Remarks on Formal Solution and Genuine Solutions for Some Nonlinear Partial Differential Equations

Hiroshi YAMAZAWA

Caritas Junior College

(Communicated by K. Shinoda)

Abstract. Ōuchi ([2], [3]) found a formal solution $\widetilde{u}(t, x) = \sum_{k>0} u_k(x) t^k$ with

$$|u_k(x)| \le AB^k \Gamma\left(\frac{k}{\gamma_*} + 1\right) \quad 0 < \gamma_* \le \infty$$

for some class of nonlinear partial differential equations. For these equations he showed that there exists a genuine solution $u_S(t,x)$ on a sector S with asymptotic expansion $u_S(t,x) \sim \widetilde{u}(t,x)$ as $t \to 0$ in the sector S. These equations have polynomial type nonlinear terms.

In this paper we study a similar class of equations with the following nonlinear terms

$$\sum_{|q|\geq 1} t^{\sigma q} \, c_q(t,x) \prod_{j+|\alpha|\leq m} \left\{ \left(t \frac{\partial}{\partial t}\right)^j \left(\frac{\partial}{\partial x}\right)^\alpha u(t,x) \right\}^{q_{j,\alpha}}.$$

It is main purpose to get a solvability of the equation in a category $u_S(t,x) \sim 0$ as $t \to 0$ in a sector S. We give a proof by the method that is a little different from that in [3]. Further we give a remark that the similar class of equations has a genuine solution $u_S(t,x)$ with $u_S(t,x) \sim \widetilde{u}(t,x)$ as $t \to 0$ in the sector S.

1. Introduction

Let \mathbb{C} be the complex plane or the set of all complex numbers, t be the variable in \mathbb{C}_t , and $x=(x_1,\ldots,x_n)$ be the variable in $\mathbb{C}_x^n=\mathbb{C}_{x_1}\times\cdots\times\mathbb{C}_{x_n}$. We use the notations: $\mathbb{N}=\{0,1,2,\ldots\},\ \alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n,\ |\alpha|=\alpha_1+\cdots+\alpha_n,\ \text{and}\ (\partial/\partial x)^\alpha=(\partial/\partial x_1)^{\alpha_1}\ldots(\partial/\partial x_n)^{\alpha_n}$. Let $|x|=\max_{1\leq i\leq n}\{|x_i|\},\ D_R=\{x\in\mathbb{C}_x^n;\ |x|< R\}$ and $S_\theta(T)=\{t\in\mathbb{C}_t;\ 0<|t|< T\ \text{and}\ |\arg t|<\theta\}$. $\mathcal{O}(D_R)$ is the set of all holomorphic functions on D_R . $\mathcal{O}(D_R)[[t]]$ is the set of all formal power series $\sum_{i=0}^\infty f_i(x)t^i$ with the coefficients $f_i(x)$ are in $\mathcal{O}(D_R)$ for all $i=0,1,\ldots,A(S_\theta(T)\times D_R)$ is the set of all functions $f(t,x)\in\mathcal{O}(D_R)[[t]]$ that are holomorphic on $S_\theta(T)\times D_R$. $S_{\theta'}(T')\subseteq S_\theta(T)$ means $\theta'<\theta$ and T'< T, and for $f(t,x)\in A(S_\theta(T)\times D_R)$ f(0,x) means $\lim_{t\to 0,t\in S_\theta(T)}f(t,x)$.

Received November 24, 2011; revised September 24, 2012; revised November 29, 2012; revised January 4, 2013 2000 *Mathematics Subject Classification*: 34M30 (Primary), 34M25 (Secondary) *Key words and phrases*: formal solutions, genuine solutions, Gevrey class

Let $Z = \{Z_{j,\alpha}\}_{j+|\alpha| \le m}$ with $Z_{j,\alpha} \in \mathbb{C}$ and $q = \{q_{j,\alpha}\}_{j+|\alpha| \le m}$ with $q_{j,\alpha} \in \mathbb{N}$ then put $Z^q = \prod_{j+|\alpha| \le m} Z_{j,\alpha}^{q_{j,\alpha}}$ and $|q| = \sum_{j+|\alpha| \le m} q_{j,\alpha}$. Let 0 < R < 1. We define a series L(Z) by

(1.1)
$$L(Z) = \sum_{|q|>1} t^{\sigma_q} c_q(t, x) Z^q$$

where coefficients $c_q(t, x)$ are in $A(S_{\theta}(T) \times D_R)$ with $c_q(0, x) \not\equiv 0$ and $\sigma_q \in \mathbb{N}$ for all q. In this paper we assume the following condition:

ASSUMPTION 1. The series L(Z) converges in a neighborhood of Z=0.

