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Abstract. Ouchi ([2], [3]) found a formal solution #(z, x) = Zkzo ug ()% with

k
lug(x)] < AB’W"(V— + 1> 0<ys <00
£ 3

for some class of nonlinear partial differential equations. For these equations he showed that there exists a genuine
solution ug(z, x) on a sector S with asymptotic expansion ug(t,x) ~ u(t,x) as t — 0 in the sector S. These
equations have polynomial type nonlinear terms.

In this paper we study a similar class of equations with the following nonlinear terms

P J a\% qdj.a
Z tﬂch(t,x) 1_[ {<t§> <;> u(t,x)} .

lgl=1 Jtlal<m

It is main purpose to get a solvability of the equation in a category ug(t, x) ~ 0 as t — 0 in a sector S. We give
a proof by the method that is a little different from that in [3]. Further we give a remark that the similar class of
equations has a genuine solution u g (¢, x) with ug(z, x) ~ u(t, x) as t — 0 in the sector S.

1. Introduction

Let C be the complex plane or the set of all complex numbers, ¢ be the variable
in C;, and x = (x1,...,x,) be the variable in C} = C,, x --- x C,,. We use the
notations: N = {0,1,2,...}, « = (af,...,ay) € N, |¢|] = o1 + --- + o, and
(0/9x)% = (8/0x1)*" ... (3/0xp)*. Let [x| = maxi<i<n{lxil}, Dr = {x € C}; |x| < R}
and Sp(T) = {t € C;; 0 < |f| < T and |argt| < 6}. O(Dpg) is the set of all holomorphic
functions on Dg . O(Dg)[[t]] is the set of all formal power series Z?io fi ()¢ with the co-
efficients f;(x) are in O(Dg) foralli =0, 1,.... A(Syp(T) x Dp) is the set of all functions
f(t,x) € O(Dg)[[t]] that are holomorphic on Sy (T) x Dg. Sg:(T") € Sp(T) means 6’ < 0
and T" < T, and for f(t, x) € A(Se(T) x Dg) f(0, x) means lim;_,o ses, (1) f(t, x).
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Let Z ={Zj 4} jtjaj<m With Zj 4 € Cand ¢ = {g},a}j+|a|<m With g € N then put

Z9 =11 11a1<m Zja®e and |l = 3, 4 j<m 9j.a- Let0 < R < 1. We define a series L(Z)
by
(1.1) L(Z) = Z t%c,(t,x) 2%

lg1=1

where coefficients ¢, (¢, x) are in A(Sg(T) x Dg) with ¢4(0, x) # 0 and o, € Nforall g. In
this paper we assume the following condition:

ASSUMPTION 1. The series L(Z) converges in a neighborhood of Z = 0.

Let us consider the following nonlinear partial differential equation:

(1.2) L(u(t,x)) = f(t,x) € O(Syp(T) x Dg)
where

. 9 J 9 \% qj.a
(1.3) L(u(r,x»:mZZIr ch(t’x),-ﬂgm{(tE) (5) u(t,x)} .

In [3] Ouchi studied a similar class of the equation (1.2) in the case that the series (1.1)
is a polynomial in Z with the degree M. Let us introduce some results for (1.2) by [3].

Setl, := max{j + |a|; ¢gj« # 0} and
I(a,b):={(x,y) €eR* x <aandy > b}.
Then we define the Newton polygon N P (L) of the nonlinear operator (1.3) by

NP(L) = CH{ U My, 04); cq(t, x) ¢0}
lg1=1
where C H{-} is the convex hull of a set {-}.

The boundary of the Newton polygon N P(L) consists of a vertical half line Xy o, a
horizontal half line X, ,+ and segments Xy ; (1 < i < p* —1). Let y.; be the slope
of ¥p;fori =0,...,p" Thenwehave 0 = yr p» < yr,p—1 < -+ < yL0 = 0.
Further the Newton polygon N P(L) have p*-point vertices, we denote them by (/;, o;) with
Ipeo1 < <lp=m.

Let us denote the linear part of the nonlinear operator (1.3) by £(u), that is,

9 J 9 o qj.«
Ly = Y i7e, ) ] {(fﬁ) (a‘) ”“’“} |

lg1=1 Jtlel<m
For the linear part £(u) we define the Newton polygon N P (L) by the same rule as N P(L).
For N P(L), we define X ; and y ; fori =0, ..., ppand (g, 0r;) fori =0,..., pp—1
by the same rule as those of N P(L).
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For nonlinear operators L(t'u(t, x)), we define the formers and denote them by
NP(L;v), NP(L;v), ¥1,i(v), ¥z ;(v) and so on. Then yz; = y,.;(v) holds for i =
o,..., p*ﬁ.

Let us define operators £; with respect to X ; fori = 1,..., p*L — 1. Set I; =
{q; ogi—1 —0q =vyr,i(gi—1 —1y) and |g| = 1}. Then we define

) j 9 o qj.a
o 1 {2 (2o

q€l; Jtlal<m
A\ [ a\"
— 1% c; (1, r— — t
2 1l ’”( a;) <8x) e
(j,a)el;

where J; = {(j.&) e Nx N j+|a| <mandoz;_ — 00 = yr,i(lzi-1 — j — la)). Let
m; be the differential order with respect to x of L;.
The equation (1.2) is studied in Ouchi [3] under the following three conditions.

