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Abstract. We consider three kinds of discrete Sobolev inequalities corresponding to a graph Laplacian A on

regular M-hedron for M = 4, 6, 8, 12, 20. Discrete heat kernel H (t) = exp(−tA), Green matrix G(a) = (A+aI )−1

and pseudo Green matrix G∗ are obtained and investigated in a detailed manner. The best constants of the inequalities
are given by means of eigenvalues of A.

1. Conclusion

We consider 5 kinds of regular M-hedron for M = 4, 8, 6, 20, 12.

Regular polyhedron Surfaces M Vertices N Edges E

Tetrahedron 4 4 6
Octahedron 8 6 12
Hexahedron 6 8 12
Icosahedron 20 12 30
Dodecahedron 12 20 30

From Euler polyhedron theorem, M + N = E + 2 holds. Considering the symmetries of
polyhedra, we have set the indices of vertices as Fig.1.1 ∼ Fig.1.5. We define the set e =
e(M), where each element (i, j) = (j, i) represents edge connecting vertices i and j , as
follows:

e(4) = {
(0, 1), (1, 2), (2, 0), (0, 3), (1, 3), (2, 3)

}
.

e(8) = {
(0, 1), (1, 2), (2, 0), (5, 4), (4, 3), (3, 5), (0, 5), (1, 4), (2, 3), (0, 3), (1, 5), (2, 4)

}
.

e(6) = {
(0, 1), (1, 2), (2, 3), (3, 0), (4, 5), (5, 6), (6, 7), (7, 4), (0, 4), (1, 5), (2, 6), (3, 7)

}
.

e(20)={
(8, 0), (0, 4), (4, 8), (10, 6), (6, 2), (2, 10), (8, 9), (0, 1), (4, 5), (11, 10), (7, 6),
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FIGURE 1.1. Tetrahedron
FIGURE 1.2. Octahedron

FIGURE 1.3. Hexahedron FIGURE 1.4. Icosahedron

FIGURE 1.5. Dodecahedron

(3, 2), (4, 11), (11, 9), (9, 6), (8, 7), (7, 1), (1, 2), (0, 3), (3, 5), (5, 10), (8, 11), (11, 5),

(5, 2), (0, 7), (7, 9), (9, 10), (4, 3), (3, 1), (1, 6)
}
.

e(12)={
(19, 13), (13, 0), (0, 4), (4, 6), (6, 19), (16, 14), (14, 10), (10, 3), (3, 9), (9, 16),

(19, 18), (13, 12), (0, 1), (4, 5), (6, 7), (17, 16), (15, 14), (11, 10), (2, 3), (8, 9),

(17, 18), (18, 15), (15, 12), (12, 11), (11, 1), (1, 2), (2, 5), (5, 8), (8, 7), (7, 17)
}
.
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We introduce A = A(M) = (
a(M; i, j)

)
(0 ≤ i, j ≤ N − 1) on regular polyhedra.

a(4; i, j) = 3 (i = j), −1 (i, j) ∈ e(4), 0 (else).
a(8; i, j) = 4 (i = j), −1 (i, j) ∈ e(8), 0 (else).
a(6; i, j) = 3 (i = j), −1 (i, j) ∈ e(6), 0 (else).
a(20; i, j) = 5 (i = j), −1 (i, j) ∈ e(20), 0 (else).
a(12; i, j) = 3 (i = j), −1 (i, j) ∈ e(12), 0 (else).

We call A “graph Laplacian” or “discrete harmonic operator” in this paper. A is a N × N

real symmetric non-negative definite matrix and has an eigenvalue 0, whose corresponding
eigenvector is 1 = t (1, 1, . . . , 1). Let λ0 = 0, λ1 > 0, . . . , λN−1 > 0 be eigenvalues of A.

