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Abstract. Motivated by the famous Champernowne construction of a normal number, R. Adler, M. Keane,
and M. Smorodinsky constructed a normal number with respect to the simple continued fraction transformation. In
this paper, we follow their idea and construct a normal series for the Artin continued fraction expansion in positive
characteristic. A normal series for Lüroth expansion is also discussed.

1. Introduction

After D. G. Champernowne [4], a number of works have been done for constructions of
normal numbers for various types of expansions of numbers, mostly by finitely many digits.
In this paper, we are interested in constructions of normal formal power series with respect to
expansions with countably many digits (polynomials).

We consider a sequence of rational numbers {rn} given as follows

r1 = 1

2
, r2 = 1

3
, r3 = 2

3
, r4 = 1

4
, r5 = 2

4
, r6 = 3

4
, r7 = 1

5
, r8 = 2

5
, . . . .

For each rational number rn, n ≥ 1, we expand it as a simple continued expansion as follows:

rn = 1

an,1
+ 1

an,2
+ · · · + 1

an,kn

, an,kn �= 1 .

For examples, k1 = 1, k2 = 1, k3 = 2 and a1,1 = 2, a2,1 = 3, a3,1 = 1, a3,2 = 2. Then, we
define a real number x̂ by
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x̂ = 1

2
+ 1

3
+ 1

1
+ 1

2
+ · · · + 1

an,1
+ · · · + 1

an,kn

+ 1

an+1,1
+ · · · .

In 1981, R. Adler, M. Keane, and M. Smorodinsky ([1]) showed that x̂ is normal in the sense
that for any sequence of positive integers (b1, . . . , b�) the sequence of partial quotient an of x̂

satisfies that

lim
N→∞

1

N
#{1 ≤ n ≤ N : (an, . . . , an+�−1) = (b1, . . . , b�)} = μG(〈b1, . . . , b�〉) .

Here, μG is the absolutely continuous invariant measure, which we call the Gauss measure,
for the continued fraction transformation and

〈b1, . . . , b�〉 = {x ∈ (0, 1) : a1(x) = b1, . . . , a�(x) = b�} ,

where an(x) denotes the nth partial coefficient of the simple continued fraction expansion of
x. We can regard the construction of x̂ as a continued fraction version of the Champernowne
normal number construction [4].

Now, let F be a finite field of q elements, F[X] be the set of polynomials of F-coefficients,

F(X) be the set of rational functions induced by F[X], and F((X−1)) is the set of formal power

series of F-coefficients. For f ∈ F((X−1)), we define

deg f =
{

k , if f = akX
k + ak−1X

k−1 + ak−2X
k−2 + · · · with ak �= 0 ,

−∞ , if f = 0

and

|f | = qdeg f , L = {f ∈ F((X−1)) : deg f < 0} .

For f ∈ L, there exists a sequence of polynomials A1(f ), A2(f ), . . . , in F[X] such that
deg An(f ) ≥ 1 and

f = 1

A1
+ 1

A2
+ · · · ,

which means

lim
N→∞

∣∣∣∣∣f − 1

A1
+ 1

A2
+ · · · 1

AN

∣∣∣∣∣ = 0 .

We call this continued fraction expansion of f the Artin continued fraction expansion of
f (see [2]). Indeed, we can uniquely obtain {An(f ), n ≥ 1} in the following way: For

f = akX
k + ak−1X

k−1 + · · · ∈ F((X−1)), we put

[f ] =
{

akX
k + · · · a1X + a0 , when deg f = k ≥ 0 ,

0 , otherwise
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and

{f } = f − [f ] .

We call [f ] and {f } the polynomial part and the fractional part of f respectively. For f ∈ L

we define the continued fraction transformation T of L (the Artin map) by

T (f ) =
{ {

1
f

}
= 1

f
−

[
1
f

]
, if f �= 0 ,

0, if f = 0 .

