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Abstract

In this article, we give a formula for the number of Gelfand-Zetlin patterns, using
dimensions of the symmetry classes of tensors.
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1 Introduction

Suppose Λ = (a1, a2, . . . , an−1) is a sequence of decreasing non-negative integers. A Gelfand-
Zetlin pattern based on Λ is an array of integers:

a1 a2 a3 · · · an−2 an−1

b1 b2 b3 · · · bn−2

c1 c2 · · · cn−3

· · ·

such that for all i,

ai ≥ bi ≥ ai+1

bi ≥ ci ≥ bi+1

...

We denote the set of all Gelfand-Zetlin patterns based on Λ by ΓΛ. The set ΓΛ has an
important role in the representation theory of general (equivalently, special) and orthogonal
linear Lie algebras. For example, let Λ be a dominant weight for the Lie algebra sln(C)
and suppose L(Λ) is the corresponding irreducible representation with the highest weight
Λ. In [5], Gelfand and Zetlin have proved that the set ΓΛ can be viewed as a basis for
L(Λ). For the matrix representations of the elements of the Chevalley basis of sln(C) with
respect to ΓΛ, see [1] or [3]. The set ΓΛ is also important from the point of view of branching
rules. Branching rules are descriptions of the reduction of irreducible representations upon
restriction to a subalgebra (subgroup). The first branching rule discovered is possibly the
well-known branching rule of representations of the symmetric group Sm in the early twenties.
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Since then, it was an exciting job to discover other kinds of branching rules for finite groups,
Lie groups, and Lie algebras. We can employ the set ΓΛ to describe the branching rule for
type sln(C)→ slr(C). Suppose we like to restrict the representation L(Λ) to slr(C). For any
Gelfand-Zetlin pattern M ∈ ΓΛ, let M i be the i-th row of M . Then, the restriction of L(Λ)
to slr(C) is equal to the following direct sum decomposition:⊕

M∈ΓΛ

1∣∣ΓMn−r+1

∣∣L(Mn−r+1
)
.

The aim of this article is to compute the number of elements of ΓΛ. Although, one can
use the well-known dimension formula of Weyl, but our formula is an alternative one, which
uses the irreducible characters of the symmetric group. To give a survey of our main result,
suppose

m = a1 + 2a2 + 3a3 + · · ·+ (n− 1)an−1.

We consider a partition π of m with the parts:

πi = ai + ai+1 + · · ·+ an−1.

Let χπ be the irreducible character of the symmetric group Sm corresponding to π, (for
standard terms about partitions and characters of Sm, see [11]). Also, for any permutation
σ ∈ Sm, let c(σ) be the number of disjoint cycles in the cycle decomposition of σ. It is clear
that the function ξn(σ) = nc(σ) is a character of Sm, (for its irreducible constituents, see
[12]). Our main result will be∣∣ΓΛ

∣∣ =
[
χπ, ξn

]
,

where [ , ] is the inner product of characters in Sm. In the other words, we will see that∣∣ΓΛ

∣∣ =
1
m!

∑
σ∈Sm

χπ(σ)nc(σ).

2 Symmetry classes of tensors

In this section, we are going to review the notion of a symmetry class of tensors. The reader
interested in the subject can find a detailed introduction in [9] or [10].

Let V be an n-dimensional complex inner product space and let G be a subgroup of the
full symmetric group Sm. Let V ⊗m denote the tensor product of m copies of V and for any
σ ∈ G, define the permutation operator:

Pσ : V ⊗m −→ V ⊗m

by

Pσ
(
v1 ⊗ v2 ⊗ · · · ⊗ vm

)
= vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(m).

Suppose that χ is a complex irreducible character of G and define the symmetrizer:

Sχ =
χ(1)
|G|

∑
σ∈G

χ(σ)Pσ.
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The symmetry class of tensors associated with G and χ is the image of Sχ and it is denoted
by Vχ(G). So

Vχ(G) = Sχ
(
V ⊗m

)
.