CONDITION 1. The series (1.1) is a polynomial in Z with the degree M.

CONDITION 2. The equation (1.2) has a linear part with the order m.

CONDITION 3. The operators L; hold.
W Ifj+lo| <l i then |a| < m; and (2) Zj+‘a|:l[:_i71,‘a|:mi cjal(0, O)é“ # 0 where
£=(1,0,...,0). |

Under Condition 3 the operators £; is rewritten by

o A RN
Liu(t, x) = t°Li-1 Z cj,a(t,x)<tg) <H) u(t, x)

JHlel=lg iy

|ee|=m;

. AN [ a\"
i =ve.ilei-1—j— .
+ £OLi-1 E reilei-1=J \Otl)cj,a(t, x) (IE> <£) u(t, x)

JHlel=lpe i
lee|<m;

(1.4)

and ¢j,;_;.me;(0,0) # 0 holds where jr ;| =Ig ;1 —m; and mje; = (m;,0,...,0).

LEMMA 1.1. Ifthe equation (1.2) satisfies Condition 2, then there exists a sufficiently
large vo > 0 such that for v > vg NP(L;v) = N P(L; v) holds.

We can show Lemma 1.1 as in Proposition 1.7 in [3].

Let us define the function class that is treated in this paper. Set § = Sp(7) and S’ =
S (T")

DEFINITION 1.2. Lety > 0. Asy?y}(S x Dp) is the set of all functions f(¢,x) €
O(S x Dg) such that for any S’ € S

| f(t,x)] < Cexp(—clt|™)
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where ¢ depends on S'.

Set S; = Sy, (T;) with O < 6; < 7/ (2y;). Then the following results on the function class
Asy?y}(S x Dpg) were obtained by [3]:

THEOREM 1.3. Let f(t,x) € Asy?m i}(Si X DRg). Suppose that Condition 1, 2 and 3

on L; hold. Then we have;
HIf2<i < p*L — 1, then there exists a function us, (t,x) € Asy?m’iil}(S,-_l x Dy)
for0 < r < R such that

L(us,_(t,x)) = f(t.x) € Asy(,, ) (Si—1 X Dy).
) Ifi = 1, then we get a solution ug=(t, x) € Asy?m l}(Sl x D) of (1.2) for0 <r <
R.

By Theorem 1.3 we have the following corollary:

0

COROLLARY 1.4. Let f(t,x) € Asy{yc .
P

l}(S,- X DRg). Suppose that Condition 1, 2
and3on L fori =1,..., p*ﬁ — 1 hold. Then we get a solution ug=(t, x) € ASy{VL,pzq}(Sl X
D;) of (1.2) forO <r < R.

In this paper we have the same results without Condition 1.

THEOREM 1.5. Let f(t,x) € Asy?yu}(Si X DR). Suppose that Condition 2 and 3 on

L; hold. Then we have;
HIf2<i < p*L — 1, then there exists a function us, (t,x) € Asy?yuil}(S,-_l x Dy)
for0 < r < R such that

L(us, (t, %) = f(t,%) € Asy,. . 1(Si1 x Dy).

) Ifi = 1, then we get a solution ug=(t, x) € Asy?n l}(Sl x D;) of the equation (1.2)
for0 <r <R
By Theorem 1.5 we have the following corollary:
COROLLARY 1.6. Let f(t,x) € Asy?yﬁ . 1}(Si X Dg). Suppose that Condition 2 and
Pr—
3onLifori=1,..., pz — 1 hold. Then we get a solution ug«(t, x) € Asy{,,L]’z_l}(Sl x Dy)
of (1.2) forO <r < R.

REMARK 1.7. The relations between formal solutions and genuine solutions of an
equation

(1.5) L(u(t,x)) = f(t, x)
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where ¢, (¢, x) and f (¢, x) are in O({|t| < T'}) x Dg) with ¢;(0,x) # 0 and 0, € N were
studied in [3]. Corollary 1.4 is used to show that genuine solutions exist. Let explain the main
point of the proof.

Assume that the equation (1.5) has formal power series solutions u(f,x) =

02 o uk (x)tk with

*

g (x)] < ABkr<5+1).

There exist functions u4 (¢, x) € O(Sy(T’) x Dg/) with0 < 8 < 7/(2y4),0 < T’ < T and
0 < R’ < R such that

K-1
(1.6) lus(, x) — Z ur(x)ek| < AOB§|t|KF<£ + 1) for t € §' € Sp(T").
k=0 Vx
Set L"*(u) := L(uyx + u) — L(uy). The linear part of L"*(u) is denoted by L£**. Suppose
Vs« = Yeur pr—1 and L(uy) — f(t,x) € Asy?y*}(S’ x Dpgs). Further we assume that L"** (u)
satisfies Condition 1, 2 and 3. Then by Corollary 1.4, the equation (1.5) has genuine solutions
with the estimate (1.6).

By Corollary 1.6, we can get the same results without Condition 1 by the same way as
in [3].

2. Preparation of Theorem 1.5

In this section we give one theorem and some lemmas to show Theorem 1.5, and we give
a proof of the theorem of this section.

