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Abstract

Canonical bases for subspaces of a vector space are introduced as a new effective method to analyze subalgebras
of Lie algebras. This method generalizes well known Gauss-Jordan elimination method.

Keywords: Vector space; Subspaces; Lie algebras; Subalgebras

Introduction

This article has two parts. In Part I, the canonical bases for
5-dimensional subspaces of a 6-dimensional vector spaces are
introduced, and all of them are found. Then the nonequivalent canonical
bases are classified in Theorem 1. The corresponding evaluation in Part
I has a universal character, and it can be called a generalization of the
well-known Gauss - Jordan elimination method [1]. Canonical bases
for subspaces of 3-, 4-, and 5-dimensional vector spaces are already
found too, and they will be demonstrated in the separate manuscripts.
The canonical bases for the (n-1)-dimensional subspaces of vector
spaces of dimension n>6 can be constructed in the way similar to this
in Part I. This new method of canonical bases helps to study all objects
associated with subspaces of vector spaces.

In Part II, this method is applied to study subalgebras of Lie
algebra of Lorentz group. It’s a fact that a classification problem
of subalgebras of low dimensional real Lie algebras was discussed
during 1970-1980 years. That classification of subalgebras of all real
Lie algebras of dimension # < 4 only was obtained in the form of
representatives for equivalent classes of subalgebras considering under
their groups of inner automorphisms [2,3]. The subalgebras of real Lie
algebras of dimension n > 5 were not classified before. As a step of
the further classification, the 5-dimensional hypothetical subalgebras
of 6-dimensional Lie algebra of Lorentz group are investigated in Part
II [4]. The corresponding procedure involves nonequivalent canonical
bases from Part L. It is proved that Lie algebra of Lorentz group has no
subalgebras of the dimension 5. This means also that Lorentz group has
no connected 5-dimensional subgroups.

Part1

Canonical bases for 5-dimensional subspaces of a 6-dimensional
vector space

Let a=aye +ae, +ase, +a,e, +ase; +aze, , b=be +be, +bye, +he, +be, +be, |
C= €0+ 0,0, +Cy05 +C,€, + Cy0y + Coey »d = die +dye, +dse, +dye, +dse, +dgey, (1)
f=het e+ fie+ fieg+ fe+ fieg

arbitrary 5-dimensional subspace S of a 6-dimensional vector space V

be a general basis for

Definition 1

The basis (I) is called canonical if its associated matrix M is in
reduced row echelon form.

Definition 2

Two bases are called equivalent if they generate the same subspace
of a given vector space, and two bases are nonequivalent if they generate
different subspaces.

We start our transformation procedure for the basis (I) to find all
canonical nonequivalent bases for the subspace S.

Suppose that at least one coefficient from a, b, ¢, d, f, is
not zero. Without any loss in the generality, we can propose that
a,#0. Perform the linear operation a/a, first, and the operations
b—bha-s d—da, f fa after the The
following basis is obtained a =e +ae, +aze, +a,e, +ase, +age, ,
b= bez+be3+b e4+b es+b e6

c—ca first one.

t::czeZ Jrcj,e3 Jr(:4e4 +cse5 +c(,e(, . d =d,e, +d,e, +d,e, +dse, +de, > (a)

f=re+fie,+ fie,+ fes+ foe, -
Remark

The first components of vectors a,b,c,d,f are changed as the
result of the operations performed but all other components of them
are saved just for convenience. This idea will be used throughout of
Part I.

Suppose now that at least one coeflicient from b2> C, dz, f ,in the
basis (a) is not zero. Without any loss in generality, let b, # 0. Perform
the first linear operation b/b,, and the operations a — azb c-c,b,
f - B> f — f,b after the first one. The following new basis is obtained

a=e +aye; +ae +ae +age, , b=e, +be +be, +be, +be,,

c=cye, tee,tese +ce, > d=dye, +d,e, +de;+de,, (1)
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S =r1e+ fie, + fies+ foe
Suppose that at least one coefficient among c,, d,, f, in the basis (1)
is not zero. Again, without any loss in the generallty, let ¢,20. Perform
the first operation ¢/ ¢;, and the operations a —a,c , b- b ¢,d—-dc,
f — f,c then. We obtain the following basis

b=e, +b,e, +be, +be, » b=e, +b,e, +bse, +bge, »