Let us consider the following nonlinear partial differential equation:

(1.2)
$$L(u(t,x)) = f(t,x) \in \mathcal{O}(S_{\theta}(T) \times D_R)$$

where

(1.3)
$$L(u(t,x)) = \sum_{|q|>1} t^{\sigma_q} c_q(t,x) \prod_{j+|\alpha| \le m} \left\{ \left(t \frac{\partial}{\partial t} \right)^j \left(\frac{\partial}{\partial x} \right)^{\alpha} u(t,x) \right\}^{q_{j,\alpha}}.$$

In [3] $\overline{\text{O}}$ uchi studied a similar class of the equation (1.2) in the case that the series (1.1) is a polynomial in Z with the degree M. Let us introduce some results for (1.2) by [3].

Set
$$l_q := \max\{j + |\alpha|; \ q_{j,\alpha} \neq 0\}$$
 and

$$\Pi(a,b) := \{(x,y) \in \mathbb{R}^2; x < a \text{ and } y > b\}.$$

Then we define the Newton polygon NP(L) of the nonlinear operator (1.3) by

$$NP(L) = CH\left\{\bigcup_{|q| \ge 1} \Pi(l_q, \sigma_q); \ c_q(t, x) \not\equiv 0\right\}$$

where $CH\{\cdot\}$ is the convex hull of a set $\{\cdot\}$.

The boundary of the Newton polygon NP(L) consists of a vertical half line $\Sigma_{L,0}$, a horizontal half line Σ_{L,p^*} and segments $\Sigma_{L,i}$ ($1 \le i \le p^*-1$). Let $\gamma_{L,i}$ be the slope of $\Sigma_{L,i}$ for $i=0,\ldots,p^*$. Then we have $0=\gamma_{L,p^*}<\gamma_{L,p^*-1}<\cdots<\gamma_{L,0}=\infty$. Further the Newton polygon NP(L) have p^* -point vertices, we denote them by (l_i,σ_i) with $l_{p^*-1}<\cdots< l_0=m$.

Let us denote the linear part of the nonlinear operator (1.3) by $\mathcal{L}(u)$, that is,

$$\mathcal{L}(u) = \sum_{|q|=1} t^{\sigma_q} c_q(t, x) \prod_{j+|\alpha| \le m} \left\{ \left(t \frac{\partial}{\partial t} \right)^j \left(\frac{\partial}{\partial x} \right)^{\alpha} u(t, x) \right\}^{q_{j,\alpha}}.$$

For the linear part $\mathcal{L}(u)$ we define the Newton polygon $NP(\mathcal{L})$ by the same rule as NP(L). For $NP(\mathcal{L})$, we define $\Sigma_{\mathcal{L},i}$ and $\gamma_{\mathcal{L},i}$ for $i=0,\ldots,p_{\mathcal{L}}^*$ and $(l_{\mathcal{L},i},\sigma_{\mathcal{L},i})$ for $i=0,\ldots,p_{\mathcal{L}}^*-1$ by the same rule as those of NP(L). For nonlinear operators $L(t^{\nu}u(t,x))$, we define the formers and denote them by $NP(L;\nu)$, $NP(\mathcal{L};\nu)$, $\Sigma_{L,i}(\nu)$, $\Sigma_{\mathcal{L},i}(\nu)$ and so on. Then $\gamma_{\mathcal{L},i}=\gamma_{\mathcal{L},i}(\nu)$ holds for $i=0,\ldots,p_{\mathcal{L}}^*$.