2.1. Preparatory lemmas. Set

=Y a0 RAWE] . S i ) RAWKAY
- @t O\ 51 )\ ox @t O\ )\ ox

Jtle|=l* Jjle|<t*
lot|=m* Joe| <m*

where the coefficients a;(¢,x) belong to A(Se(T) x Dg) with a;(0,x) # O,

ajemre;(0,0) = 1, j* = 1" —m* and m*e; = (m*,0,...,0) € N*. Let us treat the fol-
lowing series:

> t%ay(t, x)2°

lg1>1

where the coefficients and a (¢, x) belong to A(Sg(T) x Dg) with and a, (0, x) # 0. Further
numbers o, are integers and satisfy the follows:

@ =ip+a) ) >0) for Iy <I

2.1 =
e T Vg — 1+ J2 (J220) for Iy > I*
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where 0 < y < y* < oc0.If {g; I, > I"} = {J then we define y* = oo.
Assume that the series Z‘ =1 1%ay(t, x)Z9 converges in a neighborhood of Z = 0. For

a function g(z, x) € Asy? Yy (Sg(T) x Dpg) we consider the following equation:

P J P o qj.a
ey eu= Y eaen T {(5) ()« +oen.

lql>1 Jtlal<m
Set

9 J 9 \% 19

L(u) := E*u_lqliz:ltaqaq(I’X)jHla_[fm{(t5> (E) u} .

Let us define the following functional class X, , ., where p € N,g,c,y > 0 and
¢ > 0. The definition of X, 4 ¢, (Se(T) x D,) is a little different from that in [3].

Let p > 0, and let T > 0 be a sufficiently small fixed number. For ¢(x) = " gcnn agx?
we define the norm |¢||, by

2.3) lell, = }:mmﬁwm
BeN"

For a fixed number a > 0 we set

Wt o® = Lo

oW —
(k+ 12 - (R=p)f

fork=0,1,....

DEFINITION 2.1. X, 4.4 (Se(T) x D,) is the set of all functions ¢(t,x) €
O(Se(T) x D,) with the following bounds; There exists a positive constant @ such that

foralls e N
8 s
r— t, -
( a;) w(t,-)

The norm of ¢(, x) is defined by the infimum of @ in (2.4) and is denoted by |||l .¢.c,y-

< || exp(—clt| V)OR TP for 1 € Sy(T).
0

Q2.4)

We can define for a function u(t, x) € Xp 4.c,y (So(T) x D))

AR r—/t*< )it and [ ——
5 ) X = Or u(t,x)dr an o

where x' = (x2, ..., x,).
We fix a positive constant § so that 0 < § < min{J!; ¢ with ly <I*}and y*/6 € N. We
define pi by px = [8k/y*] + j*k where j* = 1" —m™*. If {q; I, > I*} = () then px = j*k

-1

X1
lmwy=/ u(t, x, x')dx
0

by y* = oo where [a] denote the integral part of a. Set |k(q)| = Zj+\oc|§m Z?ﬂ k(j,a,i).
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REMARK 2.2. We remark that there exists min{Jql; q withl; < [*}. Points g, yUy—
I*)) are on the segment {(x, y) € R y = y(x —[*) and 0 < x < [*}. By (Ig.04) eNXZ
and oy > y(l; —1") for 0 <1, <I*, the set {Jq1 =0, —y(* —1,); q with ], <1*}islower

bound and lower close. Hence there exists min{.J 1. g with [, < I*}.
Let us construct a formal solution u (¢, x) = Zkz L uk(t, x) of (2.2) with

Luy(t, x) = g(t, x)

Lrup(t, x)
Qe aNT 79\

2.5) = Z t%aq(t,x) Z 1_[ H<t§> (a) uk(j,a,i)(f,x)
. e k(@) +1=k j+la|<mi=1

g <I*

9ja 9 J 5\
c Y omaen Y T () (55) woento.
e l(q)|+ 5 (1 1) =k el <m i=1

Then we have the following theorem for uy (¢, x) in the relation (2.5):

THEOREM 2.3. Let § = S¢(T). For the function g(t,x) € Xp,+m* 8,c0,y(S X Dp)
(0 < Vp < R) suppose that there exists a positive constant G such that

a N
(1) s

foralls € N. Then for k > 1 the functions uy(t, x) belong to X p; sk.c,,y (S x D) and satisfy
that there exist positive constants Uy, such that

a N
22.7) H (tE) u(t, )

for a sufficiently small T > 0,0 < Vp < Rand 0 < ¢y < co. Further a series Zkzl Upt*

< G|t exp(—colt] V)@ for 1 e S
P

(2.6)

Ot fortes

<U stsz —ci Y
< U [t|™ exp(—cilt] )(j*k)! R-p

0

converges in a neighborhood of t = 0.
Let us give some lemmas on the functional class X, 4 ¢,y .

LEMMA 2.4. Assume

2.8) lull, < @), for 0<p<R.

(1) Let k > 0. Then we have
a

—Uu

for 0 <p <R
0x1

Moe . (+1)
< T@R o

2.9 ‘
p
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and have

(2.10) ‘ a—u < Moe@l(ekjpl) for 0 <p <R
xi |,

fori=2,...,nwhere Mo = 2"*2,

(2) Let k > 1. Then we have

9 -1
o)

PROOF. We use for any k > 0

< 21@1(;(__;) for 0 <p<R.
0

(k+20"2 i
(k + 1)m+2 - :

We can show Lemma 2.4 as in [1] (Chapter10, Lemma 10.4.1). We omit the details. Q.E.D.
LEMMA 2.5. (1) Fork = 1,2, ..., the following inequality holds:
UK g
kI {j*(k — D} —

(2) There exists a positive constant M1 > 1 such that
o0 <« M gavn
— 141

We omit a proof.