Jordan canonical form of A is given by Ã = Ã(M) = diag{λ0, λ1, . . . , λN−1}. Distributions

of the eigenvalues of A are shown in appendix. Concrete forms of Ã(M) are given as

Ã(4) = diag{0, 4, 4, 4} , Ã(8) = diag{0, 4, 4, 4, 6, 6} , Ã(6) = diag{0, 2, 2, 2, 4, 4, 4, 6} ,

Ã(20) = diag{0, 6, 6, 6, 6, 6, 5 − p, 5 − p, 5 − p, 5 + p, 5 + p, 5 + p} ,

Ã(12) = diag{0, 2, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 3−p, 3−p, 3−p, 3 + p, 3 + p, 3 + p} ,

where p = √
5. For M = 4, 8, 6, 20, 12, n = 1, 2, 3, . . . and 0 < a < ∞, we introduce

C0(n) = C0(M; n), C0(n, a) = C0(M; n, a) and C1(a) = C1(M; a) as

C0(n) = 1

N

N−1∑
k=1

λ−n
k , C0(n, a) = 1

N

N−1∑
k=0

(λk + a)−n , C1(a) = 1

2
C0(1, a) .

For any u = t (u(0), u(1), . . . , u(N−1)) ∈ CN，u(t) = t (u(0, t), u(1, t), . . . , u(N−1, t)) ∈
CN on regular polyhedron, we define three kinds of Sobolev energy using A as

E(n,u) = u∗Anu , E(n, a,u) = u∗(A + aI)nu ,

F (a,u(t)) =
∫ ∞

−∞

∥∥∥∥
(

d

dt
+ A + aI

)
u(t)

∥∥∥∥2

dt ,

where ‖u(t)‖2 = u∗(t)u(t). In our previous work [2, §4], we obtained the concrete forms of

Discrete heat kernel H (t) = exp(−tA) , (1.1)

Green matrix G(a) = (aI + A)−1 =
∫ ∞

0
e−atH (t)dt , (1.2)

Pseudo Green matrix G∗ = lim
a→+0

(
G(a) − a−1E0

)
, (1.3)

where E0 = N−11t1 is projection matrix to eigenspace for eigenvalue 0 of A. The element
of H (t) in (1.1) are all positive value shown by [2, §5,6].

In this paper, we have obtained the best constants of three kinds of discrete Sobolev
inequalities on regular polyhedron as following theorems.
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THEOREM 1.1. For any u ∈ CN with t 1u = 0, there exists a positive constant C

which is independent of u, such that the discrete Sobolev inequality(
max

0≤j≤N−1
| u(j) |

)2

≤ C E(n,u) (1.4)

holds. Among such C, the best constant is C0(M; n), or equivalently

C0(4; n) = 3

4n+1 , C0(8; n) = 3n+1 + 2n+1

6 · 12n
, C0(6; n) = 3 · 6n + 3n+1 + 2n

8 · 12n
,

C0(20; n) = 5 · 10n + 3n+1 ((5 + p)n + (5 − p)n)

12 · 60n
,

C0(12; n) = 1

20 · 60n

[
5 · 30n + 4 · 20n + 4 · 12n + 3 · 15n

(
(3 + p)n + (3 − p)n

) ]
.

If one replaces C by C0(M; n) in the above inequality (1.4), the equality holds iff u is parallel
to one of column vectors of Gn∗.

THEOREM 1.2. For any u ∈ CN , there exists a positive constant C which is indepen-
dent of u, such that the discrete Sobolev inequality(

max
0≤j≤N−1

| u(j) |
)2

≤ C E(n, a,u) (1.5)

holds. Among such C, the best constant is C0(M; n, a). If one replaces C by C0(M; n, a)

in the above inequality (1.5), the equality holds iff u is parallel to one of column vectors of
G(a)n.

