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Abstract. For the fifth Painlevé equation near the origin we present two kinds of logarithmic solutions, which
are represented, respectively, by convergent series with multipliers admitting asymptotic expansions in descending
logarithmic powers and by those with multipliers polynomial in logarithmic powers. It is conjectured that the asymp-
totic multipliers are also polynomials in logarithmic powers. These solutions are constructed by iteration on certain
rings of exponential type series.

1. Introduction

The Painlevé transcendents as nonlinear special functions are expected to be of great use
in a variety of problems in pure mathematics and mathematical physics. For the sixth Painlevé
equation
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with θ∞, θ0, θ1, θx ∈ C, Guzzetti [8] provided the tables of the critical behaviours of solu-
tions near x = 0, 1,∞ as well as the parametric connection formulas, in which the solutions
are classified into five groups: complex power types, inverse oscillatory types, Taylor series
types, logarithmic types, and inverse logarithmic types. The logarithmic and the inverse log-
arithmic solutions near x = 0 are derived from two basic logarithmic ones represented by
series expansions, whose leading terms
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were found by Guzzetti [5], [6] by applying a matching procedure to a Fuchsian system related
to (VI) through isomonodromy deformation [11]; and the series expansions are convergent in
a sector [17]. Here a is an integration constant. The logarithmic leading terms above as
well as complex power ones also follow from asymptotic results on coefficient matrices of
the Fuchsian system by Jimbo [10], who obtained connection formulas of the τ -functions for
some Painlevé equations including (VI).

The fifth Painlevé equation normalized in the form
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with α, β, γ ∈ C has the critical points at x = 0 and x = ∞. Near x = 0 equation (V) admits
a two-parameter family of complex power solutions [16]. Applying WKB analysis to a lin-
ear system associated with (V) through isomonodromy deformation, Andreev and Kitaev [1]
derived asymptotic solutions near x = 0 and x = ∞ with connection formulas. Kaneko and
Ohyama [12] gave Taylor series solutions, and showed that the corresponding linear system
at x = 0 is solvable in terms of the hypergeometric function and that the monodromy may be
explicitly calculated. The solutions having logarithmic terms that follow from the results for

(V) in [10] are of inverse logarithmic types, which are asymptotic to c log−2 x or c log−1 x and
contain summands of negative logarithmic powers. By the method of power geometry, Bruno
and Parusnikova [2] obtained formal series solutions of logarithmic types that have leading
terms, respectively, quadratic and linear in log x like those of the basic logarithmic solutions
of (VI); in the quadratic case the series apparently contains negative logarithmic powers.

In this paper we present convergent series representations for the logarithmic-type solu-
tions of (V) mentioned above, clarifying the structure of higher order terms. The quadratic-
logarithmic (respectively, linear-logarithmic) solutions are represented by convergent series
with multipliers admitting asymptotic expansions in descending powers of log x (respectively,
multipliers polynomial in log x), which are given in Theorem 2.1 (respectively, Theorems 2.2
and 2.3). It is conjectured that the asymptotic multipliers for the quadratic-logarithmic solu-
tions are also polynomials in log x (cf. Remark 2.1). This conjectured quadratic-logarithmic
solution is regarded as one of the counterparts of the basic logarithmic solutions of (VI). These
solutions of (VI), which are free of negative logarithmic powers, are obtained from matrix so-
lutions of the associated Schlesinger equation [17], while a parallel argument for (V) yields
solutions of inverse logarithmic types. For the possible basic nature as a logarithmic solu-
tion of (V), in Theorem 2.1 we describe a representation of the form derived rigorously from
(V) itself; and it is also a convincing clue to the conjecture above. As degenerate cases of
the linear-logarithmic solutions, we obtain families of Taylor series solutions in Remark 2.2
under a condition different from that in [12]. The linear-logarithmic solutions in Theorems
2.2 and 2.3 are constructed by iteration on a ring of exponential type series with polynomial
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multipliers in Sections 3 and 4. In the final section, considering a ring of exponential type
series with asymptotic multipliers, we prove Theorem 2.1.

2. Main results

Let D0 ⊂ C \ {0} be a given simply connected bounded domain such that
distance(D0, {0}) > 0, and letΘ0 and B0 be given positive numbers. Denote byΣ(ε,Θ0) the
sector 0 < |x| < ε, | arg x| < Θ0 on the universal covering of C \ {0}.

THEOREM 2.1. Suppose that |α| + |β| + |γ | + |γ−1| < B0. Then (V) has a one-
parameter family of solutions {yquad(ρ, x) | ρ ∈ D0} with the properties:

(i) yquad(ρ, x) is holomorphic in (ρ, x) ∈ D0 ×Σ(ε0,Θ0), ε0 = ε0(D0,Θ0, B0) being
a sufficiently small positive number depending only on D0, Θ0 and B0;

(ii) yquad(ρ, x) is expanded into a convergent series written in the form

yquad(ρ, x) = 1 +
∞∑
n=1

xn
(
pn(− log(ρx))+ p−

n (− log(ρx))
)

with (pn(s), p−
n (s)) such that, for each n,

(ii.a) pn(s) is given by

p1(s) = −γ
2
s2 + 1

2γ
, pn(s) =

2n∑
j=0

pnj s
j , pnj ∈ Q[α, β, γ, γ−1] ,

and that
(ii.b) p−

n (s) is holomorphic in S(R0, Θ̂0) and admits an asymptotic representation of the
form

p−
n (s) ∼

∞∑
j=1

pn−j s
−j , pn−j ∈ Q[α, β, γ, γ−1]

as s → ∞ through S(R0, Θ̂0), in particular, p−
1 (s) ≡ 0, where S(R0, Θ̂0) is a strip Re s >

R0, |Im s| < Θ̂0 with the property that − log(ρx) ∈ S(R0, Θ̂0) holds for every (ρ, x) ∈
D0 ×Σ(ε0,Θ0).

REMARK 2.1. As a matter of fact p−
2 (s) = p−

3 (s) ≡ 0, and p2(s) and p3(s) are
written in terms of φ(s) := p1(s) :
p2(s) =

(
α + β + 1

2

)
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(3

4
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As will be mentioned in Section 5.4, pn(s) + p−
n (s) (n ≥ 2) are computed by solving linear

differential equations recursively. At least for n = 2, 3, the inhomogeneous part of each
equation has the form such that p−

n (s) ≡ 0 may be derived. Even in finding p3(s) above and

in showing p−
3 (s) ≡ 0, Maple is used, and it seems difficult to check whether p−

n (s) ≡ 0 or
not for all n by such a method. In view of the logarithmic solutions of (VI) (cf. [8], [17])
together with the fact p−

n (s) ≡ 0 for n = 1, 2, 3, we may conjecture that p−
n (s) ≡ 0 for every

n ≥ 1, that is, yquad(ρ, x) = 1 + ∑∞
n=1 x

npn(− log(ρx)).

If γ ∈ Z, then there exists another class of logarithmic solutions. Let κ0, κ∞, θ and κ be
parameters such that

(2.1) α = κ2∞/2, β = −κ2
0/2, γ = −θ − 1, κ = ((κ0 + θ)2 − κ2∞)/4 ,

which are coefficients of the Hamiltonian function associated with (V) given by Okamoto
[15].

THEOREM 2.2. Suppose that |κ0| + |κ | < B0. If θ = N ∈ Z, then (V) has a one-

parameter family of solutions {y0(N)
lin (ρ, x) | ρ ∈ D0}, where y0(N)

lin (ρ, x) is holomorphic in

(ρ, x) ∈ D0 ×Σ(ε′0,Θ0) for sufficiently small ε′0 = ε′0(D0,Θ0, B0, N) and is expanded into
a convergent series described as follows:

(i) if N = 0, then

y
0(0)
lin (ρ, x) = 1 − x − x2

(
κ log(ρx)− 1

2
(κ − κ0 + 1)

)
+

∞∑
n=3

xnP 0
n (log(ρx))

with P 0
n (s) ∈ Q[κ0, κ][s] such that degs P

0
n (s) ≤ n− 1;

(ii) if N = −1, then

y
0(−1)
lin (ρ, x) = 1 − x log(ρx)+

∞∑
n=2

xnP−1
n (log(ρx))

with P−1
n (s) ∈ Q[κ0, κ][s] such that degs P

−1
n (s) ≤ n;
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(iii) if N ≤ −2, then

y
0(N)
lin (ρ, x) = 1 +

|N |−1∑
n=1

cnx
n + c|N |x |N | log(ρx)+

∞∑
n=|N |+1

xnPNn (log(ρx))

with cn, c|N | ∈ Q[κ0, κ] and PNn (s) ∈ Q[κ0, κ][s] such that degs P
N
n (s) ≤ n− |N |;

(iv) if N ≥ 1, then

y
0(N)
lin (ρ, x) = 1 +

N∑
n=1

cnx
n +

∞∑
n=N+1

xnPNn (log(ρx))

with cn ∈ Q[κ0, κ] and PNn (s) ∈ Q[κ0, κ][s] such that degs P
N
n (s) ≤ n−N.

Furthermore we have

THEOREM 2.3. Suppose that |κ0| + |κ∞| + |θ | + |κ−1∞ | < B0.

