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Abstract. Double Kostka polynomials Kλ,μ(t) are polynomials in t , indexed by double partitions λ,μ. As

in the ordinary case, Kλ,μ(t) is defined in terms of Schur functions sλ(x) and Hall–Littlewood functions Pμ(x; t).

In this paper, we study combinatorial properties of Kλ,μ(t) and Pμ(x; t). In particular, we show that the Lascoux–

Schützenberger type formula holds for Kλ,μ(t) in the case where μ = (−, μ′′). Moreover, we show that the Hall

bimodule M introduced by Finkelberg-Ginzburg-Travkin is isomorphic to the ring of symmetric functions (with two
types of variables) and the natural basis uλ of M is sent to Pλ(x; t) (up to scalar) under this isomorphism. This gives
an alternate approach for their result.

Introduction

Kostka polynomials Kλ,μ(t), indexed by double partitions λ,μ, were introduced in [S1,
S2] as a generalization of ordinary Kostka polynomials Kλ,μ(t) indexed by partitions λ,μ. In
this paper, we call them double Kostka polynomials. Let Λ = Λ(y) be the ring of symmetric
functions with respect to the variables y = (y1, y2, . . . ) over Z. We regard Λ ⊗ Λ as the ring

of symmetric functions Λ(x(1), x(2)) with respect to two types of variables x = (x(1), x(2)).
Schur functions {sλ(x)} gives a basis of Λ ⊗ Λ. In [S1, S2], the function Pμ(x; t) indexed by
a double partition μ was defined, as a generalization of the ordinary Hall–Littlewood function
Pμ(y; t) indexed by a partition μ. {Pμ(x; t)} gives a basis of Z[t] ⊗Z (Λ ⊗ Λ), and as in the
ordinary case, Kλ,μ(t) is defined as the coefficient of the transition matrix between two basis
{sλ(x)} and {Pμ(x; t)}.

After the combinatorial introduction of Kλ,μ(t) in [S1, S2], Achar-Henderson [AH] gave
a geometric interpretation of double Kostka polynomials in terms of the intersection cohomol-
ogy associated to the closure of orbits in the enhanced nilpotent cone, which is a natural gen-
eralization of the classical result of Lusztig [L1] that Kostka polynomials are interpreted by
the intersection cohomology associated to the closure of nilpotent orbits in gln. At the same
time, Finkelberg-Ginzburg-Travkin [FGT] studied the convolution algebra associated to the
affine Grassmannian in connection with double Kostka polynomials and the geometry of the
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enhanced nilpotent cone. In particular, they introduced the Hall bimodule M (the mirabolic
Hall bimodule in their terminology) as a generalization of the Hall algebra, and showed that

M is isomorphic to Λ⊗Λ over Z[t, t−1], and Pλ(x; t) is obtained as the image of the natural
basis uλ of M .

In this paper, we study the combinatorial properties of Kλ,μ(t) and Pμ(x; t). In partic-
ular, we show that the Lascoux–Schützenberger type formula holds for Kλ,μ(t) in the case
where μ = (−, μ′′) (Theorem 3.11). Moreover, in Theorem 4.7, we give a more direct proof
for the above mentioned result of [FGT] (in the sense that we do not appeal to the convolution
algebra associated to the affine Grassmannian).

The construction of double Kostka polynomials in [S1, S2] works for the case of r-

partitions λ = (λ(1), . . . , λ(r)), and one can define Kostka functions associated to r-partitions
λ,μ, called r-Kostka functions (a priori they are rational functions on t). In [S3], a partial re-
sult concerning the geometric realization of r-Kostka functions was obtained, and by making
use of it, Theorem 3.11 was generalized in [S4] to the case of r-Kostka functions.

In the appendix, we give tables of double Kostka polynomials for 2 ≤ n ≤ 5, where
n is the size of double partitions. The authors are grateful to J. Michel for the computer
computation of those polynomials.

1. Double Kostka polynomials

1.1. First we recall basic properties of Hall–Littlewood functions and Kostka polyno-
mials in the original setting, following [M]. Let Λ = Λ(y) = ⊕

n≥0 Λn be the ring of sym-

metric functions over Z with respect to the variables y = (y1, y2, . . . ), where Λn denotes the
free Z-module of symmetric functions of degree n. We put ΛQ = Q ⊗Z Λ, Λn

Q = Q ⊗Z Λn.

For a partition λ = (λ1, λ2, . . . , λk), put |λ| = ∑k
i=1 λi . Let Pn be the set of partitions of n,

i.e., the set of λ such that |λ| = n. Let sλ be the Schur function associated to λ ∈ Pn. Then
{sλ | λ ∈ Pn} gives a Z-basis of Λn. Let pλ ∈ Λn be the power sum symmetric function
associated to λ. Then {pλ | λ ∈ Pn} gives a Q-basis of Λn

Q. For λ = (1m1, 2m2, . . . ) ∈ Pn,

define an integer zλ by

(1.1.1) zλ =
∏
i≥1

imi mi ! .

Following [M, I], we introduce a scalar product on ΛQ by〈pλ, pμ〉= δλμzλ. It is known that
{sλ} form an orthonormal basis of Λ.

1.2. Let Pλ(y; t) be the Hall–Littlewood function associated to a partition λ. Then
{Pλ | λ ∈ Pn} gives a Z[t]-basis of Λn[t] = Z[t] ⊗Z Λn, where t is an indeterminate. Pλ

enjoys a property that

(1.2.1) Pλ(y; 0) = sλ, Pλ(y; 1) = mλ ,
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where mλ(y) is a monomial symmetric function associated to λ. Kostka polynomials
Kλ,μ(t) ∈ Z[t] (λ,μ ∈ Pn) are defined by the formula

(1.2.2) sλ(y) =
∑

μ∈Pn

Kλ,μ(t)Pμ(y; t) .

Recall the dominance order λ ≤ μ in Pn, which is defined by the condition λ ≤ μ if

and only if
∑i

j=1 λj ≤ ∑i
j=1 μj for each i ≥ 1. For each partition λ = (λ1, . . . , λk), we

define an integer n(λ) by n(λ) = ∑k
i=1(i − 1)λi . It is known that Kλ,μ(t) = 0 unless λ ≥ μ,

and that Kλ,μ(t) is a monic of degree n(μ) − n(λ) if λ ≥ μ ([M, III, (6.5)]).
For λ = (λ1, . . . , λk) ∈ Pn with λk > 0, we define zλ(t) ∈ Q(t) by

(1.2.3) zλ(t) = zλ

∏
i≥1

(1 − tλi )−1 ,

where zλ is as in (1.1.1). Following [M, III], we introduce a scalar product on ΛQ(t) =
Q(t) ⊗Z Λ by 〈pλ, pμ〉 = zλ(t)δλ,μ. Then Pλ(y; t) form an orthogonal basis of Λ[t] =
Z[t] ⊗Z Λ. In fact, they are characterized by the following two properties ([M, III, (2.6) and
(4.9)]);

(1.2.4) Pλ(y; t) = sλ(x) +
∑
μ<λ

wλμ(t)sμ(x)

with wλμ(t) ∈ Z[t] , and

(1.2.5) 〈Pλ, Pμ〉= 0 unless λ = μ.

1.3. Let � = �(x) = Λ(x(1))⊗Λ(x(2)) be the ring of symmetric functions over Z with

respect to variables x = (x(1), x(2)), where x(1) = (x
(1)
1 , x

(1)
2 , . . . ), x(2) = (x

(2)
1 , x

(2)
2 , . . . ).

We denote it as � = ⊕
n≥0 �n, similarly to the case of Λ. Let Pn,2 be the set of double

partitions λ = (λ′, λ′′) such that |λ′| + |λ′′| = n. For λ = (λ′, λ′′) ∈ Pn,2, we define a Schur
function sλ(x) ∈ �n by

(1.3.1) sλ(x) = sλ′(x(1))sλ′′(x(2)) .

Then {sλ | λ ∈ Pn,2} gives a Z-basis of �n. For an integer r ≥ 0, put p
(1)
r = pr(x

(1)) +
pr(x

(2)), and p
(2)
r = pr(x

(1))−pr(x
(2)), where pr is the r-th power sum symmetric function

in Λ. For λ ∈ Pn,2, we define pλ(x) ∈ �n by

(1.3.2) pλ =
∏
i

p
(1)

λ′
i

∏
j

p
(2)

λ′′
j

,

where λ = (λ′, λ′′) such that λ′ = (λ′
1, λ

′
2, . . . , λ

′
k′), λ′′ = (λ′′

1, λ′′
2, . . . , λ′′

k′′ ) with λ′
k′ , λ′′

k′′ >

0. Then {pλ | λ ∈ Pn,2} gives a Q-basis of �n
Q. For λ ∈ Pn,2, we define functions
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z
(1)
λ (t), z

(2)
λ (t) ∈ Q(t) by

(1.3.3) z
(1)
λ (t) =

k′∏
j=1

(1 − t
λ′

j )−1, z
(2)
λ (t) =

k′′∏
j=1

(1 + t
λ′′

j )−1 .

For λ ∈ Pn,2, we define an integer zλ by zλ = 2k′+k′′
zλ′zλ′′ . We now define a function

zλ(t) ∈ Q(t) by

(1.3.4) zλ(t) = zλz
(1)
λ (t)z

(2)
λ (t) .

Let �[t] = Z[t] ⊗Z � be the free Z[t]-module, and �Q(t) = Q(t) ⊗Z � be the Q(t)-space.
Then {pλ(x) | λ ∈ Pn,2} gives a basis of �n

Q(t). We define a scalar product on �n
Q(t) by

〈pλ, pμ〉= δλ,μzλ(t) .

We express a double partition λ = (λ′, λ′′) as λ′ = (λ′
1, . . . , λ

′
k), λ

′′ = (λ′′
1, . . . , λ

′′
k) with

some k, by allowing zero on parts λ′
i , λ

′′
i . We define a composition c(λ) of n by

c(λ) = (λ′
1, λ

′′
1, λ′

2, λ
′′
2, . . . , λ′

k, λ
′′
k ) .

We define a partial order λ ≥ μ on Pn,2 by the the condition c(λ) ≥ c(μ), where ≥ is the
dominance order on the set of compositions of n defined in a similar way as in the case of
partitions.

