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Abstract. In this paper, we determine τ̃q
(
χλq
)
, the Gauss sums on the Iwahori-Hecke algebras of type A for

irreducible characters χλq , which are q-analogues of those on the symmetric groups. We also explicitly determine the

values of the corresponding trace function ψ(n)q = ∑
λ�n τ̃q

(
χλq
)
χλq .

1. Introduction

Based on the classical Gauss sum

p−1∑
x=0

e2x2π
√−1/p =

p−1∑
x=1

(
x

p

)
e2πx

√−1/p ,

where p is an odd prime and
(
x
p

)
is the Legendre symbol, Gomi, Maeda and Shinoda [3]

have defined Gauss sums on arbitrary finite groups as follows. Let G be a finite group, and
fix a modular representation ρ : G → GLn(Fq) over Fq , a finite field with q elements. Fix
a nontrivial additive character e : Fq → C. For a class function χ : G → C, the Gauss sum
has been defined by

τ (χ) =
∑
x∈G

χ(x)e(Trρ(x)) .

In case G = F×
p , if we take ρ and e naturally and χ as the Legendre symbol, then τ (χ)

coincides with the classical Gauss sum. As we mentioned in [3], it is useful to consider
|G|−1τ (χ) rather than τ (χ), so we put τ̃ (χ) = |G|−1τ (χ) and the Gauss sum for χ shall
mean τ̃ (χ) in this paper.

Before [3], there are several previous works for Gauss sums on finite linear algebraic
groups with natural representations ρ : G ↪→ GLn(Fq). Kondo [7] determined the values
of Gauss sums on general linear groups for any irreducible characters. Kim and Lee [6]
determined the values for O+(2n, q) and for linear characters. In a series of papers after [6],
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they also studied for some other classical groups for linear characters. Saito and Shinoda
[9, 10] studied Gauss sums on finite reductive groups for the Deligne-Lusztig generalized
characters and determined the values for Sp(4, q) andG2(q).

In [3], we started to study Gauss sums on arbitrary finite groups and explicitly deter-
mined the values for Weyl groups and for the complex reflection groups G(m, r, n) for any
irreducible characters. Based on the results in [3], we expect that there exist the q-analogues
of the Gauss sums on Weyl groups, which means the Gauss sums on the Iwahori-Hecke alge-
bras.

In this paper, we consider the case of type A, that is the case of the symmetric groups,
and determine the Gauss sums on the Iwahori-Hecke algebras of type A.

This paper is organized as follows. In §2, we shall briefly review the Gauss sums on
the symmetric groups. In §3, based on the Gauss sums on the symmetric groups, we deter-
mine τ̃q

(
χλq
)
, the Gauss sums on the Iwahori-Hecke algebras of type A. In §4, we explicitly

determine the values ψ(n)q (Tw), where ψ(n)q is the corresponding trace function defined by

ψ
(n)
q = ∑

λ�n τ̃q
(
χλq
)
χλq . We will see some relation between the Gauss sums and the Markov

traces on the Iwahori-Hecke algebras of type A.

2. Preliminaries

For a prime p, let Fp be a finite field with p elements, and ρ : Sn → GLn(Fp) be the
permutation representation of Sn, the symmetric group of degree n. Throughout this paper we
fix a nontrivial additive character e : Fp → C and a primitivep-th root of unity ζ = e(1) ∈ C.

Using this e, we define a class function ψ(n) on Sn as follows:

ψ(n)(σ ) = e(Trρ(σ)) for σ ∈ Sn ,
where Tr denotes the trace of a matrix. We note that

ψ(n)(σ ) = ζ fix(σ ) for σ ∈ Sn ,
where fix(σ ) is the number of fixed points by σ . Let λ � n be a partition of n and χλ be the
irreducible character of Sn corresponding to λ. Let

τ̃n
(
χλ
) = 〈

ψ(n), χλ
〉

for λ � n ,
where the right hand side of the above is the usual scalar product of C-valued class functions
on Sn. Then we have

ψ(n) =
∑
λ�n

τ̃n
(
χλ
) · χλ .

