras with involution. They are related to GJTSs of 2nd order, or (—1,1)-FKTSs, as
introduced and studied in [20, 21] and further studied in [3, 4, 19, 26, 27, 28, 29, 30] (see
also references therein). Their importance lies with constructions of 5-graded Lie algebras
L(e,0) = Lo @®L_1® Lo® L1 ® Lo, [L;, Lj] C Lij. For 6 = —1, the anti-structurable
algebras (see [18]) are a class of nonassociative algebras that may similarly shed light on
the notion of (—1, —1)-FKTSs hence, by [5, 6], on the construction of Lie superalgebras and
Jordan algebras as it will be shown.

Throughout the paper, it is assumed that (A,”) is a finite-dimensional nonassociative
unital algebra with involution (involutive anti-automorphism, i.e., T = z and Ty = y T for
z,y € A) over ®. The identity element of A is denoted by 1.
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Remark 1.15. By [1] we have A=H®S, where H={a€ A |a=a} and S={a€ A | a=—a}.

Suppose z,y,z € A. Put [z,y] :== xy — yx, [z,y, 2] := (vy)z — x(yz). Note that (1.11) is
valid.

[xvyvz] = _[§7yvf] (111)

Let L., R, be defined by L.(y) := zy, R.(y) := yx,z,y € A. For § = £1, define (1.12)
and (1.13).

"Vay =L, + 6(R:Ry — RyRz) (1.12)
5BA(x,y, 2) =0 Vey(2) = (27)z + 5[(2@)3: — (zf)y], x,y,2€ A (1.13)

Definition 1.16. "B 4(z,y, z) is called the triple system obtained from the algebra (A, ).
We call ~By(x,y, z) the anti-triple system obtained from the algebra (A,™).

We will write for short V , =0 Viy, Ba = (°By, A).

Remark 1.17. The upper left index notation is chosen in order not to be mixed with the
upper right index notation of [1] which has a different meaning.

Definition 1.18. A unital nonassociative algebra with involution (A, ) is called a struc-
turable algebra if the following identity is fulfilled:

Vi, Ve = Vo @)y — VeV () (1.14)

for Vo = Voo, Voy = "Vay,u,v,2,y € A, and we will call (4,7 ) an anti-structurable
algebra if identity (1.14) is fulfilled for Vi, = Vi 4, Voy =" Vay.

Remark 1.19. If (A,7 ) is structurable, then, in the terminology of [21], the triple system
B4 is called a GJTS and by [7], B4 is a GJTS of 2nd order, i.e., satisfies the identities (1.3)
and (1.4).

Definition 1.20. If (A,”) is anti-structurable, then we call B4 an anti-GJTS.

Put T, := V, 1 for € A. Then, by (1.12), T, = L, + dR,—z for x € A, thus T, = Ly,
he™H.

Remark 1.21. (i) f u =h € H and z,y € A, (1.14) becomes (1.15).
[Lh, V;E,y] = Vhaz,y - Vx,hy (115)

(ii) Suppose ~ is the identity map and hence A is commutative. If (A, ) is J-structurable,
then A is a Jordan algebra, by [18]. Conversely, by [24, Section 3|, any Jordan algebra satisfies
(1.15) if V,,, =TV, for x,y € A, hence it is structurable. By (1.15) and [18], any Jordan
algebra is anti-structurable if it satisfies ((hx)y)z — h((zy)z) = (xz(yh))z — (xy)(hz) for
h,z,y,z € A.

Clearly, the last identity is fulfilled by an associative algebra.

(iii) If € A and T,(1) = 0, then z = 0, by [18].

Definition 1.22. For s € S and h € H, we say that (A, ) is S skew-alternative if [s, z,y] =
—[z, s,y] while (A, ) is H skew-alternative if [h,z,y] = —[z, h,y| for x,y € A.
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Remark 1.23. If (A, ) is S skew-alternative, then by [1], [s, z,y] = —[z, s,y] = [z,y, 5], s €
S, z,y € A If (A,7) is H skew-alternative, then by (1.11), [h,z,y] = —[x, h,y] = [z,y, h],
heH, z,ye A

Proposition 1.24 (see [18]). If (A,”) is structurable, then (A,”) is S skew-alternative. If
(A,7) is anti-structurable, then (A,” ) is H skew-alternative.

Remark 1.25. Let (A,” ) be a d-structurable algebra and let Der(.A,” ) be the set of deriva-
tions of A that commute with ~. By Remark (iii) above 7’4 N Der(.A,” ) = 0 and so we may
define the structure algebra Str(A,~) := T4 @ Der(A,” ). This algebra plays an important
role in the structure study of structurable algebras (see [1]) and may play a role in the
structure study of anti-structurable algebras (theory to be presented elsewhere).

1.3 Examples
For examples of structurable algebras, we refer to [1, 2].

Definition 1.26. Let (B,U) and (B’,U’) be two triple systems. A linear map p of U into
U’ is called a homomorphism if u satisfies pu(B(z,y,2)) = B (u(x), u(y), u(2)), z,y,z € U.
Moreover, if u is bijective, then p is called an isomorphism and (B, U) and (B’,U’) are said
to be isomorphic.