The following fact is known.

PROPOSITION 1.4 ([S1, S2]). There exists a unique function Pλ(x; t) ∈ �Q[t] satis-
fying the following properties.

(i) Pλ is expressed as a linear combination of Schur functions sμ as

Pλ(x; t) = sλ(x) +
∑
μ<λ

uλ,μ(t)sμ(x)

with uλ,μ(t) ∈ Q(t).
(ii) 〈Pλ, Pμ〉= 0 unless λ = μ.

REMARK 1.5. Pλ is called the Hall–Littlewood function associated to a double par-
tition λ. More generally, Hall–Littlewood functions associated to r-partitions of n was in-
troduced in [S1]. However the arguments in [S1] is based on a fixed total order which is
compatible with the partial order ≥ on Pn,2 even in the case of double partitions. In [S2,
Theorem 2.8], the closed formula for Pλ is given in the case of double partitions. This implies
that Pλ is independent of the choice of the total order, and is determined uniquely as in the
above proposition. (The uniqueness of Pλ also follows from the result of Achar-Henderson,
see Theorem 2.4.)
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1.6. By Proposition 1.4, {Pλ | λ ∈ Pn,2} gives a basis of �n
Q(t). For λ,μ ∈ Pn,2, we

define a function Kλ,μ(t) ∈ Q(t) by the formula

sλ(x) =
∑

μ∈Pn,2

Kλ,μ(t)Pμ(x; t) .

Kλ,μ(t) are called the Kostka functions associated to double partitions. For each λ =
(λ′, λ′′) ∈ Pn,2, put n(λ) = n(λ′ + λ′′) = n(λ′) + n(λ′′). We define an integer a(λ) by

(1.6.1) a(λ) = 2n(λ) + |λ′′| .
The following result was proved in [S2, Prop. 3.3].

PROPOSITION 1.7. Kλ,μ(t) ∈ Z[t]. Kλ,μ(t) = 0 unless λ ≥ μ. If λ ≥ μ, Kλ,μ(t)

is a monic of degree a(μ) − a(λ), hence Kλ,λ(t) = 1. In particular, Pλ(x; t) ∈ �n[t], and
uλ,μ(t) ∈ Z[t].

1.8. Since Kλ,μ(t) is a polynomial in t associated to double partitions, we call it the

double Kostka polynomial. Put K̃λ,μ(t) = ta(μ)Kλ,μ(t−1). By Proposition 1.7, K̃λ,μ(t) is
again contained in Z[t], which we call the modified double Kostka polynomial. In the case

of Kostka polynomial Kλ,μ(t), we also put K̃λ,μ(t) = tn(μ)Kλ,μ(t−1). By 1.2, K̃λ,μ(t) is a
polynomial in Z[t], which is called the modified Kostka polynomial.

Following [S1, S2], we give a combinatorial characterization of K̃λ,μ(t) and K̃λ,μ(t). In
order to discuss both cases simultaneously, we introduce some notation. For r = 1, 2, put
Wn,r = Sn � (Z/rZ)n. Hence Wn,r is the symmetric group Sn of degree n if r = 1, and is the
Weyl group Wn of type Cn if r = 2. For a (not necessarily irreducible) character χ of Wn,r ,
we define the fake degree R(χ) by

(1.8.1) R(χ) =
∏n

i=1(t
ir − 1)

|Wn,r |
∑

w∈Wn,r

ε(w)χ(w)

detV0(t − w)
,

where ε is the sign character of Wn,r , and V0 is the reflection representation of Wn,r if r = 2

(i.e., dim V0 = n), and its restriction on Sn if r = 1. Let R(Wn,r ) = ⊕N
i=1 Ri be the

coinvariant algebra over Q associated to Wn,r , where N is the number of positive roots of the
root system of type Cn (resp. type An−1) if r = 2 (resp. r = 1). Then R(Wn,r ) is a graded
Wn,r -module, and we have

(1.8.2) R(χ) =
N∑

i=1

〈χ,Ri〉Wn,r
t i ,

where 〈 , 〉Wn,r
is the inner product of characters of Wn,r . It follows that R(χ) ∈ Z[t]. It is

known that irreducible characters of Wn,r are parametrized by Pn,r (we use the convention

that Pn,1 = Pn). We denote by χλ the irreducible character of Wn,r corresponding to
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λ ∈ Pn,r . (Here we use the parametrization such that the identity character corresponds to
λ = ((n),−) if r = 2, and λ = (n) if r = 1.) We define a square matrix � = (ωλ,μ)λ,μ by

(1.8.3) ωλ,μ = tNR(χλ ⊗ χμ ⊗ ε) .

We have the following result. Note that Theorem 5.4 in [S1] is stated for a fixed total order
on Pn,2. But in our case, it can be replaced by the partial order (see Remark 1.5).

PROPOSITION 1.9 ([S1, Thm. 5.4]). Assume that r = 2. There exist unique matrices
P = (pλ,μ), Λ = (ξλ,μ) over Q[t] satisfying the equation

PΛ tP = � ,

subject to the condition that Λ is a diagonal matrix and that

pλ,μ =
{

0 unless μ ≤ λ ,

ta(λ) if λ = μ .

Then the entry pλ,μ of the matrix P coincides with K̃λ,μ(t).
A similar result holds for the case r = 1 by replacing λ,μ ∈ Pn,2 by λ,μ ∈ Pn, and

by replacing a(λ) by n(λ).

1.10. Assume that λ = (−, λ′′) ∈ Pn,2. If μ ≤ λ, then μ is of the form μ = (−, μ′′)
with μ′′ ≤ λ′′. Thus K̃λ,μ(t) = 0 unless μ satisfies this condition. The following result was
shown by Achar-Henderson [AH] by a geometric method (see Proposition 2.5 (ii)). We give
below an alternate proof based on Proposition 1.9.

PROPOSITION 1.11. Assume that λ = (−, λ′′),μ = (−, μ′′) ∈ Pn,2. Then

(1.11.1) K̃λ,μ(t) = tnK̃λ′′,μ′′(t2) .

In particular, we have

(1.11.2) Kλ,μ(t) = Kλ′′,μ′′(t2) .

PROOF. (1.11.2) follows from (1.11.1). We show (1.11.1). We shall compute ωλ,μ =
tNR(χλ ⊗ χμ ⊗ ε) for λ = (−, λ′′),μ = (−, μ′′). χλ corresponds to the irreducible rep-

resentation of Sn with character χλ′′
, extended by the action of (Z/2Z)n such that any factor

Z/2Z acts non-trivially. This is the same for χμ. Hence χλ ⊗ χμ corresponds to the repre-

sentation of Sn with character χλ′′ ⊗ χμ′′
, extended by the trivial action of (Z/2Z)n. Thus

χλ ⊗χμ ⊗ ε corresponds to the representation of Sn with character χλ′′ ⊗χμ′′ ⊗ ε′, extended
by the action of (Z/2Z)n such that any factor Z/2Z acts non-trivially, where ε′ denote the
sign character of Sn. Let {s1, . . . , sn} be the set of simple reflections of Wn. We identify
the symmetric algebra S(V ∗

0 ) of V0 with the polynomial ring R[y1, . . . , yn] with the natural
Wn-action, where si permutes yi and yi+1 (1 ≤ i ≤ n − 1), and sn maps yn to −yn. Then
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(Z/2Z)n-invariant subalgebra of R[y1, . . . , yn] coincides with R[y2
1, . . . , y2

n]. It follows that

the (Z/2Z)n-invariant subalgebra R(Wn)(Z/2Z)n of R(Wn) is isomorphic to R(Sn) as graded

algebras, where the degree 2i-part of R(Wn)(Z/2Z)n corresponds to the degree i part of R(Sn).
Let X be the subspace of R(Wn) consisting of vectors on which (Z/2Z)n acts in such a way

that each factor Z/2Z acts non-trivially. Then X = y1 . . . ynR(Wn)(Z/2Z)n. It follows that

R(χλ ⊗ χμ ⊗ ε)(t) = tnR(χλ′′ ⊗ χμ′′ ⊗ ε′)(t2) .

Since N = n2 for Wn-case, and N = n(n − 1)/2 for Sn-case, this implies that

(1.11.3) ωλ,μ(t) = t2nωλ′′,μ′′(t2)

We consider the embedding Pn ↪→ Pn,2 by λ′′ �→ (−, λ′′). This embedding is compat-
ible with the partial order of Pn and Pn,2, and in fact, Pn is identified with the subset
{μ ∈ Pn,2 | μ ≤ (−, (n))} of Pn,2. We consider the matrix equation PΛ tP = � as in
Proposition 1.9 for r = 2. Let P0,Λ0,�0 be the submatrices of P,Λ,� obtained by restrict-
ing the indices from Pn,2 to Pn. Then these matrices satisfy the relation P0Λ0

tP0 = �0.

By (1.11.3) �0 coincides with t2n�′(t2), where �′ denotes the matrix � in the case r = 1.
If we put P ′ = t−nP0,Λ

′ = Λ0, we have a matrix equation P ′Λ′ tP ′ = �′(t2). Note that

the (λ′′, λ′′)-entry of P ′ coincides with t−nta(λ) = t2n(λ′′). Hence P ′,Λ′,�′ satisfy all the re-

quirements in Proposition 1.9 for the case r = 1, by replacing t by t2. Now by Proposition 1.9,

we have t−nK̃λ,μ(t) = K̃λ′′,μ′′(t2) as asserted. �

As a corollary, we have

COROLLARY 1.12. Assume that λ = (−, λ′′). Then Pλ(x; t) = Pλ′′(x(2); t2).

PROOF. Since λ = (−, λ′′), we have sλ(x) = sλ′′(x(2)). By (1.11.2), we have

sλ′′(x(2)) =
∑

μ′′∈Pn

Kλ′′,μ′′(t2)Pμ(x; t) .

We have also

sλ′′(x(2)) =
∑

μ′′∈Pn

Kλ′′,μ′′ (t2)Pμ′′ (x(2); t2) .