We call τ̃n
(
χλ
)

the Gauss sum on Sn associated with the irreducible character χλ.
Now we review the isomorphism R � �, where R is the algebra of class functions of

symmetric groups and � is the algebra of symmetric functions. For the details, see [8]. We
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denote by Rn the vector space over C of class functions of Sn. The irreducible characters{
χλ | λ � n

}
of Sn form a basis of Rn. Let R = ⊕

n�0 Rn with R0 = 〈χ(0)〉 = C. Then R

has a ring structure, defined as follows:

u · v = indSm+n
Sm×Sn (u× v) for u ∈ Rm, v ∈ Rn .

With this multiplication, R is a commutative, associative, graded C-algebra with identity

element χ(0) = 1. Let �n be the homogeneous symmetric functions over C of degree n.
Then � = ⊕

n�0�
n naturally has a graded C-algebra structure. For each n ≥ 0 the nth

complete symmetric function hn is the sum of all monomials of total degree n with h0 = 1.
Then we have

� = Z[h1, h2, . . . ]
and the hn are algebraically independent over C. For each partition λ � n, we denote by sλ the
Schur function corresponding to λ with s(0) = 1 for λ = (0) � 0. Then the sλ (λ � n) form

a basis of �n. We define a linear mapping ch : R → � by ch
(
χλ
) = sλ for each partition

λ, which is called the characteristic map. In case λ = (n), χ(n) is the trivial character of Sn
and the Schur function s(n) coincides with the nth complete function hn. The next theorem is
a basic fact.

THEOREM 2.1 ([8, I, (7.3)]). The characteristic map ch is an isomorphism from R to
�.

We define an endomorphism φ : � → � by

φ(hn) =
n∑
i=0

hi .

Let λ and μ be partitions such that the Young diagram of λ contains that of μ. If the skew
diagram λ/μ contains at most one box in each column, then λ/μ is called a horizontal strip
which we abbreviate to h.s.

LEMMA 2.2. For each Schur function sλ, we have

φ(sλ) =
∑
μ

λ/μ is h.s.

sμ ,

where the summation is over all partitions μ such that λ/μ is a horizontal strip.

For a proof, see [3, Th. 2.10].
In [3], the values of the Gauss sums on the symmetric groups are determined explicitly.

THEOREM 2.3 ([3]). We define an algebra homomorphism
 : � → C by


(hn) = (ζ − 1)n

n! for n = 0, 1, 2, . . . .
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(1) We define a linear mapping τ̃ : R =
⊕
n�0

Rn → C by

τ̃
(∑
n≥0

fn

)
=
∑
n≥0

τ̃n(fn) .

Then we have

τ̃ = 
 ◦ φ ◦ ch , (2.1)

which shows that τ̃ is an algebra homomorphism.
(2) We define a generating function

W(t) =
∑
n≥0

τ̃n
(
χ(n)

)
tn .

Then we have

W(t) = exp((ζ − 1)t)

1 − t
= exp(ζ t)

(1 − t) exp t
.

(3) For the trivial character χ(n) of Sn, we have

τ̃n
(
χ(n)

) =
n∑
k=0

(ζ − 1)k

k! .

(4) For each irreducible character χλ of Sn, we have

τ̃n
(
χλ
) =

∑
μ

λ/μ is h.s.

(ζ − 1)|μ|

h(μ)
,

where h(μ) = ∏
x∈μ h(x) is the product of hook lengths of μ and the summation is

over all partitions μ such that λ/μ is a horizontal strip.