THEOREM 1.3. For any bounded continuous function u(t) ∈ CN , there exists a posi-
tive constant C which is independent of u(t), such that the discrete Sobolev-type inequality(

sup
0≤j≤N−1, −∞<s<∞

| u(j, s) |
)2

≤ C F(a,u(t)) (1.6)

holds. Among such C, the best constant is C1(M; a) = 1
2C0(M; 1, a). If one replaces C by

C1(M; a) in the above inequality (1.6), the equality holds iff u is parallel to one of column
vectors of ∫ ∞

|t |
1

2
e−aσH (σ )dσ (−∞ < t < ∞) . (1.7)
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Here, we list the concrete form of C0(M; n) and C0(M; n, a) for small value of n.

n C0(4; n) C0(8; n) C0(6; n) C0(20; n) C0(12; n)

1
3

16

13

72

29

96

7

36

137

300

2
3

64

35

864

139

1152

53

1080

3197

9000

3
3

256

97

10368

737

13824

187

12960

203989

540000

4
3

1024

275

124416

4147

165888

913

194400

3718217

8100000

5
3

4096

793

1492992

24089

1990656

377

233280

142218677

243000000

C0(4; 1, a) = a + 1

a(a + 4)
, C0(8; 1, a) = a2 + 6a + 4

a(a + 4)(a + 6)
,

C0(6; 1, a) = a3 + 9a2 + 20a + 6

a(a + 2)(a + 4)(a + 6)
, C0(20; 1, a) = a3 + 11a2 + 30a + 10

a(a + 6)(a2 + 10a + 20)
,

C0(12; 1, a) = a5 + 13a4 + 59a3 + 109a2 + 70a + 6

a(a + 2)(a + 3)(a + 5)(a2 + 6a + 4)
.

C0(4; 2, a) = a2 + 2a + 4

a2(a + 4)2
, C0(8; 2, a) = a4 + 12a3 + 48a2 + 80a + 96

a2(a + 4)2(a + 6)2
,

C0(6; 2, a) = a6 + 18a5 + 124a4 + 408a3 + 664a2 + 528a + 288

a2(a + 2)2(a + 4)2(a + 6)2
,

C0(20; 2, a) = a6 + 22a5 + 186a4 + 760a3 + 1560a2 + 1600a + 1200

a2(a + 6)2(a2 + 10a + 20)2 ,

C0(12; 2, a) = γ (a)

a2(a + 2)2(a + 3)2(a + 5)2(a2 + 6a + 4)2 ,

γ (a) = a10 + 26a9 + 290a8 + 1812a7 + 6947a6 + 16842a5

+ 25718a4 + 23960a3 + 12808a2 + 3648a + 720 .

Research on discrete Sobolev inequalities was performed in [1] on graphs and also in
our previous papers [3] and [4] on periodic one-dimensional lattices. In [2], we investigated
discrete Sobolev inequalities corresponding to discrete harmonic operator on regular polyhe-
dra and obtained Theorem 1.1 and 1.2 in the case of n = 1. In this paper, we extend these
conclusions into discrete polyharmonic operator An (n = 2, 3, . . . ).
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This paper is organized as follows. In section 2, we start with difference equations and
corresponding Green matrices. In section 3, we calculate diagonal values of the matrices,
which is shown to be the best constants of discrete Sobolev inequalities later. In section 4, we
derive reproducing relations. Finally in section 5, we prove the above theorems.

2. Difference equations and Green matrices

We explain three propositions concerning discrete heat kernel (1.1), Green matrix
(1.2) and pseudo Green matrix (1.3) in this section. We assume that 0 < a < ∞ and
n = 1, 2, 3, . . . .

PROPOSITION 2.1. For arbitrary bounded continuous function f (t) ∈ CN , the dis-
crete heat equation (

d

dt
+ A + aI

)
u = f (t) (−∞ < t < ∞) (2.1)

has a unique solution given by

u(t) =
∫ ∞

−∞
H ∗(t − s)f (s)ds , H ∗(t) = Y (t)e−atH (t) (−∞ < t < ∞) , (2.2)

where Y (t) = 1 (0 ≤ t < ∞), 0 (−∞ < t < 0) is Heaviside step function.