Since (Kλ′′,μ′′ (t2)) is a non-singular matrix indexed by Pn, the assertion follows. �

2. Geometric interpretation of double Kostka polynomials

2.1. In [L1], Lusztig gave a geometric interpretation of Kostka polynomials in terms of
the intersection cohomology complex associated to the nilpotent orbits of gln. Let V be an
n-dimensional vector space over an algebraically closed field k, and put G = GL(V ). Let g
be the Lie algebra of G, and gnil the nilpotent cone of g. G acts on gnil by the adjoint action,
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and the set of G-orbits in gnil is in bijective correspondence with Pn via the Jordan normal

form of nilpotent elements. We denote by Oλ the G-orbit corresponding to λ ∈ Pn. Let Oλ

be the closure of Oλ in gnil. Then we have Oλ = ∐
μ≤λ Oμ, where μ ≤ λ is the dominance

order of Pn. Let Aλ = IC(Oλ, Q̄l ) be the intersection cohomology complex of Q̄l-sheaves,

and H i
x Aλ the stalk at x ∈ Oλ of the i-th cohomology sheaf H iAλ. Lusztig’s result is stated

as follows.

THEOREM 2.2 ([L1, Thm. 2]). H iAλ = 0 for odd i. For each x ∈ Oμ ⊂ Oλ,

K̃λ,μ(t) = tn(λ)
∑
i≥0

(dim H 2i
x Aλ)t

i .

2.3. The geometric interpretation of double Kostka polynomials analogous to Theo-
rem 2.2 was established by Achar-Henderson [AH]. We follow the setting in 2.1. Consider
the direct product X = g × V , on which G acts as g : (x, v) �→ (gx, gv), where gv is the
natural action of G on V . Put Xnil = gnil × V . Xnil is a G-stable subset of X , and is called
the enhanced nilpotent cone. It is known by Achar-Henderson [AH] and by Travkin [T] that
the set of G-orbits in Xnil is in bijective correspondence with Pn,2. The correspondence is
given as follows; take (x, v) ∈ Xnil. Put Ex = {g ∈ End(V ) | gx = xg}. Then W = Exv

is an x-stable subspace of V . Let λ′ be the Jordan type of x|W , and λ′′ the Jordan type of
x|V/W . Then λ = (λ′, λ′′) ∈ Pn,2, and the assignment (x, v) �→ λ gives the required corre-
spondence. We denote by Oλ the G-orbit corresponding to λ ∈ Pn,2. The closure relation
for Oλ was described by [AH, Thm. 3.9] as follows;

(2.3.1) Oλ =
∐
μ≤λ

Oμ ,

where the partial order μ ≤ λ is the one defined in 1.3. We consider the intersection coho-

mology complex Aλ = IC(Oλ, Q̄l ) on Xnil associated to λ ∈ Pn,2. The following result was
proved by Achar-Henderson.

THEOREM 2.4 ([AH, Thm. 5.2]). Assume that Aλ is attached to the enhanced nilpo-

tent cone. Then H iAλ = 0 for odd i. For z ∈ Oμ ⊂ Oλ,

K̃λ,μ(t) = ta(λ)
∑
i≥0

(dim H 2i
z Aλ)t

2i .

Note that H 2i corresponds to t2i in the enhanced case, which is different from the cor-

respondence H 2i ↔ t i in the gnil case. As a corollary, we have

PROPOSITION 2.5 ([AH, Cor. 5.3]). Under the notation as above,

(i) K̃λ,μ(t) ∈ Z≥0[t]. Moreover, only powers of t congruent to a(λ) modulo 2 occur in the
polynomial.
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(ii) Assume that λ = (−, λ′′),μ = (−, μ′′). Then K̃λ,μ(t) = tnK̃λ′′,μ′′ (t2).

(iii) Assume that λ = (λ′,−) and μ = (μ′, μ′′). Then K̃λ,μ(t) = K̃λ′,μ′+μ′′(t2).

PROOF. For the sake of completeness, we give the proof here. (i) is clear from the
theorem. For (ii), take λ = (−, λ′′). Then by the correspondence given in 2.3, if (x, v) ∈ Oλ,
then v = 0, and x ∈ Oλ′′ . It follows that Oλ = Oλ′′ and that Aλ � Aλ′′ . z ∈ Oμ is
also written as z = (x, 0) with x ∈ Oμ′′ . Then (ii) follows by comparing Theorem 2.2 and

Theorem 2.4. For (iii), it was proved in [AH, Lemma 3.1] that Oλ = Oλ′ ×V for λ = (λ′,−).

Thus IC(Oλ, Q̄l ) � IC(Oλ′, Q̄l ) � (Q̄l)V , where (Q̄l)V is the constant sheaf Q̄l on V . It
follows that H 2i

z Aλ = H 2i
x Aλ′ for z = (x, v) ∈ Oμ. Since x ∈ Oμ′+μ′′ , (iii) follows from

Theorem 2.2 (note that a(λ) = 2n(λ′)). �

REMARK 2.6. Proposition 2.5 (ii) was also proved in Proposition 1.11 by a combina-
torial method. We don’t know whether (iii) can be proved in a combinatorial way. However
if we admit that K̃λ,μ(t) depends only on μ′ + μ′′ for λ = (λ′,−) (this is a consequence of
(iii)), a similar argument as in the proof of Proposition 1.11 can be applied.

Proposition 2.5 (iii) implies the following.

COROLLARY 2.7. For ν ∈ Pn, we have

Pν(x
(1); t2) =

∑
ν=μ′+μ′′

t |μ′′ |P(μ′,μ′′)(x; t) .

PROOF. It follows from Proposition 2.5 (iii) that Kλ,μ(t) = t |μ′′ |Kλ′,μ′+μ′′ (t2) for

λ = (λ′,−). Since sλ(x) = sλ′(x(1)), we have

sλ′(x(1)) =
∑

μ∈Pn,2

Kλ,μ(t)Pμ(x; t)

=
∑

μ∈Pn,2

Kλ′,μ′+μ′′(t2)t |μ′′ |Pμ(x; t)

=
∑
ν∈Pn

Kλ′,ν(t
2)

∑
ν=μ′+μ′′

t |μ′′ |P(μ′,μ′′)(x; t) .

On the other hand, we have

sλ′(x(1)) =
∑
ν∈Pn

Kλ′,ν(t
2)Pν(x

(1); t2) .

Since (Kλ′,ν(t2)) is a non-singular matrix, we obtain the required formula. �

REMARK 2.8. The formula in Corollary 2.7 suggests that the behavior of Pμ(x; t) at
t = 1 is different from that of ordinary Hall–Littlewood functions given in (1.2.1). In fact, by

Corollary 1.12, P(−,ν)(x; t) = Pν(x
(2); t2). Hence P(−,ν)(x; 1) = mν(x

(2)) by (1.2.1). Also

by (1.2.1) Pν(x
(1); 1) = mν(x

(1)). Then by Corollary 2.7, we have
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mν(x
(1)) = mν(x

(2)) +
∑

ν=μ′+μ′′,μ′ �=∅
P(μ′,μ′′)(x; 1) .

This formula shows that a certain cancelation occurs in the expression of Pμ(x; 1) as a sum
of monomials. Concerning this, we will have a related result later in Proposition 3.23.

2.9. There exists a geometric realization of double Kostka polynomials in terms of the
exotic nilpotent cone instead of the enhanced nilpotent cone. Let V be a 2n-dimensional
vector space over an algebraically closed field k of odd characteristic. Let G = GL(V ) and
θ an involutive automorphism of G such that Gθ = Sp(V ). Put H = Gθ . Let g be the Lie
algebra of G. θ induces a linear automorphism of order 2 on g, which we denote also by θ .
g is decomposed as g = gθ ⊕ g−θ , where g±θ is the eigenspace of θ with eigenvalue ±1.
Thus g±θ are H -invariant subspaces in g. We consider the direct product X = g−θ × V ,

on which H acts diagonally. Put g−θ
nil = g−θ ∩ gnil. Then g−θ

nil is H -stable, and we consider

Xnil = g−θ
nil × V . Xnil is an H -invariant subset of X , and is called the exotic nilpotent

cone. It is known by Kato [K1] that the set of H -orbits in Xnil is in bijective correspondence
with Pn,2. We denote by Oλ the H -orbit corresponding to λ ∈ Pn,2. It is also known by
[AH] that the closure relations for Oλ are given by the partial order ≤ on Pn,2. We consider

the intersection cohomology complex Aλ = IC(Oλ, Q̄l ) on Xnil. The following result was
proved by Kato [K2], and [SS2], independently.

THEOREM 2.10. Assume that Aλ is attached to the exotic nilpotent cone. Then

H iAλ = 0 unless i ≡ 0 (mod 4). For z ∈ Oμ ⊂ Oλ, we have

K̃λ,μ(t) = ta(λ)
∑
i≥0

(dim H 4i
z Aλ)t

2i .

2.11. Let Wn be the Weyl group of type Cn. The advantage of the use of the exotic
nilpotent cone relies on the fact that it has a good relationship with representations of Weyl
groups, as explained below. Let B be a θ -stable Borel subgroup of G. Then Bθ is a Borel
subgroup of H , and we denote by B the flag variety H/Bθ of H . Let 0 = M0 ⊂ M1 ⊂ · · · ⊂
Mn ⊂ V be the (full) isotropic flag fixed by Bθ . Hence Mn is a maximal isotropic subspace
of V . Put

X̃nil = {(x, v, gBθ ) ∈ g−θ
nil × V × B | g−1x ∈ Lie B, g−1v ∈ Mn} ,

and define a map π1 : X̃nil → Xnil by (x, v, gBθ ) �→ (x, v). Then X̃nil is smooth, irre-
ducible and π1 is proper surjective. Let Vλ be the irreducible representation of Wn corre-

sponding to χλ (λ ∈ Pn,2). We consider the direct image (π1)∗Q̄l of the constant sheaf Q̄l

on X̃nil. The following result is an analogue of the Springer correspondence for reductive
groups, and was proved by Kato [K1], and [SS1], independently.

THEOREM 2.12. (π1)∗Q̄l[dim Xnil] is a semisimple perverse sheaf on Xnil, equipped
with Wn-action, and is decomposed as
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(2.12.1) (π1)∗Q̄l[dim Xnil] �
⊕

λ∈Pn,2

Vλ ⊗ Aλ[dim Oλ] ,

where Aλ[dim Oλ] is a simple perverse sheaf on Xnil.