3. q-analogue of τ̃

In this section, we construct Gauss sums on the Iwahori-Hecke algebras of type A. In

case of the symmetric groups, first we consider the class function ψ(n)(σ ) = ζ fix(σ ), then the

Gauss sums τ̃n
(
χλ
)

are defined as structure constants of ψ(n), that is,

ψ(n) =
∑
λ�n

τ̃n
(
χλ
)
χλ .

The τ̃n induce the algebra homomorphism τ̃ : R → C which is decomposed to τ̃ = 
◦φ ◦ch
(see Theorem 2.3(1)). In case of the Iwahori-Hecke algebra of type A, first we consider 
q ,
the q-analogue of
, and then we define τ̃q , the q-analogues of τ̃ , by τ̃q = 
q ◦φ ◦ ch, which
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is parallel to the equation (2.1). After that, we define ψ(n)q , the q-analogue of ψ(n), which is a
trace function of the Iwahori-Hecke algebra of type An−1 in the next section.

Let S = {si = (i, i + 1) ∈ Sn | i = 1, 2, . . . n − 1}. Then (Sn, S) has a structure of a
Coxeter system and have a usual length function l with respect to S. Let q be a parameter in
C which is not a root of unity. The algebra Hn, the Iwahori-Hecke algebra of type An−1 is a
C-algebra with basis {Tw | w ∈ Sn}, and whose multiplication is determined by

TsTw =
{
Tsw if l(sw) = l(w)+ 1,
qTsw + (q − 1)Tw if l(sw) = l(w)− 1,

for all s ∈ S,w ∈ Sn. Let R(Hn) be the set of trace functions on Hn and let

Rq = ⊕n≥0R(Hn) with R(H0) = 〈χ(0)q 〉 = C. Since the algebra Hn is semisimple, the

irreducible characters {χλq | λ � n} form a basis of R(Hn). It is a basic fact that the algebras

R and Rq are isomorphic by the correspondence χλ �→ χλq for all partitions λ (see [2, §9.1]).

So we have an isomorphism from Rq to �, which we also denote by ch, so that ch
(
χλq
) = sλ

for each partition λ. We define an algebra homomorphism
q : � → C by


q(hn) = (ζ − 1)(ζ − q) · · · (ζ − qn−1)

[n]q ! ,

where

[n]q = 1 − qn

1 − q
, [n]q ! =

n∏
k=1

[k]q for n = 1, 2, . . . .

LEMMA 3.1. For each Schur function sλ, we have


q(sλ) = qn(λ)

h[λ]q
∏
x∈λ

(
ζ − qc(x)

)
,

where the product is over all boxes x in the Young diagram of λ, and

h[λ]q =
∏
x∈λ

[h(x)]q, the product of q-hook lengths of λ,

c(x) = j − i, the content of x = (i, j) ∈ λ,
n(λ) =

r∑
i=1

(i − 1)λi for λ = (λ1, λ2, . . . , λr ) with λ1 ≥ λ2 ≥ · · · ≥ λr .

The proof is an easy application of [8, I,3,Ex.3].
Now we define an algebra homomorphism τ̃q : Rq → C by

τ̃q = 
q ◦ φ ◦ ch ,

which is parallel to the equation (2.1). For each irreducible character χλq ofHn, we call τ̃q
(
χλq
)

a Gauss sum on Hn.



588 YASUSHI GOMI

PROPOSITION 3.2. For each χλq , we have

τ̃q
(
χλq
) =

∑
μ

λ/μ is h.s.

qn(μ)

h[μ]q
∏
x∈μ

(
ζ − qc(x)

)
,

where the summation is over all partitions μ such that λ/μ is a horizontal strip.

PROOF. Using Lemma 3.1, direct calculation proves the proposition as follows:

τ̃q
(
χλq
) = 
q ◦ φ(sλ)

=
∑
μ

λ/μ is h.s.


q(sμ)

=
∑
μ

λ/μ is h.s.

qn(μ)

h[μ]q
∏
x∈μ

(
ζ − qc(x)

)
.