For example, if we let G = Sm and χ = ε, the alternating character, then we get ∧mV , the
m-th Grassman space over V and if G = Sm and χ = 1, the principal character, then we
obtain V (m), the m-th symmetric power of V , as symmetry classes of tensors.

Several monographs and articles have been published on symmetry classes of tensors
during the last decades, see for example [9, 10].

Let v1, . . . , vm be arbitrary vectors in V and define the decomposable symmetrized tensor:

v1 ∗ v2 ∗ · · · ∗ vm = Sχ
(
v1 ⊗ v2 ⊗ · · · ⊗ vm

)
.

Let {e1, . . . , en} be a basis of V , and suppose that Γmn is the set of all m-tuples of integers
α = (α1, . . . , αm) with 1 ≤ αi ≤ n. For α = (α1, . . . , αm) ∈ Γmn , we use the notation e∗α for
decomposable symmetrized tensor eα1 ∗ · · · ∗ eαm . It is clear that Vχ(G) is generated by all
e∗α; α ∈ Γmn . We define an action of G on Γmn by

ασ =
(
ασ−1(1), . . . , ασ−1(m)

)
for any σ ∈ G and α ∈ Γmn . Given two elements α, β ∈ Γmn , we say that α ∼ β if and only
if α and β lie in the same orbit. Suppose that ∆ is a set of representatives of orbits of this
action and let Gα denote the stabilizer subgroup of α. Define

Ω =
{
α ∈ Γmn :

[
χ, 1Gα

]
6= 0
}
,

where [ , ] denotes the inner product of characters (see [7]). It is well known that e∗α 6= 0, if
and only if α ∈ Ω, see for example [10]. Suppose ∆̄ = ∆ ∩ Ω. For any α ∈ ∆̄, we have the
cyclic subspace:

V ∗α =
〈
e∗ασ : σ ∈ G

〉
.

It is proved that we have the direct sum decomposition:

Vχ(G) =
·∑

α∈∆̄

V ∗α ,

see [10] for a proof. It is also proved that

sα := dimV ∗α = χ(1)
[
χ, 1Gα

]
,

and in particular, if χ is linear then sα = 1 and so the set:{
e∗α : α ∈ ∆̄

}
is an orthogonal basis of Vχ(G). Also in the case of linear character χ, we have e∗ασ =
χ(σ−1)e∗α. In the general case, let α ∈ ∆̄ and suppose

e∗ασ1 , e
∗
ασ2 , . . . , e

∗
ασt
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is a basis of V ∗α with σ1 = 1. Let

Aα =
{
ασ1 , ασ2 , . . . , ασt

}
.

Then, we define ∆̂ =
⋃
α∈∆̄Aα. It is clear that

∆̄ ⊆ ∆̂ ⊆ Ω,

and the set:{
e∗α : α ∈ ∆̂

}
is a basis of Vχ(G). Finally, we remember a formula for dimension of symmetry classes. We
have

dimVχ(G) =
χ(1)
|G|

∑
σ∈G

χ(σ)nc(σ),

where c(σ) denotes the number of disjoint cycles (including cycles of length one) in cycle
decomposition of σ.

3 Symmetry classes as sln(C)-modules

In this section, we define a Lie module structure on Vχ(G), so let L be a complex Lie algebra
and suppose that V is an L-module. For any x ∈ L, define

D(x) : V ⊗m −→ V ⊗m

by

D(x)
(
v1 ⊗ v2 ⊗ · · · ⊗ vm

)
=

m∑
i=1

v1 ⊗ · · · ⊗ xvi ⊗ · · · ⊗ vm.

We know that D(x)Sχ = SχD(x) and so Vχ(G) is invariant under D(x). Suppose

D∗(x) = D(x) ↓Vχ(G),

where the down arrow denotes restriction.

Definition 3.1. Define an action of Lie algebra L on Vχ(G) by

x
(
v1 ∗ · · · ∗ vm

)
= D∗(x)

(
v1 ∗ · · · ∗ vm

)
=

m∑
i=1

v1 ∗ · · · ∗ xvi ∗ · · · ∗ vm.