Let us define operators \mathcal{L}_i with respect to $\Sigma_{\mathcal{L},i}$ for $i=1,\ldots,p_{\mathcal{L}}^*-1$. Set $I_i=\{q;\ \sigma_{\mathcal{L},i-1}-\sigma_q=\gamma_{\mathcal{L},i}(l_{\mathcal{L},i-1}-l_q)\ \text{and}\ |q|=1\}$. Then we define

$$\mathcal{L}_{i}u(t,x) = \sum_{q \in I_{i}} t^{\sigma_{q}} c_{q}(t,x) \prod_{j+|\alpha| \leq m} \left\{ \left(t \frac{\partial}{\partial t} \right)^{j} \left(\frac{\partial}{\partial x} \right)^{\alpha} u(t,x) \right\}^{q_{j,\alpha}}$$
$$= \sum_{(j,\alpha) \in J_{i}} t^{\sigma_{j,\alpha}} c_{j,\alpha}(t,x) \left(t \frac{\partial}{\partial t} \right)^{j} \left(\frac{\partial}{\partial x} \right)^{\alpha} u(t,x)$$

where $J_i = \{(j, \alpha) \in \mathbb{N} \times \mathbb{N}^n; \ j + |\alpha| \le m \text{ and } \sigma_{\mathcal{L}, i-1} - \sigma_{j, \alpha} = \gamma_{\mathcal{L}, i} (l_{\mathcal{L}, i-1} - j - |\alpha|) \}$. Let m_i be the differential order with respect to x of \mathcal{L}_i .

The equation (1.2) is studied in Ōuchi [3] under the following three conditions.

CONDITION 1. The series (1.1) is a polynomial in Z with the degree M.

CONDITION 2. The equation (1.2) has a linear part with the order m.

CONDITION 3. The operators \mathcal{L}_i hold.

(1) If $j + |\alpha| < l_{\mathcal{L},i-1}$ then $|\alpha| < m_i$ and (2) $\sum_{j+|\alpha|=l_{\mathcal{L},i-1},|\alpha|=m_i} c_{j,\alpha}(0,0)\hat{\xi}^{\alpha} \neq 0$ where $\hat{\xi} = (1,0,\ldots,0)$.

Under Condition 3 the operators \mathcal{L}_i is rewritten by

$$\mathcal{L}_{i}u(t,x) = t^{\sigma_{\mathcal{L},i-1}} \sum_{\substack{j+|\alpha|=l_{\mathcal{L},i-1}\\|\alpha|=m_{i}}} c_{j,\alpha}(t,x) \left(t\frac{\partial}{\partial t}\right)^{J} \left(\frac{\partial}{\partial x_{1}}\right)^{u} u(t,x)$$

$$+ t^{\sigma_{\mathcal{L},i-1}} \sum_{\substack{j+|\alpha|\leq l_{\mathcal{L},i-1}\\|\alpha|< m_{i}}} t^{-\gamma_{\mathcal{L},i}(l_{\mathcal{L},i-1}-j-|\alpha|)} c_{j,\alpha}(t,x) \left(t\frac{\partial}{\partial t}\right)^{j} \left(\frac{\partial}{\partial x}\right)^{\alpha} u(t,x)$$

and $c_{j_{\mathcal{L},i-1},m_ie_1}(0,0) \neq 0$ holds where $j_{\mathcal{L},i-1} = l_{\mathcal{L},i-1} - m_i$ and $m_ie_1 = (m_i, 0, \dots, 0)$.

LEMMA 1.1. If the equation (1.2) satisfies Condition 2, then there exists a sufficiently large $v_0 > 0$ such that for $v \ge v_0 NP(L; v) = NP(\mathcal{L}; v)$ holds.

We can show Lemma 1.1 as in Proposition 1.7 in [3].

Let us define the function class that is treated in this paper. Set $S = S_{\theta}(T)$ and $S' = S_{\theta'}(T')$

DEFINITION 1.2. Let $\gamma > 0$. $Asy^0_{\{\gamma\}}(S \times D_R)$ is the set of all functions $f(t, x) \in \mathcal{O}(S \times D_R)$ such that for any $S' \subseteq S$

$$|f(t,x)| \le C \exp(-c|t|^{-\gamma})$$

where c depends on S'.