(1) If κ0 − κ∞ = N ∈ Z \ {0}, then (V) has a one-parameter family of solutions

{y−(N)
lin (ρ, x) | ρ ∈ D0}, where y−(N)

lin (ρ, x) is holomorphic in (ρ, x) ∈ D0 × Σ(ε′′0 ,Θ0) for

sufficiently small ε′′0 = ε′′0 (D0,Θ0, B0, N) and is expanded into a convergent series of the
form

y
−(N)
lin (ρ, x) = κ0

κ∞
+

|N |−1∑
n=1

cnx
n + x |N |(c|N | log(ρx)+ c′|N |)+

∞∑
n=|N |+1

xnPNn (log(ρx))

with cn, c|N |, c′|N | ∈ Q[κ0, κ∞, θ, κ−1∞ ] and PNn (s) ∈ Q[κ0, κ∞, θ, κ−1∞ ][s] such that

degs P
N
n (s) ≤ n− |N | for |N | ≥ 2 (respectively, ≤ n for |N | = 1).
(2) If κ0 + κ∞ = N ∈ Z \ {0}, then (V) has a one-parameter family of solutions

{y+(N)
lin (ρ, x) | ρ ∈ D0}, where the series expansion for y+(N)

lin (ρ, x) is given by replacing κ∞
with −κ∞ in the representation for y−(N)

lin (ρ, x).

REMARK 2.2. In each series expansion of Theorem 2.2 or 2.3, if the first logarithmic
term vanishes, then the solution belongs to a one-parameter family of Taylor series solutions
(cf. Remark 3.3). For example, if θ = N = 0 and if κ = 0, then there exists a one-parameter
family of solutions {y∗(a, x) | a ∈ C} with

y∗(a, x) = 1 − x +
(
a + 1

2
(1 − κ0)

)
x2 +

∞∑
n=3

P ∗
n (a)x

n ,

where P ∗
n (s) ∈ Q[κ0][s] and degs P

∗
n (s) ≤ n− 1, and y0(0)

lin (ρ, x) satisfies

y
0(0)
lin (ρ, x) ≡ y∗(0, x) = 1 − x + 1

2
(1 − κ0)x

2 +
∞∑
n=3

P ∗
n (0)x

n .
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REMARK 2.3. Gromak [3] found Bäcklund transformations of the form

ŷ = 1 − 2ν1xy

xy ′ − ν∞κ∞y2 + (ν∞κ∞ − ν0κ0 + ν1x)y + ν0κ0
,

where each ν∗ ( ∗ = 0, 1,∞) takes 1 or −1. Suitable composites of them make substitutions
of parameters including

(κ∞, κ0, θ) 
→ (κ∞, κ0 −m, θ +m) for any m ∈ Z ,

(κ∞, κ0, θ) 
→ ((κ∞ + κ0 − θ)/2, (κ∞ + κ0 + θ)/2, κ0 − κ∞) ,

(κ∞, κ0, θ) 
→ ((κ0 − κ∞ − θ)/2, (κ0 − κ∞ + θ)/2, κ0 + κ∞)

[4, Theorem 39.9] (see also [15], [12, §3.1]). This fact together with [12, Theorem 3] suggests

that, any two solutions in {y0(N)
lin (ρ, x) |N ∈ Z} ∪ {y±(N)

lin (ρ, x) |N ∈ Z \ {0}} are related
by some successive application of such Bäcklund transformations, and the author believes

that every linear-logarithmic solution is derived from a seed solution, say y0(−1)
lin (ρ, x). Since

there exist quadratic-logarithmic and inverse logarithmic types as well simultaneously with
a linear-logarithmic solution, to verify this correspondence it seems necessary to know the
resultant of the transformation to some extent. However it is not easy to check its form as in
Theorem 2.2 or 2.3 by a practical computation. Indeed even the substitution (κ∞, κ0, θ) 
→
(κ∞, κ0 + 1, θ − 1) needs a three-step application of Bäcklund transformations (cf. [4, p.
200]).

REMARK 2.4. For (VI) with θ0 = θ1 = θx = 0 near x = 0 Guzzetti [7] derived an
inverse logarithmic solution y inverse

VI (x) ∼ −4(θ∞ − 1)−2(log x + a)−2 from

vIII(t) = −t (log(t/4)+ cE)+O(t5 log3 t)

appearing in [13], which satisfies the third Painlevé equation

vtt = (vt )
2/v − vt /t + v3 − 1/v (vt = dv/dt) .

This is equivalent to (V) with α = β = γ = 0 through the change of variables x = −4t,

y = (1 − v)2/(1 + v)2, so that vIII(t) corresponds to y0(−1)
lin (−ecE/16, x). On the other hand

y inverse
VI (x) is related to the basic quadratic-logarithmic solution of (VI) by a symmetric trans-

formation [8].

3. Proof of Theorem 2.2

3.1. Ring of exponential type series with polynomial multipliers. Suppose that

|κ0| + |κ | < B0, where B0 is the constant in Section 2. Let P̂ be the ring of formal series of
the form

ϕ = ϕ(a, t) =
∞∑
n=1

e−nt
2n∑
j=0

pnj t
j
a , ta := t − a, pnj ∈ Q[κ0, κ] ,
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where a is a complex parameter. Let Δ0 ⊂ C be a given bounded domain, and let Θ be a
given positive number. In what follows we suppose that R = R(Δ0,Θ) > 8 is so large that,
for every a ∈ Δ0,

(3.1) |ta| ≤ |et/4|, |e−t/4| ≤ 1/4 in S(R,Θ) : Re t > R, |Im t| < Θ.
For ϕ ∈ P̂ with a ∈ Δ0 written as above, define the norm of ϕ by

‖ϕ‖ = ‖ϕ(a, t)‖ = ‖ϕ‖(t) :=
∞∑
n=1

|e−t |n
2n∑
j=0

|pnj ||et/4|j =
∞∑
n=1

2n∑
j=0

|pnj ||e−t |n−j/4 ,

and set, for each (κ0, κ),

P(R,Θ) = P(Δ0, R,Θ) := {
ϕ ∈ P̂

∣∣ ‖ϕ‖(t) < ∞ for every t ∈ S(R,Θ)} .
Then we have

PROPOSITION 3.1. (1) If ϕ ∈ P(R,Θ), then ϕ = ϕ(a, t) is holomorphic in (a, t) ∈
Δ0 × S(R,Θ) and satisfies |ϕ(a, t)| ≤ ‖ϕ‖(t).

(2) ‖ϕ‖ ≡ 0 if and only if ϕ ≡ 0.
(3) Let ϕ, ψ ∈ P(R,Θ) and let c ∈ Q[κ0, κ]. Then ϕ + ψ , ϕψ, cϕ ∈ P(R,Θ), and

‖ϕ + ψ‖ ≤ ‖ϕ‖ + ‖ψ‖, ‖ϕψ‖ ≤ ‖ϕ‖ ‖ψ‖, ‖cϕ‖ ≤ |c| ‖ϕ‖ .
PROOF. Let K0 ⊂ Δ0 × S(R,Θ) be a given compact set. Then we may choose t∗ ∈

S(R,Θ) and δ0 > 0 in such a way that |e−t | ≤ (1 − δ0)|e−t∗| for every (a, t) ∈ K0. Suppose

that ϕ = ∑∞
n=1 e

−nt ∑2n
j=0 p

n
j t
j
a ∈ P(R,Θ). Since ‖ϕ‖(t∗) < ∞, we have |pnj | ≤ |et∗|n−j/4

if n is sufficiently large, and then, by (3.1),

|e−ntpnj tja | ≤ |pnj ||e−t |n−j/4 ≤ |e−t /e−t∗ |n−j/4 ≤ (1 − δ0)
n/2

for (a, t) ∈ K0, which implies the uniform convergence of ϕ on K0. Thus the first assertion
is verified. The remaining ones are checked easily. �

PROPOSITION 3.2. Suppose that each ϕν ∈ P(R,Θ) consists of summands for n ≥ ν,

and that
∑∞
ν=1 ‖ϕν‖ < ∞ in S(R,Θ). Then ϕ∞ = ∑∞

ν=1 ϕν ∈ P(R,Θ), and ‖ϕ∞‖ ≤∑∞
ν=1 ‖ϕν‖.

PROOF. Write ϕν = ∑∞
n=ν

∑2n
j=0 p

νn
j e

−nt tja . Then
∑∞
ν=1

∑∞
n=ν

∑2n
j=0 p

νn
j e

−nt tja
converges absolutely in Δ0 × S(R,Θ), and hence it is possible to rearrange the summands.
Thus we have

ϕ∞ =
∞∑
n=1

2n∑
j=0

p∞n
j e−nt tja , p∞n

j :=
n∑
ν=1

pνnj ∈ Q[κ0, κ] ,

which satisfies ‖ϕ∞‖ ≤ ∑∞
ν=1 ‖ϕν‖ < ∞ in S(R,Θ) and ϕ∞ ∈ P(R,Θ). �
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For (n, j) ∈ N × (N ∪ {0}) set

I[e−nt tja ] := −e
−nt

n

(
t
j
a + j

n
t
j−1
a + · · · + j (j − 1) · · · (j − k + 1)

nk
t
j−k
a + · · · + j !

nj

)
,

which induces the linear operator I : P̂ → P̂. Note that the right-hand member is a primitive

function of e−nt tja . If j ≤ 2n, then, by (3.1),

∥∥∥I[e−nt tja ]
∥∥∥ = |e−t |n

n

j∑
k=0

j (j − 1) · · · (j − k + 1)

nk
|et/4|j−k

≤ |e−t |n|et/4|j
j∑
k=0

2k|e−t/4|k ≤ 2|e−t |n−j/4

in Δ0 × S(R,Θ). Hence we have

LEMMA 3.3. Suppose that ϕ ∈ P(R,Θ). Then
(i) I[ϕ] ∈ P(R,Θ), (ii) ‖I[ϕ]‖ ≤ 2‖ϕ‖, (iii) (d/dt)I[ϕ] = ϕ.