PROOF OF PROPOSITION 2.1. Through Fourier transform

u(t) −̂→ û(ω) =
∫ ∞

−∞
e−√−1ωtu(t) dt ,

(2.1) is transformed into
(√−1 ω + A + aI

)
û(ω) = f̂ (ω) (−∞ < ω < ∞). Solving this

we have û(ω) = Ĥ ∗(ω) f̂ (ω), where

Ĥ ∗(ω) =
(√−1 ω + A + aI

)−1 =
∫ ∞

−∞
e−√−1ωtY (t)e−atH (t) dt (−∞ < ω < ∞) .

From inverse Fourier transform, we have (2.2). This completes the proof of Proposition
2.1. �

It should be noted that H ∗(t) satisfies the relation,(
d

dt
+ A + aI

)
H ∗ = O , H ∗(t − s)

∣∣∣
s=t−0

− H ∗(t − s)

∣∣∣
s=t+0

= I (−∞ < t < ∞) .

Let λk (0 ≤ k ≤ N − 1) be eigenvalues of A and qk ∈ CN (0 ≤ k ≤ N − 1) be
corresponding eigenvectors. The eigenvectors qk are chosen to satisfy the relation q∗

kq l =
δ(k − l), where δ(k) = 1 (k = 0), 0 (k 
= 0). We introduce a unitary N × N matrix
Q = (q0, . . . , qN−1) and orthogonal projection matrices Ek = qkq

∗
k (0 ≤ k ≤ N − 1). It is

easy to see that the relations

Q∗Q = QQ∗ = I , EkEl = δ(k − l)Ek , E∗
k = Ek
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holds. Using Ek , we have the spectral decomposition of I and A as

I = QQ∗ =
N−1∑
k=0

qkq
∗
k =

N−1∑
k=0

Ek, (2.3)

A = QÃQ∗ =
N−1∑
k=0

λkqkq
∗
k =

N−1∑
k=0

λkEk =
N−1∑
k=1

λkEk . (2.4)

For (2.4), using EkEl = δ(k − l)Ek , we have

An =
N−1∑
k=1

λn
kEk , (A + aI )n =

N−1∑
k=0

(λk + a)nEk . (2.5)

PROPOSITION 2.2. For arbitrary f ∈ CN , the problem (A+aI )nu = f has a unique
solution is given by u = Gnf . Gn = G(a)n is Green matrix expressed as

Gn =
N−1∑
k=0

(λk + a)−nEk . (2.6)

PROOF OF PROPOSITION 2.2. From (2.3) and the second formula of (2.5), we have

N−1∑
k=0

Ekf = If = f = (A + aI )nu =
N−1∑
k=0

(λk + a)nEku .

Operating El from the left on both sides of the above relation and using the relation EkEl =
δ(k − l)Ek , we obtain Elu = (λl + a)−nElf (0 ≤ l ≤ N − 1). Then, we have (2.6) as

u = Iu =
N−1∑
l=0

Elu =
N−1∑
l=0

(λl + a)−nElf =
( N−1∑

l=0

(λl + a)−1El

)n

f = Gnf .

This completes the proof of Proposition 2.2. �

PROPOSITION 2.3. For arbitrary f ∈ CN satisfying the solvability condition t 1f =
0, the problem Anu = f with the orthogonality condition t1u = 0 has a unique solution is
given by u = Gn∗f . Gn∗ is a pseudo Green matrix expressed as

Gn∗ =
N−1∑
k=1

λ−n
k Ek . (2.7)

Gn∗ satisfies AnGn∗ = Gn∗An = I − E0, Gn∗E0 = E0G
n∗ = O.