Then, we have An(f ) =
[

1
T n−1(f )

]
for T n−1(f ) �= 0, n ≥ 1. If f ∈ L ∩ F(X) then we have

f = 1

A1
+ 1

A2
+ · · · 1

An

when T k(f ) �= 0, 0 ≤ k ≤ n− 1 and T n(f ) = 0. Let μ denote the normalized Haar measure
of L with respect to the addition. It is well-known that μ is an invariant measure for T (e.g.
see [3]). For each B ∈ F[X] with deg B = k ≥ 1,

μ({f ∈ L : A1(f ) = B}) = 1

q2k
.

Moreover, for each Bm ∈ F[X], 1 ≤ m ≤ �,

μ(〈B1, . . . Bm〉) = μ({f : A1(f ) = B1, . . . , Am(f ) = Bm}) = 1

q
2

∑m
j=1 deg Bj

.

We say that f ∈ L is continued fraction normal if the partial quotient An of f satisfies that

lim
N→∞

1

N
#{1 ≤ n ≤ N : An = B1, . . . , An+m−1 = Bm} = μ(〈B1, . . . , Bm〉)

for any choice of B1, . . . , Bm ∈ F[X] with deg Bj ≥ 1, 1 ≤ j ≤ m.
Now suppose that a linear order ≺ on F is given. We extend the linear order to F[X].

If deg(P ) < deg(Q), then we set P ≺ Q; For P = anX
n + an−1X

n−1 + · · · + a1X + a0,

Q = bnX
n + bn−1X

n−1 + · · · + b1X + b0, polynomials of the same degree, we say P ≺ Q

when ak = bk , k > k0 and ak0 ≺ bk0 for some 0 ≤ k0 ≤ n.
We list up all polynomials P ∈ F[X] \ {0} of deg P < n by

Pn,1 ≺ Pn,2 ≺ · · · ≺ Pn,qn−1

and also all monic polynomials Q ∈ F[X] \ {0} of deg Q = n by

Qn,1 ≺ Qn,2 ≺ · · · ≺ Qn,qn .
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Then we have a sequence of fractions

P 1,1

Q1,1
, . . . ,

P 1,q−1

Q1,1
, . . . ,

P 1,1

Q1,q

, . . . ,
P 1,q−1

Q1,q

,
P 2,1

Q2,1
, . . . ,

P 2,q2−1

Q2,1
, . . . .

Note that the denominators are monic polynomials arranged in the increasing order start-
ing from degree 1 polynomials. For each denominator the numerator runs over polynomials
whose degree is less than the degree of the denominator. Also note that the number of P/Q’s

such that Q is monic of deg Q = n and deg P < n, P �= 0 is qn(qn − 1) = q2n − qn. For an
example, if F = {0, 1} (q = 2) with 0 ≺ 1, then

1

X
,

1

X + 1
,

1

X2
,

X

X2
,
X + 1

X2
,

1

X2 + 1
,

X

X2 + 1
,

X + 1

X2 + 1
,

1

X2 + X
, . . . .

We expand each Pn,k

Qn,m
, n ≥ 1, 1 ≤ m ≤ qn, 1 ≤ k ≤ qn − 1 as

Pn,k

Qn,m

= 1

A
(n,m,k)
1

+ 1

A
(n,m,k)
2

+ · · · + 1

A
(n,m,k)
kn,m,k

and define h ∈ L as

h = 1

A
(1,1,1)
1

+ · · · + 1

A
(1,1,q−1)
k1,1,q−1

+ 1

A
(1,2,1)
1

+ · · · + 1

A
(1,2,q−1)
k1,2,q−1

+ · · ·

+ 1

A
(n−1,qn−1,qn−1−1)
k
n−1,qn−1,qn−1−1

+ 1

A
(n,1,1)
1

+ · · · + 1

A
(n,qn,qn−1)
kn,qn,qn−1

+ · · ·

=: 1

A
�
1

+ 1

A
�
2

+ 1

A
�
3

+ · · · .

THEOREM 1. For any order ≺ on F, h ∈ L constructed in the above is continued
fraction normal.