Set $S_i = S_{\theta_i}(T_i)$ with $0 < \theta_i < \pi/(2\gamma_i)$. Then the following results on the function class $Asy^0_{\{\gamma\}}(S \times D_R)$ were obtained by [3]:

THEOREM 1.3. Let $f(t, x) \in Asy^0_{\{\gamma_{\mathcal{L},i}\}}(S_i \times D_R)$. Suppose that Condition 1, 2 and 3 on \mathcal{L}_i hold. Then we have;

(1) If $2 \le i \le p_{\mathcal{L}}^* - 1$, then there exists a function $u_{S_{i-1}}(t, x) \in Asy^0_{\{\gamma_{\mathcal{L}, i-1}\}}(S_{i-1} \times D_r)$ for 0 < r < R such that

$$L(u_{S_{i-1}}(t,x)) - f(t,x) \in Asy^0_{\{\gamma_{C_{i-1}}\}}(S_{i-1} \times D_r).$$

(2) If i = 1, then we get a solution $u_{S^*}(t, x) \in Asy^0_{\{\gamma_{\mathcal{L}, 1}\}}(S_1 \times D_r)$ of (1.2) for 0 < r < R.

By Theorem 1.3 we have the following corollary:

COROLLARY 1.4. Let $f(t,x) \in Asy^0_{\{\gamma_{\mathcal{L},p^*_{\mathcal{L}}-1}\}}(S_i \times D_R)$. Suppose that Condition 1, 2 and 3 on \mathcal{L}_i for $i=1,\ldots,p^*_{\mathcal{L}}-1$ hold. Then we get a solution $u_{S^*}(t,x) \in Asy_{\{\gamma_{\mathcal{L},p^*_{\mathcal{L}}-1}\}}(S_1 \times D_r)$ of (1.2) for 0 < r < R.

In this paper we have the same results without Condition 1.

THEOREM 1.5. Let $f(t, x) \in Asy^0_{\{\gamma_{\mathcal{L},i}\}}(S_i \times D_R)$. Suppose that Condition 2 and 3 on \mathcal{L}_i hold. Then we have;

(1) If $2 \le i \le p_{\mathcal{L}}^* - 1$, then there exists a function $u_{S_{i-1}}(t, x) \in Asy^0_{\{\gamma_{\mathcal{L}, i-1}\}}(S_{i-1} \times D_r)$ for 0 < r < R such that

$$L(u_{S_{i-1}}(t,x)) - f(t,x) \in Asy^0_{\{\gamma_{\mathcal{L},i-1}\}}(S_{i-1} \times D_r).$$

(2) If i = 1, then we get a solution $u_{S^*}(t, x) \in Asy^0_{\{\gamma_{\mathcal{L}, 1}\}}(S_1 \times D_r)$ of the equation (1.2) for 0 < r < R.

By Theorem 1.5 we have the following corollary:

COROLLARY 1.6. Let $f(t, x) \in Asy^0_{\{\gamma_{\mathcal{L}, p^*_{\mathcal{L}}-1}\}}(S_i \times D_R)$. Suppose that Condition 2 and 3 on \mathcal{L}_i for $i = 1, \ldots, p^*_{\mathcal{L}} - 1$ hold. Then we get a solution $u_{S^*}(t, x) \in Asy_{\{\gamma_{\mathcal{L}, p^*_{\mathcal{L}}-1}\}}(S_1 \times D_r)$ of (1.2) for 0 < r < R.

REMARK 1.7. The relations between formal solutions and genuine solutions of an equation

$$(1.5) L(u(t,x)) = f(t,x)$$

where $c_q(t, x)$ and f(t, x) are in $\mathcal{O}(\{|t| < T\}) \times D_R)$ with $c_q(0, x) \not\equiv 0$ and $\sigma_q \in \mathbb{N}$ were studied in [3]. Corollary 1.4 is used to show that genuine solutions exist. Let explain the main point of the proof.