LEMMA 2.6. Let0 <!’ <1 < m. Then for any k € N there exists a positive constant
a > 0 such that

2.12) 3 1 gwn L gy L gasn
| | A
k1+ky=k kl. kz' k!

Lemma 2.6 is the case t = 0 in Lemma 2.1 in [3].

Form now we fix a number a > 0 so that the estimate (2.12) holds.

LEMMA 2.7. Let0 <!’ <l <mand p, p' > 0. Then the following inequality holds:

S

3 U pG—itpth glrp+) < _PPL ohpapen
£ (s — )il ~ ()

Lemma 2.7 is the case t = 0 in Proposition 2.3 in [3].

PROPOSITION 2.8. For0 <!’ <l <mandp,p > 0letu(t,x) € Xpi1,q.cy(S %
Dy) andv(t,x) € Xpyp, g0,y (S X Dy) and we assume that there exist positive constants U
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and V such that fort € §

ad
t— | u

ot

9
t— v

at

Then we have (uv)(t, x) € Xpip'11,g+q'c+c,y (S X Dp) and fort € §

<U; |19 exp(—clt| )= o(”;“)

and

< VeS|l exp(—=cJt|” V) @(”;””.
0

3\’ , 1 1
t— ) (uv <——UV $141919 exp(—(c + )|tV @(S+P+p+)
<8t>()p_(R—,o)l oty p(—( )II)(+)RP
PROOF. By
9\* s sl 9\ 9\
t— = - |t— t—
( a;) wv) ; (s—i)!i!( a;) ”( a;) v
and Lemma 2.7 we obtain the desired result. Q.E.D.

By Proposition 2.8 we have:

PROPOSITION 2.9. Let an I be a finite subset of N and |I| be the cardinal of I. For
Sunctions u; (t, x) € Xp,41;,gi,c,y (S X Dp) foralli € I and 0 < I; < m we assume that there
exist positive constants U; such that

a N
|(50) =
Jat
Then we have

() (1)1,

+pit;
<Uc 111" exp(—cltl ™) @,(;p” ).

1 ( ) , . _
< TTU: )¢5 11120 9 exp(—c|r] ™)
_ Ly (|I1-1) 1_[’
(R — p)i o

1 G+ Lier PiHD)

X -~ —
Y pil KP
where l; = max{l;; i € I}.

PROPOSITION 2.10. Letp > 0andq > 0. For a functionu(t,x) € Xp 4.¢,y(S X Dy)
we assume that there exists a positive constant U such that fort € S

9\*
t— ) u
()

Then we have the following estimates:

<U§ 1119 exp(—c|t|~ V) @,(;tj’).
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There exists a positive constant C such that fort € S
9 s 9 —1
o () 0)
t t 0
9 s 9 —1
2 r— ) 37 t—
@ (@) ()
8 S
3 r— ) @77
3) ( ar) (t™"u)

PROOF. We can show this proposition by the same way as the proof of Proposition
(2.10) in [3]. Then we give a proof for only (1). We have
(t3/3t)* (t3/d3) " \u = (13/3)" ' (td/81)*u and

1 1 )
< US|t exp(—clt] )= O,
q p:

C 1
< — U |t expl(—clt] )= O,
0 cy p:

R—p

C 1
< — U exp(—clt| )= O
0 cy p:

I d 1
/ o9 exp(—ct) L < Lt exp(=cli| ).
0 T q

Hence we can obtain (1). Q.E.D.

To prove Theorem 2.3 we consider the following equation:
2.13) L¥w(t, x) = W(t,x) € X pame sk.c.y (S X DR)

where

(2.14) L= L* <ti) (i) .
at 0x1

LetAj o = llajallo,o,0,y-

PROPOSITION 2.11. Let p > 0 and k > 1. For the equation (2.13) we assume that
there exists a positive constant VW such that

(2.15)

3\’ 1 *
— ) will < wesis —cltI™Y @(s+p+m )
’( 8t> ”p = WO exp el D g 1y s

for0 < p < Randt € S. Then we get the solution w(t,x) € Xpim* sk,c,y(S X Dp) of
(2.13) that satisfies

(2.16)

3\’ 1 1 , .
f— < S|t Sk —clt™Y @(A+p+m)
’( a;) pr‘ [—c@ o eI e D Gy s
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fort € Sand0 < p < R where
Ce.r)= Y AjaMe)*@r)" ™

Jtla|=0*
Jae|=m* ay <m*

c\" L A
+ ) Am(;) ¢ 1l (Moe) 2y

Jtle|<*
|| <m*

and |od'| =y + - - + ay.

PROOF. We construct a formal solution w(¢, x) = Z?io w; (¢, x) of (2.13) with

wo(t, x) = W(t, x)
) a—m*e;
w;i(t,x) = — Z aj,a(t,x)<£> wi_1(t, x)

Jla|=1*
lot|=m*, @y <m*

. 9\ = g e
-y _J_“l)aj,a(t,x)<t5> (E) wi—1(t, x)

Jtle|<r*
la|<m*

fori > 1. Then fori > 0 we get

a S
(t—) wy
at

fort € Sand0 < p < R.