C=e +c,e, +cse; +Ce s d=d,e, +dse +dge,, (2)

f=fieg+ fses+ foeg -
Suppose now that at least one coefficient from d,;, f , in the basis (2)
is not zero. Let d #0. Perform the operatlon d/ d, first, and then the

operations a —a,d , b— bd c—c,d, f- f4d The new transformed
basis is

S|y

> l;:€+b5e—5+b6e—6,
imetee e S =1et [, (3)

f=fe+fie, -

At least one coefficient from f , f is not zero in the basis (3 ). Iff =

=e tase; +age

0, then perform the operation £/ f, first, and the operations a —as f ,
b—b f c—c f,d-d f after the first one. The following canonical
basis is obtained

B 7e,+a(,e6 b=e,+be,>» c=e+cse > 5:6—4"'”'6@—6’
f=e+ fie - (a)
If f  # 0, then perform operation 7/ [ first, and the operations
b=b.f>b-b,f>
c— c67 vd — ds7 after the first one. The new basis is obtained

a=e +asess b=e,+be> c=e +cse
= rses+e

The last basis is equivalent to the basis (a,) iff,# 0. So, f,_0, and the
new canonical basis is obtained

d=e,+dse; >

a=e +ase;> b:eerbSes »c=e + ¢85 d:€4+d5€5 > f:€6 . ((12)

1. Suppose that both coefficients d,, f, at the basis (2) are zero.
We have

a=e +ae, +ase, +age,» b=e,+be, +be +be,

C=e e+ e, +ege, d=dses+deegs [=fies+ freg- (4

Suppose that at least one coefficient from d,, £, at (4) is not zero.
It’s easy to see that the alternative case with d__0 and f,_0 is impossible
because the corresponding vectors d=dge,, f= fﬁg(; are linearly
dependent. Let d, # 0. Perform operation d/ ds first, and the
operations a —a,d , l;—bsg , J=1d, [~ fid next The following
basis is obtained

a=e +ae, +age, > b=e, +be, +bse>

c= e3+c4e4+c666, d=e;+de >

f=res
It’s obvious that f, # 0 for the vector 7/ at the last basis. Perform the

operation £/ f; first, and the operations a—a,f , b—b f, c—c.f »
d—d,f after the first one. We obtain the new canonical basis

f=e . (a)
Iff,# 0 at the basis (4), perform the operatlonf / f 5 first, and then

the operations a—a,f, h—b [ c—cs f, d—d,f . The following
basis is obtained

b=e,+be,>b=e,+be,>c=e+ce > d=e,

a=e +ae +age > b=e,+be, +bge,

c=e, tee, e, > d=deegs [ =es+ foe .

We have d, # 0 in the last basis. Perform the first operation d/ d,
and then the operations a —a,d , b—bd , c—c.d, f—f.d. The

following canonical basis is obtained

a:gl+a4;4 sb=e,+bhe,,c=etce, d=¢, f=e¢5.
This basis is not new, it’s equivalent to the basis (a,).

2. Suppose, in opposition to the step 2, that all coefficients ¢, d,,
f, are zero in the basis (1). We have

b=e¢, +bye,+b,e, +be, +be, » b=e, +be, +b,e, +be, +be, »
d=d,e, +dse, +d,e, , (5)

c=ce, +cses +cgeg

S =rie + fses+ foe
Consider coefficients ¢ »
one of them is not zero.

d,, f, in the basis (5). Suppose that at least

Let ¢,#0 (without any loss in generality). Perform the operation
2/04 first, and then the operations a—a42, 13_1;45, 2—d45,
7 — f,c - The following basis is obtained

a=e +ae +ase +age, > b=e, +bhe +bes+be, >

E=e—4+cse—5+cﬁe—6’d:dses"'dses’f:fses"'fses‘ (5a)
At least one coefficient among d,, f; is not zero in the basis (5a). If
both coefficients d,, f; are zero, then d=d.e, » f = f,e, > and vectors

d, [ arelinearly dependent but it’s impossible for any basis. Let d 0.