�

For the index character χ(n)q of Hn which corresponds to the trivial character χ(n) of Sn,

the value τ̃q
(
χ
(n)
q

)
can be expressed simply. In order to do that, we prepare some notation.

For σ ∈ Sn, the descent set of σ is defined to be

DES(σ ) = { i ∈ {1, 2, . . . , n− 1} | σ(i) > σ(i + 1) } ,
and the major index of σ is defined by

maj(σ ) =
∑
i∈DES

i .

We define two generation functions

Wq(t) =
∑
n≥0

τ̃q
(
χ(n)q

)
tn =

∑
n≥0


q ◦ φ(hn) tn ,

and

Vq(t) =
∑
n≥0


q(hn) t
n .

LEMMA 3.3. We have

Wq(t) = expq(ζ t)

(1 − t) expq(t)
,

where

expq (t) =
∑
n≥0

tn

[n]q ! .
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PROOF. Since φ(hn) = ∑n
i=0 hi , we have

Wq(t) =
∑
n≥0

n∑
i=0


q(hi) t
n

=
∑
i≥0

∑
n≥i


q(hi) t
i tn−i

= 1

1 − t
Vq(t).

Using the formula in [1, Th.2.1], we have

Vq(t) = expq(ζ t)

expq(t)
,

and the proof is completed. �

THEOREM 3.4. For the index character χ(n)q of Hn, we have

τ̃q
(
χ(n)q

) = 1

[n]q !
∑
σ∈Sn

qmaj(σ )ζ fix(σ ) .

PROOF. We define a generating function

W ′
q (t) =

∑
n≥0

∑
σ∈Sn

qmaj(σ )ζ fix(σ ) t
n

[n]q ! .

In order to prove the theorem, we shall showW ′
q(t) = Wq(t). By [11, Th.1.2] or [4], we have

W ′
q(t) = (1 − q) expq(ζ t)

expq(qt)− q expq (t)
. (3.1)

Since we have

expq(t) =
∏
n≥0

(
1 − qn(1 − q)t

)−1

by [1, Cor.2.2], the denominator of the right hand side of the equation (3.1) is

expq (qt)− q expq(t) =
∏
n≥0

(
1 − qn+1(1 − q)t

)−1 − q expq(t)

= (1 − (1 − q)t) expq(t)− q expq(t)

= (1 − q)(1 − t) expq(t).

By Lemma 3.3, we obtain the result. �



590 YASUSHI GOMI

4. q-analogue of ψ(n)

We define ψ(n)q , a trace function of Hn by

ψ(n)q =
∑
λ�n

τ̃q
(
χλq
)
χλq ,

which is a q-analogue of ψ(n). In this section, we determine the values ψ(n)q (Tw) for w ∈ Sn.
First we briefly review the theory of trace functions on Hn (see [2, §8.2]). Let Cl be the set of
conjugacy classes of Sn, and let

Cmin = {w ∈ C | w has minimal length in C } for C ∈ Cl .

Then we have the following.

THEOREM 4.1 ([2, (8.2.3), (8.2.6)]). Let ψ : Hn → C be a trace function on Hn.

(1) ψ(Tw) = ψ(Tw′ ) for w,w′ ∈ Cmin.
(2) For each w ∈ Sn, there exist fw,C ∈ C which are uniquely determined by the equations

Tw ≡
∑
C∈Cl

fw,CTwC mod [Hn,Hn] ,

where [Hn,Hn] ⊂ Hn is the subspace spanned by all commutators [h, h′] = hh′ − h′h
for h, h′ ∈ Hn.

(3) We choose a representative wC ∈ Cmin for each C ∈ Cl. Then we have

ψ(Tw) =
∑
C∈Cl

fw,C ψ(TwC ) .

Since the values of fw,C can be obtained inductively on the length of w, in order to give

the values ψ(n)q (Tw) for all w ∈ Sn, it is sufficient to give them only for w = wC ∈ Cmin for
C ∈ Cl.