2.13. For each z = (x, v) ∈ Xnil, put

Bz = {gBθ ∈ B | g−1x ∈ Lie B, g−1v ∈ Mn} .

Bz is isomorphic to π−1
1 (z), and is called the Springer fibre. Since H i

z ((π1)∗Q̄l) �
Hi(Bz, Q̄l ), Hi(Bz, Q̄l ) has a structure of Wn-module, which we call the Springer repre-

sentation of Wn. Put K = (π1)∗Q̄l . By taking the stalk at z ∈ Xnil of the i-th cohomology of
both sides in (2.12.1), we have an isomorphism of Wn-modules,

H i
z K � Hi(Bz, Q̄l ) �

⊕
λ∈Pn,2

Vλ ⊗ H i+dim Oλ−dim Xnil
z Aλ .

Since dim Xnil −dim Oλ = 2a(λ) (see [SS2, (5.7.1)]), this together with Theorem 2.10 imply
the following result.

PROPOSITION 2.14. Assume that z ∈ Oμ. Then Hi(Bz, Q̄l ) = 0 for odd i, and we
have

K̃λ,μ(t) =
∑
i≥0

〈H 2i(Bz, Q̄l ), Vλ 〉Wn
ti ,

namely, the coefficient of t i in K̃λ,μ(t) is given by the multiplicity of Vλ in the Wn-module

H 2i (Bz, Q̄l ).

3. Combinatorial properties of Kλ,μ(t) and Pμ(x; t)

3.1. In [AH], Achar-Henderson gave a formula expressing double Kostka polynomials
in terms of various ordinary Kostka polynomials. We consider the enhanced nilpotent cone
Xnil = gnil × V as in 2.3, under the assumption that k is an algebraic closure of a finite field
Fq . Take μ, ν ∈ Pn,2. For each z = (x, v) ∈ Oμ and ν = (ν′, ν′′), we define a variety G μ

ν

by

G μ
ν = {W ⊂V | W : x-stable subspace, v ∈ W ,

x|W type : ν′, x|V/W type : ν′′ }.
(3.1.1)

Note that if z ∈ Oμ(Fq), the variety G μ
ν is defined over Fq , and one can count the cardinality

|G μ
ν (Fq)| of Fq-fixed points in G μ

ν . Clearly, |G μ
ν (Fq)| is independent of the choice of z ∈

Oμ(Fq).
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PROPOSITION 3.2 (Achar-Henderson [AH, Prop. 5.8]). Let μ, ν ∈ Pn,2.

(i) There exists a polynomial gμ
ν (t) ∈ Z[t] such that |G μ

ν (Fq)| = g
μ
ν (q) for any finite field

Fq with z ∈ Oμ(Fq).
(ii) Take λ = (λ′, λ′′), ν = (ν′, ν′′). Then we have

(3.2.1) K̃λ,μ(t) = ta(λ)−2n(λ)
∑
ν ′≤λ′
ν ′′≤λ′′

gμ
ν (t2)K̃λ′ν ′(t2)K̃λ′′ν ′′(t2) .

3.3. The formula (3.2.1) can be rewritten as

(3.3.1) Kλ,μ(t) = t |μ′′|−|λ′′| ∑
ν=(ν ′,ν ′′)∈Pn,2

t2n(μ)−2n(ν)gμ
ν (t−2)Kλ′ν ′(t2)Kλ′′ν ′′(t2) .

Note that gμ
ν (t) is a generalization of Hall polynomials. If μ = (−, μ′′), then z = (x, v) with

v = 0. In that case, gμ
ν (t) coincides with the original Hall polynomial gμ′′

ν ′ν ′′(t) given in [M, II,

4]. In particular, if gμ

ν ′ν ′′(t) �= 0, then g
μ

ν ′ν ′′(t) is a polynomial with degree n(μ)−n(ν′)−n(ν′′)
and leading coefficient cμ

ν ′ν ′′ , where c
μ

ν ′ν ′′ is the Littlewood–Richardson coefficient determined
by the following conditions; for partitions λ,μ, ν,

(3.3.2) sμsν =
∑
λ

cλ
μνsλ .

For partitions λ,μ, ν, we define a polynomial f λ
μν(t) by

(3.3.3) Pμ(y; t)Pν(y; t) =
∑
λ

f λ
μν(t)Pλ(y; t) .

Then it is known by [M, III, (3.6)] that

(3.3.4) gλ
μν(t) = tn(λ)−n(μ)−n(ν)f λ

μν(t
−1) .

We have a lemma.

LEMMA 3.4. Assume that μ = (−, μ′′). Then we have

Kλ,μ(t) = t |λ′| ∑
ν ′,ν ′′

f
μ′′
ν ′ν ′′(t2)Kλ′ν ′(t2)Kλ′′ν ′′(t2) ,(3.4.1)

Kλ,μ(t) = t |λ′| ∑
η

c
η

λ′λ′′Kη,μ′′(t2) .(3.4.2)

PROOF. The first equality is obtained by substituting (3.3.4) into (3.3.1). We show the
second equality. One can write

sλ′(y) =
∑
ν ′

Kλ′ν ′(t)Pν ′(y; t) ,
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sλ′′(y) =
∑
ν ′′

Kλ′′,ν ′′(t)Pν ′′(y; t) .

Hence

sλ′(y)sλ′′(y) =
∑
ν ′,ν ′′

Kλ′ν ′(t)Kλ′′ν ′′(t)Pν ′(y; t)Pν ′′(y; t)(3.4.3)

=
∑
ν ′,ν ′′

∑
μ′′

f
μ′′
ν ′ν ′′(t)Kλ′ν ′(t)Kλ′′ν ′′(t)Pμ′′ (y; t) .

On the other hand,

sλ′(y)sλ′′(y) =
∑
η

c
η

λ′λ′′sη(y)(3.4.4)

=
∑
η

c
η

λ′λ′′
∑
μ′′

Kη,μ′′(t)Pμ′′ (y; t) .

By comparing (3.4.3) and (3.4.4), we have, for each λ′, λ′′ and μ′′,∑
η

c
η

λ′λ′′Kη,μ′′ (t) =
∑
ν ′,ν ′′

f
μ′′
ν ′ν ′′(t)Kλ′ν ′(t)Kλ′′ν ′′(t) .

This proves the second equality. �

3.5. For λ,μ ∈ Pn, let SST (λ,μ) be the set of semistandard tableaux of shape λ and
weight μ. For a semistandard tableau S, the charge c(S) is defined as in [M, III, 6]. Then
Lascoux–Schützenberger theorem ([M, III, (6.5)]) asserts that

(3.5.1) Kλ,μ(t) =
∑

S∈SST (λ;μ)

tc(S) .

In what follows, we shall prove an analogue of (3.5.1) for double Kostka polynomials
Kλ,μ(t) for some special cases. Let λ = (λ′, λ′′) ∈ Pn,2. A pair T = (T+, T−) is called
a semistandard tableau of shape λ if T+ (resp. T−) is a semistandard tableau of shape λ′
(resp. λ′′) with respect to the letters 1, . . . , n. We denote by SST (λ) the set of semistandard
tableaux of shape λ. T ∈ SST (λ) is regarded as a usual semistandard tableau associated to
a skew diagram; write λ′ = (λ′

1, λ
′
2, . . . , λ

′
k′) with λ′

k′ > 0, and λ′′ = (λ′′
1, λ′′

2, . . . , λ′′
k′′ ) with

λ′′
k′′ > 0. Put a = λ′′

1. We define a partition ξ = (ξ1, . . . , ξk′+k′′) ∈ Pn+ak′ by

ξi =
{

λ′
i + a for 1 ≤ i ≤ k′ ,

λ′′
i−k′ for k′ + 1 ≤ i ≤ k′ + k′′.

We define a partition θ = (ak′
) of rectangular shape. Then θ ⊂ ξ , and the skew diagram ξ −θ

consist of connected components of shape λ′ and λ′′. Thus T ∈ SST (λ) can be identified
with a semistandard tableau T̃ of shape ξ − θ . Assume π ∈ Pn. We say that T ∈ SST (λ)
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has weight π if the corresponding tableau T̃ has shape ξ − θ and weight π . We denote by
SST (λ, π) the set of semistandard tableau of shape λ and weight π .

The set SST (λ, π) is described as follows; for a partition ν ∈ Pm and α =
(α1, . . . , αn) ∈ Zn

≥0 such that |α| = ∑
i αi = m, let SST (ν; α) be the set of semistandard

tableau of shape ν and weight α. Then we have

(3.5.2) SST (λ, π) =
∐

α+β=π
|α|=|λ′|

(SST (λ′, α) × SST (λ′′, β)) .

REMARK 3.6. Usually, the weight of a semistandard tableau is assumed to be a parti-
tion. Here we need to consider the weight which is not a partition. But this gives no essential
difference. In fact, we consider the set SST (ν; α). Sn acts on Zn

≥0 by a permutation of factors.

We denote by O(α) the Sn-orbit of α in Zn
≥0. There exists a unique μ ∈ O(α) such that μ is a

partition. Then we have |SST (ν; α)| = |SST (ν; μ)|. This follows from (5.12) in [M, I] and
the discussion below (though it is not written explicitly).

3.7. For (an ordinary) semistandard tableau S, a word w(S) is defined as a sequence
of letters 1, . . . , n, reading from right to left, and top to down. This definition works for
the semistandard tableau associated to a skew-diagram. For a semistandard tableau T =
(T+, T−) ∈ SST (λ), we define the associated word w(T ) by w(T ) = w(T+)w(T−). Hence
w(T ) coincides with w(T̃ ).

Following [M, I, 9], we introduce a notion of lattice permutation. A word w = a1 . . . aN

consisting of letters 1, . . . , n is called a lattice permutation if for 1 ≤ r ≤ N and 1 ≤ i ≤ n−1,
the number of occurrences of the letter i in a1 . . . ar is ≥ the number of occurrences of the
letter i + 1. We denote by SST 0(λ, π) the set of semistandard tableau T ∈ SST (λ, π) such
that w(T ) is a lattice permutation.