Perform the operation d / dy first, and then the operations g — a.d
b-bd>c—cs d»> [-/d . The following basis is obtained

a=e +ase,+age,> €= tTC:E>
S =rees -
The coefficient f, is not zero at the last basis. Perform the operation

7/ f, first, and The operations a-a.f > b=bf>c—cof>d—d.f
after the first one. We obtain the new canonical basis

c=e, +cee,> d=es+dge >

Zl:e—l+a3e—3>l—):e—z+bg,g=2,gze:,7:;;. (a4)
If f,# 0 at the ba51s (5a), then perform the operation 7/ f, first,

and the operations a—a, f , 5 — bf»c—cs fd- d,f after the first
operation. The following basis is obtalned

a=e +ase;+age;>

d=dge; [=es+ fe; -

b=e, +be, +be >
c=e, +cee>
The previous basis generates the next canonical basis

a=e+ae,>b=e,+bec=ed=¢; f=e.
This basis is obviously equivalent to the basis (a,), so it’s not a new one.

3. If all coefficients C,p
following structure:

d4,f4 are zero at (5), then the basis has the
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a=e +ae, +ae, +ase;+ase, > b=e, +be +he, +be +be,
d=d,e,+de, > [ =fses+ fre;- (6)

It’s obvious that 3 vectors ¢,d, / at (6) arelocated at the same plane

c=cses+coeq 0

determined by vectors e, e, . So, they are linearly dependent that

contradicts the fact that all vectors a,b,c,d f are linearly independent.
So, the case ¢,=0, d,=0, f,=0 doesn’t generate any canonical basis.

4. Suppose, in opposition to the Step 1, that the second coefficients
b, c, d,, f, at the basis (a) are zero. We obtain the following
basis

a=e +a,e,+ae +ae +ase;+ae b=be +be, +be +be >

Cc=cie +c,e, +cse; +ce, » d =dyey+die,+des+de,  (7)

f=te+ fien+ fes+ feg

Consider coefficients b3> Cyp d3> f at the basis (7). Suppose that at
least one of them is not zero. Without any loss in the generahty, let b, #
0. Perform the operation b/ b, first, and then the operations a—ayb,
c—ch,d—-db, f = f,b . The following basis is obtained

a=e +a,e, +ae, +ase; +age; >

d=d,e, +dse;+dge; >

b=q+@q+@@+QQ,
c=c,e, +cses +cie

f=tie+ fes+ fec
Consider coefficients c,, d,; f, at the previous basis. Suppose that at
least one of them is not zero. Let ¢, #0. Perform the operation ¢ ¢/ ¢,
first, and the operations a —a,c, b—b,c, d—d,c, f = fic after the

first one. The following basis is obtained

a=e +a,e, +ase, +ase, » b=e; +bses +bge,,

c=e, +cse +coe, > d=dse; +dge,, (8)

[ =Fes+ feg -

At least one coefficient among d,, f, in the basis (8) is not zero. If
both coefficients ds, f5 are zero, then vectors ;j — dse:’ 7 =/ a are
linearly dependent but it’s impossible for (8) to be a basis. Let d, # 0.
Perform the operation d / d, first, and the operations a-agd | j- byd »
c— e d, j—f — fsﬁ after the first one at the basis (8). The following new
basis is obtained

a=e +aye, +a.e, B:a+b626,
f=ree -

It’s obvious that f6 # 0 at the last basis, and it generates the new
canonical basis

c=e,+cie > d=e;+de >

a=¢+aye,,b=e,c=¢,, d=¢,, [ =¢,. (a)
Iff, # 0 at the basis (8), perform the operation 7 / f5 first, and then
the operations a —a, f ,

;;_557,2—(:57 , E—dsf at the basis (8). The following basis

obtained

a=e +aye, +ae > b=e +be>
c=e,+cee > d=dses, f=e,+ fre -

It’s obvious that d, # 0 in the last basis. So, the following canonical
basis is generated

b=e,c=e,d=¢, f=e,.

a=e +aye,>
The last basis is equivalent to the basis (a,), so it’s not a new one.

5. Suppose that coefficients b,, ¢, d,, f, at (8) are zero. We receive
the basis

a=e +a,e,+a,e, +ases+age, » b=>b,e, +bse; +bse

d=d,e, +dse, +d,e, 9)

c=cie +cse +coe, s
S =Te + fies + foes -

The four vectors b, ¢, d, ? in the basis (9) are linearly
dependent because they are located at the same 3-dimensional subspace

Span{e4,e5,eﬁ} but it contradicts to the fact that vectors a,b,c,d f
form a basis. So, this case doesn’t generate any canonical basis.