Then, Vχ(G) becomes an L-module. In what follows, we will assume that L = sln(C)
and V = Cn, the standard module for L. Then, Vχ(G) becomes an L-module. In [8], the
irreducible constituents of Vχ(G) are determined. In this section, we give a summery of
result of [8]. We also assume that G = Sm and χ = χπ, the irreducible character of Sm
corresponding a partition π. For simplicity, we denote the symmetry class of tensors by
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Vπ(Sm). To describe the irreducible constituents of Vπ(Sm), it is necessary to introduce some
notations.

A Cartan subalgebra for L is

H =
{

diag
(
h1, h2, . . . , hn

)
: h1 + h2 + · · ·+ hn = 0

}
.

For any 1 ≤ i ≤ n, define a linear functional:

µi : H −→ C

by

µi(h) = hi,

where h = diag(h1, h2, . . . , hn), so we have

µ1 + µ2 + · · ·+ µn = 0,

and hence µ1, µ2, . . . , µn−1 is a basis for H∗.
Now let Λ1,Λ2, . . . ,Λn−1 be the fundamental weights corresponding to H. It is easy to

see that for any k:

Λk = µ1 + µ2 + · · ·+ µk.

Let α ∈ Γmn . We define a composition of m by m(α) = (m1,m2, . . . ,mn), where mi is the
multiplicity of i in α. Suppose

µα = µα1 + µα2 + · · ·+ µαm .

So we have

µα = m1µ1 +m2µ2 + · · ·+mnµn.

Also we can see that

µα =
(
m1 −m2

)
Λ1 +

(
m2 −m3

)
Λ2 + · · ·+

(
mn−1 −mn

)
Λn−1.

It is easy to prove that µα = µβ, if and only if m(α) = m(β). So, for any α ∈ Γmn , we intro-
duce a partition M(α), which is just the multiplicity composition m(α) with a descending
arrangement of entries. In fact, any partition of m, with height at most n, is of the form
M(α), where α ∈ ∆̄. For any h ∈ H and α ∈ ∆̂, we have

h · e∗α =

(
m∑
i=1

µαi

)
(h)e∗α.

In other words, we have

h · e∗α = µα(h)e∗α.

So the set of weights of Vπ(Sm) is {µα : α ∈ ∆̂}. We also can see by an easy argument that
the weight µα is dominant, if and only if M(α) = m(α), i.e. m(α) is a partition. For two
dominant weights µα and µβ, it is routine to check that µβ appears in L(µα) as a weight,
if and only if m(α) majorizes m(β), (for definition of the majorization, see [11]). We are
now ready to compute irreducible constituents of Vπ(Sm). Although, the following theorem
is proved in [8] in a more general framework, we prove it here again because what we need
is only this special case.
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Theorem 3.2. We have

Vπ
(
Sm
)

= L
(
µα
)χπ(1)

,

where α ∈ ∆̄ is any element with the property M(α) = π.

Proof. First of all, note that

∆̄ =
{
α ∈ Gmn : M(α) E π

}
,

where Gmn denotes the set of all increasing sequences in Γmn and E denotes majorization.
Suppose that η1, . . . , ηs is the set of all dominant weights of Vπ(Sm), ordered in such a way
that ηj � ηi implies i ≤ j (we say ηj � ηi iff ηi − ηj is a sum of positive roots). As we saw
above, for any i, there is α ∈ ∆̄ such that ηi = µα. Suppose that ri equals number of β ∈ ∆̂
such that m(α) = m(β). Let mij be the multiplicity of ηi in ηj . Define a sequence of integers
as follows:

c1 = r1,

ci = ri −
i−1∑
j=1

mijcj .

Now we have

Vπ
(
Sm
)

=
·∑
i

L(ηi)ci ,

so we must show that c1 = χπ(1) and ci = 0 for i 6= 1. First, note that if α ∈ ∆̄ has the
property µα = η1, then m(α) = π and hence we have

c1 = r1

=
∣∣{β ∈ ∆̂ : m(α) = m(β)

}∣∣
=
∣∣{β ∈ ∆̂ : α ∼ β

}∣∣
= sα

= χπ(1)
[
1(Sm)α , χπ

]
= χπKπ,m(α)

= χπKπ,π

= χπ(1).