LEMMA 3.8. Assume that λ ∈ Pn,2, π ∈ Pn. There exists a bijective map

(3.8.1) Θ : SST (λ, π) ∼−→
∐

ν∈Pn

(SST 0(λ, ν) × SST (ν, π))

PROOF. Under the correspondence T ↔ T̃ in 3.5, the set SST (λ, π) can be identified
with the set SST (ξ − θ, π). Then (3.8.1) is a special case of the bijection given in [M, I,
(9.4)]. In (9.4), this bijection is explicitly constructed. �

COROLLARY 3.9. Assume that λ = (λ′, λ′′) ∈ Pn,2, ν ∈ Pn. Then we have

|SST 0(λ, ν)| = cν
λ′,λ′′ .

PROOF. We prove the corollary by modifying the discussion in [M, I, 9]. By [M, I,
(5.12)], we have

sλ′(y) =
∑

S ′∈SST (λ′)
yS ′

,
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sλ′′(y) =
∑

S ′′∈SST (λ′′)
yS ′′

.

It follows that

sλ′(y)sλ′′(y) =
∑

T ∈SST (λ)

yT .

By a similar argument as in the proof of (5.14) in [M, I], we have

|SST (λ, π)| =〈sλ′sλ′′ , hπ 〉,
where hπ is the complete symmetric function associated to π . Similarly, we have
|SST (ν, π)| =〈sν, hπ 〉. Then by (3.8.1), we have

〈sλ′sλ′′ , hπ 〉=
∑

ν∈Pn

|SST 0(λ, ν)|〈sν, hπ 〉

for any π ∈ Pn. It follows that

(3.9.1) sλ′sλ′′ =
∑

ν∈Pn

|SST 0(λ, ν)|sν .

On the other hand, by (3.3.2) we have

(3.9.2) sλ′sλ′′ =
∑

ν∈Pn

cν
λ′,λ′′sν .

By comparing the coefficient of sν in (3.9.1) with (3.9.2), we obtain the result. �

3.10. Assume that λ ∈ Pn,2 and μ′′ ∈ Pn. For T ∈ SST (λ, μ′′), write Θ(T ) =
(D, S), with S ∈ SST (ν, μ′′) for some ν. We define a charge c(T ) of T by c(T ) = c(S),
where c(S) is the charge of S as in (3.5.1). The following formula is an analogue of Lascoux–
Schützenberger theorem for the double Kostka polynomial Kλ,μ(t) in the case where μ =
(−, μ′′).

THEOREM 3.11. Let λ,μ ∈ Pn,2, and assume that μ = (−, μ′′). Then

Kλ,μ(t) = t |λ′| ∑
T ∈SST (λ,μ′′)

t2c(T ) .

PROOF. We define a map � : SST (λ, μ′′) → ∐
ν∈Pn

SST (ν, μ′′) by T �→ S, where

Θ(T ) = (D, S). Then by Corollary 3.9, for each S ∈ SST (ν, μ′′), the set �−1(S) has the

cardinality cν
λ′λ′′ , and, by definition, any element T ∈ �−1(S) has the charge c(T ) = c(S).

Hence ∑
T ∈SST (λ,μ′′)

tc(T ) =
∑

ν∈Pn

∑
S∈SST (ν,μ′′)

cν
λ′λ′′ tc(S)
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=
∑

ν∈Pn

cν
λ′λ′′Kν,μ′′ (t)

since Kν,μ′′(t) = ∑
S tc(S) by (3.5.1). Now the theorem follows from (3.4.2). �

COROLLARY 3.12. Assume that λ,μ ∈ Pn,2 with μ = (−, μ′′). Then we have

Kλ,μ(1) = |SST (λ, μ′′)| .
REMARK 3.13. (i) The Littlewood–Richardson rule is a combinatorial procedure of

computing Littlewood–Richardson coefficients. In [M, I, (9.2)] it is stated that cν
λ′,λ′′ is equal

to the number of semistandard tableaux T of shape ν − λ′ and weight λ′′ such that w(T ) is a
lattice permutation. Hence Corollary 3.9 gives a variant of the Littlewood–Richardson rule.

(ii) The definition of the charge in [M] makes sense for words rather than tableaux,
and we have c(S) = c(w(S)) for a semistandard tableau S in (3.5.1). So in the case where
T ∈ SST (λ, μ′′) it would be more natural to define the charge c′(T ) as the charge of the word
w(T ). But in that case it is not clear whether this charge c′ is compatible with the bijection
Θ in (3.8.1), and we do not know whether c′ coincides with c defined in 3.10. However, in
[Li], the first named author proved a similar formula for Kλ,μ(t) as Theorem 3.11 by using
the charge c′, by constructing a different type bijection of Θ .

3.14. Here we recall the explicit construction of χλ for λ = (λ′, λ′′) ∈ Pn,2. Put

|λ′| = m′, |λ′′| = m′′. Let χλ′
(resp. χλ′′

) be the irreducible character of Sm′ (resp. Sm′′ )

corresponding to the partition λ′ ∈ Pm′ (resp. λ′′ ∈ Pm′′ ). We denote by χ̃λ′
the irre-

ducible character of Wm′ = Sm′ � (Z/2Z)m
′

obtained by extending χλ′
by the trivial action

of (Z/2Z)m
′
. We also denote by χ̃λ′′

the irreducible character of Wm′′ = Sm′′ � (Z/2Z)m
′′

by

extending χλ′′
by defining the action of (Z/2Z)m

′′
so that each factor Z/2Z acts non-trivially.

Then IndWn

Wm′×Wm′′ χ̃λ′ ⊗ χ̃λ′′
gives an irreducible character χλ. It follows from the construc-

tion that χλ|Sn coincides with IndSn

Sm′×Sm′′ χλ′ ⊗ χλ′′
.

For ν = (ν1, . . . , νk) ∈ Pn, we denote by Sν the Young subgroup Sν1 × · · · × Sνk . We
show the following formula.

PROPOSITION 3.15. Let λ,μ ∈ Pn,2 with μ = (−, μ′′). Then we have

(3.15.1) Kλ,μ(1) =〈IndWn

Sμ′′ 1, χλ〉Wn
.

PROOF. Under the notation in 3.14, we compute the inner product.

〈IndWn

Sμ′′ 1, χλ〉Wn
=〈IndSn

Sμ′′ 1, χλ|Sn〉Sn

=〈IndSn

Sμ′′ 1, IndSn

Sm′×Sm′′ χλ′ ⊗ χλ′′ 〉Sn
.
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Here we can write IndSn

Sm′×Sm′′ χλ′ ⊗ χλ′′ = ∑
ν∈Pn

cν
λ′λ′′χν by using the Littlewood–

Richardson coefficients. Thus

〈IndWn

Sμ′′ 1, χλ〉Wn
=

∑
ν∈Pn

cν
λ′λ′′ 〈IndSn

Sμ′′ 1, χν〉Sn
.

But it is known that〈IndSn

Sμ′′ 1, χν〉Sn
= Kν,μ′′(1) (see eg. [M, I, Remark after (7.8)]). Hence

we have

〈IndWn

Sμ′′ 1, χλ〉Wn
=

∑
ν∈Pn

cν
λ′λ′′Kν,μ′′ (1) .

Then the proposition follows from (3.4.2), by substituting t = 1. �

COROLLARY 3.16. Let μ = (−, μ′′) and Oμ the corresponding H -orbit in the exotic
nilpotent cone Xnil. Then for z ∈ Oμ, we have

(3.16.1)
⊕
i≥0

H 2i(Bz, Q̄l ) � IndWn

Sμ′′ 1

as Wn-modules.

PROOF. Put H ∗(Bz) = ⊕
i≥0 H 2i(Bz, Q̄l ). Then Proposition 2.14 shows that

Kλ,μ(1) =〈H ∗(Bz), χ
λ〉Wn

for any λ ∈ Pn,2. Thus, by comparing it with (3.15.1), we obtain the required formula. �

REMARK 3.17. It would be interesting to compare (3.16.1) with a similar formula for

the ordinary Springer representations of type Cn. We follow the setting in 2.11. For x ∈ gθ
nil,

we define

B�
x = {gBθ ∈ B | g−1x ∈ Lie Bθ } .

B�
x is the original Springer fibre associated to x ∈ gθ

nil, and the cohomology group

Hi(B�
x, Q̄l ) has a natural action of Wn. It is known that Hi(B�

x, Q̄l ) = 0 for odd i. Let

lθ be a Levi subalgebra of a parabolic subalgebra of gθ of type Aμ′′
1−1 +Aμ′′

2−1 +· · ·+Aμ′′
k−1

for μ′′ = (μ′′
1, μ

′′
2, . . . , μ′′

k ) ∈ Pn. Assume that x is a regular nilpotent element in lθnil. Then
by a general formula due to [L2], we have

(3.17.1)
⊕
i≥0

H 2i(B�
x, Q̄l ) � IndWn

Sμ′′ 1

as Wn-modules. However, the graded Wn-module structures in (3.16.1) and (3.17.1) do not
coincide in general. For example, assume that n = 2, and μ = (−, 2), i.e., μ′′ = (2). In that
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case, IndW2
Sμ′′ 1 = IndW2

S2
1 = χ(−,2) + χ(1,1) + χ(2,−). We have

H 4(Bz, Q̄l ) = χ(−,2), H 2(Bz, Q̄l ) = χ(1,1), H 0(Bz, Q̄l ) = χ(2,−) ,

H 2(B�
x, Q̄l ) = χ(−,2) + χ(1,1), H 0(B�

x, Q̄l ) = χ(2,−) .

3.18. We shall give an interpretation of the formula (3.2.1) in terms of the Springer
modules. Let An = (Z/2Z)n be the abelian subgroup of Wn. We denote by t1, . . . , tn the
generators of An, where ti is the generator of the i-th component Z/2Z. Let ϕ be a linear
character of An. For each An-module X, we denote by Xϕ the weight space of X correspond-
ing to ϕ, namely Xϕ = {v ∈ X | av = ϕ(a)v for a ∈ An}. Let Sϕ be the stabilizer of ϕ in Sn

under the action of Sn on An. Then Sϕ � Sm × Sn−m, where m is the number of i such that
ϕ(ti ) = 1. If X is an Wn-module, X is an An-module by restriction. Then Xϕ turns out to be
an Sϕ-module.