Assume that the equation (1.5) has formal power series solutions $\widetilde{u}(t,x) = \sum_{k=0}^{\infty} u_k(x) t^k$ with

$$|u_k(x)| \le AB^k \Gamma\left(\frac{k}{\gamma_*} + 1\right).$$

There exist functions $u_*(t, x) \in \mathcal{O}(S_{\theta}(T') \times D_{R'})$ with $0 < \theta < \pi/(2\gamma_*)$, 0 < T' < T and 0 < R' < R such that

$$(1.6) |u_*(t,x) - \sum_{k=0}^{K-1} u_k(x)t^k| \le A_0 B_0^K |t|^K \Gamma\left(\frac{K}{\gamma_*} + 1\right) \text{for } t \in S' \subseteq S_\theta(T').$$

Set $L^{u_*}(u) := L(u_* + u) - L(u_*)$. The linear part of $L^{u_*}(u)$ is denoted by \mathcal{L}^{u_*} . Suppose $\gamma_* = \gamma_{\mathcal{L}^{u_*}, p^*-1}$ and $L(u_*) - f(t, x) \in Asy^0_{\{\gamma_*\}}(S' \times D_{R'})$. Further we assume that $L^{u_*}(u)$ satisfies Condition 1, 2 and 3. Then by Corollary 1.4, the equation (1.5) has genuine solutions with the estimate (1.6).

By Corollary 1.6, we can get the same results without Condition 1 by the same way as in [3].

2. Preparation of Theorem 1.5

In this section we give one theorem and some lemmas to show Theorem 1.5, and we give a proof of the theorem of this section.

2.1. Preparatory lemmas. Set

$$\mathcal{L}^* = \sum_{\substack{j+|\alpha|=l^*\\|\alpha|=m^*}} a_{j,\alpha}(t,x) \left(t \frac{\partial}{\partial t}\right)^j \left(\frac{\partial}{\partial x}\right)^{\alpha} + \sum_{\substack{j+|\alpha| \le l^*\\|\alpha| < m^*}} t^{-\gamma(l^*-j-|\alpha|)} a_{j,\alpha}(t,x) \left(t \frac{\partial}{\partial t}\right)^j \left(\frac{\partial}{\partial x}\right)^{\alpha}$$

where the coefficients $a_{j,\alpha}(t,x)$ belong to $A(S_{\theta}(T) \times D_R)$ with $a_{j,\alpha}(0,x) \not\equiv 0$, $a_{j^*,m^*e_1}(0,0) \equiv 1$, $j^* = l^* - m^*$ and $m^*e_1 = (m^*,0,\ldots,0) \in \mathbf{N}^n$. Let us treat the following series:

$$\sum_{|q| \ge 1} t^{\sigma_q} a_q(t, x) Z^q$$

where the coefficients and $a_q(t, x)$ belong to $A(S_{\theta}(T) \times D_R)$ with and $a_q(0, x) \not\equiv 0$. Further numbers σ_q are integers and satisfy the follows:

(2.1)
$$\sigma_q = \begin{cases} -\gamma(l^* - l_q) + J_q^1 & (J_q^1 > 0) & \text{for } l_q \le l^* \\ \gamma^*(l_q - l^*) + J_q^2 & (J_q^2 \ge 0) & \text{for } l_q > l^* \end{cases}$$

where $0 \le \gamma < \gamma^* \le \infty$. If $\{q; l_q > l^*\} = \emptyset$ then we define $\gamma^* = \infty$.

Assume that the series $\sum_{|q|\geq 1} t^{\sigma_q} a_q(t,x) Z^q$ converges in a neighborhood of Z=0. For a function $g(t,x)\in Asy^0_{\{\gamma\}}(S_\theta(T)\times D_R)$ we consider the following equation:

(2.2)
$$\mathcal{L}^* u = \sum_{|q| \ge 1} t^{\sigma_q} a_q(t, x) \prod_{j+|\alpha| \le m} \left\{ \left(t \frac{\partial}{\partial t} \right)^j \left(\frac{\partial}{\partial x} \right)^{\alpha} u \right\}^{q_{j,\alpha}} + g(t, x).$$

Set

$$L(u) := \mathcal{L}^* u - \sum_{|a| > 1} t^{\sigma_q} a_q(t, x) \prod_{j + |\alpha| \le m} \left\{ \left(t \frac{\partial}{\partial t} \right)^j \left(\frac{\partial}{\partial x} \right)^{\alpha} u \right\}^{q_{j, \alpha}}.$$

Let us define the following functional class $X_{p,q,c,\gamma}$ where $p \in \mathbb{N}, q, c, \gamma \geq 0$ and $\zeta > 0$. The definition of $X_{p,q,c,\gamma}(S_{\theta}(T) \times D_{\rho})$ is a little different from that in [3].