Definition 1.27. Let (A,” ) be a unital nonassociative algebra over ® with involution ~
and let (A°P,7 ) denote the opposite algebra, i.e., the algebra with multiplication defined by
T,y =y, v,y €A, where in the right-hand side of the equality the multiplication is done
in A.

Remark 1.28. The algebras (A, ) and (A%, ) are isomorphic under the map = +— 7.

Let L,, R; be defined by L,(y) := zy, Rz(y) := yz, x,y € A. For § = %1, define (1.16)
and (1.17).

5\@3@ = Rp, ) + 6(LoLy — LyLz) (1.16)
"BR(x,y,2) =" V2 (2) = 2(yz) + 6 [2(72) — y(T2)], z,y.2€ A (1.17)

Proposition 1.29. A is a §-structurable algebra if and only if AP is a d-structurable algebra.

Proof. Clearly, B} is the triple system obtained from the algebra (A°,~ ), and so B4 and
BY are isomorphic under the map x — 7, by (1.13) and (1.17). O

Let My, ,(®) denote the vector space of m x n matrices over ® and for x € My, ,,(P)
denote by z T the transposed matrix.

Lemma 1.30. (M, ,(®),{z,y,2}) is a (—1,0)-FKTS, where {z,y, z} is defined by (1.18).
{z,y,2} =y 2+ (5(zyT:c - szy), z,Y, 2 € Mpn(®P) (1.18)
Proof. It is straightforward calculation to show that the identities (1.3) and (1.4) hold. [

Theorem 1.31. M,, ,(®) with the involution x — z " is a §-structurable algebra.

Proof. It is a direct consequence of Lemma 1.30. ]
Example 1.32. (M, ,(C),{z,y,2}) is a (—1,9)-FKTS, where {z,y, z} is defined by (1.19)

{z,y,2} =27 2+ 0(27 2 — 2T y), 2,9,2 € Mp,(C) (1.19)
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Indeed, it is straightforward calculation to show that the identities (1.3) and (1.4) hold.
Hence M,, ,(C) with the involution x + T ' is a d-structurable algebra.

Remark 1.33. By [17], the following construction of Lie superalgebras is obtained by the
standard embedding method. If U(—1, —1) := May, »,(P) with the product (1.18), then the
corresponding standard embedding Lie superalgebra is osp(2n | 2m) = D(n,m) (as defined
by [8, 9]), hence the standard embedding Lie superalgebra of the anti-structurable algebra
Moy 2n(®) is 0sp(2n | 4n). Similarly, if U(—1, —1) := Map41m(P) with the product (1.18),
then the corresponding standard embedding Lie superalgebra is osp(2n+1 | 2m) = B(n,m)
(as defined by [8, 9]), hence the standard embedding Lie superalgebra of the anti-structurable
algebra Moy 11 2,41(®) is 0sp(2n + 1 | 4n + 2).

The construction of these Lie superalgebras and the correspondence with extended Dynkin
diagrams is the subject of the next section. The study of the structure theory of anti-
structurable algebras, the Peirce decomposition (as defined by [14, 23]), will be considered
as future work. Moreover, let U be an anti-structurable algebra and associative algebra, then
Uis a (—1,—1)-FKTS. The details will be described in a future paper.

2 Anti-structurable algebras and extended Dynkin diagrams

Let U := M;;(®) with the product (1.18) and 6 = —1, that is, {x,y, z} is defined by (2.1)
{zy, 2} =y z—2y z+22Ty, x,y,2€ My(®) (2.1)

Then from the previous section this triple system is a simple unitary (—1, —1)-FKTS obtained
from anti-structurable algebra (U," ). Hence by the methods of the standard embedding
associated to U we can obtain the standard embedding Lie superalgebra as follows from the
following proposition: the Lie (super)algebras notations and extended Dynkin diagrams are
those of [8].

Proposition 2.1. Let (U,"),U := M;;(®) be anti-structurable algebras and let L(U) =
@?:_QLZ be the standard embedding Lie superalgebra. Then L(U),L_o® Lo ® L, Lo and the
corresponding extended Dynkin diagrams with ® roots deleted are

L(U) = B(n,1) = osp(l | 21)

(1) L o®Ly® Ly =Cy & By, forl=2n+1
Lo=A;_ 19 B,® )\

p— g ® 5 o

Qo aq Q2n Q2p41 Q3n  Q3n+1
L(U) = D(n,l) = osp(l | 21)

(i) L os®Ly®Ls=Cy® Dy, forl=2n

Lo= A1 ® D, &\

Ci\) B ® P
Qg aq Q2n—1 Q2p 043;’>z\
O
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Proof. From k = {272 + 2 2}span = {A | AT = A, A € M (®)} and somewhat long
calculations, it follows that (U := M ;(®),{ }) defined by (2.1) are simple unitary (-1, —1)-
FKTSs. Then the standard embedding Lie superalgebras follows from [17]. Moreover, since
Ly=L_1®Lyisan anti-LTS and Ly = L_o® Lo® L1 = Der(L_1®L1), it is a straightforward
calculation to check that L is obtained from the extended Dynkin diagram of L(U) by
deleting the root ay, while Ly is isomorphic to the corresponding Dynkin diagram (a; deleted)
EAD. O

Remark 2.2. These results mean that the correspondence between anti-structurable alge-
bras and extended Dynkin diagrams is a useful concept for the structure theory of triple
systems.
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