The Wn-module Hi(Bz, Q̄l ), which is called the (exotic) Springer module, is isomorphic
to each other for z ∈ Oμ (μ ∈ Pn,2). In the discussion below, we denote it simply by

Hi(Bμ). Let B0 = G0/B0 be the flag variety of G0 = GLn, where B0 is a Borel subgroup

of G0. Recall that for each nilpotent element x ∈ gln, the Springer fibre B0
x is defined as

B0
x = {gB0 ∈ B0 | g−1x ∈ Lie B0} ,

and the cohomology group Hi(B0
x, Q̄l) has a natural structure of Sn-module, the Springer

module. Since the Sn-module structure does not depend on x ∈ Oν (ν ∈ Pn), we denote it by

Hi(B0
ν ). Let A∧

n be the set of irreducible characters of An. Then we have the weight space
decomposition

Hi(Bμ) =
⊕
ϕ∈A∧

n

H i(Bμ)ϕ ,

where each Hi(Bμ)ϕ has a structure of Sϕ-module.

Recall the polynomial gμ
ν (t) ∈ Z[t] for μ, ν ∈ Pn,2 given in Proposition 3.2. We write

it as

gμ
ν (t) =

∑
�≥0

g
μ
ν,�t

�

with (possibly negative) integers g
μ
ν,�. The following proposition gives a description of

Hi(Bμ)ϕ in terms of the Springer modules of Sϕ .

PROPOSITION 3.19. Assume that μ ∈ Pn,2. Let ϕ ∈ A∧
n be such that Sϕ � Sm ×

Sn−m. Then the following equality holds (in the Grothendieck group of the category of Sϕ-
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modules)

H 2i(Bμ)ϕ =
∑

ν=(ν ′,ν ′′)∈Pn,2
|ν ′|=m

∑
j,k,�

g
μ
ν,�

(
H 2j (B0

ν ′) ⊗ H 2k(B0
ν ′′)

)
,

where the second sum is taken over all j, k, � satisfying the condition

i = (n − m) + 2� + 2(j + k) .

PROOF. By Proposition 2.14, one can write (as an identity in the Grothendieck group
of the category of Sϕ-modules, extended by scalar to Z[t])
(3.19.1)

∑
i≥0

H 2i (Bμ)ϕti �
∑

λ∈Pn,2

K̃λ,μ(t)(Vλ)ϕ

for each ϕ ∈ A∧
n . Assume that Sϕ � Sm × Sn−m. It follows from the explicit construction of

Vλ in 3.14 that (Vλ)ϕ = 0 unless |λ′| = m, |λ′′| = n−m, and in that case, (Vλ)ϕ � Vλ′ ⊗Vλ′′

as Sm × Sn−m-modules, where Vλ′ denotes the irreducible Sm-module corresponding to χλ′
,

and similarly for Vλ′′ . By (3.2.1), the right hand side of (3.19.1) can be written as

tn−m
∑

λ′∈Pm

λ′′∈Pn−m

∑
ν=(ν ′,ν ′′)∈Pn,2

gμ
ν (t2)K̃λ′,ν ′(t2)K̃λ′′,ν ′′(t2)Vλ′ ⊗ Vλ′′

= tn−m
∑
ν

gμ
ν (t2)

( ∑
λ′∈Pm

K̃λ′,ν ′(t2)Vλ′
)

⊗
( ∑

λ′′∈Pn−m

K̃λ′′,ν ′′(t2)Vλ′′
)

= tn−m
∑
ν

gμ
ν (t2)

(∑
i≥0

H 2i(B0
ν ′)t2i

)
⊗

(∑
i≥0

H 2i(B0
ν ′′ )t2i

)
,

where the last equality follows from the formulas analogous to Proposition 2.14 in the case of
GLm and GLn−m. By comparing the last expression with the left hand side of (3.19.1), we
obtain the proposition. �

3.20. We consider ϕ ∈ A∧
n in the special case where m = n or m = 0. Put ϕ = ϕ+

(resp. ϕ = ϕ−) if m = n (resp. m = 0). In these cases, Sϕ � Sn, and we have a more precise

description of the Sn-module Hi(Bμ)ϕ as follows. (Note that Hi(Bμ)ϕ+ coincides with the

An-fixed point subspace of Hi(Bμ). The formula (i) in the corollary should be compared
with the result in [SSr], where the case of ordinary Springer representations of type Cn is
discussed.)

COROLLARY 3.21. Assume that μ = (μ′, μ′′) ∈ Pn,2.

(i) There exists an isomorphism of Sn-modules

H 2i(Bμ)ϕ+ �
{

Hi(B0
μ′+μ′′) if i is even,

0 otherwise.
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(ii) H 2i(Bμ)ϕ− = 0 unless μ = (−, μ′′). Assume that μ = (−, μ′′). There exists an
isomorphism of Sn-modules

H 2i(Bμ)ϕ− �
{

Hi−n(B0
μ′′ ) if i ≡ n (mod 2),

0 otherwise.

PROOF. Assume that ϕ = ϕ+. Then (Vλ)ϕ = 0 unless λ = (λ′,−), and in that case,

(Vλ)ϕ � Vλ′ as Sn-modules. Moreover, if λ = (λ′,−), we have K̃λ,μ(t) = K̃λ′,μ′+μ′′(t2) by
Proposition 2.5 (ii). On the other hand, assume that ϕ = ϕ−. Then we have (Vλ)ϕ = 0 unless
λ = (−, λ′′), and in that case, (Vλ)ϕ � Vλ′′ as Sn-modules. Moreover, by Proposition 2.5 (i),

if λ = (−, λ′′), K̃λ,μ(t) = 0 unless μ = (−, μ′′), and in that case, K̃λ,μ(t) = tnK̃λ′′,μ′′(t2).
Then the corollary follows from (3.19.1) by a similar discussion as in the proof of Proposi-
tion 3.19. �

3.22. Recall that the Hall–Littlewood function Pλ(x; t) is defined by two types of

variables x(1), x(2). Here we consider a specialization of those variables. We denote by

Pλ(x; t)|x=(y,y) the function in Λ[t] obtained by substituting x(1) = x(2) = y. We fur-
ther consider the specialization of this function by putting t = 1, i.e., Pλ(x; 1)|x=(y,y). The
following result shows that the behavior of Pλ(x; t) at t = 1 is quite different from that of
ordinary Hall–Littlewood functions (cf. Remark 2.8).

PROPOSITION 3.23. Under the notation as above, we have

Pμ(x; 1)|x=(y,y) =
{

mμ′′(y) if μ = (−; μ′′),
0 otherwise.

PROOF. Assume that μ = (−, μ′′). Since Pμ(x; t) = Pμ′′ (x(2); t2) for μ = (−, μ′′)
by Corollary 1.12, we have

(3.23.1) Pμ(x; 1)|x=(y,y) = mμ′′(y) ,

which shows the first equality.
By (1.2.1) and (1.2.2), for any λ ∈ Pn, we have

sλ(y) =
∑

μ∈Pn

Kλ,μ(1)mμ(y) .

Also by substituting t = 1 in the formula (3.3.3) and by using (1.2.1), we have, for any
partitions μ, ν,

mμ(y)mν(y) =
∑

λ∈Pn

f λ
μν(1)mλ(y) .

Thus for λ = (λ′, λ′′) ∈ Pn,2, we have

sλ(x)|x=(y,y) = sλ′(y)sλ′′(y)(3.23.2)
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=
∑
ν ′

∑
ν ′′

Kλ′,ν ′(1)Kλ′′,ν ′′(1)mν ′(y)mν ′′(y)

=
∑

μ′′∈Pn

mμ′′(y)
∑
ν ′,ν ′′

f
μ′′
ν ′ν ′′(1)Kλ′,ν ′(1)Kλ′′,ν ′′(1)

=
∑

μ=(−,μ′′)
Kλ,μ(1)mμ′′(y) .

The last equality follows from (3.4.1). On the other hand, by 1.6, we have

(3.23.3) sλ(x)|x=(y,y) =
∑

μ∈Pn,2

Kλ,μ(1)Pμ(x; 1)|x=(y,y) .

Put P ′
n,2 = {μ = (μ′, μ′′) ∈ Pn,2 | |μ′| �= 0}. Then (3.23.2) and (3.23.3), together with

(3.23.1) imply that

(3.23.4)
∑

μ∈P ′
n,2

Kλ,μ(1)Pμ(x; 1)|x=(y,y) = 0

for any λ ∈ Pn,2. By Proposition 1.7, Kλ,μ(t) = 0 unless μ ≤ λ, and Kλ,λ(t) = 1.
Now the proposition follows from (3.23.4) by induction on the partial order ≤ on P ′

n,2. The

proposition is proved. �

4. Hall bimodule

4.1. Before going into details on the Hall bimodule, we show a preliminary result. In
this section we fix a total order on Pn,2 which is compatible with the partial order ≤ on Pn,2.

For ν = (ν′, ν′′) ∈ Pn,2, put Rν(x; t) = Pν ′(x(1), t2)Pν ′′(x(2), t2). Then {Rν | ν ∈ Pn,2}
gives a basis of �n[t]. Hence there exist polynomials h

μ
ν (t) ∈ Z[t] such that

(4.1.1) Rν(x; t) =
∑

μ∈Pn,2

hμ
ν (t)Pμ(x; t) .

The transition matrix between the bases {sλ} and {Rν} is lower unitriangular (with respect
to the fixed total order), and a similar result holds also for the bases {sλ} and {Pμ}. Hence

the transition matrix (h
μ
ν (t))μ,ν∈Pn,2 between {Rν} and {Pμ} is also lower unitriangular (we

regard that the νμ-entry is h
μ
ν (t)). The following formula is an analogue of the formula (3.3.4)

relating the polynomials f λ
μν(t) with the Hall polynomials gλ

μν(t).

PROPOSITION 4.2. Let gμ
ν (t) be the polynomials given in Proposition 3.2. Then

(4.2.1) hμ
ν (t) = ta(μ)−a(ν)gμ

ν (t−2) .

In particular, the matrix (g
μ
ν (t))μ,ν is lower unitriangular.
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PROOF. For any λ = (λ′, λ′′) ∈ Pn,2, we have

sλ(x) = sλ′(x(1))sλ′′(x(2))

=
∑
ν ′

Kλ′,ν ′(t2)Pν ′(x(1); t2)
∑
ν ′′

Kλ′′,ν ′′(t2)Pν ′′(x(2); t2)

=
∑
ν ′,ν ′′

Kλ′,ν ′(t2)Kλ′′,ν ′′(t2)
∑

μ∈Pn,2

hμ
ν (t)Pμ(x; t)

=
∑

μ∈Pn,2

(∑
ν ′,ν ′′

Kλ′,ν ′(t2)Kλ′′,ν ′′(t2)hμ
ν (t)

)
Pμ(x; t) .