LEMMA 3.4. If ϕ ∈ P(R,Θ), then, for each k ∈ N

ektI[e−ktϕ] ∈ P(R,Θ),
∥∥∥ektI[e−ktϕ]

∥∥∥ ≤ 2‖ϕ‖ .

Let P̂0 be the subring of P̂ consisting of formal series of the form

ϕ =
∞∑
n=1

e−nt
n∑
j=0

pnj t
j
a , pnj ∈ Q[κ0, κ] .

LEMMA 3.5. If ϕ ∈ P̂0, then, for each k ∈ N∪{0}, ektI[e−ktϕ] ∈ P̂0. If ϕ ∈ P̂0 has

the form ϕ = ∑∞
n=2 e

−nt ∑n
j=0 p

n
j t
j
a , then e−tI[etϕ] ∈ P̂0.

We write P0(R,Θ) := P(R,Θ) ∩ P̂0, which is a subring of P(R,Θ).

3.2. System of equations equivalent to (V). Equation (V) is equivalent to the Hamil-
tonian system

(3.2) dy/dx = ∂HV/∂z, dz/dx = −∂HV/∂y

with HV = HV(x, y, z) such that

xHV(x, y, z) = y(y − 1)2z2 − (κ0(y − 1)2 + θy(y − 1)+ xy)z+ κ(y − 1) ,

which was obtained by Okamoto [15], [14] from isomonodromy deformation of a second-
order linear differential equation, where κ0, κ, θ are parameters satisfying (2.1).
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REMARK 3.1. Kaneko and Ohyama [12] pointed out that another polynomial Hamil-
tonian system

(3.3) dy/dx = ∂H∗/∂w, dw/dx = −∂H∗/∂y

with

xH∗(x, y,w) = − y(y − 1)2w2 +
(1

2
(−θ0 + θ1 + θ∞)(y − 1)2

+ (θ0 + θ1)y(y − 1)+ xy + (θ0 + θ1)
)
w − θ1

2
(θ0 + θ1 + θ∞)y

follows from isomonodromy deformation of a Schlesinger system by Jimbo and Miwa [11],
and that (3.2) is related to (3.3) by

κ0 = 1

2
(θ0 − θ1 − θ∞), κ∞ = 1

2
(θ0 − θ1 + θ∞), θ = θ0 + θ1 − 2

and

w = −z+ θ + 1

y − 1
+ x

(y − 1)2
.

Note that ∂(xHV)/∂z |x=0 and ∂(xHV)/∂y |x=0 simultaneously vanish at

(3.4) (y, z) = (1, κ/θ),
(
± κ0

κ∞
,−κ∞(κ0 + θ ∓ κ∞)

2(κ∞ ∓ κ0)

)
.

System (3.2) with x = e−t is written in the form

(3.5) y ′ = ∂H/∂z, z′ = −∂H/∂y
(y ′ = dy/dt) with

H := −e−tHV = −y(y − 1)2z2 + (κ0(y − 1)2 + θy(y − 1)+ e−t y)z− κ(y − 1) .

We would like to construct a family of solutions of this system (for a general Briot-Bouquet
system see [9]).

Suppose that θ = N ∈ Z \ {0}. To write (3.5) around (y, z) = (1, κ/θ) = (1, κ/N) put

y = 1 + ỹ, z = κ/N + z̃ .

Then

H = − (1 + ỹ)ỹ2z̃2 +
(
−2κ

N
ỹ3 +

(
κ0 + N − 2κ

N

)
ỹ2 + (N + e−t )ỹ + e−t

)
z̃

− κ2

N2
ỹ3 − κ

N

( κ
N

− κ0 −N
)
ỹ2 + κ

N
e−t ỹ + κ

N
e−t .

The canonical transformation

ỹ = η, z̃ = ζ + κ

N2

( κ
N

− κ0 −N
)
η



806 SHUN SHIMOMURA

leads us to the Hamiltonian system with

(3.6) H = h10e
−t η + e−t ζ + h20e

−t η2 + (N + e−t )ηζ +
∑

3≤k+l≤5

hklη
kζ l,

where hkl ∈ Q[κ0, κ].
Suppose that |N | ≥ 2. The canonical transformation η = ∂W/∂ζ, Z = ∂W/∂Y with

W = W(t, Y, ζ ) changesH to H − ∂W/∂t. Using this fact, we may find

η =
|N |−1∑
n=1

cne
−nt + Y, ζ =

|N |−1∑
n=1

c′ne−nt + Z

with cn, c′n ∈ Q[κ0, κ] such that H becomes

e−|N |t h̃10(e
−t )Y + e−|N |t h̃01(e

−t )Z + e−t h̃20(e
−t )Y 2

+ (N + e−t h̃11(e
−t ))YZ + e−t h̃02(e

−t )Z2 +
∑

3≤k+l≤5

h̃kl(e
−t )Y kZl ,

where h̃kl(τ ) ∈ Q[κ0, κ][τ ]. Such a transformation is the composite of Yn−1 = cne
−nt + Yn,

Zn−1 = c′ne−nt + Zn, Y0 = η, Z0 = ζ, Y|N |−1 = Y, Z|N |−1 = Z for 1 ≤ n ≤ |N | − 1, each

of which reduces the coefficients of linear terms to O(e−(n+1)t ). Consequently we obtain

Y ′ =e−|N |t h̃01(e
−t )+ (N + e−t h̃11(e

−t ))Y

+ e−th∗
01(e

−t )Z +
∑

2≤k+l≤4

h∗
kl(e

−t )Y kZl ,

Z′ = − e−|N |t h̃10(e
−t )− (N + e−t h̃11(e

−t ))Z

+ e−th∗
10(e

−t )Y +
∑

2≤k+l≤4

h̃∗
kl(e

−t )Y kZl ,

where h∗
kl(τ ), h̃

∗
kl(τ ) ∈ Q[κ0, κ][τ ]. By Y = e−|N |t Ỹ , Z = e−|N |t Z̃ this is changed into

Ỹ ′ =h̃01(e
−t )+ (N + |N | + e−t h̃11(e

−t ))Ỹ

+ e−th∗
01(e

−t )Z̃ +
∑

2≤k+l≤4

e−(k+l−1)|N |th∗
kl(e

−t )Ỹ kZ̃l ,

Z̃′ = − h̃10(e
−t )− (N − |N | + e−t h̃11(e

−t ))Z̃

+ e−th∗
10(e

−t )Ỹ +
∑

2≤k+l≤4

e−(k+l−1)|N |t h̃∗
kl(e

−t )Ỹ kZ̃l .

Put

Ỹ = h̃01(0)ta + u, Z̃ = h̃10(0)/(2|N |)+ v if N ≤ −2 ,

Ỹ = −h̃01(0)/(2N)+ u, Z̃ = −h̃10(0)ta + v if N ≥ 2 .
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Observing that (k+ l− 1)|N |− (k+ l) ≥ 2(k+ l− 1)− (k+ l) ≥ k+ l− 2 ≥ 0 if k+ l ≥ 2,
we have

PROPOSITION 3.6. (1) If N ≤ −2, then, by a transformation (y, z) 
→ (u, v) such
that

y = 1 +
|N |−1∑
n=1

cne
−nt − c|N |e−|N |t ta + e−|N |t u

with cn ∈ Q[κ0, κ], system (3.5) is taken into

u′ = q00(t)+
∑

1≤k+l≤4

qkl(t)u
kvl ,

v′ = q∗
00(t)+ 2|N |v +

∑
1≤k+l≤4

q∗
kl(t)u

kvl
(3.7)

with qkl(t), q∗
kl(t) ∈ P0(R,Θ) for any positive numbers R,Θ.

(2) If N ≥ 2, then, by a transformation (y, z) 
→ (u, v) such that

y = 1 +
N∑
n=1

cne
−nt + e−Ntu

with cn ∈ Q[κ0, κ], system (3.5) is taken into

u′ = q00(t)+ 2Nu+
∑

1≤k+l≤4

qkl(t)u
kvl ,

v′ = q∗
00(t)+

∑
1≤k+l≤4

q∗
kl(t)u

kvl
(3.8)

with qkl(t), q∗
kl(t) ∈ P0(R,Θ) for any positive numbers R,Θ.

REMARK 3.2. Obviously qkl(t) and q∗
kl(t) are polynomials in e−t and ta .

In case |N | = 1 we have

PROPOSITION 3.7. (1) If N = −1, then, by a transformation (y, z) 
→ (u, v) such
that

y = 1 + e−t ta + e−tu ,

system (3.5) is taken into

u′ = q00(t)+
∑

1≤k+l≤4

qkl(t)u
kvl ,

v′ = q∗
00(t)+ 2v +

∑
1≤k+l≤4

q∗
kl(t)u

kvl
(3.9)



808 SHUN SHIMOMURA

with qkl(t), q∗
kl(t) ∈ P(R,Θ) such that e(k+l−1)tqkl(t), e

(k+l−1)tq∗
kl(t) ∈ P0(R,Θ) for any

positive numbers R,Θ.
(2) If N = 1, then, by a transformation (y, z) 
→ (u, v) such that

y = 1 − e−t /2 + e−tu ,

system (3.5) is taken into

u′ = q00(t)+ 2u+
∑

1≤k+l≤4

qkl(t)u
kvl ,

v′ = q∗
00(t)+

∑
1≤k+l≤4

q∗
kl(t)u

kvl
(3.10)

with qkl(t), q∗
kl(t) ∈ P0(R,Θ) for any positive numbers R,Θ.