PROOF OF PROPOSITION 2.3. From (2.3) and the first formula of (2.5) and E0f =
N−11t 1f = 0, we have

N−1∑
k=1

Ekf =
N−1∑
k=0

Ekf = If = f = Anu =
N−1∑
k=1

λn
kEku .
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Operating El from the left on both sides of the above relation and using the relation EkEl =
δ(k − l)Ek , we obtain Elu = λ−n

l Elf (1 ≤ l ≤ N − 1). Then, using E0u = N−11t1u = 0,
we see that

u = Iu =
N−1∑
l=0

Elu =
N−1∑
l=1

Elu =
N−1∑
l=1

λ−n
l Elf =

( N−1∑
l=1

λ−1
l El

)n

f = Gn∗f ,

which gives (2.7). In fact, Gn∗ satisfies

AnGn∗ =
N−1∑
k=0

N−1∑
l=1

λn
kλ

−n
l EkEl =

N−1∑
k=1

Ek = I − E0 , Gn∗E0 =
N−1∑
k=1

λ−n
k EkE0 = O .

We see that Gn∗ is a Penrose-Moore generalized inverse matrix of An. This completes the
proof of Proposition 2.3. �

3. Best constant

We introduce N-dimensional vector
j
�

δj = t (0, . . . , 0, 1, 0, . . . , 0) .

First, we show that the diagonal value of Gn is equal to a harmonic mean of all eigenvalues
of (A + aI)n. We see that this value is equal to the best constant of (1.5) in Theorem 1.2.

LEMMA 3.1. For n = 1, 2, 3, . . . and any fixed j (0 ≤ j ≤ N − 1), we have

tδjG
nδj = 1

N

N−1∑
k=0

(λk + a)−n = C0(n, a) . (3.1)

PROOF OF LEMMA 3.1. Since the diagonal values tδjGδj do not depend on j as we
have seen in [2, §4], we have (3.1) in the case of n = 1 as

tδjGδj = 1

N

N−1∑
j=0

tδjGδj = 1

N

N−1∑
j=0

tδj

N−1∑
k=0

(λk + a)−1 Ekδj

= 1

N

N−1∑
k=0

(λk + a)−1
N−1∑
j=0

tδjEkδj = 1

N

N−1∑
k=0

(λk + a)−1
N−1∑
j=0

(q∗
kδj )

2

= 1

N

N−1∑
k=0

(λk + a)−1 . (3.2)

Using (1.2), we have

G2 =
∫ ∞

0
e−atH (t)dt

∫ ∞

0
e−asH (s)ds =

∫ ∞

0

∫ ∞

0
e−a(t+s)H (t + s)dtds
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= 1

2

∫ ∞

0

∫ τ

−τ

dσe−aτH (τ )dτ =
∫ ∞

0
τe−aτH (τ )dτ

= −∂a

∫ ∞

0
e−aτH (τ )dτ = −∂aG ,

that is, G2 = −∂aG. So we have

Gn = Gn−2G2 = −Gn−2∂aG = −1

n − 1
∂aG

n−1 = · · · = (−1)n−1

(n − 1)! ∂
n−1
a G .

Then, taking the diagonal value Gn and using (3.2), we have

tδjG
nδj = tδj

(−1)n−1

(n − 1)! ∂
n−1
a Gδj = (−1)n−1

(n − 1)! ∂
n−1
a

(
tδjGδj

)

= (−1)n−1

(n − 1)! ∂
n−1
a

(
1

N

N−1∑
j=0

(
λj + a

)−1
)

= 1

N

N−1∑
j=0

(
λj + a

)−n
.

This completes the proof of Lemma 3.1. �
Next, we show that the diagonal value of Gn∗ is equal to a harmonic mean of positive

eigenvalues of An. We see that this value is equal to the best constant of (1.4) in Theorem 1.1.

LEMMA 3.2. For n = 1, 2, 3, . . . and any fixed j (0 ≤ j ≤ N − 1), we have

tδjG
n∗δj = 1

N

N−1∑
k=1

λ−n
k = C0(n) . (3.3)

PROOF OF LEMMA 3.2. Using the relation

GE0 =
N−1∑
j=0

(
λj + a

)−1
EjE0 = a−1E0 , GkE0 = a−kE0 ,

Ek
0 = E0 (k = 1, 2, 3, . . . ),

we have

(
G − a−1E0

)n =
n∑

k=0

(
n

k

)
Gn−k

( − a−1E0
)k =

(
n

0

)
Gn +

n∑
k=1

(
n

k

)
(−1)ka−kGn−kEk

0

= Gn + a−nE0

n∑
k=1

(
n

k

)
(−1)k = Gn − a−nE0 .