Since

sλ(x) =
∑

μ∈Pn,2

Kλ,μ(t)Pμ(x; t) ,

by comparing the coefficients of Pμ(x; t), we have

(4.2.2) Kλ,μ(t) =
∑
ν ′,ν ′′

hμ
ν (t)Kλ′,ν ′(t2)Kλ′′,ν ′′(t2) .

On the other hand, if we notice that Kλ′′,ν ′′(t2) �= 0 only when |λ′′| = |ν′′|, the formula (3.3.1)
can be rewritten as

(4.2.3) Kλ,μ(t) =
∑
ν ′,ν ′′

ta(μ)−a(ν)gμ
ν (t−2)Kλ′,ν ′(t2)Kλ′′,ν ′′(t2) .

Since (Kλ′,ν ′(t2)Kλ′′,ν ′′(t2))λ,ν∈Pn,2 is a unitriangular matrix with respect to the partial order

on Pn,2, the proposition is obtained by comparing (4.2.2) and (4.2.3). �

4.3. We keep the assumption in 3.1, in particular, k is an algebraic closure of Fq . Based
on the idea of Finkelberg-Ginzburg-Travkin [FGT], we introduce the Hall bimodule. Let λ,μ

be double partitions, and α be a partition. Take (x, v) ∈ Oλ. We define varieties

G λ
α,μ = {W ⊂ V | W : x-stable subspace,

x|W : type α, (x|V/W , v (mod W)) : type μ} ,

G λ
μ,α = {W ⊂ V | W : x-stable subspace, v ∈ W ,

(x|W, v) : type μ , x|V/W : type α} .

If (x, v) ∈ Oλ(Fq), those varieties are defined over Fq , and one can consider the subsets of

Fq -fixed points. Assuming that (x, v) ∈ Oλ(Fq), we define integers Gλ
α,μ(q) and Gλ

μ,α(q) by

(4.3.1) Gλ
α,μ(q) = |G λ

α,μ(Fq)|, Gλ
μ,α(q) = |G λ

μ,α(Fq)| .
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Note that Gλ
α,μ(q),Gλ

μ,α(q) are independent of the choice of (x, v) ∈ Oλ(Fq). It is clear

from the definition that Gλ
α,μ(q) = Gλ

μ,α(q) = 0 unless |λ| = |α| + |μ|. In the case where

λ = (−, λ′′),μ = (−, μ′′), Gλ
α,μ(q) = Gλ

μ,α(q) coincides with gλ′′
μ′′,α(q) = gλ′′

μ′′,α|t=q , where

gλ′′
μ′′,α is the original Hall polynomial given in 3.3.

Put P = ∐
n≥0 Pn and P(2) = ∐

n≥0 Pn,2. Recall the definition of the Hall algebra

H ; H is the free Z[t]-module with basis {uα | α ∈ P}, and the multiplication is defined by

uβuγ =
∑

α∈Pn

gα
β,γ (t)uα ,

where n = |β| + |γ |. H is a commutative, associative algebra over Z[t]. We define the
Z-algebra Hq by Hq = Z ⊗Z[t ] H , under the specialization Z[t] → Z, t �→ q .

We define a Hall bimodule Mq as follows; Mq is a free Z-module with basis {uλ | λ ∈
P(2)}. We define actions (the left action and the right action) of Hq on Mq by

uαuμ =
∑

λ∈Pn,2

Gλ
α,μ(q)uλ ,(4.3.2)

uμuα =
∑

λ∈Pn,2

Gλ
μ,α(q)uλ ,(4.3.3)

where n = |α| + |μ|. Then Mq turns out to be a Hq -bimodule, which is verified as follows;
for partitions β, γ , and double partitions λ,μ, we define a variety

G λ
β,γ ;μ = {(W1 ⊂ W2) | W1,W2 : x-stable subspaces of V ,

x|W1 : type β, x|W2/W1 : type γ , (x|V/W2, v (mod W2)) : type μ } .

We compute the number |G λ
β,γ ;μ(Fq)| in two different ways. Put n = |β| + |γ |. Assume

that xW2 has type α. Then the cardinality of such W2 is given by Gλ
α,μ(q). For each W2, the

cardinality of W1 is given by gα
β,γ (q). It follows that

(4.3.4) |G λ
β,γ ;μ(Fq)| =

∑
α∈Pn

gα
β,γ (q)Gλ

α,μ(q).

On the other hand, the cardinality of W1 satisfying the condition that x|W1 has type β,

(x|V/W1, v (mod W1)) has type ν is Gλ
β,ν(q). For each W1, the cardinality of W2 such that

W1 ⊂ W2 ⊂ V and that x|W2/W1 has type γ , (x|V/W2, v (mod W2)) has type μ is given by
Gν

γ,μ(q). It follows that

(4.3.5) |G λ
β,γ ;μ(Fq)| =

∑
ν∈Pm,2

Gλ
β,ν(q)Gν

γ,μ(q) ,
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where m = |λ| − |β|. Now the equality (4.3.4) = (4.3.5) implies that uβ(uγ uμ) = (uβuγ )uμ.
In a similar way, one can show that (uμuγ )uβ = uμ(uγ uβ). Next we consider a variety

G λ
α;μ;β = {(W1 ⊂ W2) | W1,W2 : x-stable subspaces of V , v ∈ W2

x|W1 : type α, (x|W2/W1, v (mod W1)) : type μ, x|V/W2 : type β}.
We compute the number |G λ

α;μ;β(Fq)| in two different ways. Take W2 ∈ G λ
ν,β(Fq) for some

ν ∈ Pn,2 with n = |λ| − |β|. The cardinality of such W2 is Gλ
ν,β(q). For each W2, the

cardinality of W1 such that (W1 ⊂ W2) ∈ G λ
α;μ;β(Fq) is given by Gν

α,μ(q). Thus

|G λ
α;μ;β(Fq)| =

∑
ν∈Pn,2

Gλ
ν,β(q)Gν

α,μ(q) .

On the other hand, first we take W1 ∈ G λ
α,ν(Fq), and then take W2 such that (W1 ⊂ W2) is

contained in G λ
α;μ;β(Fq). This implies that

|G λ
α;μ;β(Fq)| =

∑
ν∈Pn′,2

Gλ
α,ν(q)Gν

μ,β(q) ,

where n′ = |λ| − |α|. Comparing these two equalities, we have uα(uμuβ) = (uαuμ)uβ . Thus
Mq has a structure of Hq -bimodule.

For an integer n ≥ 0, let M n
q be the Z-submodule of Mq spanned by uλ with λ ∈ Pn,2.

Then we have Mq = ⊕
n≥0 M n

q . Similarly, we have a decomposition Hq = ⊕
n≥0 H n

q .

The above discussion shows that Mq has a structure of graded Hq -bimodule, i.e., H m
q M n

q ⊂
M n+m

q , and M n
q H m

q ⊂ M n+m
q .

4.4. For λ = (−,−), put u0 = uλ. It is easy to see that u0uβ = u(−,β) for β ∈ P (but

uβu0 �= u(β,−)). Take α, β ∈ P . One can check that Gλ
α,(−,β)(q) = gλ

(α,β)(q) for λ ∈ P(2).

It follows, for α, β ∈ P , that

(4.4.1) uαu0uβ =
∑

λ∈Pn,2

gλ
(α,β)(q)uλ ,

where n = |α| + |β|. For each μ = (μ′, μ′′) ∈ Pn,2, put vμ = uμ′u0uμ′′ . We have a lemma.

LEMMA 4.5. {vμ | μ ∈ Pn,2} gives a basis of M n
q . Hence {vμ | μ ∈ P(2)} gives a

basis of Mq . For μ ∈ Pn,2, we have

(4.5.1) vμ =
∑

λ∈Pn,2

gλ
μ(q)uλ .

In particular, Mq is a free Hq -bimodule of rank 1 (with a basis v(−,−) = u0).
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PROOF. (4.5.1) follows from (4.4.1). M n
q is a free Z-module with rank |Pn,2|. By

Proposition 4.2, (gλ
μ(q))λ,μ∈Pn,2 is a unitriangular matrix with respect to a certain total order

on Pn,2. Thus {vμ | μ ∈ Pn,2} gives rise to a basis of M n
q . �

4.6. Recall that � = Λ(x(1)) ⊗ Λ(x(2)), and �[t] = Λ(x(1))[t] ⊗Z[t ] Λ(x(2))[t].
Thus �[t] is regarded as a free Λ[t]-bimodule of rank 1 (Λ = Λ(y) acts on Λ(x(1)) by

replacing y by x(1), and so on for Λ(x(2))). It is known by [M, III, (3.4)] that the map

uα �→ t−n(α)Pα(y; t−1) gives an isomorphism of rings H ⊗ Z[t, t−1] ∼−→Λ⊗ Z[t, t−1]. This
induces an isomorphism Hq ⊗ Q ∼−→ΛQ. We define a map � : Mq2 ⊗ Q → �Q by

(4.6.1) vμ �→ (
q−n(μ′)Pμ′ (x(1), q−2)

)(
q−n(μ′′)−|μ′′|Pμ′′ (x(2), q−2)

) = q−a(μ)Rμ(x; q−1)

for μ = (μ′, μ′′) ∈ P(2). Then it is clear that � gives an isomorphism Mq2 ⊗ Q ∼−→�Q of

bimodules (under the isomorphism Hq2 ⊗ Q ∼−→ΛQ).

By making use of (4.2.1), the formula (4.5.1) can be rewritten as

qa(μ)vμ =
∑

λ∈Pn,2

hλ
μ(q−1)qa(λ)uλ ,

where vμ, uλ ∈ Mq2 . Since (hλ
μ(q))λ,μ∈Pn,2 is the transition matrix between the bases

{Rμ(x; q)} and {Pλ(x; q)} of �n
Q, we see that

(4.6.2) �(uλ) = q−a(λ)Pλ(x; q−1) .