A. Suppose that a,=b =c =d =f,=0 in the basis (I). The following

basis (b) is obtained

A= 0,0, + 4,0, + 0,0, + 56, + A8, » C = Cr€, + 385 +C, 0, + 50, + ey »

c=ce + e e e, o6l , d =dye, +die, +d,e, +dge, +dge, > (b)

[=het fie+ fie, + fies + foeg -

Suppose that at least one coefficient among a, b, c, d, f, is not zero
in (b). Like before, we can suppose that a_=0. Perform the operatlon
al a, first, and the operations b— ba, c—ca ,d-— , f—fa
after the first one. The following new basis appears
a=e,+a,e,+ae, +ae+ae > C=cye +c,e,+cse+cie

c=cye, +ee, +ose +ee, » d=dye; +de +dses+dge, (1)

f=re+ fie + fses+ foe -

Consider coefficients b3, c d3, f3 in the basis (1). Suppose that
at least one of them is not zero. We can suggest that b,20 (without
any loss in the generality). Perform the operation b/b, first, and the
operations a—a,b, ¢c—c,b, d—dib, f —fib after the first one. The
following basis is obtained

a=e,+ae, +ase;+age, > b=e,+b,e,+be; +be >

3:d4a+dsa+déa’ @)

c=ce, +cses + e
f=rien+ fses+ fe -
If all coefficients b,, c,, d,, f, in (1) are zero, then vectors b ¢,d, f

are linearly dependent but it’s impossible because these vectors form
a basis.

1. Consider coefficients c, dq, f4 in the basis (2). At least one of
them is not zero. If all of them are zero, then vectors

d=dse;+dses> f=fe+ fee

are linearly dependent because they are located at the same

2-dimensional subspace generated by vectors e,,e, . This means that
the case ¢,=d,=f,=0 is impossible.

c=cse; +cee

Suppose that ¢, # 0. Perform the operatron c / 28 in the basis (2)

first, and the operations a-ac,d-de,d—-dc , [ = f.c after the
first operation. The following basis is obtalned

=e, +ase, +ase, > b=e +bses +be

Ql

c= €4+0565+66€6’d de, +dge, > (©)

f = fses +.f6e(7 :
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Consider coefficients d,, f; in the basis (3). At least one of them is
not zero. Otherwise, the vectors d =d,e, and f = f.e, are linearly
dependent but it’s impossible. Suppose that d, # 0. Perform the

operation d /d, first, and the operations l;—bsg, b-bd c—cd,
f - f,d after the first one. The following basis is obtained
a=e,+age,> b=e, +be, >
cree dearde @

7=s

The coefficient f, is not zero in the basis (4). Perform the operation
f / f, inthe basis (4) first, and the linear operations @ — a4 f.b-b 5f 5
c— c f d—d f after the first one. We obtain the following new
canonical basis

,b=e,c=¢,,d=¢,, f=e¢, . (b)

a=e,

If f, # 0 in the basis (4), we obtain the same canonical basis (b,).

2. Suppose that all coefficients a,, b,, c,, d,, f, are zero in the basis
(b). The following possible basis is obtained

a=ase; +a,e, +ase; +age,» b=be, +be, +be; +bse >

c= ce tce, +C565 + cée6

f=re+ fie + fies +fsea )

d=de, +d,e, +dse, +d,e, , (5)

vectors e,e,,e;,¢, . S0, the system (5) of the vectors a,b,c,d, [
doesn’t produce any canonical basis.

The research performed for the set of coefficients a, bp c dl, f1

in the cases A and B produces 6 canonical bases (a,) - (a,) and (b,).

To find other canonical bases, we should repeat the similar evaluations
considering the following five sets of coeflicients {az, 2, c, d2> f 1 {a

d3,f3}, {a4, b4, C,p d4,f4},{a5 b c, ds,fs}, and {as, b6 o fs} in the ba51s

(I). According the equity principle, we will obtain 6 similar canonical

bases for each set of coefficients. Details are very close to those in the
cases A, B, and we omit them. The total list of canonical bases is