Main point of the proof of this theorem is the following. In the case of real numbers,
the cardinality of (not necessarily irreducible) fractions in (0, 1) with denominators less than

or equals to n is 1 + 2 + · · · + n − 1 = n(n−1)
2 = O(n2) and that of fractions in (0, 1) with

denominator n is n − 1. On the other hand, in the formal Laurent series, the cardinality of

rational functions R
S

of 0 ≤ deg R < deg S < n is O(q2n) which is the same order as that of

polynomials of 0 ≤ deg R < deg S = n (S monic). Moreover, each irreducible rational R
S

of 0 ≤ deg R < deg S < n equals to qn−deg S fractional functions of R′
S ′ with deg S′ = n, S′

monic and deg R′ < n. This might destroy “normality” if we have chosen a “bad” order ≺
since there could be a long sequences of A

(n,m,k)
1 , . . . , A

(n,m,k)
kn

of “bad normality”. We will
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show that this never happens because there are sufficiently many “good” rationals R
S

if n is
sufficiently large.

It is also possible to construct the normal series h� by listing up only irreducible R
S

. The

proof of the normality of this case is easier than that of h. In the sequel, we start with h� show-
ing it being continued fraction normal, in §2. Then we show, in §3, that h is also continued
fraction normal. Finally, in §4, we give a brief comment concerning Lüroth series in the set
of formal power series L. Originally, Lüroth series is a sort of a linear version of the simple
continued fractions. Later on, A. Knopfmacher and J. Knopfmacher [7] consider its formal
power series version. Then its metric property was discussed in [6], [8], and S. Kristensen [9].
It is not difficult to see that the method discussed in §2 also works here. We discuss this point
in §4.

2. Irreducible construction

In this section, we start with the explicit definition of h�. We put

Pn = {(U, V ) : V is monic, 0 ≤ deg U < deg V = n}
and

P∗
n = {(U, V ) ∈ Pn : U and V are coprime} .

We list up all rational functions U
V

, (U, V ) ∈ P∗
n :

Un,1

Vn,1
,

Un,2

Vn,2
, . . . ,

Un,q2n−q2n−1

Vn,q2n−q2n−1
.

Here we note that the cardinality of the set P∗
n is q2n − q2n−1, see [5] for example. We can

choose any order for
{

Un,�

Vn,�

}
. For each Un,�

Vn,�
, we consider its Artin continued fraction expansion

Un,�

Vn,�

= 1

An,�,1
+ 1

An,�,2
+ · · · + 1

An,�,γ (n,�)

.

We denote by γ (n, �) the length of the Artin continued fraction expansion of Un,�

Vn,�
. We define

h� ∈ L by

h� = 1

A1,1,1
+ · · · + 1

An,�,1
+ 1

An,�,2
+ · · · + 1

An,�,γ (n,�)

+ · · ·

+ 1

An,q2n−q2n−1,1

+ · · · + 1

An,q2n−q2n−1,γ (n,q2n−q2n−1)

+ 1

An+1,1,1
+ · · ·

=: 1

A
�
1

+ 1

A
�
2

+ · · · .
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THEOREM 2. The powers series h� ∈ L is continued fraction normal.

We denote by Pn(f )
Qn(f )

the nth convergent of the Artin continued fraction expansion of

f ∈ L, that is Pn(f ) and Qn(f ) are given by(
Pn−1(f ) Pn(f )

Qn−1(f ) Qn(f )

)
=

(
0 1
1 A1(f )

)
· · ·

(
0 1
1 An(f )

)
.

LEMMA 1. For every (U, V ) ∈ P∗
n , we have

μ

({
f ∈ L : Pk(f )

Qk(f )
= U

V
for some k ≥ 1

})
= 1

q2n
.