Let $\rho > 0$, and let $\tau > 0$ be a sufficiently small fixed number. For $\varphi(x) = \sum_{\beta \in \mathbb{N}^n} a_{\beta} x^{\beta}$ we define the norm $\|\varphi\|_{\rho}$ by

(2.3)
$$\|\varphi\|_{\rho} = \sum_{\beta \in \mathbf{N}^n} |a_{\beta}| \frac{\beta!}{|\beta|!} \tau^{\beta_1} \rho^{|\beta|}.$$

For a fixed number a > 0 we set

$$\Theta^{(k)} = \frac{ak!}{(k+1)^{m+2}}$$
 and $\Theta_{R-\rho}^{(k)} = \frac{1}{(R-\rho)^k} \Theta^{(k)}$

for k = 0, 1,

DEFINITION 2.1. $X_{p,q,c,\gamma}(S_{\theta}(T) \times D_{\rho})$ is the set of all functions $\varphi(t,x) \in \mathcal{O}(S_{\theta}(T) \times D_{\rho})$ with the following bounds; There exists a positive constant Φ such that for all $s \in \mathbb{N}$

(2.4)
$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} \varphi(t, \cdot) \right\|_{\rho} \leq \Phi \zeta^{s} |t|^{q} \exp(-c|t|^{-\gamma}) \Theta_{R-\rho}^{(s+p)} \quad \text{for } t \in S_{\theta}(T).$$

The norm of $\varphi(t, x)$ is defined by the infimum of Φ in (2.4) and is denoted by $\|\varphi\|_{p,q,c,\gamma}$.

We can define for a function $u(t, x) \in X_{p,q,c,\gamma}(S_{\theta}(T) \times D_{\rho})$

$$\left(t\frac{\partial}{\partial t}\right)^{-1}u(t,x) := \int_0^t \tau^{-1}u(\tau,x)d\tau \quad \text{and} \quad \left(\frac{\partial}{\partial x_1}\right)^{-1}u(t,x) := \int_0^{x_1}u(t,\chi,x')d\chi$$

where $x' = (x_2, \dots, x_n)$

We fix a positive constant δ so that $0<\delta<\min\{J_q^1;\ q \text{ with } l_q\leq l^*\}$ and $\gamma^*/\delta\in\mathbf{N}$. We define p_k by $p_k=[\delta k/\gamma^*]+j^*k$ where $j^*=l^*-m^*$. If $\{q;\ l_q>l^*\}=\emptyset$ then $p_k=j^*k$ by $\gamma^*=\infty$ where [a] denote the integral part of a. Set $|k(q)|=\sum_{j+|\alpha|\leq m}\sum_{i=1}^{q_{j,\alpha}}k(j,\alpha,i)$.

REMARK 2.2. We remark that there exists $\min\{J_q^1;\ q \text{ with } l_q \leq l^*\}$. Points $(l_q, \gamma(l_q - l^*))$ are on the segment $\{(x, y) \in \mathbf{R}^2;\ y = \gamma(x - l^*) \text{ and } 0 \leq x \leq l^*\}$. By $(l_q, \sigma_q) \in \mathbf{N} \times \mathbf{Z}$ and $\sigma_q > \gamma(l_q - l^*)$ for $0 \leq l_q \leq l^*$, the set $\{J_q^1 = \sigma_q - \gamma(l^* - l_q);\ q \text{ with } l_q \leq l^*\}$ is lower bound and lower close. Hence there exists $\min\{J_q^1;\ q \text{ with } l_q \leq l^*\}$.