PROOF. In case |N | = 1, the system corresponding to (3.6) is

η′ = e−t + (N + e−t )η +
∑(4)+

(2)
h∗
klη

kζ l ,

ζ ′ = −h10e
−t − (N + e−t )ζ − 2h20e

−t η +
∑(4)−

(2)
h̃∗
klη

kζ l ,

where h∗
kl, h̃

∗
kl ∈ Q[κ0, κ] and the summation

∑(4)+
(2) (respectively,

∑(4)−
(2) ) is over (k, l)

satisfying 2 ≤ k+ l ≤ 4, l ≤ 1, k ≥ l+ 1 (respectively, 2 ≤ k+ l ≤ 4, l ≤ 2, k ≥ l− 1). We
put η = e−tY , ζ = e−tZ to obtain

Y ′ = 1 + (N + 1 + e−t )Y +
∑(4)+

(2)
h∗
kle

−(k+l−1)tY kZl ,

Z′ = −h10 − (N − 1 + e−t )Z − 2h20e
−tY +

∑(4)−
(2)

h̃∗
kle

−(k+l−1)tY kZl .

If N = 1, we put Y = −1/2 + u, Z = −h10ta + v. Observing that, in
∑(4)−
(2) , (k + l −

1)− l = k − 1 ≥ l − 2 = 0 if l = 2 and that (k + l − 1)− l ≥ 1 − l = 0 if l = 1, we have
the assertion (2).

If N = −1, we put Y = ta + u, Z = h10/2 + v. It is easy to see that qkl(t), q∗
kl(t) ∈

P(R,Θ). Note that

e−(k+l−1)t(ta + u)k(h10/2 + v)l =
∑
k′, l′

ck′l′e
−(k+l−1)t tk−k′

a uk
′
vl

′

for 0 ≤ k′ ≤ k, l′ ≤ l. Since k + l − 1 − (k − k′) = k′ + l − 1 ≥ k′ + l′ − 1, we have

e(k
′+l′−1)t qk′l′(t), e(k

′+l′−1)t q∗
k′l′(t) ∈ P̂0, which implies the assertion (1). �

Suppose that θ = 0. Then the Hamiltonian of (3.5) is

H = −y(y − 1)2z2 + (κ0(y − 1)2 + e−t y)z− κ(y − 1) ,
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which is written in the form

H = −(ỹ + 1)ỹ2z2 + (κ0ỹ
2 + e−t (ỹ + 1))z− κỹ

with ỹ = y − 1. The corresponding system is

ỹ ′ = e−t + e−t ỹ + κ0ỹ
2 − 2(1 + ỹ)ỹ2z ,

z′ = κ − e−t z− 2κ0ỹz+ (2 + 3ỹ)ỹz2 .

Substitution of ỹ = e−tY yields

Y ′ = 1 + (1 + e−t )Y + κ0e
−tY 2 − 2e−tY 2z − 2e−2tY 3z ,

z′ = κ − e−t z− 2κ0e
−tY z+ 2e−tY z2 + 3e−2tY 2z2 .

We put Y = −1 + u, z = κta + v to obtain

PROPOSITION 3.8. If N = 0, then, by a transformation (y, z) 
→ (u, v) such that

y = 1 − e−t + e−tu ,

system (3.5) is taken into

u′ = q00(t)+ u+Q0(t, u)+Q1(t, u)v ,

v′ = q∗
00(t)+ q∗

10(t)u+ q∗
20(t)u

2 +Q∗
1(t, u)v +Q∗

2(t, u)v
2

(3.11)

with

Q0(t, u) =
3∑
k=1

qk0(t)u
k, Q1(t, u) = −2e−t (u− 1)2(1 + e−t (u− 1)) ,

Q∗
1(t, u) = q∗

01(t)+ q∗
11(t)u+ q∗

21(t)u
2, Q∗

2(t, u) = e−t (u− 1)(2 + 3e−t (u− 1)) ,

where, for any R,Θ > 0, the coefficients qkl(t), q∗
kl(t) have the properties:

(i) q∗
00(t), q

∗
10(t) ∈ P(R,Θ) and e−t q∗

00(t), e
−t q∗

10(t) ∈ P0(R,Θ);
(ii) qkl(t) ∈ P0(R,Θ), in particular, q00(t) = e−t (κ0 − 1 − 2κta)+ 2κe−2t ta;
(iii) q∗

kl(t) ∈ P0(R,Θ) for every (k, l) �= (0, 0), (1, 0).

3.3. Proof of Theorem 2.2 in the case where N ≥ 1 or N ≤ −2. For a given
positive number B0 suppose that |κ0| + |κ | < B0. For a given bounded domain Δ0 ⊂ C and
for a given positive number Θ0, let R = R(Δ0,Θ0) be a positive number as in Section 3.2.
Suppose that N ≥ 2, and write (3.8) in the form

u′ = 2Nu+ Ψ (t, u, v), v′ = Ψ∗(t, u, v)

with

Ψ (t, u, v) := q00(t)+Π(t, u, v), Π(t, u, v) :=
∑

1≤k+l≤4

qkl(t)u
kvl ,
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Ψ∗(t, u, v) := q∗
00(t)+Π∗(t, u, v), Π∗(t, u, v) :=

∑
1≤k+l≤4

q∗
kl(t)u

kvl .

If (u, v) = (u(a, t), v(a, t)) ∈ P0(R,Θ0)
2 satisfies the system of formal integral equations

(3.12) u = e2NtI[e−2NtΨ (t, u, v)], v = I[Ψ∗(t, u, v)] ,
then, by Lemmas 3.3 and 3.4, it solves (3.8). In what follows we construct such a solution of

(3.12). We may define the sequence {(uν(a, t), vν(a, t)) | ν ≥ 0} ⊂ P0(R,Θ0)
2 by

u0(a, t) ≡ 0, v0(a, t) ≡ 0 ,

uν+1(a, t) = e2NtI
[
e−2NtΨ (t, uν(a, t), vν(a, t))

]
,

vν+1(a, t) = I [Ψ∗(t, uν(a, t), vν(a, t))] .

By Remark 3.2, ‖qkl‖, ‖q∗
kl‖ = O(|e−t/2|) uniformly in (a, κ0, κ) such that a ∈ Δ0, |κ0| +

|κ | < B0. Noting this fact we have

LEMMA 3.9. There exist a positive numberL0 and a sufficiently large positive number
R0 = R0(Δ0,Θ0, B0) such that

(i) ‖q00‖, ‖q∗
00‖ ≤ L0|e−t/2| in S(R0,Θ0), and that

(ii) for any (u, ũ, v, ṽ) ∈ P0(R0,Θ0)
4

‖Π(t, u, v) −Π(t, ũ, ṽ)‖ ≤ L0|e−t/2|(‖u− ũ‖ + ‖v − ṽ‖) ,
‖Π∗(t, u, v) −Π∗(t, ũ, ṽ)‖ ≤ L0|e−t/2|(‖u− ũ‖ + ‖v − ṽ‖)

in S(R0,Θ0) as long as ‖u‖, ‖ũ‖, ‖v‖, ‖ṽ‖ < 1.

Then, by Lemmas 3.3, 3.4 and 3.9, in S(R0,Θ0)

‖u1‖ =
∥∥∥e2NtI

[
e−2Ntq00(t)

]∥∥∥ ≤ 2‖q00‖ ≤ 2L0|e−t/2| ,
‖v1‖ = ∥∥I [

q∗
00(t)

]∥∥ ≤ 2‖q∗
00‖ ≤ 2L0|e−t/2| ,

and, for ν ≥ 1,

‖uν+1 − uν‖ =
∥∥∥e2NtI

[
e−2Nt(Π(t, uν, vν)−Π(t, uν−1, vν−1))

]∥∥∥
≤2 ‖Π(t, uν, vν)−Π(t, uν−1, vν−1)‖
≤2L0|e−t/2| (‖uν − uν−1‖ + ‖vν − vν−1‖) ,

‖vν+1 − vν‖ ≤2L0|e−t/2| (‖uν − uν−1‖ + ‖vν − vν−1‖)
as long as ‖uj‖, ‖vj‖ < 1 for every j ≤ ν. These inequalities yield

‖uν+1 − uν‖ + ‖vν+1 − vν‖ ≤4L0|e−t/2| (‖uν − uν−1‖ + ‖vν − vν−1‖)
≤ . . . ≤ (4L0|e−t/2|)ν(‖u1‖ + ‖v1‖) ≤ (4L0|e−t/2|)ν+1 ,
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which implies

‖uν+1‖ + ‖vν+1‖ ≤
ν∑
j=0

(‖uj+1 − uj‖ + ‖vj+1 − vj‖) ≤ 4L0|e−t/2|
1 − 4L0|e−t/2| .

Hence, choosing R0 again, if necessary, in such a way that 4L0|e−t/2| < 1/3 in S(R0,Θ0),

we have, for every ν ≥ 1,

‖uν+1 − uν‖ + ‖vν+1 − vν‖ ≤ (4L0|e−t/2|)ν+1 ≤ 3−ν−1 ,

‖uν‖ + ‖vν‖ ≤ 6L0|e−t/2| < 1/2

in S(R0,Θ0). By Proposition 3.2, (u∞, v∞) := limν→∞(uν, vν) ∈ P0(R0,Θ0)
2, which

satisfies (3.12).
For a given bounded domain D0 as in Section 2, we may choose Δ0 in such a way that

a = logρ ∈ Δ0 for every ρ ∈ D0. Let ε′0 be such that t ∈ S(R0,Θ0) holds for every

x = e−t ∈ Σ(ε′0,Θ0). By Proposition 3.6, (2),

y = 1 +
N∑
n=1

cnx
n + xNu∞(logρ,− log x)

is the desired solution of (V) when N ≥ 2.
In the case where N = 1 or N ≤ −2, we may construct the solution as in Theorem 2.2

by using Proposition 3.7 or 3.6.