For given λ,μ ∈ P(2), α ∈ P , we define polynomials H λ
α,μ(t),H λ

μ,α(t) ∈ Z[t] by

Pα(x(1); t2)Pμ(x; t) =
∑

λ∈Pn,2

H λ
α,μ(t)Pλ(x; t) ,

Pμ(x; t)Pα(x(2); t2) =
∑

λ∈Pn,2

H λ
μ,α(t)Pλ(x; t) ,

where n = |α| + |μ|. Considering �−1, and by comparing (4.3.2) and (4.3.3), we have the

following formula; for λ,μ ∈ P(2), α ∈ P ,

Gλ
α,μ(q2) = qa(λ)−a(μ)−2n(α)H λ

α,μ(q−1) ,(4.6.3)

Gλ
μ,α(q2) = qa(λ)−a(μ)−2n(α)−|α|H λ

μ,α(q−1) .(4.6.4)

The following result can be compared with that of the mirabolic Hall bimodule in [FGT, §4].

THEOREM 4.7. Assume that λ,μ ∈ P(2), α ∈ P .

(i) There exist polynomials Gλ
α,μ,Gλ

μ,α ∈ Z[t] such that Gλ
α,μ(q) = Gλ

α,μ|t=q , Gλ
μ,α(q) =

Gλ
μ,α|t=q . Thus one can define a Ht -bimodule structure for the free Z[t]-module Mt =
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λ∈P(2) Z[t]uλ by extending (4.3.2) and (4.3.3), where Ht denotes the Hall algebra

H over Z[t].
(ii) Mt is a free Ht -bimodule of rank 1, with the basis u0. More precisely, let {uα | α ∈ P}

be the basis of Ht . Then {uμ′u0uμ′′ | (μ′, μ′′) ∈ P(2)} gives a basis of Mt . For any

μ = (μ′, μ′′) ∈ Pn,2, we have

uμ′u0uμ′′ =
∑

λ∈Pn,2

gλ
μ(t)uλ .

(iii) The map � : uλ �→ t−a(λ)Pλ(x; t−1) gives an isomorphism

Mt2 ⊗Z[t2] Z[t, t−1] ∼−→� ⊗ Z[t, t−1]
as bimodules (under the isomorphism Ht2 ⊗Z[t2] Z[t, t−1] � Λ ⊗ Z[t, t−1]).

PROOF. In view of (4.6.3) and (4.6.4), what we need to show is, for λ,μ ∈ P(2), α ∈
P ,

ta(λ)−a(μ)−2n(α)H λ
α,μ(t−1) ∈ Z[t2] ,(4.7.1)

ta(λ)−a(μ)−2n(α)−|α|H λ
μ,α(t−1) ∈ Z[t2] .(4.7.2)

All other assertions follow from the discussion in 4.6. By (4.2.1), we see that

ta(λ)−a(μ)hλ
μ(t−1) ∈ Z[t2]. The matrix H(t−1) = (hλ

μ(t−1)) is unitriangular. Let D(t) be

the diagonal matrix such that the λλ-entry is ta(λ). Then the matrix (ta(λ)−a(μ)hλ
μ(t−1)) coin-

cides with D(t)−1H(t−1)D(t). This matrix is also unitriangular. It follows that each entry of
its inverse matrix is contained in Z[t2]. Let H(t−1)−1 = (h′

μ,ν(t
−1)) be the inverse matrix of

H(t−1). Then ta(ν)−a(μ)h′
μ,ν(t

−1) ∈ Z[t2]. Note that H(t) is the transition matrix between

the bases {Rμ} and {Pλ}. Hence H(t)−1 is the transition matrix between the bases {Pμ} and
{Rν}. One can write

Pμ(x; t) =
∑

ν=(ν ′,ν ′′)∈P(2)

h′
μ,ν(t)Pν ′(x(1); t2)Pν ′′(x(2); t2) .

Since

Pα(x(1); t2)Pν ′(x(1); t2) =
∑
ξ∈P

f
ξ

α,ν ′(t2)Pξ (x
(1); t2) ,

we have

Pα(x(1); t2)Pμ(x; t) =
∑

ν∈P(2)

h′
μ,ν(t)

∑
ξ∈P

f
ξ

α,ν ′(t2)Pξ (x
(1); t2)Pν ′′(x(2); t2)

=
∑
ν,ξ

h′
μ,ν(t)f

ξ

α,ν ′(t2)
∑

λ∈P(2)

hλ
(ξ,ν ′′)(t)Pλ(x; t) .
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It follows that

(4.7.3) H λ
α,μ(t) =

∑
ν,ξ

h′
μ,ν(t)f

ξ

α,ν ′(t2)hλ
(ξ,ν ′′)(t) .

Here h′
μ,ν(t

−1) ∈ ta(μ)−a(ν)Z[t2] and hλ
(ξ,ν ′′)(t

−1) ∈ ta((ξ,ν ′′))−a(λ)Z[t2]. Moreover, by

(3.3.4), f
ξ

α,ν ′(t−2) ∈ t2n(α)+2n(ν ′)−2n(ξ)Z[t2]. Since a((ξ, ν′′)) = 2n(ξ) + 2n(ν′′) + |ν′′|
and a(ν) = 2n(ν′) + 2n(ν′′) + |ν′′|, we see that H λ

α,μ(t−1) ∈ ta(μ)+2n(α)−a(λ)Z[t2]. This

proves (4.7.1). A similar computation shows that

(4.7.4) H λ
μ,α(t) =

∑
ν,ξ

h′
μ,ν(t)f

ξ

ν ′′,α(t2)hλ
(ν ′,ξ )(t) .

As above, we have H λ
μ,α(t−1) ∈ ta(μ)−a(λ)+2n(α)+(|ξ |−|ν ′′|)Z[t2]. Since |ξ | − |ν′′| = |α|, we

obtain (4.7.2). �

Appendix Tables of double Kostka polynomials

Let K(t) = (Kλ,μ(t))λ,μ∈Pn,2 be the matrix of double Kostka polynomials. We give

the table of matrices K(t) for 2 ≤ n ≤ 5. In the table below, we use the following notation;

we denote the double partition (λ, μ) with λ = (λ
m1
1 , . . . , λ

mk

k ), μ = (μ
n1
1 , . . . , μ

nk′
k′ ) by

λ
m1
1 . . . λ

mk

k .μ
n1
1 . . . μ

nk′
k′ . For example,

(212, 32) ↔ 212.32 (32,−) ↔ 32. (−, 212) ↔ .212

and so on.
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TABLE 1. K(t) for n = 2

2. 1.1 .2 12. .12

2. 1 t t2 t2 t4

1.1 1 t t t3 + t

.2 1 t2

12. 1 t2

.12 1

TABLE 2. K(t) for n = 3

3. 2.1 1.2 21. 12.1 .3 1.12 .21 13. .13

3. 1 t t2 t2 t3 t3 t4 t5 t6 t9

2.1 1 t t t2 t2 t3 + t t4 + t2 t5 + t3 t8 + t6 + t4

1.2 1 t t t2 t3 + t t4 t7 + t5 + t3

21. 1 t t2 t3 t4 + t2 t7 + t5

12.1 1 t t2 t3 + t t6 + t4 + t2

.3 1 t2 t6

1.12 1 t t2 t5 + t3 + t

.21 1 t4 + t2

13. 1 t3

.13 1
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TABLE 3. K(t) for n = 4

4. 3.1 31. 2.2 21.1 1.3 2.12 12.2 22. 1.21 .4 212. 12.12 .31
4. 1 t t2 t2 t3 t3 t4 t4 t4 t5 t4 t6 t6 t6

3.1 1 t t t2 t2 t3 + t t3 t3 t4 + t2 t3 t5 + t3 t5 + t3 t5 + t3

31. 1 t t2 t2 t2 t3 t4 + t2 t4 t4

2.2 1 t t t2 t2 t2 t3 + t t2 t4 t4 + t2 t4 + t2

21.1 1 t t t t2 t3 + t t3 + t t3

1.3 1 t t2 t t3 t3 + t

2.12 1 t t2 t2 t2

12.2 1 t t2 t2

22. 1 t2 t2

1.21 1 t t

.4 1 t2

212. 1
12.12 1
.31 1

13.1
.22

1.13

.212

14.

.14

13.1 .22 1.13 .212 14. .14

4. t7 t8 t9 t10 t12 t16

3.1 t6 + t4 t7 + t5 t8 + t6 + t4 t9 + t7 + t5 t11 + t9 + t7 t15 + t13 + t11 + t9

31. t5 + t3 t6 t7 + t5 t8 + t6 t10 + t8 + t6 t14 + t12 + t10

2.2 t5 + t3 t6 + t4 + t2 t7 + t5 + t3 t8 + t6 + 2t4 t10 + t8 + t6 t14 + t12 + 2t10 + t8 + t6

21.1 t4 + 2t2 t5 + t3 t6 + 2t4 + t2 t7 + 2t5 + t3 t9 + 2t7 + 2t5 + t3 t13 + 2t11 + 2t9 + 2t7 + t5

1.3 t4 t5 + t3 t6 t7 + t5 + t3 t9 t13 + t11 + t9 + t7

2.12 t3 t4 t5 + t3 + t t6 + t4 + t2 t8 + t6 + t4 t12 + t10 + 2t8 + t6 + t4

12.2 t3 + t t4 t5 + t3 t6 + t4 + t2 t8 + t6 + t4 t12 + t10 + 2t8 + t6 + t4

22. t3 t4 t5 t6 t8 + t4 t12 + t8

1.21 t2 t3 + t t4 + t2 t5 + 2t3 + t t7 + t5 t11 + 2t9 + 2t7 + 2t5 + t3

.4 t4 t6 t12

212. t t3 t4 t6 + t4 + t2 t10 + t8 + t6

12.12 t t2 t3 + t t4 + t2 t6 + t4 + t2 t10 + t8 + 2t6 + t4 + t2

.31 t2 t4 + t2 t10 + t8 + t6

13.1 1 t2 t3 t5 + t3 + t t9 + t7 + t5 + t3

.22 1 t2 t8 + t4

1.13 1 t t3 t7 + t5 + t3 + t

.212 1 t6 + t4 + t2

14. 1 t4

.14 1
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