Let us construct a formal solution $u(t, x) = \sum_{k \ge 1} u_k(t, x)$ of (2.2) with

$$\mathcal{L}^* u_1(t, x) = g(t, x)$$

 $\mathcal{L}^*u_k(t,x)$

$$(2.5) = \sum_{\substack{1 \le |q| \le k \\ l_q \le l^*}} t^{\sigma_q} a_q(t, x) \sum_{|k(q)|+1 = k} \prod_{j+|\alpha| \le m} \prod_{i=1}^{q_{j,\alpha}} \left(t \frac{\partial}{\partial t}\right)^j \left(\frac{\partial}{\partial x}\right)^{\alpha} u_{k(j,\alpha,i)}(t, x)$$

$$+ \sum_{\substack{1 \le |q| \le k \\ l_{\alpha} > l^*}} t^{\sigma_q} a_q(t, x) \sum_{|k(q)|+\frac{\gamma^*}{\lambda} (l_q - l^*) = k} \prod_{j+|\alpha| \le m} \prod_{i=1}^{q_{j,\alpha}} \left(t \frac{\partial}{\partial t}\right)^j \left(\frac{\partial}{\partial x}\right)^{\alpha} u_{k(j,\alpha,i)}(t, x).$$

Then we have the following theorem for $u_k(t, x)$ in the relation (2.5):

THEOREM 2.3. Let $S = S_{\theta}(T)$. For the function $g(t, x) \in X_{p_1+m^*, \delta, c_0, \gamma}(S \times D_{\rho})$ $(0 < \forall \rho < R)$ suppose that there exists a positive constant G such that

(2.6)
$$\left\| \left(t \frac{\partial}{\partial t} \right)^s g(t, \cdot) \right\|_{0} \le G \zeta^s |t|^{\delta} \exp(-c_0 |t|^{-\gamma}) \Theta^{(s+p_1+m^*)} \quad \text{for } t \in S$$

for all $s \in \mathbb{N}$. Then for $k \ge 1$ the functions $u_k(t, x)$ belong to $X_{p_k, \delta k, c_1, \gamma}(S \times D_\rho)$ and satisfy that there exist positive constants U_k such that

(2.7)
$$\left\| \left(t \frac{\partial}{\partial t} \right)^s u_k(t, \cdot) \right\|_{\rho} \le U_k \zeta^s |t|^{\delta k} \exp(-c_1 |t|^{-\gamma}) \frac{1}{(j^* k)!} \Theta_{R-\rho}^{(s+p_k)} \quad \text{for } t \in S$$

for a sufficiently small T > 0, $0 < \forall \rho < R$ and $0 < c_1 < c_0$. Further a series $\sum_{k \ge 1} U_k t^k$ converges in a neighborhood of t = 0.

Let us give some lemmas on the functional class $X_{p,q,c,\gamma}$.

LEMMA 2.4. Assume

(2.8)
$$||u||_{\rho} \leq \Theta_{R-\rho}^{(k)} \quad \text{for } 0 < \rho < R.$$

(1) Let k > 0. Then we have

(2.9)
$$\left\| \frac{\partial}{\partial x_1} u \right\|_{\rho} \le \frac{M_0 e}{\tau} \Theta_{R-\rho}^{(k+1)} \quad \text{for } 0 < \rho < R$$

and have

(2.10)
$$\left\| \frac{\partial}{\partial x_i} u \right\|_{0} \le M_0 e \Theta_{R-\rho}^{(k+1)} \quad \text{for } 0 < \rho < R$$

for i = 2, ..., n where $M_0 = 2^{m+2}$.

(2) Let k > 1. Then we have

(2.11)
$$\left\| \left(\frac{\partial}{\partial x_1} \right)^{-1} u \right\|_{\rho} \le 2\tau \Theta_{R-\rho}^{(k-1)} \quad \text{for } 0 < \rho < R.$$

PROOF. We use for any $k \ge 0$

$$\frac{(k+2)^{m+2}}{(k+1)^{m+2}} \le 2^{m+2}.$$

We can show Lemma 2.4 as in [1] (Chapter10, Lemma 10.4.1). We omit the details. Q.E.D.

LEMMA 2.5. (1) For k = 1, 2, ..., the following inequality holds:

$$\frac{\{j^*k\}!}{k^{j^*}\{j^*(k-1)\}!} \le j^{*j^*}.$$

(2) There exists a positive constant $M_1 > 1$ such that

$$\Theta^{(l)} \leq \frac{M_1}{l+1} \Theta^{(l+1)}.$$

We omit a proof.