=g racs beeibhe. cmteds d-etde
f=ectfieg (@)
Zz=e~|+a5e—5,1;=%+b5et,Z’ze—3+cse—5,3:ﬁ s> 726— (a)
Zz=;]+a4a,l;:e—2+b46—4,2’:e—3+c4a, = 7 e . (a,)
¢—1:e—1+a3e—3,l—):e—2+b3a,5=a,3:;5,726—6. (a)
a=e a6, b=e c=e,d=er f=¢- (a)
a=e,,b=e,c=e,,d=e,, [=e¢,. (b))
3 L—z—g+aﬁeﬁ b=e +be,,» c=e+ce,, d=e +de,>
f=e+fee, . (c,)
a=e,+ae;, b=e+be,,d=c,+dse,, d=e,+dse;, f=e, .(c))
G- tae. boa b, cmarae . d=e. T-a. ()
i=Grad, b=d b, i=e. Fog. T =a. ©
E:ala+g,b—ez,c—ej,g:e?,?=a. (c,)
a=e,b=e,c=e,,d=¢,, f =e, . @)

Page 4 of 6

a=e +age,, 5:a+bﬁzﬁ, E:g+c626, d=e,+dge,
Feetha. €
a=c +ae,,b=e+be,, c=e, +c5 2N 3:a+d5;5, f=e. (e))
a:%+a4aaB:Ei+b4e4»6:ez+c4e4,32;;?:a~ (e)
a=ae,te, b=e+be, c=e,d=c, [=¢,. (e,
PRl S Bl By By (e)
a=e b=e¢.c=ed=es f=¢ ()
i—etae, beciba, decide. d-c+de
J=e+fe ©)
d=ctae> b=g+be s c=e e d=e +dse, f=e, - (&)

a=a,e,+e,»b=e +be c=e +ce;> f=¢> f=¢ ®,)
a=ae,+e, > b=e +he,> c=e>d=e,> [ =¢, )
a=ae +e > p ez:cze3>d:5>f:6 (&)
a=e ,b=e,,c=¢,d=e, f=¢ (h)
a=e;+age,» b=e+be c=e +ce>, d=e+dee>
a=ase, +e;. (i)
a=ae +e;, b=e+be,, c=e,+ce,,d=e+de,, f=¢.(i)
a=ae;t+e,b=ethe ,c=e,tce,d=e¢,, f=¢ (i)
b=e +be,, b +be,,c=e,d=¢e,, f=¢. @i,)
a=ae+e,b=e,,c=e,d=¢,, f=¢ (15)
a:el,bzez,c:es,dzewf:eﬁ. (jl)
a=ases+e; > b=e+be, c=e,+ces>, d=e +dse;
f=e + fie. (k)
a=ae, +e,, b=e¢+he,, c=e,+ce,, d=e,+de,, f=e. (kz)
a=ae +e ,b=¢+be, ,c=e,+ce;,d=¢,, f=e. (k)
a=aye,+e,,b=e +he,,c=e,,d=e¢,, f =e,. (k,)
a=ae+e ,b=e,c=e,,d=¢,, f=e,. (k)

a=e¢ - b=e,>c=e,,d=e,> [ =¢. 1)

Analyze all these bases comparing them step by step. The bases
(b)), (d), (), (h), (j,), (1) are particular cases of (c,), (a,), (c,), (a,), (a,),
(a,) respectively. The bases (c,) - (c,) are obviously equivalent to the
bases (a,) - (a,). The basis (c,) is equivalent to the basis (a,) if a,#0, and
(c;) is equivalent to the basis (b,) if a,=0. The bases

(e,) - (e,) are equivalent to the bases (a,) - (a,). If a,#0 then the
basis (e,) is equivalent to the basis (a,); if a, 0 then (e,) is equivalent
to (a,). The basis (e,) is a particular case of the basis (a,) if a, # 0, and
(e,) is a particular case of (g;) if a, 0. The bases (g,), (g,) are 0bv10usly
equlvalent to the bases (a,), (“2)- The basis (g,) is equivalent to the
basis (a,) if a, # 0, and (g,) is equivalent to (a,) if a, 0. The basis (g,) is
equivalent to the basis (a,) if a,# 0, and (g,) is equivalent to (a,) if a, 0.
The basis (g;) is a particular case of the basis (a,) if a, # 0, and (g,) is a
particular case of (i,) if a,_0. The basis (i ) is equivalent to the basis (a,).
The basis (i,) is equivalent to the basis (a,) if a, # 0, so consider the basis
(i,) if a,_0. The new basis (i,) is a particular case of the basis (a,) if f,_0,
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and (i,) is equivalent to (a,) if f,_0. The basis (i,) is a particular case of
the basis (a,) if a, # 0, and the basis (i,) is equivalent to the basis (a,) if
a, 0. The basis (i,) is a particular case of the basis (a,) if a,# 0, and (i,)
is equivalent to (a,) if @, 0. The basis (i,) is a particular case of the basis
(a,) ifa,# 0, and (i,) is a particular case of the basis (k,) if a,_0. The basis
(k,) is equivalent to the basis (a,). The basis (k,) is equivalent to the
basis (i,). The basis (k,) is a particular case of the basis (a,) if a,# 0, and
(k,) is equivalent to the basis (a,) if a, 0. The basis (k,) is a particular
case of the basis (a,) if a,# 0, and (k,) is equivalent to the basis (a,) if
a, 0. The basis (k,) is a particular case of the basis (a ) if a # 0, and (k,)
is equivalent to the basis (b)) if a,_0.