For the diagonal value of the above relation, using (3.1), we have

tδj

(
G − a−1E0

)n
δj = tδj

(
Gn − a−nE0

)
δj = 1

N

N−1∑
k=1

(λk + a)−n .
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Taking the limit as a → +0 of both sides and using (1.3), we have (3.3). This completes the
proof of Lemma 3.2. �

Finally, we show that L2 norm of one of column vectors of H ∗(t) is equal to a half
of harmonic mean of positive eigenvalues of A. We see that this value is equal to the best
constant of (1.6) in Theorem 1.3.

LEMMA 3.3. For any fixed j (0 ≤ j ≤ N − 1), we have∫ ∞

−∞
∥∥H ∗(t)δj

∥∥2
dt = C1(a) . (3.4)

PROOF OF LEMMA 3.3. Noting tH = H and using (3.1), we have∫ ∞

−∞
∥∥H ∗(t)δj

∥∥2
dt =

∫ ∞

−∞
∥∥Y (t)e−atH (t)δj

∥∥2
dt

=
∫ ∞

−∞
t
(
Y (t)e−atH (t)δj

)(
Y (t)e−atH (t)δj

)
dt

= tδj

∫ ∞

0
e−2atH (2t)dtδj = 1

2
tδj

∫ ∞

0
e−aτH (τ )dτδj

= 1

2
tδjG(a)δj = 1

2
C0(1, a) = C1(a) .

So we have (3.4). This completes the proof of Lemma 3.3. �

4. Reproducing relation

For u, v ∈ CN , we introduce inner product

(u, v) = v∗u , ‖u ‖2 = (u,u) ,

(u, v)H = ((A + aI)nu, v) = v∗(A + aI)nu , ‖u ‖2
H = (u,u)H = E(n, a,u) .

For u, v ∈ CN
0 := { x | x ∈ CN and t1x = 0 }, we introduce inner product

(u, v)A = (Anu, v) = v∗Anu , ‖u ‖2
A = (u,u)A = E(n,u) .

First, we show the positive definiteness of Sobolev inner product (·, ·)A and (·, ·)H .

LEMMA 4.1.
(1) For u, v ∈ CN

0 , (u, v)A is an inner product.

(2) For u, v ∈ CN , (u, v)H is an inner product.

PROOF OF LEMMA 4.1. (2) is obvious since (A + aI)n is positive definite. We show

only (1). For u ∈ CN
0 , we have

u = Iu =
N−1∑
k=0

Eku =
N−1∑
k=1

Eku , ‖u‖2 =
N−1∑
k,l=0

u∗E∗
l Eku =

N−1∑
k=1

‖Eku‖2 .
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From the relation Ek = EkEk = E∗
kEk , we have

‖u‖2
A = u∗Anu = u∗

N−1∑
k=0

λn
kEku =

N−1∑
k=1

λn
ku

∗E∗
kEku =

N−1∑
k=1

λn
k‖Eku‖2

≥
(

min
1≤k≤N−1

λn
k

) N−1∑
k=1

‖Eku‖2 =
(

min
1≤k≤N−1

λn
k

)
‖u‖2 .

Since λk > 0 (1 ≤ k ≤ N − 1), we have ‖u‖2
A ≥ 0 and ‖u‖2

A = 0 holds iff u = 0. This
completes the proof of Lemma 4.1. �

Next, we show that Gn and Gn∗ are reproducing matrix for Sobolev inner product (·, ·)H
and (·, ·)A, respectively. Applying Schwarz inequality to these reproducing relations, we can
prove Theorem 1.1 and 1.2 in next section.