Note that K∗,∗ denote the well-known Kostka numbers, see [11] or [4] for definition. Now,
we compute c2; we have c2 = r2 − m2,1c1. As in the above case, we easily see that r2 =
χπ(1)Kπ,m(α′), where α′ corresponds to η2. It is proved that (see [4])

Kπ,m(α′) = m2,1.

Hence,

c2 = χπKπ,m(α′) −Kπ,m(α′)χπ(1)

= 0.

By a similar argument, we see that ci = 0 for other “i”s and the result follows.
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Note that this theorem affords a new method of constructing of all irreducible sln(C)-
modules, namely, let Λ = µπ be any integral dominant weight of sln(C). As in [10], we
have

Vπ
(
Sm
)

=
χπ(1)∑
i=1

V i
π

(
Sm
)
,

where V i
π(Sm) is defined as follows: let

F : Sm −→ GLχπ(1)(C)

be the corresponding representation of χπ with F (σ) = [aij(σ)]. We introduce the partial
symmetrizer Siπ by

Siπ =
χ(1)
m!

∑
σ∈Sm

aii(σ)Pσ.

Now, V i
π(Sm) is precisely the image of Siπ. So we have

L(Λ) = V i
π

(
Sm
)

for all 1 ≤ i ≤ χπ(1). One of the most important consequences of this construction is the
following dimension formula, which is different from Weyl’s one.

Corollary 3.3. Let L(Λ) be an irreducible sln(C)-module with the highest weight Λ and
define the corresponding number m and the partition π as in Section 1. Then,

dimL(Λ) =
1
m!

∑
σ∈Sm

χπ(σ)nc(σ).

4 The number of the Gelfand-Zetlin patterns

We are ready now to give the interesting relation between dimension of the symmetry classes
of tensors Vπ(Sm) and the number of Gelfand-Zetlin patterns based on Λ. Note that we have
the following relations between the weight Λ and the partition π:

m = a1 + 2a2 + 3a3 + · · ·+ (n− 1)an−1,

πi = ai + ai+1 + · · ·+ an−1,

ai = πi − πi+1.

Main theorem. The number of Gelfand-Zetlin patterns based on Λ is equal to the inner
product [χπ, ξn]. Equivalently, we have

dimVπ
(
Sm
)

= χπ(1)
∣∣ΓΛ

∣∣.
Remark 4.1. In [12], the inner product [χπ, ξn] is expressed in term of Kostka numbers.
Suppose that ρ = [ρ1, . . . , ρs] is a partition of m with distinct parts b1, . . . , bl. Suppose that
the multiplicity of bi in ρ is ri. If s ≤ n, define

f(n, ρ) =
n!

(n− s)!r1!r2! · · · rl!
,
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and let f(n, ρ) = 0 for s > n. Then the multiplicity of χπ in ξn is equal to∑
ρ

f(n, ρ)Kπ,ρ,

where Kπ,ρ is the Kostka number.

Remark 4.2. Note that we can normalize Λ in such a way that we have an−1 = 1. To do
this, let d = an−1 − 1. Define

Λ∗ =
(
a1 − d, a2 − d, . . . , an−2 − d, 1

)
.

Although in general L(Λ) and L(Λ∗) are non-isomorphic representations, it is clear that
|ΓΛ| = |ΓΛ∗ |. For Λ∗, we have

m∗ = m− n(n− 1)
2

(
an−1 − 1

)
,

and also the corresponding partition π∗ has the parts:

π∗i = πi − (n− 1)
(
an−1 + 1

)
.

Hence, we have also the following normalized formula for the number of Gelfand-Zetlin
patterns:∣∣ΓΛ

∣∣ =
[
χπ∗ , ξ

∗
n

]
.
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