PROOF. Since
∣∣f − U

V

∣∣ < 1
|V |2 implies U

V
= Pk(f )

Qk(f )
for some k ≥ 1 (see [11]) and

∣∣∣∣f − Pk(f )

Qk(f )

∣∣∣∣ <
1

|Qk(f )|2 = 1

q2n
,

the first 2n coefficients a1, . . . , a2n of f = a1X
−1 + a2X

−2 + . . . are determined by U
V

. On

the other hand, for every f = a1X
−1 + a2X

−2 + · · · ∈ L such that a1, . . . , a2n are the same

as those of U
V

has the same kth convergent Pk(f )
Qk(f )

= U
V

. �

To prove Theorem 2, we show that for any finite sequence of polynomials B =
(B1, . . . , Bs) with deg Bj ≥ 1, 1 ≤ j ≤ s

lim
N→∞

1

N
#{1 ≤ n ≤ N : (A�

n, . . . , A
�
n+s−1) = B} = 1

q
2

∑s
j=1 deg Bj

.

LEMMA 2. The number of irreducible U
V

such that (U, V ) ∈ P∗
n such that their Artin

continued fractions have length k, 1 ≤ k ≤ n, is(
n − 1

k − 1

)
(q − 1)kqn .

PROOF. By the assumption of this lemma, all U
V

under consideration are of the form

1

A1
+ · · · + 1

Ak

.

Thus, the leading coefficients of A1, . . . , Ak have (q − 1)k choices. Since deg Aj ≥ 1 and∑k
j=1 deg Aj = n, we have the assertion of this lemma. �

Note that

n∑
k=1

(
n − 1

k − 1

)
(q − 1)kqn =

n−1∑
k=0

(
n − 1

k

)
(q − 1)k+1qn = q2n−1(q − 1) = #P∗

n . (1)
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LEMMA 3. The sum of lengths of Artin continued fraction expansions of irreducible
U
V

with (U, V ) ∈ P∗
n is

q2n−q2n−1∑
�=1

γ (n, �) = q2n−2 (q − 1)(n(q − 1) + 1)

PROOF. From Lemma 2, we have the left hand side of the assertion is equal to
n∑

k=1

k

(
n − 1

k − 1

)
(q − 1)kqn =

n∑
k=1

(
n − 1

k − 1

)
(q − 1)kqn +

n∑
k=1

(k − 1)

(
n − 1

k − 1

)
(q − 1)kqn

=
n−1∑
k=0

(
n − 1

k

)
(q − 1)k+1qn +

n−1∑
k=0

k

(
n − 1

k

)
(q − 1)k+1qn

= q2n−1(q − 1) + (n − 1)q2n−2(q − 1)2

= q2n−2 (q − 1)(n(q − 1) + 1) . �

We fix B = (B1, . . . , Bs), Bj ∈ F[X], 1 ≤ j ≤ s in the subsequent discussion. For
ε > 0,

U

V
= 1

A1
+ · · · + 1

Ak

is said to be ε-good if∣∣∣∣ 1

k − s + 1
#{0 ≤ i ≤ k − s : Ai+1 = B1, . . . , Ai+s = Bs} − μ(B)

∣∣∣∣ < ε .

In this case, we say also that (A1, . . . , Ak) is ε-good.

LEMMA 4. For any ε > 0 and η > 0, there exist a measurable subset Eε of L and a

positive integer k0 such that μ(Eε) > 1 − η and for each f ∈ Eε the kth convergents Pk(f )
Qk(f )

are ε-good for all k ≥ k0.

PROOF. By the Birkhoff ergodic theorem (see [10] for the ergodicity of T ),

lim
k→∞

1

k

k−1∑
i=0

1B(T if ) = μ(B) for almost every f ∈ L .

This means for all ε > 0 there exists k0 = k0(f ) such that∣∣∣∣∣1

k

k−1∑
i=0

1B(T if ) − μ(B)

∣∣∣∣∣ < ε (2)
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for any k ≥ k0. We put

Eε,K = {f ∈ L : (2) holds for all k ≥ K − s + 1} .