LEMMA 4.2. For any u ∈ CN
0 and fixed j (0 ≤ j ≤ N − 1), we have the following

reproducing relations.
(1) u(j) = (u, Gn∗δj )A.

(2) C0(n) = tδjG
n∗δj = ‖Gn∗δj ‖2

A = E(n,Gn∗δj ).

PROOF OF LEMMA 4.2. Note that Gn∗∗ = Gn∗. For any u ∈ CN
0 and fixed j (0 ≤ j ≤

N − 1), we have (1) as follows:

(u, Gn∗δj )A = (Anu, Gn∗δj ) = δ∗
jG

n∗∗ Anu = tδjG
n∗Anu

=tδj (I − E0)u = tδjIu − tδjE0u = tδju − 1

N
1t 1u = u(j) .

Putting u = Gn∗δj in (1) and using (3.3), we obtain (2). �

LEMMA 4.3. For any u ∈ CN and fixed j (0 ≤ j ≤ N − 1), we have the following
reproducing relations.

(1) u(j) = (u, Gnδj )H .

(2) C0(n, a) = tδjG
nδj = ‖Gnδj ‖2

H = E(n, a,Gnδj ).

PROOF OF LEMMA 4.3. Note that Gn∗ = Gn. For any u ∈ CN and fixed j (0 ≤ j ≤
N − 1), we have (1) as follows:

(u, Gnδj )H = ((A + aI)nu, Gnδj ) = tδjG
n (A + aI)nu = tδjIu = u(j) .

Putting u = Gnδj in (1) and using (3.1), we obtain (2). �

5. Proof of Theorems

This section is devoted to the proof of main theorems.
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PROOF OF THEOREM 1.1. Applying Schwarz inequality to Lemma 4.2 (1) and using
Lemma 4.2 (2), we have

| u(j) |2 ≤ ‖u ‖2
A‖Gn∗δj ‖2

A = C0(n) E(n,u) . (5.1)

Taking the maximum with respect to j on both sides, we obtain discrete Sobolev inequality(
max

0≤j≤N−1
| u(j) |

)2

≤ C0(n) E(n,u) . (5.2)

It should be noted that in performing Schwarz inequality in (5.1), equality holds if and only if
u = kGn∗δj (k 
= 0, 0 ≤ j ≤ N − 1).

For any fixed number j0 (0 ≤ j0 ≤ N −1), if we take u = Gn∗δj0 in the above inequality,
then we have (

max
0≤j≤N−1

| tδjG
n∗δj0 |

)2

≤ C0(n)E(n,Gn∗δj0) = C0(n)2 .

Combining this and a trivial inequality C0(n)2 ≤
(

max
0≤j≤N−1

| tδjG
n∗δj0 |

)2
, we have

(
max

0≤j≤N−1
| tδjG

n∗δj0 |
)2

= C0(n)E(n,Gn∗δj0) .

This shows that C0(n) is the best constant of (5.2) and the equality holds for each column
vector of Gn∗. This completes the proof of Theorem 1.1. �

PROOF OF THEOREM 1.2. Applying Lemma 4.3 (1) to Schwarz inequality and using
Lemma 4.3 (2), we see that

| u(j) |2 ≤ ‖u ‖2
H‖Gnδj ‖2

H = C0(n, a) E(n, a,u) . (5.3)

Taking the maximum with respect to j on both sides, we have the discrete Sobolev inequality(
max

0≤j≤N−1
| u(j) |

)2

≤ C0(n, a) E(n, a,u) . (5.4)

It should be noted that in performing Schwarz inequality in (5.3), equality holds if and only if
u = kGnδj (k 
= 0, 0 ≤ j ≤ N − 1).

For any fixed number j0 (0 ≤ j0 ≤ N −1), if we take u = Gnδj0 in the above inequality,
then we have(

max
0≤j≤N−1

| tδjG
nδj0 |

)2

≤ C0(n, a) E(n, a,Gnδj0) = C0(n, a)2 .