3.4. Proof of Theorem 2.2 in the case where N = −1 or 0. Suppose that N = −1.
Write (3.9) in the form

u′ = Ψ (t, u, v), v′ = 2v + Ψ∗(t, u, v)

with

Ψ (t, u, v) =
∑

0≤k+l≤4

qkl(t)u
kvl , Ψ∗(t, u, v) =

∑
0≤k+l≤4

q∗
kl(t)u

kvl .

Defining the sequence {(uν(a, t), vν(a, t)) | ν ≥ 0} ⊂ P(R,Θ0)
2 by

u0(a, t) ≡ 0, v0(a, t) ≡ 0 ,

uν+1(a, t) = I [Ψ (t, uν(a, t), vν(a, t))] ,

vν+1(a, t) = e2tI
[
e−2tΨ∗(t, uν(a, t), vν(a, t))

]
,

we may construct, for some R0 > 0, the solution (u∞, v∞) := limν→∞(uν, vν) ∈
P(R0,Θ0)

2 of (3.9) by the same argument as in Section 3.3. Write the system of recursive
relations above in the form

e−tuν+1(a, t) = e−tI [
et Ψ̂ (t, e−tuν(a, t), e−t vν (a, t))

]
,
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e−t vν+1(a, t) = etI [
e−t Ψ̂∗(t, e−tuν(a, t), e−t vν(a, t))

]
with

Ψ̂ (t, û, v̂) =
∑

0≤k+l≤4

e(k+l−1)tqkl(t)û
kv̂l , Ψ̂∗(t, û, v̂) =

∑
0≤k+l≤4

e(k+l−1)tq∗
kl(t)û

k v̂l .

Observing e(k+l−1)tqkl(t), e
(k+l−1)tq∗

kl(t) ∈ P0(R0,Θ0), and using Lemma 3.5, we may

inductively show that e−tuν, e−t vν ∈ P̂0 for every ν. This implies e−tu∞ ∈ P0(R0,Θ0),

which yields the solution of (V) as in Theorem 2.2, (ii).

If N = 0, define the sequence {(uν(a, t), vν(a, t)) | ν ≥ 0} ⊂ P(R,Θ0)
2 by

u0(a, t) ≡ 0, v0(a, t) ≡ 0 ,

uν+1(a, t) = etI [
e−tΩ(t, uν(a, t), vν(a, t))

]
,

vν+1(a, t) = I [Ω∗(t, uν(a, t), vν(a, t))] ,

whereΩ(t, u, v)+u andΩ∗(t, u, v) are the right-hand members of (3.11) in Proposition 3.8.
Then (u∞, v∞) := limν→∞(uν, vν) ∈ P(R0,Θ0)

2 solves (3.11). Writing

uν+1(a, t) = etI [
e−t Ω̂(t, uν(a, t), e−t vν(a, t))

]
,

e−t vν+1(a, t) = e−tI [
et Ω̂∗(t, uν(a, t), e−t vν(a, t))

]
with

Ω̂(t, u, v̂) = q00(t)+Q0(t, u)− 2(u− 1)2(1 + e−t (u− 1))v̂ ,

Ω̂∗(t, u, v̂) = e−t q∗
00(t)+ e−t q∗

10(t)u+ e−t q∗
20(t)u

2

+Q∗
1(t, u)v̂ + (u− 1)(2 + 3e−t (u− 1))v̂2 ,

and using Lemma 3.5, we have uν, e−t vν ∈ P̂0 for every ν, and hence u∞ ∈ P0(R0,Θ0).

Since

u1(a, t) = etI[e−t q00(t)] = e−t
(
κta + 1

2
(κ − κ0 + 1)− 2

9
κe−t (3ta + 1)

)
,

we obtain the solution of (V) as in Theorem 2.2, (i).

REMARK 3.3. In the proof of Theorem 2.2 above, if the coefficients of ta vanish, then
logarithmic terms do not appear. For example, in the process of deriving Proposition 3.6, if

N ≤ −2 and if h̃01(0) = 0, we put Ỹ = a + u instead of h̃01(0)ta + u, and the corresponding
transformation is

y = 1 +
|N |−1∑
n=1

cne
−nt + ae−|N |t + e−|N |tu .
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In deriving Proposition 3.8, if N = 0 and if κ = 0, we put z = a + v. Then we have q00(t) =
(κ0−1−2a)e−t+2ae−2t and u1(a, t) = etI[e−t q00(t)] = (a+(1−κ0)/2)e−t−(2a/3)e−2t .
In these degenerate cases we obtain families of Taylor series solutions as in Remark 2.2.

4. Proof of Theorem 2.3

Around the point (y, z) = (y0, z0) := (κ0/κ∞,−κ∞(κ0 −κ∞ + θ)/(2(κ∞ −κ0))) given
by (3.4), let us consider (3.2). Note that(

∂2(xHV)/∂y∂z ∂2(xHV)/∂z
2

−∂2(xHV)/∂y
2 −∂2(xHV)/∂y∂z

)
(y0, z0)

∣∣∣
x=0

=
(
h11 h02

−h20 −h11

)

=
⎛
⎝

κ0
κ∞ (κ0 + θ)− 2κ0 + κ∞ 2κ0

κ3∞
(κ0 − κ∞)2

− 1
2

(
κ∞ + θκ∞

κ0−κ∞
) (
κ0 − 2κ∞ + θκ0

κ0−κ∞
)

− κ0
κ∞ (κ0 + θ)+ 2κ0 − κ∞

⎞
⎠ ,

whose eigenvalues are ±(κ0 − κ∞). Then putting x = e−t and
(
y − y0

z− z0

)
=

(
h02 h02

κ∞ − κ0 − h11 κ0 − κ∞ − h11

) (
ỹ

z̃

)
,

we obtain the Hamiltonian

H = h̃10e
−t ỹ + h̃01e

−t z̃+ h̃20e
−t ỹ2 + (κ0 − κ∞ + h̃11e

−t )ỹz̃+ h̃02e
−t z̃2 +

∑
3≤k+l≤5

h̃kl ỹ
kz̃l

with h̃kl ∈ Q[κ0, κ∞, θ, κ−1∞ , (κ0 − κ∞)−1] instead of (3.6). If κ0 − κ∞ = N = ±1, then,
this Hamiltonian system is reduced to a system whose coefficients have the same properties
as of (3.9). Observing the proofs of Propositions 3.6 and 3.7, by the same arguments as in the
proofs of Theorem 2.2 for |N | ≥ 2 and for N = −1, we can verify the assertion (1), from
which the second half of the theorem immediately follows.

5. Proof of Theorem 2.1

5.1. Ring of exponential type series with asymptotic multipliers. Let B0, Θ and R̂
be given positive numbers, and let Δ0 ⊂ C be a given bounded domain. In what follows, let
R = R(Δ0, R̂,Θ) > 8 and Θ̂ = Θ̂(Δ0,Θ) > Θ denote sufficiently large positive numbers

such that ta := t−a ∈ S(R̂, Θ̂) and |ta| < |et/4| hold for every (a, t) ∈ Δ0 ×S(R,Θ), where

S(R,Θ) is the strip Re t > R, |Im t| < Θ, and suppose that |α| + |β| + |γ | + |γ−1| < B0.

Let Â(R̂, Θ̂) be the ring of formal series of the form

ϕ = ϕ(a, t) =
∞∑
n=1

e−nt t2na ϕn(ta)
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with a complex parameter a, where, for each n, ϕn(s) is holomorphic in s ∈ S(R̂, Θ̂) and
admits the asymptotic expansion

ϕn(s) ∼
∞∑
j=0

ϕnj s
−j , ϕnj ∈ Q[α, β, γ, γ−1]

as s → ∞ through S(R̂, Θ̂). For ϕ ∈ Â(R̂, Θ̂) as above, define

‖ϕ‖ = ‖ϕ(a, t)‖ = ‖ϕ‖(t) :=
∞∑
n=1

M(ϕn)|e−t |n/2

with

M(ϕn) := sup
s∈S(R̂,Θ̂)

|ϕn(s)|

and set, for each (α, β, γ ),

A(R,Θ) := {
ϕ(a, t) ∈ Â(R̂, Θ̂)

∣∣ ‖ϕ‖(t) < ∞ for every t ∈ S(R,Θ)} .
EXAMPLE 5.1. For a given bounded domain Δ0 and for given positive numbers Θ

and R̂, choose R > 1 such that R̂ < |ta| < |et/4| for every (a, t) ∈ Δ0 × S(R,Θ).

If |ϕnj | ≤ M0(R̂/2)j for every (n, j) satisfying n ≥ 1, j ≥ 0, where M0 is a positive

number, then, for each n, ϕn(s) = ∑∞
j=0 ϕ

n
j s

−j converges for |s| > R̂, and |ϕn(s)| ≤∑∞
j=0M0(R̂/2)j |s|−j ≤ 2M0. Then ϕ(a, t) = ∑∞

n=1 e
−nt t2na ϕn(ta) ∈ A(R,Θ), since

‖ϕ‖(t) ≤ 2M0
∑∞
n=1 |e−t |n/2 < ∞ in S(R,Θ).

PROPOSITION 5.1. (1) If ϕ ∈ A(R,Θ), then ϕ = ϕ(a, t) is holomorphic in (a, t) ∈
Δ0 × S(R,Θ) and satisfies |ϕ(a, t)| ≤ ‖ϕ‖(t).