The analysis performed above implies the following statement.
Theorem 1

Each basis of any 5-dimensional subspace in a 6-dimensional vector
space is equivalent to one and only one of the following 6 canonical
bases

c=e+ce>, d=e +dge;>

a=a+aéeé> b=e, +bse,
f=et feess (@)

+ase;s b=e, +he,» c=e;+cses> d=e, +dsess f=¢ 5 (a,)

1l
Kol

a

b=e,+be,, b=e, +bhe,, c=e;+cie,, d=e;, f=¢;; (ay)
a=e¢+ae,b=e,+bhe,,c=e,d=e¢, f=¢; (a,)
a=e¢+ae,, b=e,c=e,,d=e, [=¢; (a)
a=¢,b=e, c=e d=¢, [=¢. (b,)
Part I1

5-dimensional subalgebras of Lie algebra of Lorentz group

Introduction: Lorentz group is the group of transformations of
Minkowski space-time R*. This group is not compact, not abelian, and
not connected 6-dimensional real Lie group. The identity component
of Lorentz group is the group SO* (3, 1). This component contains
the generators for boots along x-, y- and z-axis, and it contains the
generators for rotations in Minkowski space-time [4]. Lie algebra of
the group SO* (3, 1) is 6-dimensional real Lie algebra denoted below by
L that has the following standard basis:

01 00 001 0 00 0 1
—~ |1 000 - 0000 — |0000
““looo ol %1000/ “ooo ol
00 00 0000 1 000
[0 0 00 0 0 0 00 0 0
5—0010’?=0 01)8__0000'
0 -1 00 ° 1|0 0 00| °“ (00 01
0 0 00 0 -1 00 00 -10

The Lie product of any two square matrices A, B is defined by [A,
B]=AB - BA. For the standard basis of Lie algebra of Lorentz group, the
non-zero products are

[el’ezi|264 ’ |:elae3:|:eS ’ [61’64:| =6 |:el’65:|:eS ’ [62,63:|=€6’
[ez,e&:fel,
[ez’eéJ =€ [63765:| =7¢> |:e37eﬁ:| =-€" |:e4,65J =€

[ena)=e [aa]=a- ©

To determine which 5-dimensional subspace h of the given Lie
algebra L is a subalgebra of L, we will check the condition [h, h]c h
applying to the nonequivalent canonical bases that are described in the
Theorem 1.

Let the subspace h, be generated by the canonical basis (a,).