Combining this and a trivial inequality C0(n, a)2 ≤
(

max
0≤j≤N−1

| tδjG
nδj0 |

)2
, we have

(
max

0≤j≤N−1
| tδjG

nδj0 |
)2

= C0(n, a)E(n, a,Gnδj0) .
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This shows that C0(n, a) is the best constant of (5.4) and the equality holds for each column
vector of Gn. This completes the proof of Theorem 1.2. �

PROOF OF THEOREM 1.3. Exchanging t and s in the first formula of (2.2), we have

u(s) =
∫ ∞

−∞
H ∗(s − t)f (t)dt ,

or equivalently

u(j, s) = tδju(s) =
∫ ∞

−∞
tδjH ∗(s − t)f (t)dt =

∫ ∞

−∞
t
(
H ∗(s − t)δj

)
f (t)dt . (5.5)

Applying Schwarz inequality to (5.5), we have

| u(j, s) |2 ≤
∫ ∞

−∞
∥∥H ∗(s − t)δj

∥∥2
dt

∫ ∞

−∞
‖f (t)‖2 dt

=
∫ ∞

−∞
∥∥H ∗(t)δj

∥∥2
dt

∫ ∞

−∞

∥∥∥∥
(

d

dt
+ A + aI

)
u(t)

∥∥∥∥2

dt

= C1(a)F (a,u(t)) ,

(5.6)

where we use (2.1) and (3.4). Taking the supremum with respect to j and s, we obtain
Sobolev-type inequality,(

sup
0≤j≤N−1, −∞<s<∞

| u(j, s) |
)2

≤ C1(a) F (a,u(t)). (5.7)

It should be noted that in performing Schwarz inequality in (5.6), equality holds if and only if
the relation (

d

dt
+ A + aI

)
u(t) = kH ∗(t)δj (k 
= 0)

holds.
For any fixed number j0 (0 ≤ j0 ≤ N − 1), we introduce a vector U(t) =

t (U(0, t), U(1, t), . . . , U(N − 1, t)) ∈ CN defined by

U (t) =
∫ ∞

−∞
H ∗(t − s)H ∗(−s)δj0ds , U(j, t) =

∫ ∞

−∞
tδjH ∗(t − s)H ∗(−s)δj0ds .

(5.8)

Then we have(
sup

0≤j≤N−1, −∞<s<∞
| U(j, s) |

)2

≤ C1(a)F (a,U(t))

= C1(a)

∫ ∞

−∞

∥∥∥∥
(

d

dt
+ A + aI

)
U(t)

∥∥∥∥2

dt = C1(a)

∫ ∞

−∞
‖H ∗(−t)‖2 dt = C1(a)2 .
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Combining a trivial inequality C1(a)2 = | U(j0, 0) |2 ≤
(

sup
0≤j≤N−1, −∞<s<∞

| U(j, s) |
)2

,

we have (
sup

0≤j≤N−1, −∞<s<∞
| U(j, s) |

)2

= C1(a) F (a,U(t)) .

This shows that C1(a) is the best constant of (5.7) and the equality holds for u(t) = U(t).
From (5.8), we have (1.7) as follows:

U (t) =
∫ ∞

−∞
H ∗(t − s)H ∗(−s)δj0ds

=
∫ ∞

−∞
Y (t − s)e−a(t−s)H (t − s)Y (−s)e−a(−s)H (−s)δj0ds

=
∫ 0∧t

−∞
e−a(t−2s)H (t − 2s)δj0ds =

∫ ∞

|t |
1

2
e−aσH (σ )δj0dσ ,

where we note that x ∧ y = min{x, y}. This completes the proof of Theorem 1.3. �
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Appendix : Distribution of eigenvalues

We here illustrate distributions of eigenvalues of A = A(M) (M = 4, 8, 6, 20, 12). We

put p = √
5.
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