(2) ‖ϕ‖ ≡ 0 if and only if ϕ ≡ 0.
(3) Let ϕ, ψ ∈ A(R,Θ) and let c ∈ Q[α, β, γ, γ−1]. Then ϕ + ψ, ϕψ, cϕ ∈ A(R,Θ),

and

‖ϕ + ψ‖ ≤ ‖ϕ‖ + ‖ψ‖, ‖ϕψ‖ ≤ ‖ϕ‖ ‖ψ‖, ‖cϕ‖ ≤ |c| ‖ϕ‖ .
Furthermore, for each (α, β, γ ), if f (s) = ∑∞

j=0 fj s
−j with fj ∈ Q[α, β, γ, γ−1] con-

verges for |s| ≥ R̂, then f (ta)ϕ ∈ A(R,Θ) and ‖f (ta)ϕ‖ ≤ M(f )‖ϕ‖.
PROOF. Let K0 ⊂ Δ0 × S(R,Θ) be a given compact set. There exist t∗ ∈ S(R,Θ)

and δ0 > 0 such that |e−t | ≤ (1 − δ0)|e−t∗| in K0. Since ‖ϕ‖(t∗) < ∞, we have M(ϕn) ≤
|e−t∗ |−n/2 if n is sufficiently large, and hence

|e−nt t2na ϕn(ta)| ≤ M(ϕn)|e−t |n/2 ≤ |e−t /e−t∗ |n/2 ≤ (1 − δ0)
n/2

in K0. This implies that ϕ(a, t) converges uniformly on every compact set contained in Δ0 ×
S(R,Θ) and satisfies |ϕ(a, t)| ≤ ‖ϕ‖(t). Thus the first assertion is verified. �
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PROPOSITION 5.2. Suppose that each ϕν ∈ A(R,Θ) consists of summands for n ≥ ν,

and that
∑∞
ν=1 ‖ϕν‖ < ∞ in S(R,Θ). Then ϕ∞ = ∑∞

ν=1 ϕν ∈ A(R,Θ), and ‖ϕ∞‖ ≤∑∞
ν=1 ‖ϕν‖.

Furthermore we have

LEMMA 5.3. Let

f (a, t, u1, . . . , up) =
∑

k

fk(a, t)u
k1
1 · · · ukpp , k = (k1, . . . , kp) ∈ (N ∪ {0})p \ {0}p

be such that, for each (α, β, γ ),

(i) fk(a, t) ∈ A(R,Θ) (respectively, fk(a, t) = f̃k(ta) with f̃k(s) = ∑∞
j=0 f̃

k
j s

−j ,
f̃ k
j ∈ Q[α, β, γ, γ−1] convergent for |s| ≥ R̂), and that

(ii) ‖fk‖(t) ≤ M0 in S(R,Θ) (respectively, M(fk) ≤ M0), where M0 is some positive
number independent of k.

If ϕ1, . . . , ϕp ∈ A(R,Θ) satisfy ‖ϕ1‖ < 1, . . . , ‖ϕp‖ < 1 in S(R,Θ), then
f (a, t, ϕ1, . . . , ϕp) ∈ A(R,Θ), and

‖f (a, t, ϕ1, . . . , ϕp)‖ ≤
∑

k

‖fk‖ ‖ϕ1‖k1 · · · ‖ϕp‖kp

(
respectively, ≤

∑
k

M(fk)‖ϕ1‖k1 · · · ‖ϕp‖kp
)
.

LEMMA 5.4. Let m be a given integer, and suppose that R̂ > 2(|m| + 2). For each
n ≥ 1,

|enss−2n−m|
∫
Γ (s)

|e−nσ σ 2n+m| |dσ | ≤ 2
√

1 + Θ̂2

for every s ∈ S(R̂, Θ̂), where Γ (s) is a horizontal line starting from s and tending to ∞ on
which Re σ ≥ Re s, Im σ = Im s for every σ ∈ Γ (s).

PROOF. Set eσ̃ = enσ σ−2n−m, namely σ̃ = nσ − (2n+m) logσ. For σ ∈ Γ (s) write
σ̃ = r + iχ, σ = ξ + iμ, where ξ ≥ Re s ≥ R̂ > 2(|m| + 2), |μ| ≤ Θ̂. From

r + iχ = n(ξ + iμ)− (2n+m)(log
√
ξ2 + μ2 + i arctan(μ/ξ))

we derive

r = r(ξ) = nξ − (n+m/2) log(ξ2 + μ2) ,

χ = χ(ξ) = nμ− (2n+m) arctan(μ/ξ)

and ∣∣∣dχ
dr

∣∣∣ =
∣∣∣dχ/dξ
dr/dξ

∣∣∣ =
∣∣∣ (2n+m)μ

n(ξ2 + μ2)− (2n+m)ξ

∣∣∣
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≤
∣∣∣ (2 + |m|)μ
ξ2 − (2 + |m|)ξ

∣∣∣ ≤ |μ|
2(2 + |m|) ≤ |μ| ≤ Θ̂ ,

since ξ ≥ R̂ > 2(|m| + 2). This implies |dσ̃ | = √
dr2 + dχ2 = √

1 + (dχ/dr)2|dr| ≤√
1 + Θ̂2|dr|, which yields

|dσ | = |dσ̃ |
|n− (2n+m)/σ | ≤ |dσ̃ |

n|1 − (2 + |m|)/R̂| ≤ 2
√

1 + Θ̂2|dr| .

Since

dr

dξ
= n− (2n+m)ξ

ξ2 + η2 ≥ n− 2n+ |m|
ξ

≥ n− 2n+ |m|
2|m| + 4

> 0 ,

Γ (s) is mapped to a path joining r(Re s) to ∞ along which r = Re σ̃ is monotone. Hence
∫
Γ (s)

∣∣∣ enss−2n−m

enσ σ−2n−m
∣∣∣ |dσ | ≤

∫ +∞

r(Re s)
2er(Re s)−r√1 + Θ̂2 dr ≤ 2

√
1 + Θ̂2 ,

which implies the lemma. �

Using this lemma, we have

LEMMA 5.5. Let m, R̂ and Γ (·) be as in Lemma 5.4. If ϕ(a, t) ∈ A(R,Θ), then

t−ma
∫
Γ (t)

τma ϕ(a, τ ) dτ ∈ A(R,Θ) ,

∥∥∥∥t−ma
∫
Γ (t)

τma ϕ(a, τ ) dτ

∥∥∥∥ ≤ 2
√

1 + Θ̂2 ‖ϕ‖(t) ,

where τa := τ − a.

PROOF. Set

In,m,k(s) := enss−2n−m
∫
Γ (s)

e−nσ σ 2n+m−k dσ .

For any positive integer ν, we have

In,m,0(s) = enss−2n−m
(
e−ns

n
s2n+m + 2n+m

n

∫
Γ (s)

e−nσ σ 2n+m−1dσ

)
(5.1)

= 1

n
+ 2n+m

n
In,m,1(s) = 1

n
+ 2n+m

n
s−1In,m−1,0(s)

= 1

n
+ 2n+m

n2
s−1 + · · ·

+ (2n+m)−ν
nν+1 s−ν + (2n+m)−(ν+1)

nν+1 s−ν−1In,m−ν−1,0(s)
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with (c)−ν := c(c − 1) · · · (c − ν + 1). Here, by Lemma 5.4, In,m−ν−1,0(s) = O(1) in

S(R̂, Θ̂). Write ϕ(a, t) ∈ A(R,Θ) in the form ϕ(a, t) = ∑∞
n=1 e

−nt t2na ϕn(ta) with ϕn(s) ∼∑∞
j=0 ϕ

n
j s

−j as s → ∞ through S(R̂, Θ̂). Then, observing In,m,k(s) = s−kIn,m−k,0(s), and

using (5.1) and Lemma 5.4, we have

Φn(s) = enss−2n−m
∫
Γ (s)

e−nσ σ 2n+mϕn(σ) dσ ∼
∞∑
j=0

Φnj s
−j , Φnj ∈ Q[α, β, γ, γ−1]

as s → ∞ through S(R̂, Θ̂). We substitute (s, σ ) = (ta, τa) with (a, t) ∈ Δ0 × S(R,Θ) and
τa ∈ Γ (ta) to obtain the formal series

Φ(a, t) := t−ma
∫
Γ (t)

τma ϕ(a, τ ) dτ =
∞∑
n=1

t−ma
∫
Γ (t)

e−nτ τ 2n+m
a ϕn(τa) dτ

=
∞∑
n=1

e−nt t2na Φn(ta) ∈ Â(R̂, Θ̂) .

By Lemma 5.4,

M(Φn) = sup
s∈S(R̂,Θ̂)

|Φn(s)| = sup
s∈S(R̂,Θ̂)

∣∣∣∣enss−2n−m
∫
Γ (s)

e−nσ σ 2n+mϕn(σ) dσ
∣∣∣∣

≤ sup
s∈S(R̂,Θ̂)

|enss−2n−m|
∫
Γ (s)

|e−nσ σ 2n+m|M(ϕn) |dσ | ≤ 2
√

1 + Θ̂2 M(ϕn) ,

which implies

‖Φ‖(t) =
∞∑
n=1

M(Φn)|e−t |n/2 ≤ 2
√

1 + Θ̂2
∞∑
n=1

M(ϕn)|e−t |n/2 = 2
√

1 + Θ̂2 ‖ϕ‖(t)

and Φ(a, t) ∈ A(R,Θ). This completes the proof. �

5.2. System of integral equations. By the change of variables x = e−t , y = 1 +
e−t z, equation (V) is taken into

z′′− (z
′)2

z
− γ + 1

z

= e−t
(

(z′ − z)2

2(1 + e−t z) +
(
α(1 + e−t z)+ β

1 + e−t z

)
z2 + γ z− 3

2
− e−t z

2

)
.