LEMMA 4.2. Let x ∈ Sm and y ∈ Sn−m and let ȳ be the image of y by the injection
Sn−m ↪→ Sn with si �→ si+m for i = 1, 2, . . . , n−m− 1. Then we have

ψ(n)q (TxTȳ) = ψ(m)q (Tx)ψ
(n−m)
q (Ty) .

PROOF. Let cνλ,μ be the Littlewood-Richardson coefficients for partitions ν � n, λ � m
and μ � n−m, which give the multiplication rule for Schur functions:

sλsμ =
∑
ν�n

cνλ,μsν .

By the isomorphism ch : Rq → �, we have

χλq · χμq = indHn

Hm⊗Hn−mχ
λ
q ⊗ χμq =

∑
ν�n

cνλ,μχ
ν
q ,
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and by the Frobenius reciprocity, we have

χνq |Hm⊗Hn−m =
∑

λ�m, μ�n−m
cνλ,μ χ

λ
q ⊗ χμq .

Then we obtain

ψ
(n)
q (TxTȳ) =

∑
ν�n

τ̃q
(
χνq
)
χνq (TxTȳ)

=
∑
ν�n

τ̃q
(
χνq
) ∑
λ�m, μ�n−m

cνλ,μχ
λ
q (Tx)χ

μ
q (Ty)

=
∑

λ�m, μ�n−m

(∑
ν�n

cνλ,μτ̃q
(
χνq
))
χλq (Tx)χ

μ
q (Ty)

=
∑
λ�m

τ̃q
(
χλq
)
χλq (Tx)

∑
μ�n−m

τ̃q
(
χμq
)
χμq (Ty)

= ψ
(m)
q (Tx)ψ

(n−m)
q (Ty),

which completes the proof. �

COROLLARY 4.3. We have

ψ(n)q (1) = ζ n for n = 1, 2, . . . .

PROOF. By Lemma 4.2, we have

ψ(n)(1) =
(
ψ(1)(1)

)n
.

By the definition of ψ(n)q , we have

ψ(1)q = τ̃q
(
χ(1)q

)
χ(1)q ,

and by the definition of τ̃q , we have

τ̃q
(
χ(1)q

) = 
q(h1)+
q(h0) = ζ − 1 + 1 = ζ .

Hence we obtain

ψ(n)q (1) =
(
ζ χ(1)q (1)

)n = ζ n for n = 1, 2, . . . .

�

By Theorem 4.1 and Lemma 4.2, it is sufficient to give the value of ψ(n)q (Tw) only for
the Coxeter element w = s1s2 · · · sn−1.

LEMMA 4.4. We define a trace function ϕ(n)q on Hn by

ϕ(n)q =
∑
λ�n


q(sλ)χ
λ
q .
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Then we have

ψ(n)q =
n∑
k=0

indHn

Hk⊗Hn−k ϕ
(k)
q ⊗ χ(n−k)q ,

where χ(n−k)q is the index character of Hn−k .

PROOF. The direct calculation shows that

ψ
(n)
q =

∑
λ�n


q ◦ φ(sλ) χλq

=
∑
λ�n

∑
μ

λ/μ is h.s.


q(sμ) χ
λ
q

=
n∑
k=0

∑
μ�k


q(sμ)
∑
λ�n

λ/μ is h.s.

χλq

=
n∑
k=0

∑
μ�k


q(sμ) indHn

Hk⊗Hn−k χ
μ
q ⊗ χ(n−k)q by Pieri’s formula [8, I,(5.16)]

=
n∑
k=0

indHn

Hk⊗Hn−k ϕ
(k)
q ⊗ χ(n−k)q ,

which completes the proof. �

LEMMA 4.5. Let wC = s1s2 · · · sn−1 be a Coxeter element of Sn, then we have

ϕ(n)q (TwC ) = (1 − q)n−1(ζ − 1) .