Then Eε,K is a measurable set and f ∈ Eε,K for some K > 0 for almost every f ∈ L. Thus
we see μ(∪∞

K=1Eε,K) = 1, which shows the assertion of the theorem. �

LEMMA 5. For each η > 0 and k0 there exists a positive integer n0 such that

μ({f ∈ L : deg Qk0(f ) ≤ n0}) > 1 − η .

PROOF. Put

Dk0,m = {f ∈ L : deg Qk0(f ) = m} .

Then L = ∪∞
m=k0

Dk0,m. Thus there exists n0 such that

μ

( n0⋃
m=k0

Dk0,m

)
> 1 − η . �

LEMMA 6. For each η > 0, there exists a positive integer n0 such that

#

{
(U, V ) ∈ P∗

n : U

V
is not ε-good

}
< ηq2n

holds for any n ≥ n0.

PROOF. By Lemma 4, we have k0 and Eε,k0 with μ(Eε,k0) > 1 − η
2 and by Lemma 5

we have n0 such that

μ({f ∈ L : deg Qk0(f ) > n0}) <
η

2
.

For n ≥ n0, let U
V

, (U, V ) ∈ P∗
n , be not ε-good. Then each f ∈ L with Pk(f )/Qk(f ) =

U/V satisfies f /∈ Eε,k0 or deg Qk0(f ) > n ≥ n0. Therefore, we have

⋃
(U,V )∈P∗

n
U/V not ε-good

{
f ∈ L : Pk(f )

Qk(f )
= U

V
for some k

}
⊂ {f ∈ L : deg Qk0(f ) > n0} ∪ Ec

ε,k0
.

By Lemma 1, we have

#{(U, V ) ∈ P∗
n : U

V
is not ε-good}

q2n
< μ(Ec

ε,k0
) + μ({f ∈ L : deg Qk0(f ) > n0}) < η .

�

PROPOSITION 3. For any ε > 0, there exists n1 such that(
An,1,1, . . . , An,q2n−q2n−1,γ (n,q2n−q2n−1)

)
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is ε-good for any n ≥ n1.

PROOF. We may assume that ε < 1. We apply Lemma 6 with ε
2 and η < ε

4q2 for a

given ε. Then there exists n0 such that for n ≥ n0 the number of all non ε-good (A1, . . . , Ak)

with
∑k

i=1 deg Ai = n is less than ηq2n. Thus, the sum of the length of all non ε-good

sequences (A1, . . . , Ak) of length k, 1 ≤ k ≤ n is smaller than ηnq2n.
Let Wn be the number of occurrence of B = (B1, . . . , Bs) in the sequence(

An,1,1, . . . , An,q2n−q2n−1,γ (n,q2n−q2n−1)

)
. Then, from (1) (#P∗

n = q2n − q2n−1), Lemma 3,

and Lemma 6, we see

Wn ≥
(
q2n−2 (q − 1)(n(q − 1) + 1) − ηnq2n − (s − 1)(q2n − q2n−1)

) (
μ(B) − ε

2

)
≥ q2n−2(q − 1)(n(q − 1) + 1)

(
μ(B) − ε

2

)
−

(
ηnq2n + s(q2n − q2n−1)

)
.

Since η < ε
4q2 , for n ≥ 4qs

ε
we have

Wn ≥
(
q2n−2(q − 1)(n(q − 1) + 1) − s + 1

)
(μ(B) − ε) .

On the other hand, by the similar way we also see that

Wn ≤
(
q2n−2(q − 1)(n(q − 1) + 1) − s + 1

)
(μ(B) + ε)

holds for any sufficiently large n. Hence, there exists n1 such that∣∣∣∣ Wn

q2n−2(q − 1)(n(q − 1) + 1) − s + 1
− μ(B)

∣∣∣∣ ≤ ε

holds for any n ≥ n1. �

PROPOSITION 4. For any ε > 0, there exists n2 such that(
A1,1,1, . . . , An,q2n−q2n−1,γ (n,q2n−q2n−1)

)
is ε-good for any n ≥ n2.