Suppose that γ �= 0. The associated truncated equation

z′′ − (z′)2

z
− γ + 1

z
= 0
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admits a solution of the form

z = φ = φ(ta) = −γ
2
t2a + 1

2γ
, ta = t − a

with a ∈ Δ0, which satisfies

(5.2) (φ′)2 = 1 − 2γφ, φ′′ = −γ .
Putting z = φ +w, we have

w′′ − 2φ′

φ
w′ − 2γ

φ
w = −2γw2 − 2φ′ww′ + φ(w′)2

φ(φ +w)

+ e−t
(
(φ′ − φ +w′ −w)2

2(1 + e−t (φ +w))
+

(
α(1 + e−t (φ + w))+ β

1 + e−t (φ + w)

)
(φ +w)2

+ γ (φ + w)− 3

2
− e−t

2
(φ + w)

)
,

which is written in the form

(5.3) w′′ − 2φ′

φ
w′ − 2γ

φ
w = G(a, t, w,w′) ,

where

G(a, t, w,w′) := g0(a, t)+ g(a, t, w,w′)+ g∗(a, t, w,w′) ,

g0(a, t) = e−t
(
(φ′ − φ)2

2(1 + e−tφ)
+

(
α(1 + e−tφ)+ β

1 + e−tφ

)
φ2 + γφ − 3

2
− e−tφ

2

)
,

g(a, t, w,w′) = φ(w′)2 − 2φ′ww′ − 2γw2

φ(φ +w)
,

g∗(a, t, w,w′) = e−t
(
(φ′ − φ +w′ − w)2

2(1 + e−t (φ +w))
− (φ′ − φ)2

2(1 + e−tφ)

+ α(1 + e−t (φ +w))(φ +w)2 − α(1 + e−tφ)φ2

+ β(φ +w)2

1 + e−t (φ +w)
− βφ2

1 + e−tφ
+ γw − e−tw

2

)
.

If |e−tφ(ta)|, |w/φ(ta)| < 1 and if |ta | is sufficiently large, then g0(a, t) and g(a, t, w,w′)
are expanded into the convergent series

g0(a, t) = t2a

∞∑
n=1

e−nt t2na g0
n(ta), g0

n(ta) =
∞∑
j=0

g0n
j t

−j
a ,(5.4)

g(a, t, w,w′) = t2a

∑
k+l≥2

gkl(ta)(t
−2
a w)k(t−2

a w′)l, gkl(ta) =
∞∑
j=0

gklj t
−j
a(5.5)
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with g0n
j ∈ Q[α, β, γ, γ−1], gklj ∈ Q[γ, γ−1]. In particular,

t4ag
0
1 (ta) = (φ′ − φ)2/2 + (α + β)φ2 + γφ − 3/2 ,

t6ag
0
2 (ta) = −

(
(φ′ − φ)2/2 − (α − β)φ2 + 1/2

)
φ ,

t2n+2
a g0

n(ta) = (−1)n+1
(
(φ′ − φ)2/2 + βφ2

)
φn−1 for n ≥ 3.

Note that

g∗(a, t, w,w′) = φU(φ−1, φ′φ−1; e−tφ, φ−1w,φ−1w′)
(1 + e−t φ + e−tφ · φ−1w)(1 + e−tφ)

,

where U(X1,X2; Y,W1,W2) is a polynomial such that

U(X1,X2; 0,W1,W2) ≡ 0, U(X1,X2; Y, 0, 0) ≡ 0 .

If |e−tφ(ta)| + |e−tw| < 1, and if |ta | is sufficiently large, then

(5.6) g∗(a, t, w,w′) = t2a

∑
k+l≥1

g∗
kl(a, t)(t

−2
a w)k(t−2

a w′)l

with

g∗
kl(a, t) =

∞∑
n=1

e−nt t2na g∗kl
n (ta), g∗kl

n (ta) =
∞∑
j=0

g∗kln
j t

−j
a

such that g∗kln
j ∈ Q[α, β, γ, γ−1]. Let B0 and Δ0 be as in Section 5.1, and let R̂ ≥ 10. In

what follows we may suppose the following, in which R′ = R′(Δ0, B0) > R̂ is a sufficiently
large positive number:

(i) |ta| > R̂ and |e−t t2a | < 1/2 for every (a, t) satisfying |t| > R′, a ∈ Δ0;
(ii) as power series in (e−t t2a , s−1, u, v)

∞∑
n=1

(e−t t2a )n
∞∑
j=0

g0n
j s

−j ,
∑
k+l≥2

∞∑
j=0

gklj s
−jukvl ,

∑
k+l≥1

∞∑
n=1

(e−t t2a )n
∞∑
j=0

g∗kln
j s−jukvl

converge for |e−t t2a | < 1/2, |s| > R̂, |u| < 1, |v| < 1 absolutely and uniformly in (α, β, γ )

satisfying |α| + |β| + |γ | + |γ−1| < B0.

For the linear equation

(5.7) w′′ − 2φ′

φ
w′ − 2γ

φ
w = 0 ,

using (5.2), we have

LEMMA 5.6. Equation (5.7) has linearly independent solutions given by

ψ1(ta) := 4γ−2φ2 + 8γ−3φ − 8γ−4, ψ2(ta) := −γ−1φ′ ,
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and the corresponding Wronskian is ψw(ta) := −12γ−2φ2.

A solution of the system of integral equations

w(a, t) =
∫
Γ (t)

ψ1(ta)ψ2(τa)− ψ1(τa)ψ2(ta)

ψw(τa)
G(a, τ,w(a, τ ),w′(a, τ )) dτ ,

w′(a, t) =
∫
Γ (t)

ψ ′
1(ta)ψ2(τa)− ψ1(τa)ψ

′
2(ta)

ψw(τa)
G(a, τ,w(a, τ ),w′(a, τ )) dτ

(5.8)

solves (5.3), where Γ (t) is a horizontal line starting from t and tending to ∞ on which Re τ ≥
Re t, Im τ = Im t . We may suppose that R̂ = R̂(B0) ≥ 10 has been given in advance in such
a way that the series

ψ1(s)

ψw(s)
= −1

3
+

∞∑
j=1

ψ1
j s

−j , ψ2(s)

ψw(s)
= s−3

(
−1

3
+

∞∑
j=1

ψ2
j s

−j) ,

ψ1(s) = s4
(

1 +
∞∑
j=1

ψ̃1
j s

−j), ψ2(s) = s

with ψ1
j , ψ

2
j , ψ̃

1
j ∈ Q[γ, γ−1] converge for |s| > R̂ uniformly in γ satisfying |γ | + |γ−1| <

B0, and that |ψ1(s)/ψw(s)|, |s3ψ2(s)/ψw(s)|, |s−4ψ1(s)|, |s−3ψ ′
1(s)| are bounded. Write

(5.8) in the form

w(a, t) = ψ0(ta)t
4
a I

[
ψ2(ta)

ψw(ta)
G(a, t, w(a, t), w′(a, t))

]

− taI
[
ψ1(ta)

ψw(ta)
G(a, t, w(a, t), w′(a, t))

]
,

w′(a, t) = ψ̃0(ta)t
3
a I

[
ψ2(ta)

ψw(ta)
G(a, t, w(a, t), w′(a, t))

]

− I
[
ψ1(ta)

ψw(ta)
G(a, t, w(a, t), w′(a, t))

]

with

ψ0(s) := s−4ψ1(s), ψ̃0(s) := s−3ψ ′
1(s), I[f (t)] :=

∫
Γ (t)

f (τ ) dτ .

Then u(a, t) = t−2
a w(a, t) and v(a, t) = t−2

a w′(a, t) satisfy

u(a, t) = ψ0(ta)t
2
a I

[
t−1
a F∗(a, t, u(a, t), v(a, t))

]

− t−1
a I

[
t2aF (a, t, u(a, t), v(a, t))

]
,

v(a, t) = ψ̃0(ta)ta I
[
t−1
a F∗(a, t, u(a, t), v(a, t))

]
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− t−2
a I

[
t2aF (a, t, u(a, t), v(a, t))

]

with

F(a, t, u, v) := ψ1(ta)

ψw(ta)
t−2
a G(a, t, t2au, t

2
a v) ,

F∗(a, t, u, v) := ψ2(ta)

ψw(ta)
taG(a, t, t

2
au, t

2
a v) = (1 + t−1

a ψ∗(ta))F (a, t, u, v) .

Here the series

(5.9) ψ0(s) = 1 +
∞∑
j=1

ψ0
j s

−j , ψ̃0(s) = 4 +
∞∑
j=1

ψ̃0
j s

−j , ψ∗(s) =
∞∑
j=0

ψ∗
j s

−j

with ψ0
j , ψ̃

0
j , ψ∗

j ∈ Q[γ, γ−1] converge for |s| > R̂ uniformly in γ satisfying |γ | + |γ−1| <
B0. Thus the system above is written in the form

u(a, t) = ψ0(ta)t
2
a I

[
(t−1
a + t−2

a ψ∗(ta))F (a, t, u(a, t), v(a, t))
]

− t−1
a I

[
t2aF (a, t, u(a, t), v(a, t))

]
,

v(a, t) = ψ̃0(ta)ta I
[
(t−1
a + t−2

a ψ∗(ta))F (a, t, u(a, t), v(a, t))
]

− t−2
a I

[
t2aF (a, t, u(a, t), v(a, t))

]
.