PROOF. By Lemma 3.1, we have

(ζ − 1)−nϕ(n)q =
∑
λ�n

qn(λ)
∏
x∈λ
(
ζ − qc(x)

)
(ζ − 1)nh[λ]q χλq .

The argument of [5, §5] shows that (ζ − 1)−nϕ(n)q is the Markov trace on Hn with parameter

z = 1 − q

ζ − 1
, and we have

ϕ(n)q (TwC ) = (ζ − 1)nzn−1 = (1 − q)n−1(ζ − 1) ,

which completes the proof. �

Here we review the formula of induced character of Iwahori-Hecke algebra (see [2,
§9.1]). Let (W, S) be a Coxeter system and let H be the corresponding Iwahori-Hecke
algebra. For J ⊂ S, let WJ ⊂ W be the corresponding parabolic subgroup and let

HJ = 〈 Tw | w ∈ WJ 〉 ⊂ H be the corresponding parabolic subalgebra. Let WJ be the
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right coset representatives of WJ \W such that x ∈ WJ is the unique element of minimal
length in WJx. We denote by w0 (resp. wJ ) the longest element of W (resp. WJ ), and define
dJ = wJw0. Then dJ is the unique element of maximal element in WJ and any element

x ∈ WJ satisfies l
(
x−1dJ

) = l(dJ ) − l(x). For any HJ -module V , the induced module is
defined by

indSJ (V ) = V ⊗HJ
H ,

and if χ is the character of V , then we denote by indSJ (χ) the character of indSJ (V ). The direct
sum decomposition H = ∑

x∈WJ HJ Tx implies that

TxTw =
∑
y∈WJ

hw(x, y)Ty with unique hw(x, y) ∈ HJ ,

for any w ∈ W and x ∈ WJ .

PROPOSITION 4.6 ([2, Prop.9.1.3]). For any character χ of HJ and for any w ∈ W ,
we have

indSJ (χ)(Tw) =
∑
x∈WJ

χ(hw(x, x)) .

We apply this proposition to the case of W = Sn,

S = { si = (i, i + 1) | i = 1, 2, . . . n− 1 } ,
J = S−{sk} and the character ϕ(k)q ⊗ χ

(n−k)
q of the parabolic subalgebra HJ = Hk ⊗ Hn−k

for k = 1, 2, . . . , n− 1.

LEMMA 4.7. Let wC = s1s2 · · · sn−1 be a Coxeter element of Sn and J = S−{sk},
wk = s1s2 · · · ŝk · · · sn−1 for k = 1, 2, . . . , n− 1. Then we have

hwC (x, x) =
{
(q − 1)Twk if x = dJ ,

0 if x �= dJ ,

for x ∈ WJ .

PROOF. Let x ∈ WJ − {dJ }, then there exist some si ∈ S such that l(xsi) = l(x)+ 1
and xsi ∈ WJ . If we assume that

x, xs1, xs1s2, . . . , xs1s2 · · · si−1 ∈ WJ x ,

l(xsi) = l(x)+ 1 and xsi ∈ WJ ,

for some i, then it is easy to see that xwC ∈ WJ y for some y ∈ WJ with l(y) > l(x), which
implies that TxTwC ∈ HJ y. Hence we obtain hwC (x, x) = 0. In case

x, xs1, xs1s2, . . . , xs1s2 · · · si−1 ∈ WJ x ,
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l(xsi) = l(x)− 1 and xsi ∈ WJ ,

for some i, the situation is more difficult than the previous case, but if you consider the action
of W on WJ \W carefully, then it can be shown that hwC (x, x) = 0. Now we assume that
x = dJ . We note that

dJ si =
{
si+kdJ for i = 1, 2, . . . , n− k − 1,

si+k−ndJ if i = n− k + 1, n− k + 2, . . . , n− 1,

and

dJ sn−k · · · sn−k+i−1 ∈ WJ

with l(dJ sn−k · · · sn−k+i−1) = l(dJ ) − i for i = 1, 2, . . . , k. Then the direct calculation
shows that