Utilizing the table of products (*), we have
[65)=[@ + aiees + e | =2 — gy = 5+ 3B+ 56 + 5,3 +x,7 -
So, x,=0, x,=0, x,=—a, x,=1, x,=0, and -a.c +d=0.
[a’ZJ =[a+06;6=;3+06;6] :;5+ae,€: ZY1‘;+)’25+)’3;+)’43+)/57 :
So, y,=0, y,=a,, y,=0, y,=0, y,=0, y.=1, and a,b +f=0.
[5,2} :[e—,+aﬁa,a +dﬁa:| = e—zfa(,;5 :ZIZJ +ZZE+ZBZ‘+Z43+ZS7 .
So, z,=0, z,=1, 2,=0, z,=0, z.=-a, and b6 - a5f6=0.
[Zz,ﬂ = [g,+a6e:,e—5+j;gﬁ] =e +ase, =s,a+s,b+s,cts,d+s,f
So, 5,=0, 5,=0, 5,=1, 5,=a,, 5,=0, and cs+a6d6:0.
|:b,c:| =[ez +beeg, e, +cbeGJ =e,+be,=pa+p,b+pc+pd+pf-
So, p,=0, p,=b,, p,=0, p,=0, p.=0, and b b =1.
I:B’E:I = I:a +b6€:,a + d(»e::I = _;1 + d(,;s _b(y;s = qlzl + qzl; + q32+ qAE + qs.? :
So, ,=-1, ¢,=0, q,=d,, 9,=0, g.=-b,, and -a+ d.c, b f,
[5.7]=[c+ bapei+ e = fies+ by =nas s i rid 41,7
So, r,=0, 7,=0, r3=f6, r4=b6, r.=0, andf665+b6d5=0.
[E,ﬂ =[a+céa,a+dﬁe:} = —dég—cﬁa =tIZz +t25+t32+t43+t57 .
So, t,=0, tZ:—ds, t,=0,t,=0, t.=—c, and —dsbs—csfszo.
[2,7} = |:e: + c6e:,e: + fee:j| = —21 - fsgz' + coa = Vl‘; + VZB *‘%E + "42 + V57 :
So, v,=-1, v,=—f,, v,=0, v,=c,, v,=0, and -a b +c.d =0.
[3,7] :[ej+d(,e:,a+f;,e:}:—e‘(,+f;,e‘5+dﬁa =ma+mb+nc+nd+nf -
So, n,=0, n,=0, n,=0, n,=d, n.=f,and d d, +f f=-1.

The equation d,” + f," =—1 has no solution in the set of all real
numbers. This means that no 5-dimensional subalgebra of Lie algebra
L with the basis (a,) exists.

Utilizing the table of products (*), we have

[a,b} =[el +a,e,,e, +b565:| =e,+be, =xa+x,b+x,c+x,d+x,f -

So, x,=0, x,=0, x3:b5, x,=1, x,=0, and bscs+d5:0.

[5,2] :[E; + a#:@*%%} = ‘Z +Cs‘2 +a5;; :yl; +y25+y32+y4g+y57 :
So, ¥,=a, ¥,=0, y,=c,, y,=0, y.=0, and aa, +cgc..

[5,2} = [Zl +a5e:,a+dsg} e, +d.e, +ae, =za+znb+zc+zd+z [ -
So, z,=0, z,=1, z,=d,, 2,0, z.=a_, and b, +d.c.=0.
[0.7)=[e + aseer| = -ty = sa+ 55+ 5,6+ 5,3 45,7 -

So, 5,=0, 5,=0, 5,=0, s,=—a,, s,.=0, and a.d_=0.

[EaEJ = [g +b5a=g + csa} = e: +b5;; = plZl + ng + psg + pAZi + [75? .

So, p,=b,, p,=0, p,=0, p,=0, p.=1, and b,a,=0.
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[I;,EJ =[e—2 +b5e—5,e—4+d5e—5J =—e +bhe, =qa+qb+qc+q,d+qsf -
So, g,=-1, 4,=0, 4,=0, q,=0, q5=b5, and -a.=0.
[5,7J:[g+bse:,e::|:gfbsa :;’121+rzl;+r32+};3+r57 .

So, r,=0, ,=0, =1, r4:—b5, r,=0, and cs—bSdS:O.

[Z,ﬂ = |:e—3+cse—5,e—4+dse—5:| =—dse—1+cse—6 = t121+t25+z32+143+t57 .
So, t,=—d,, t,=0, t,=0, t,=c,, and -d_a,=0.

[6.7]=[+cemer | = - - csty =wa+wb+ e +v,d + v, -
So, v=0, v,=-1,v,=0, v,=—c,, v, 0, and -b, —c.d =0.

[3,?] = [ej +dse:,aJ = 25’ —a’seq4 = nIZz + n25+n32+n4g + nsf .
So, n,=0, n,=0, n,=0, n4=—d5, n,=0, and —d5d5=1.

The last equation d;"=-1 has no solution in the set of all real
numbers. This means that no 5-dimensional subalgebra of Lie algebra
L with the basis (a,) exists.

Let the subspace h, be generated by the canonical basis (a,).

Consider all products between vectors a,b,c,d,? of this basis.
Utilizing the table of products (*), we have

[&,B]:[eﬁm@,gw@]:ej+b4ej+a4e7:x,5+x22+x32+x42+x57-
So, x,_a,, x,=b,, x,=0, x,=0, x,=0, x. =0 and a,a, + b,b,=1.