Let us show the estimate (2.17). It is trivial that the estimate (2.17) holds for i = 0 by
wo(t, x) = W(t, x).

For i > 1 we show the estimate (2.17) on induction. We assume that the estimate (2.17)
holds fori’ =0,1,...,i — 1.

For o1 < m* by Lemma 2.4 we have

1G]

< {CE, DY oy (Moe) ¥ Wi 11 F exp(—c|t|77)

. 1 s m*
< {C(, ‘E)}IW§‘Y|I|5k exp(_cm_}’)i@( +p+m*)

@17 Grl— 1) R

p

p
(2.18)

1 (s+p+lel)
— .
Gk — )1 ke
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Therefore by (2.18) and Proposition 2.8 we get

P s P a—m*ey
G 2 i) ]
e

J+lel= P
Jot|=m* @y <m*
(2.19) < ) Al N T @O™ T (Moe) ™ Wit 1 exp(—clt| V)

jHal=1*

Jot|=m* ,ay <m*
% 1 @(s+p+m*)
(k= D)t R=r
fort € Sand0 < p < R.
For || < m* and j + |a| < [*, by the estimate (2.18) we get

P s P m*—|a| P a—m¥*ey
r— r— — wi—1
ot ot x o

<{CE, DY D)™ ™ (Moe) @ Te™ W |19 exp(—clt] )
% o (S+p+m*)
(*(k— 1)) R=r

and by Proposition 2.8 and 2.10-(2) we get

P s . P j—(*—m*) P a—m*eq
t— [_V(l —Jj=lel) . t— _ .
)1z wel) () e

Jla|=r* 14
|| <m*
. C l*_j_|a‘ . , .
@200 < 3 Aj,a{C(g,rn’—l(—) (20)"" e (Mge) g Wi
JAle|<r* v
la|<m*

o (5+p+m*)

X el ) T O

fort € Sand 0 < p < R. By the estimates (2.19) and (2.20) we obtain the estimate (2.17)
for i > 0. By the definition of C(¢, v) we have C(¢, t) < 1 for a sufficiently small ¢ > 0.
Hence the solution w(t, x) = Ziz() wj (t, x) converges and holds the estimate (2.16).

Q.E.D.

Let us consider the following equation:
(2.21) Lu(t,x) = W(t, x).

By Proposition 2.11 following proposition holds for (2.21);
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PROPOSITION 2.12. Let p > 0 and k > 1. For the function W(t,x) €
X prm* sk,c,y (S X Dy) assume that there exists a positive constant VW such that

0 ’ s .16k — 1 (s+p+m*
_ . _ 12 o p+m™)
’<t8t> W”p < We " exp(—clt| )(j*(k— 1))!OR_p forteS.

Then we get the solution u(t, x) € Xp sk,c,y (S X Dy) of (2.21) that satisfies

a N
|(5)
! o

A
J m* 1 51418k NI
§<5> OO Ve el )

1
X (j*k)!@l(gj’f) for t €8S.

PROOF. For the solution w(t, x) of the equation (2.13), we have

a _j* a _m*
(2.22) u(t,x) = (t5> <H> w(t, x).

By Proposition 2.11 and Lemma 2.4-(2), we have

1G]

" 1
< Qo)™ ———— WSt exp(—clt| )

) 1-C )
1 (s+p)
XWOR—,O for r e S.
By Proposition 2.10-(1) and Lemma 2.5-(1) we obtain the desired result. Q.E.D.

2.2. Proof of Theorem 2.3. Let us give a proof of Theorem 2.3. We will show the
estimate (2.7) by the same way as the proof of Proposition 3.6 in [3], and show that the
series ) ;- Uy t* converges in a neighborhood of # = 0 by majorant functions and Implicit’s
function theorem as in [1].

Set A, := |lagllo,0,0,y- Then we can assume that a series
R — p)ymlal=
lg|=1 ( P)

converges in a neighborhood of Z = 0.
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Set
Wi k(ups k' < k) = Z 1%ag(t, x)

1=<lql<k
[qgl*

qj,a a ] a o
X Z H H(tg) (a) Uk (i) (T, X)
k(@) |+1=k j+|a|<mi=1
(2.23) War(up; k' <k) = Z 1%ay (1, x)

I=<lq|<k
lg>I*

9j 9 J 3\
" Z 1 H(’E) (5) k(i) (1 X)
Ik(q) |+ L= (1y —1%)=k ] Flel=m i=1
Wi(up: k' < k) := Wik (ugr; K <k)+ Wa s (g ¥ <b).

We show that the estimate (2.7) holds for k¥ > 1. We give the assumption on the function
g(t, x) again:

()
Jt 9

Let us show the estimate (2.7) on k = 1. We solve an equation

< G¢*[t? exp(—colt| ORI for 1€ S = Sp(T).
14

Lfuy(t,x) = g(t,x).