PROOF. We may assume 0 < ε < 1. Then, from Proposition 3, we find n1 such that(
An,1,1, . . . , An,q2n−q2n−1,γ (n,q2n−q2n−1)

)
, n ≥ n1

are all ε
3 -good. From Lemma 3,

n1∑
k=1

q2k−q2k−1∑
�=1

γ (k, �) = O
(
n1 q2n1

)
.
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Thus we can find n2 so that n2 ≥ n1 and for any n ≥ n2

n1∑
k=1

q2k−q2k−1∑
�=1

γ (k, �)

n2∑
k=1

q2k−q2k−1∑
�=1

γ (k, �)

<
ε

3
,

n(s − 1)

n2∑
k=1

q2k−q2k−1∑
�=1

γ (k, �)

<
ε

3
.

This shows the assertion of this proposition. �

PROOF OF THEOREM 2. For ε
2 > 0, we apply Proposition 4. Then there exists n2(

ε
2 )

such that for N ≥ n2(
ε
2 )

(A
�
1, A

�
2, . . . , A

�
L) with L =

N∑
n=1

q2n−q2n−1∑
�=1

γ (n, �)

is ε
2 -good. For N ≥ n2(

ε
2 ) consider L with

N∑
n=1

q2n−q2n−1∑
�=1

γ (n, �) +
M−1∑
�=1

γ (N + 1, �) < L ≤
N∑

n=1

q2n−q2n−1∑
�=1

γ (n, �) +
M∑

�=1

γ (N + 1, �) ,

(3)

where M ≤ q2(N+1) − q2N+1. Here UN+1,1
VN+1,1

,
UN+1,2
VN+1,2

, . . . ,
UN+1,M

VN+1,M
contains at most K <

ε
2q2(N+1) non ε

2 -good rational functions.
Then we have

#{ 1 ≤ j ≤ L − s + 1 : (A
�
j ,A

�
j+1, . . . , A

�
j+s−1) = B}

≥ (L − K(N + 1) − M(s − 1))
(
μ(B) − ε

2

)
. (4)

From Lemma 3, L ≥ Nq2N(1 − 1
q
)2, and M ≤ q2N+2 − q2N+1, the right hand side of (4) is

less than L(1 − ε
2 )(μ(B) − ε

2 ) if we choose n3 ≥ n2(
ε
2 ) sufficiently large and N ≥ n3.

We can show the estimate from above by the same way. This shows that

(A
�
1, A

�
2, . . . , A

�
L) is ε-good for L of (3) with N ≥ n3. �

3. Proof of Theorem 1

As in the previous section, we fix B = (B1, . . . , Bs), where Bj ∈ F[X] with deg Bj ≥ 1,
1 ≤ j ≤ s. For any positive number ε < 1 we consider n0 in Lemma 6.

LEMMA 7. For any η > 0, there exists a positive integer n1 ≥ n0 such that

#{(RU,RV ) ∈ PN : R monic (U, V ) ∈ P∗
k for some 1 ≤ k ≤ n0}

#PN

< η (5)
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holds for any N ≥ n1.

PROOF. Since there are q2k − q2k−1 pairs (U, V ) ∈ P∗
k and qN−k monic polynomials

of degree N − k, the numerator of (5) is

n0∑
k=1

(q2k − q2k−1)qN−k = qN(qn0 − 1) . (6)

Since #PN = q2N − qN , we complete the proof. �

LEMMA 8. The sum of the lengths of Artin continued fraction expansions of U
V

,

(U, V ) ∈ Pn, is equal to n(q − 1)q2n−1.

PROOF. For any (RU,RV ) ∈ Pn with (U, V ) ∈ P∗
k and a monic polynomial R,

deg R = n − k, the Artin continued fraction expansion of RU
RV

is the same as that of U
V

. Thus,
from Lemma 3, the sum of the lengths is calculated as

n∑
k=1

q2k−q2k−1∑
�=1

γ (k, �)qn−k =
n∑

k=1

q2k−2(q − 1)(k(q − 1) + 1)qn−k

= (q − 1)qn−1
n∑

k=1

(
kqk − (k − 1)qk−1

)

= n(q − 1)q2n−1 . �

LEMMA 9. The sum of the lengths of Artin continued fraction expansions of U
V

,
(U, V ) ∈ Pk , 1 ≤ k ≤ n, is

q
(
nq2n+2 − (n + 1)q2n + 1

)
(q + 1)(q2 − 1)

(=: Ŵn) .