[a72:| = [a + aAZ:g + 046‘4} = a + 045 = yl;l + yzl; +)’3E+ y4;i +J’5? '
So, y,=0, y,=c,, =0, y,=1, y.=0, and ¢,b,=0.

(03] =[G+ 0z =a-ag =i+ 2b+zi+zd+zT
So, z,=0, z,=0, z,=1, 2,=0, z.=- a,, and c,=0.
[0.7]=[a+aee | =ae =sia+s,b+ s+ 5,d+ 5,7

So, 5,=0, 5,==0, 5,=0, 5,=a,, 5,=0, and 0=0.

[Z,E} = |:e:+b4g4.’g3. +0424:| = g<: _CAEI = pla + pzl;"' p32+ 1742 + ps]7 '
So, p,=-¢,, p,=0, p.=0, p,=0, p.=1, and —c,a,=0.

[b,d} = |:e2 +b4e4,es:| =-be,=qa+q,b+qc+q,d+qsf -

So, 4,=0, ,=0, 4,=0, q,=0, g,=-b,, and 0=0.
[5,7J:[Z+b45,e—6]:e—3+b4a :45+r213+;32+r4c—l+47 .

So, r,=0, 7,=0, ,=1, r4=b4, r.=0, and c,=0.

[E,Z] :|:e—3+c4a,e—5:| =—¢ —c,e, =ta+t,b+tc+t,d+t,f -

So, t=-1, t,=0, t,=0, t,=0, t,=—c,, and a,=0.

(7] =[a+cima | =—a +ces =na+vb 4 vi4v,d 49,7
So, v,=0, v,=-1, v,=0, v,=c,, v,=0, and b,=0.
[4.7]=[7] = = ma+mb+ ni+nd +nF-

So, n1=0, n2=0, n3=0, n4=0, n5=0, and 0=-1.

The last contradiction 0=-1 proves that Lie algebra L has no
5-dimensional subalgebra generated by the basis (a,).

Let the subspace h, be generated by the canonical basis (a,).

Utilizing the table of products (*), we have

I:a,b:l = [el +a,ey,e, +b383:| =e,+bje;—aje, =xa+x,b+x;c+x,d+x;f -

So, x,=0, x,=0, x,=1, x,=b,, x,=-a,, and 0=0.

[.5]=[a+ aene =& =na+ pab+ vt nd + 2,7 -

So, =0,  y,=1, »,=0,  »,=0, ¥,=0, and b.=0.
[0.3)=[a+wene; |=e - ae =5+ 2b+ 2,4 2,d+ 257

So, z,=-a,, z,=0, 2,0, z,=0, and —a,* =1.

The last condition a,”=-1 is impossible in the set of all real
numbers. This means that the product [5,3] doesn’t belong to the
5-dimensional subspace generated by the basis (a,). Thus, this subspace
is not subalgebra of Lie algebra L.

Let the subspace h, be generated by the canonical basis (a,).

Utilizing the table of products (*), we have

[a5]-[a +aca
So, x,=0, x,=0, x,=0, x,=1, x,=a,, and 0=0.

J=e5+azeé=xla+x2b+x3c+x4d+x5f'

[a,c} = [el + azez,eJ =e,—a,e,=ya+y,b+y,c+y,d+y.f-
So, y,=-a,,y,=0, =0, y.=0,and —a,” =1.
The last condition a,” =-1 is not satisfied in the set of all real

numbers. This means that no 5-dimensional subalgebra with the basis
(a,) exists in Lie algebra L.

Let the subspace h, be generated by the canonical basis (b,).

Utilizing the table of products (*), we have
[25])=[ca]=a=na+xb+ni+nd+x7-
So, x,=0, x,=0, x,=0, x =1, and 1=1.

[a.c]=[ee|=—a =na+yb+yc+yd+yT-
So, ,=0, y,=0, ,=0, y,=0, y,=0, and 0=- 1.
The last contradiction 0=- 1 shows that Lie algebra L has no
5-dimensional subalgebra generated by the basis (b)).
The evaluations performed in Part IT prove the following statements.

Theorem 2

Lie algebra of the Lorentz group doesn’t contain any 5-dimendional
subalgebra.

Corollary

Lorentz group doesn’t contain any connected 5-dimensional
subgroup.
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