(5.10)

Conversely, for the solution (u(a, t), v(a, t)) of this system, w(a, t) = t2a u(a, t) solves (5.8).
Furthermore, by (5.4), (5.5) and (5.6), we have

LEMMA 5.7. The function F(a, t, u, v) is written in the form

F(a, t, u, v) = f0(a, t)+ f (a, t, u, v)+ f ∗(a, t, u, v)

with f0(a, t), f (a, t, u, v) and f ∗(a, t, u, v) given by

f0(a, t) =
∞∑
n=1

e−nt t2na f 0
n (ta), f 0

n (s) =
∞∑
j=0

f 0n
j s−j ,

f (a, t, u, v) =
∑
k+l≥2

fkl(ta)u
kvl, fkl(s) =

∞∑
j=0

f klj s
−j ,

f ∗(a, t, u, v) =
∑
k+l≥1

f ∗
kl(a, t)u

kvl , f ∗
kl(a, t) =

∞∑
n=1

e−nt t2na f ∗kl
n (ta) ,

f ∗kl
n (s) =

∞∑
j=0

f ∗kln
j s−j .
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Here the coefficients f 0n
j , f klj , f

∗kln
j ∈ Q[α, β, γ, γ−1] are such that

∞∑
n=1

(e−t t2a )n
∞∑
j=0

f 0n
j s−j ,

∑
k+l≥2

∞∑
j=0

f klj s
−j ukvl,

∑
k+l≥1

∞∑
n=1

(e−t t2a )n
∞∑
j=0

f ∗kln
j s−j ukvl

as power series in (e−t t2a , s−1, u, v) converge for |e−t t2a | < 1/2, |s| > R̂, |u| < 1, |v| < 1

absolutely and uniformly in (α, β, γ ) satisfying |α| + |β| + |γ | + |γ−1| < B0, and that the
sums of the absolute values of summands are uniformly bounded.

This lemma implies f0(a, t), f
∗
kl(a, t) ∈ A(R′,Θ ′) for anyΘ ′ > 0.

5.3. Construction of a solution of (5.10). In addition to B0, Δ0 and R̂, let Θ be
a given positive number. Then choose R = R(Δ0, R̂,Θ) ≥ R′ > R̂ ≥ 10 and Θ̂ =
Θ̂(Δ0,Θ) > Θ as in Section 5.1. Let us define {(uν(a, t), vν(a, t)) | ν ≥ 0} ⊂ A(R,Θ)2 by

u0(a, t) ≡ 0, v0(a, t) ≡ 0 ,

uν+1(a, t) = ψ0(ta)t
2
a I

[
(t−1
a + t−2

a ψ∗(ta))F (a, t, uν(a, t), vν(a, t))
]

− t−1
a I

[
t2aF (a, t, uν(a, t), vν(a, t))

]
,

vν+1(a, t) = ψ̃0(ta)ta I
[
(t−1
a + t−2

a ψ∗(ta))F (a, t, uν(a, t), vν(a, t))
]

− t−2
a I

[
t2aF (a, t, uν(a, t), vν(a, t))

]
.

(5.11)

By Lemmas 5.3 and 5.7 this procedure is possible as long as ‖uν(a, t)‖, ‖vν(a, t)‖ < 1.
Indeed, under the supposition uν(a, t), vν(a, t) ∈ A(R,Θ), integrating by parts and using

‖uν(a, t)‖, ‖vν(a, t)‖ = O(|e−t |1/2) as t → ∞ along Γ (t), we have

t2a I
[
t−1
a F (a, t, uν(a, t), vν(a, t))

]
− t−1

a I
[
t2aF (a, t, uν(a, t), vν(a, t))

]

=t2a I
[
t−1
a F (a, t, uν(a, t), vν(a, t))

]

− t−1
a

(
t3aI

[
t−1
a F (a, t, uν(a, t), vν(a, t))

]

− I
[
3t2aI

[
t−1
a F (a, t, uν(a, t), vν(a, t))

]])

=3t−1
a I

[
ta · taI

[
t−1
a F (a, t, uν(a, t), vν(a, t))

]]
,

and hence the first relation in (5.11) is

uν+1(a, t) = 3t−1
a I

[
ta · taI

[
t−1
a F (a, t, uν(a, t), vν(a, t))

]]
(5.12)

+ (ψ0(ta)− 1)t2a I
[
t−1
a F (a, t, uν(a, t), vν(a, t))

]

+ ψ0(ta)t
2
a I

[
t−2
a ψ∗(ta)F (a, t, uν(a, t), vν(a, t))

]
.
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Then we derive (uν+1(a, t), vν+1(a, t)) ∈ A(R,Θ)2 by using Lemma 5.5 with |m| = 2,
which is applicable since R̂ > 10.

By Lemma 5.7, if |u|, |ũ|, |v|, |ṽ| < 1, then

f (a, t, u, v)− f (a, t, ũ, ṽ) = h1(a, t, u, ũ, v, ṽ)(u− ũ)+ h2(a, t, u, ũ, v, ṽ)(v − ṽ) ,

f ∗(a, t, u, v)− f ∗(a, t, ũ, ṽ) = h∗
1(a, t, u, ũ, v, ṽ)(u− ũ)+ h∗

2(a, t, u, ũ, v, ṽ)(v − ṽ)

with

hι(a, t, u, ũ, v, ṽ) =
∑

k+k′+l+l′≥1

hιkk′ll′(a, t)u
kũk

′
vl ṽl

′
,

h∗
ι (a, t, u, ũ, v, ṽ) =

∑
k+k′+l+l′≥0

h∗ι
kk′ll′(a, t)u

kũk
′
vl ṽl

′

(ι = 1, 2), where hι
kk′ll′(a, t) (respectively, h∗ι

kk′ll′(a, t)) are polynomials in fk′′l′′(ta) (respec-

tively, f ∗
k′′ l′′(a, t)), in particular h∗1

0000(a, t) = f ∗
10(a, t), h

∗2
0000(a, t) = f ∗

01(a, t) ∈ A(R,Θ).

Hence, by Lemma 5.3, for u, ũ, v, ṽ ∈ A(R,Θ) such that ‖u‖, ‖ũ‖, ‖v‖, ‖ṽ‖ < 1/2,

‖F(a, t, u, v) − F(a, t, ũ, ṽ)‖(5.13)

≤ L0(|e−t |1/2 + ‖u‖ + ‖ũ‖ + ‖v‖ + ‖ṽ‖)(‖u− ũ‖ + ‖v − ṽ‖) ,
where L0 is some positive number. Since F(a, t, 0, 0) ∈ A(R,Θ), by Lemma 5.5

‖u1(a, t)‖ + ‖v1(a, t)‖ ≤ L1|e−t |1/2
for some L1 > 0. By Lemma 5.5, (5.11), (5.12) and (5.13) combined with (5.9), we have

‖uj+1(a, t)− uj (a, t)‖ + ‖vj+1(a, t)− vj (a, t)‖(5.14)

≤ L2|e−t |1/2(‖uj (a, t)− uj−1(a, t)‖ + ‖vj (a, t)− vj−1(a, t)‖)
as long as

(5.15) ‖uk(a, t)‖ + ‖vk(a, t)‖ ≤ 2L1|e−t |1/2 for k ≤ j,

which is valid for j = 1,whereL2 is a positive constant independent of j. Suppose that (5.15)
is valid for j ≤ ν. Then, for j ≤ ν

‖uj+1(a, t)− uj (a, t)‖ + ‖vj+1(a, t)− vj (a, t)‖(5.16)

≤ (L2|e−t |1/2)j (‖u1(a, t)‖ + ‖v1(a, t)‖) ≤ L1L
j

2 |e−t |(j+1)/2 ,

and

‖uν+1(a, t)‖ + ‖vν+1(a, t)‖ ≤
ν∑
j=0

(‖uj+1(a, t)− uj (a, t)‖ + ‖vj+1(a, t)− vj (a, t)‖)

≤L1|e−t |1/2
ν∑
j=0

(L2|e−t |1/2)j ≤ L1|e−t |1/2
1 − L2|e−t |1/2 .
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This implies that (5.15) and (5.16) are valid for all integers if 1 − L2e
−R/2 > 1/2. For such

R we conclude that (u∞(a, t), v∞(a, t)) = limν→∞(uν(a, t), vν(a, t)) ∈ A(R,Θ) satisfies
(5.10), so that w(a, t) = t2au∞(a, t) solves (5.3).

5.4. Completion of the proof of Theorem 2.1. For a given bounded domain D0 as
in Section 2, choose Δ0 in such a way that a = logρ ∈ Δ0 for every ρ ∈ D0. For given
positive numbers B0 and Θ = Θ0, let R̂, R and Θ̂ be as in Sections 5.2 and 5.3. Take ε0 so
small that t ∈ S(R,Θ0) holds for every x = e−t ∈ Σ(ε0,Θ0). Then

y = 1 + x
(
φ(− log(ρx))+ log2(ρx)u∞(logρ,− log x)

)

is the desired solution in Theorem 2.1 with R0 = R̂, Θ̂0 = Θ̂.

Substituting w = e−tw2(ta) + e−2tw3(ta) + · · · into (5.3), we may recursively obtain
each series wn(s) = pn(s)+ p−

n (s) in descending powers of s. The first two relations are

φw′′
2 − 2(φ + φ′)w′

2 + (φ + 2φ′ − 2γ )w2 = φ

2
(φ′ − φ)2 + (α + β)φ3 + γφ2 − 3

2
φ,

φw′′
3 − 2(2φ + φ′)w′

3 + (4φ + 4φ′ − 2γ )w3 = −φ
2

2
(φ′ − φ)2 + (α − β)φ4 − φ2

2

− 2γ

φ
w2

2 − 2φ′

φ
w2(w

′
2 −w2)+ (w′

2 −w2)
2

+ φ(φ′ − φ)(w′
2 − 2w2)+ 2(α + β)φ2w2 + γφw2 ,

which yield w2(s) = p2(s) and w3(s) = p3(s) as in Remark 2.1.
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