We get a solution u1 (¢, x) of the above equation by

ok 0 A 0 -
Lwi(t,x) =g(t,x) and wu(t,x)= <t5> < ) wi(t, x).

ax;

By Proposition 2.11 we get

a N
|(5)
at

and by Proposition 2.12
a s
()
ot
P

i\ , 1 I, I BT
(L) eom——— Goor et ) — e8P for re s,
_<8) o) g O8I exp(ell ) O for

Gl exp(—clt| )= @1

1
< — for te S
,  1-C@ 0 jrrRee

(2.24)

If we take a sufficiently small ¢ > 0 so that

*

(5) e

’

_
1—C{ 1)
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then by the estimate (2.24) we get

a S
t_
H( ar) “

By setting Uy = G, the estimate (2.7) holds for k = 1.
For k > 2 let us show the estimate (2.7) on induction. Let us assume that the estimate
(2.7 holds fork’ =1,2, ...,k — 1. By Lemma 2.4-(1) for k(j, @, i) < k we get

(102) (2

- ¢/ (Moe)!!

TYl

< G|t exp(—clt|™ V) @“*”” for t € .

p

(H‘Pk(J o, 1)+J'Ha|)

Uk(j.a.iy ¢ 12124020 exp(—c|t| ) ———
k(],oc,t)§ |] P( 7] )(]*k(],a,l))' R—p

Here we use an inequality [T, qj<m [T225 Prci.ai/ Gk G ) < [p@)11/ G k(@)D
where [p(@)] = - 4 a1<m Z?;"l‘ Pk(j,a,i)- Then by Proposition 2.8 and 2.9 we obtain

02 o 1 F102) (2

]+|a\<ml 1 14
qja |
2.2 §’(Mo€) -
S =G S 1>{ [T [T Ui "1l exp(=cltI )
( 'O) JHlal<mi=1

1 s+ p(@)|+y)
o | R—p
(*1k(@)D!
Let us give an estimate for Wy ;. Inthe case 1 < |g| < k and |k(q)| + 1 = k, it follows from
=—y(l* =1y + Jq1 that by Proposition 2.10-(3) we get

3\’ c\' " ., Ay
_ < —_ —lg__ 4
<taz> Wik| = 2, (cy) & R = pyatarD

P I=<lg|<k
lqgl*

dj.a

< > T % o]

k(@) |+1=k * j+|a|<mi=1

|6k (s+p@I+")

1
e —lt|V)———6
X exp(—elt] ) Ok
Further we have

0 < pe+m* = (Ip(@|+1%)

qdj,a

1)
:[F('k@'“)}_ > Z[—ku,az)} = Ii(g) -

JHlal<mi=1

(2.26)
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Foralli =1,...,qj« and (j, @) with j + |a| <m if 8k(j, o, 1) /y* =n(j, 0, i) —e(j, o, i)
with n(j, @,i) € Nand 0 < ¢(j, @, i) < 1 then we have the maximum of (4. Then we get
[6k(j, o, 1)/y*] =n(j, e, i) —n(j, o, i) withn(j, e, i) =0or1,

qj.a 4j.a 9j.o
@2 ) Z[—k(Jat)} Yo donGiad = > Y G

JHlal<m i=1 JHlal<mi=1 JHlal<mi=1

and
S 4dj.a qj.a
[—*<|k(q)|+1)}=[ Yo Y nGiaiy— Y Y e i)+ }
(228) Y JHlal<m i=1 JHlal<m i=1
9j.a
> D nGiei)+1
JjHlal<mi=1

by y*/8 € N. Then by the inequalities (2.26), (2.27) and (2.28)

9ja

(2.29) petm* —(p@+1 < Y Y nGei)+1<lgl+1<2lq|
Jjtla|<m i=1

holds for |g| > 1. By the inequality (2.29) and Lemma 2.5-(2) we obtain

(;)YWM =y (§>z*_zq

P 1<|q|<k ¢y
(2.30) M, CJ(Moe)“"‘
(R,O)W Z { 1_[ l_[ k(J a 1)}

lqgl*
k(@) |+1=k * j+la|<mi=1

J - ! S+ pr+m*
x [t exp(—clt| V) = @RI

(j*(k = 1)!

Let us give an estimate for W, (¢, x). In the case 1 < |g| < k and |k(q)| + J/T*(lq —
I*) = k, we have py +m* — (|p(q)| + 1) = j*(k — |k(g)| — 1) = 0. It follows from
o, =y*Uy — 1"+ qu that by the estimate (2.25) we have

N | < Ay
) Wer| = 2 (R — p)la0a—1

P 1<lgl<k
L e Moeyle!
X > { I1 Hg( 0e) k(j,a,w}

lg>I*
k(@) |+y*(q—1*) )=k ~ j+la|<mi=1

ik ooy G R = D) 1 (s+p(@)|Hy)
X e it G-y R
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By Lemma 2.5-(2) we get