PROOF. This follows directly from simple calculation by Lemma 8 :

n∑
k=1

k(q − 1)q2k−1 = nq2n+1

q + 1
− q

(
q2n − 1

)
(q + 1)(q2 − 1)

. �

PROOF OF THEOREM 1. First we consider fractions by polynomial pairs in PN . The

total length of their Artin continued fraction expansions is (q − 1)Nq2N−1 as shown in
Lemma 8. Lemma 7 shows that there exists a positive integer n1 ≥ n0 such that the to-

tal length of reducible polynomials RU
RV

, with (RU,RV ) ∈ PN and deg V ≤ n0, is less

than n0(q
2N − qN)η for any N ≥ n1. By Lemma 6, among other rational functions U

V
,

(U, V ) ∈ PN , at most

η ·
N−n0∑
j=0

qjq2(N−j) (7)
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rational functions are not ε-good. This shows that the sum of lengths of Artin continued

fraction expansions of all those rational functions is less than ηNq2N+1

q−1 . Thus the number of

occurrence of B in the sequence of polynomials by the concatenations of Artin continued
fraction expansions of all elements in PN is estimated from below by(

ŴN − ηNq2N+1

q − 1
− (q2N − qN)(s − 1) − n0(q

2N − qN)η

)
· (μ(B) − ε) .

Then dividing by ŴN , we see the frequency of B is larger than(
1 − C · η − O

(
1

N

))
(μ(B) − ε) as N → ∞ ,

where C is a positive constant. Similar to the proof of Proposition 3, we choose an appropriate
η and have a positive integer n2 ≥ n1 so that the frequency of B in the above is larger than
μ(B) − 2ε for any N ≥ n2. We can estimate from above by the same way and see that the
sequence of polynomials arising from the concatenations of Artin continued fractions of all
elements in PN is 2ε-good for N ≥ n2. From Lemma 9, we can find n3 ≥ n2 such that∑n0

j=1 Ŵj∑n
j=1 Ŵj

< ε for n ≥ n3 .

Now we consider positive integer L such that

n∑
j=1

Ŵj ≤ L <

n+1∑
j=1

Ŵj

for some n ≥ n3. We put

Z(L) = #
{

1 ≤ j ≤ L − s + 1 :
(
A

�
j ,A

�
j+1, . . . , A

�
j+s−1

)
= B

}
.

Note that there are at most q2n+3 1
q−1η non ε-good rational functions U

V
such that

(U, V ) ∈ {(U, V ) ∈ Pn+1 : deg V ≥ n0} (see (7))

and there are at most qn+1(qn0 − 1) rational functions U
V

such that

(U, V ) ∈ {(U, V ) ∈ Pn+1 : deg V < n0} (see (6)) .

Then we have

Z(L) ≥(L − s + 1)(μ(B) − 2ε) − n0

n0∑
j=1

Ŵj − η(n + 1)q2(n+1)

q − 1

− n0q
n+1(qn0 − 1) − (s − 1)(q2(n+1) − qn+1) .
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Dividing by L, we see that

Z(L)

L − s + 1
≥ μ(B) − 3ε ,

where we had chosen η appropriately. The estimate from above also follows in the same way.
Consequently, we have the assertion of the theorem. �

4. Lüroth series

In this section we apply our method adopted in §2 to Lüroth series in positive character-
istic, which was introduced in A. Knopfmacher and J. Knopfmacher [7]. Let S be a map of L
onto itself by