TdJ TwC = Tsk+1sk+2···sn−1TdJ Tsn−ksn−k+1···sn−1

= (q − 1)Tsk+1sk+2···sn−1TdJ Tsn−k+1sn−k+2···sn−1

+qTsk+1sk+2···sn−1TdJ sn−kTsn−k+1sn−k+2···sn−1

= · · ·
= (q − 1)TwkTdJ

+
k−1∑
i=1

qi(q − 1)Tsi+1si+2···ŝk ···sn−1
TdJ sn−k ···sn−k+i−1

+qnTsk+1sk+2···sn−1TdJ sn−k ···sn−1 .

Hence we obtain that hwC (dJ , dJ ) = (q − 1)Twk as required. �

THEOREM 4.8. For the Coxeter element wC = s1s2 · · · sn−1 ∈ Sn, we have

ψ(n)q (TwC ) = q(q − 1)
(
qn−2 − (1 − q)n−2

)
q − (1 − q)

ζ + q
(
qn−1 − (1 − q)n−1

)
q − (1 − q)

.

PROOF. By Corollary 4.3, we have ψ(1)q (1) = ζ as required. Now we assume n ≥ 2.
By Lemma 4.4, we have

ψ(n)q (TwC ) = ϕ(n)q (TwC )+ χ(n)q (TwC )+
n−1∑
k=1

indHn

Hk⊗Hn−k ϕ
(k)
q ⊗ χ(n−k)q (TwC ) .

By Lemma 4.5, we have

ϕ(n)q (TwC ) = (1 − q)n−1(ζ − 1) .

Since χ(n)q is the index character of Hn, we have

χ(n)q (TwC ) = ql(wC) = qn−1 .
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By Proposition 4.6 and Lemma 4.7, we have

indHn

Hk⊗Hn−k ϕ
(k)
q ⊗ χ

(n−k)
q (TwC ) =

∑
x∈WJ

ϕ(k)q ⊗ χ(n−k)q

(
hwC (x, x)

)
= ϕ

(k)
q ⊗ χ

(n−k)
q

(
(q − 1)Twk

)
= (q − 1)(1 − q)k−1(ζ − 1)qn−k−1

= −qn−k−1(1 − q)k(ζ − 1).

Hence we obtain

ψ
(n)
q (TwC ) = (1 − q)n−1(ζ − 1)+ qn−1 −

n−1∑
k=1

qn−k−1(1 − q)k(ζ − 1)

= q(q − 1)
(
qn−2 − (1 − q)n−2

)
q − (1 − q)

ζ + q
(
qn−1 − (1 − q)n−1

)
q − (1 − q)

,

which completes the proof. �

Here we list the values ψ(n)q (Tw) for n = 1, 2, 3, 4. For a partition μ, we abbreviate
the element Twμ to Tμ, where wμ is an element of minimal length in the conjugacy class
corresponding to μ.

Case n = 1:

ψ(1)q
(
T(1)

) = ζ .

Case n = 2:

ψ(2)q
(
T(1,1)

) = ζ 2, ψ(2)q
(
T(2)

) = q .

Case n = 3:

ψ(3)q
(
T(1,1,1)

) = ζ 3, ψ(3)q
(
T(2,1)

) = qζ, ψ(3)q
(
T(3)

) = q(q − 1)ζ + q .

Case n = 4:

ψ(4)q
(
T(1,1,1,1)

) = ζ 4, ψ(4)q
(
T(2,1,1)

) = qζ 2, ψ(4)q
(
T(2,2)

) = q2 ,

ψ(4)q
(
T(3,1)

) = q(q − 1)ζ 2 + qζ, ψ(4)q
(
T(4)

) = q(q − 1)ζ + (q2 − q + 1)q .
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