AN I Aq
IE 24| = Z W

P I=<lg|<k
lg>I*

L e Moe)le!
x > { I1 Hg( 0e) k(j,a,n}

k(@) +y*Uq=1¥)/6=k * j+la|<m i=1

: _p GF e = 1!
x ¢ 1M exp(—clr| V) ==
(k@)D

Mpk+m*—(\P(q)l+lq) 1

x 1 (s+pr+m™)
(pr+m*) - (p@)] +1g + 1) (* (k= 1) K=

forz € S. By (px +m*) — (Ip(@)| +1lg) = j*(k — [k(g)| — 1),

(j*(k = 1))! 1 <1

K@D (pr +m*) -~ (Ip(@| + 1+ 1) —
holds. By the same way as in (2 29) we have pk+m*—(|p(q)|+lq) < i+ =(Up@)l+ly) <
|q|+%*j*(lq —I*) and |q|+ JEly—=1%) < (l+ j*(m—1%))|q| =: k|q|. Then we obtain

a K MK‘q‘A
H <t5> Wak| = Z (R — 1 )zq(\;]\—l)
P lls\q\lsk P
q>1*

9ja ™
@3 x Z { H ngj(Moe) k(Jal)}

k(@I+y*Ug=1%)/6=k * j+la|<mi=1

J - 1 s+ pr+m*
x [t exp(—clt| V) ————— @)

(j*(k = 1)!
for t € S. By the estimates (2.30) and (2.31) for 0 < ¢ < 1 the following estimate holds:
s -l 2lq|
li W, < Z g —Ml ZAlI
dt (R — p)lallal=1)

Cc
I<lql<k 14
lg <I*

qj.a

CJ(Moe)| ‘
< > T T v,
k(| +1=k * j+la|<mi=1
- 1 +prm*
x|t exp(—clt| ™) — O P

(J*(k = 1))!
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KW\A
+ Z (R — p)la (\q\ D

I=<|q|<k
lg>I*

1% e 7 (Mye)l®!
% Z { 1_[ l_[é‘( 06) k(]al)}

k(DI+y*Iq=1*)/8=k ~ j+|a|<mi=1
1 *
x &5t 1% exp(—clt] V) ——— @UTPETM)
€l exp(—cltl ™) 75Ok
Set
( >1*—lq
1<|q|<k
lg<I*
2|q| dja
M Ay §’(M0€)|“‘
X(R_p)lq(\q\—l) Z { H l_[ Uk(jevi
k(@+1=k * j+|a|<mi=1
(2.32)
Z KILIIA
+ M _
I 1
eyt (R — p)q(lql )
lg>I*
i zf(Moe)'“‘
T T v
k(| +y*Ug—=1*)/6=k ~ j+la|<mi=1
where

o

i\’ . 1
M=) Qo ——— (inProposition 2.12).
3 1—C( 1)

By Proposition 2.12, we get

a N
t_
(5) ],

Hence the estimate (2.7) holds for k > 1.

Let us show that ) ;- Uit* is a convergent power series in a neighborhood of the origin
t = 0. Coefficients Uy (k > 1) are given by U; = G and the relation (2.32) for k > 2. Let us

< Uk |11 exp(—clt|~ V)( *k)'@,(;j,{’“ for t € S.
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consider the following equation:

=l 2lq| i dja
C¢ 4 M Ay ¢ (Mpe)!®! Js

ozt NV j+lal<m
q=
(2.33) .
M7 {](M e)la\ 9j.a
Ug=1%)y*/8 1“4 Lt
+M Z A (R _ p)m(lql—l) ) H ( Tl Y) :
[\q\Zl}k JjHlal<m
q>

We can show that the equation (2.33) has a holomorphic solution Y (¢) = Zkz 1 Yit* in a
neighborhood of ¢+ = 0 with Uy < Yi for k > 1 by Implicit’s function theorem at (¢, Y) =
(0, 0). Hence Zkz 1 Uyt converges in a neighborhood of the origin # = 0. Q.E.D.

3. Proof of Theorem 1.5

In this section we prove Theorem 1.5 by Theorem 2.3.

Set I* = g1, m* =mi, j* = jei-1 =lgi-t —mi,y =y, v* = yri-1 and
c*(t,x) = t75071C . mey (8, X) Where ¢z ;1 mie; (0,0) # 0.

We consider an equation

3.1 L(u(t,x))/c*(t,x) = f@t,x)/c*(@, x)
for the equation (1.2).

REMARK 3.1. For L('u(t,x)) with t'u(t,x) € t”Asy?V}(Se(T) x Dg) ,
NP(L;v) = NP(L;v) holds for a sufficiently large v € N by Lemma 1.1. Hence we
can assume N P(L) = N P (L) for the equation (1.2).

‘We set

(3.2) L ={c*@t, )L,

(3.3) L*(u(t, x)) = (L(u(t, x)) — Liu(t, ))/c*(t, x)
and

(3.4) g(t,x) = f(t,x)/c*(t, x) = 1°h(t, x)

where L*(u) is in (2.2) and h(z, x) = f(t, x)/{t’c*(t, x)}. By Remark 3.1 L*(u(t, x)) is the
following form:

* Og—0r. i 0 g 0 * fia
(3.5) L*u(t,x) = Y %7 %i-lq,(t.x) [] {<r5> <£> u(t,x)}

lg|=1 JHla|=m
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where a, (¢, x) = ¢4 (2, Jc)/cj<£,,.7l,,,,,.e1 (¢, x), and numbers o, — o ;| € Z satisfy

—y*—lp+J; (J}>0) forl, <I*

(3.6) Og —O0L,i-1= vy — 1) + ]qZ (jq2 >0) for I, > I*.

If i = 1 then we define y* = oco. Further if we take 0 < c¢p < ¢ then we have
(3.7 h(t,x) € Xp,+m*,0,c0,y (S X DR).