S(f ) =
{([

1
f

]
− 1

)([
1
f

]
f − 1

)
, if f �= 0 ,

0 , if f = 0 ,

for f ∈ L. We put An(f ) =
[

1
Sn−1(f )

]
and have the expansion of f by the following

f = 1

A1(f )

+
∞∑

n=2

1

A1(f )(A1(f ) − 1)A2(f )(A2(f ) − 1) · · ·An−1(f )(An−1(f ) − 1)An(f )
,

which we call Lüroth expansion of f . The nth convergent of Lüroth expansion is

1

A1(f )
+

n∑
k=2

1

A1(f )(A1(f ) − 1)A2(f )(A2(f ) − 1) · · ·Ak−1(f )(Ak−1(f ) − 1)Ak(f )

and the degree of its denominator polynomial is deg An(f ) + ∑n−1
k=1 deg Ak(f ).

It is easy to see that the Lüroth expansion of a rational function may not be finite. Indeed,

for example, a rational function A−1
(A−1)A−1 is a fixed point of S and have the expansion

1

A
+ 1

(A − 1)AA
+ 1

(A − 1)A(A − 1)AA
+ 1

(A − 1)A(A − 1)A(A − 1)AA

for any A ∈ F[X] with deg A ≥ 1. However, we have the following proposition.

PROPOSITION 5. For any rational function U
V

∈ L, there exists positive integers n and

m (n �= m) such that Sn(U
V

) = Sm(U
V

).

PROOF. Due to the definition of S, S(U
V

) is also a rational function and the denominator
of its degree is less than deg V . There are only finitely many polynomials of degree less that
deg V , which shows the assertion of this proposition. �
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For this reason, we do not use all rational functions to construct normal series associated
with the Lüroth expansion. The simple idea is that making use of cylinder sets. We arrange a
sequence of polynomials by concatenating sequences of cylinder sets to construct the normal
series with respect to Lüroth series.

It has been shown that S is μ-preserving and

μ ({f ∈ L : A1(f ) = B1, . . . , An(f ) = Bn}) = μ(〈B1, . . . , Bm〉) = 1

q2
∑n

j=1 deg Bj
(8)

for any finite sequence of positive degree polynomials B1, . . . Bn ∈ F[X]. In this sense, we
can define the normality of Lüroth series in positive characteristic : f ∈ L is said to be Lüroth
normal if

lim
N→∞

1

N
#{1 ≤ n ≤ N : An = B1, . . . , An+m−1 = Bm} = μ(〈B1, . . . , Bm〉)

for any choice of B1, . . . , Bm ∈ F[X] with deg Bj ≥ 1, 1 ≤ j ≤ m, where Aj denotes the
j -th coefficient of the Lüroth expansion of f for j ≥ 1. We infer form these that the sequence
of polynomials constructed in §2 also gives the Lüroth normal series. Indeed the following
theorem is a direct consequence of (8) :

THEOREM 6. For any sequence of polynomials {An} in F[X] with deg An ≥ 1 for
n ≥ 1,

1

A1
+ 1

A2
+ · · ·

is continued fraction normal if and only if

1

A1
+

∞∑
n=2

1

A1(A1 − 1)A2(A2 − 1) · · · An−1(An−1 − 1)An

,

is Lüroth normal.

Now let’s define the set of cylinder sets as

Ξn =
{
〈B1, . . . , Bs〉 : cylinder sets such that

s∑
j=1

deg Bj = n

}
.

Then #Ξn = #P∗
n = q2n − q2n−1. We arrange all elements of Ξn in any order and list up

their components (polynomials) just like we did in §2. Furthermore we concatenate these
finite sequences of polynomials, n ≥ 1. Then we get an infinite sequence of polynomials
C1, C2, . . ..
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COROLLARY 7. Let Ci ∈ F[X] be given as above. Then

h∗ = 1

C1
+

∞∑
n=2

1

C1(C1 − 1)C2(C2 − 1) · · ·Cn−1(Cn−1 − 1)Cn

is Lüroth normal.

The proof of this proposition is exactly the same as that of §2.
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