Therefore it is sufficient to show Theorem 1.5 for the equation (3.1).
Let us show Theorem 1.5. By Theorem 2.3 we have the following estimate:
There exist positive constants A and B such that for k > 1 and ¢z € Sy(T)

lu(t, ), < ABX|t]F exp(—clt|7Y) if {g; Iy >1*} =0

. Sk
GY et I, < ABH* exp(—cW)F(F 4 1) it {gs 1, > 1F) £ 0.

By the estimate (3.8), if {g; I, > I*} = @ then the formal solution > p>1 Uk (t, x) becomes a
genuine solution of the equation (3.1). We get Theorem 1.5-(2).

From now we will show Theorem 1.5-(1) in the case {g; I, > I*} # . Itis our purpose
to show the following two propositions;

Let S = Sp(T) and Sp = Sg,(To) with 0 < 6p < 7/(2y*) and Sp € S.

PROPOSITION 3.2. Let ui(t, x) be constructed in the relation 2.5 for k > 1. Then
there exists a function us,(t, x) € Asy?y*}(So x Dg,) such that

N
N+ 1)8
s, = 3l = AV (S ) expclr ) for 1€ 5.
Y *
k=0

For the function ug, (¢, x) set
9 J 9\ qj.a
gs,(t, x) := L¥us,(t, x) — Z 17178 1g, (1, x) . l_[ {(tg) (E) ”So(t’x)}
lg1=1 Jtlal<m
—g(t, x).
PROPOSITION 3.3. We have gs,(t, x) € Asy?V*}(So x Dg,) for0 < Ry < Ro.

We get Theorem 1.5-(1) by Proposition 3.3.
Let us give proofs of Proposition 3.2 and 3.3. We can show these proposition by the
same way as in [3] for the norm (2.3).
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We define the follows for the functions uy (¢, x) in Theorem 2.3:
up(t,x) £k
1Ok+y* L (Sk/y* + 1)
o0
NG, x,E)= ) W, x,§)

k=N+1
00

W(t,x, &)= Wt x.8).

k=0

up(t, x, §) =

235

By Theorem 2.3 there exists a positive constant éo such that Wy (z, x, §) and u(z, x, &) con-

vergein § x D, x {|&] < &}.

LEMMA 3.4. There exist positive constantsé‘ with 0 < é < éo, Ajand B; (i =0,1)

such that for S x {|§] < £)
(3.9) ||ﬁ'N (, - E)”p < AOBON+1 |l‘|_y* eXp(—C|f|_V)|$|(N+1)8/V*

and for § x {|&] > é}
N
(3.10) S, )l < MBI exp(—cle|7)]g| VDY
k=0
‘We can show Lemma 3.4 as in Lemma 4.1 in [3]. We omit the details.
PROOF OF PROPOSITION 3.2. Set

&
usy(t, x) = /0 exp(—Et7V")u(t, x, £)dE .

Then we have

N §
uso(t0) = Y et = [ expl—gr Ty, x,£)d

k=0 0

00 N
— é exp(—Et_y*) Zﬁk(h X, g)dé:

k=0
=hNn+DnN.

By Lemma 3.4 for ¢t € Sy the following estimates hold:
N+ 1)8
I5.n 1l = AoBo™™! exp(—c|r|‘y)|z|<N+“3F<ﬁ + 1)
Y%
and

N +1)6
12Nl < AB V! exp(—c|r|—y)|t|<N+”5F<u + 1).
Y *
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Hence we obtain Proposition 3.2. Q.E.D.

Let us show Proposition 3.3. Set

N
vy (t,x) = Zuk(t, x), wy(t,x) =us,(t,x) —vn(t, x)
k=1

and
a\ [\ 1"
W) := % — —
(u) Zt cq(t, x) . H {(IE)t) <8x) u}
lg|=1 J+le|<m

for the equation (3.1). Then we have
(3.11) gso(t, x) = L*(oy + wy) — W(vy +wy) — g(t, x),
Loy = Z,I{Vzl L*u(t, x) and

LXui(t,x) = g(t, x)
(3.12)

Lrup(t,x) = Wi(up : k' <k) for k>2.
By the relation (3.12) we have

N
3.13) L*vy — W(oy) — g(t, x) = Z Wi(up : k' < k) — W(vw)
k=2

and by relations (3.11) and (3.13)

N
g5 (1, x) = { D Wil K < k) — W(vN)}

k=2
+H{ LN, x) — Wy + wy) + W(ow)}
=Jin+ LN
Set
_ Juk@,x) for 1 <k <N
Nk (t, x) = {0 e k= N1

Then we have vy (¢, x) = > po | vn i (2, x) and

Biv= > Wiy k' <k + Wor(oye: k' < b}
k>N+1

LEMMA 3.5. For 0 < po < p there exist positive constants c1 and cp such that if
c1/(N +1) < |t]¥* < c1/N then

118 lpgs 192,80y < Aexp(—calt] ™).
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We can show Lemma 3.5 as in Lemma 4.4 in [3]. We omit the details.

PROOF OF PROPOSITION 3.3. By Lemma 3.5 we obtain

lgsylloy < Aexp(—calt|™"™)

for c; /(N + 1) < |t|"* < ¢1/N where ¢ and A are independent of N. Therefore we can
show gs, (¢, x) € Asy?y*}(So x Dy,) and we get Proposition 3.3. Q.E.D.
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