LEMMA 2.6. Let $0 \le l' \le l \le m$. Then for any $k \in \mathbb{N}$ there exists a positive constant a > 0 such that

(2.12)
$$\sum_{k_1+k_2=k} \frac{1}{k_1!} \Theta^{(k_1+l)} \frac{1}{k_2!} \Theta^{(k_2+l')} \le \frac{1}{k!} \Theta^{(k+l)}.$$

Lemma 2.6 is the case t = 0 in Lemma 2.1 in [3].

Form now we fix a number a > 0 so that the estimate (2.12) holds.

LEMMA 2.7. Let $0 \le l' \le l \le m$ and p, p' > 0. Then the following inequality holds:

$$\sum_{i=0}^{s} \frac{s!}{(s-i)!i!} \Theta^{(s-i+p+l)} \Theta^{(i+p'+l')} \le \frac{p!p'!}{(p+p')!} \Theta^{(s+p+p'+l)}.$$

Lemma 2.7 is the case t = 0 in Proposition 2.3 in [3].

PROPOSITION 2.8. For $0 \le l' \le l \le m$ and p, p' > 0 let $u(t, x) \in X_{p+l,q,c,\gamma}(S \times D_{\rho})$ and $v(t, x) \in X_{p'+l',q',c',\gamma}(S \times D_{\rho})$ and we assume that there exist positive constants $U(t, x) \in X_{p'+l',q',c',\gamma}(S \times D_{\rho})$

and V such that for $t \in S$

$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} u \right\|_{\rho} \leq U \zeta^{s} |t|^{q} \exp(-c|t|^{-\gamma}) \frac{1}{p!} \Theta_{R-\rho}^{(s+p+l)}$$

and

$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} v \right\|_{\rho} \leq V \zeta^{s} |t|^{q'} \exp(-c'|t|^{-\gamma}) \frac{1}{p'!} \Theta_{R-\rho}^{(s+p'+l')}.$$

Then we have $(uv)(t,x) \in X_{p+p'+l,q+q',c+c',\gamma}(S \times D_{\rho})$ and for $t \in S$

$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} (uv) \right\|_{\rho} \leq \frac{1}{(R-\rho)^{l'}} UV\zeta^{s} |t|^{q+q'} \exp(-(c+c')|t|^{-\gamma}) \frac{1}{(p+p')!} \Theta_{R-\rho}^{(s+p+p'+l)}.$$

PROOF. By

$$\left(t\frac{\partial}{\partial t}\right)^{s}(uv) = \sum_{i=0}^{s} \frac{s!}{(s-i)!i!} \left(t\frac{\partial}{\partial t}\right)^{s-i} u \left(t\frac{\partial}{\partial t}\right)^{i} v$$

and Lemma 2.7 we obtain the desired result.

Q.E.D.

By Proposition 2.8 we have:

PROPOSITION 2.9. Let an I be a finite subset of \mathbb{N} and |I| be the cardinal of I. For functions $u_i(t,x) \in X_{p_i+l_i,q_i,c,\gamma}(S \times D_\rho)$ for all $i \in I$ and $0 \le l_i \le m$ we assume that there exist positive constants U_i such that

$$\left\| \left(t \frac{\partial}{\partial t} \right)^s u_i \right\|_{\varrho} \le U_i \zeta^s |t|^{q_i} \exp(-c|t|^{-\gamma}) \frac{1}{p_i!} \Theta_{R-\rho}^{(s+p_i+l_i)}.$$

Then we have

$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} \left(\prod_{i \in I} u_{i} \right) \right\|_{\rho} \leq \frac{1}{(R - \rho)^{l_{I}(|I| - 1)}} \left(\prod_{i \in I} U_{i} \right) \zeta^{s} |t|^{\sum_{i \in I} q_{i}} \exp(-c|t|^{-\gamma})$$

$$\times \frac{1}{\sum_{i \in I} p_{i}!} \Theta_{R - \rho}^{(s + \sum_{i \in I} p_{i} + l_{I})}$$

where $l_I = \max\{l_i; i \in I\}$.

PROPOSITION 2.10. Let $p \ge 0$ and q > 0. For a function $u(t, x) \in X_{p,q,c,\gamma}(S \times D_{\rho})$ we assume that there exists a positive constant U such that for $t \in S$

$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} u \right\|_{\rho} \leq U \zeta^{s} |t|^{q} \exp(-c|t|^{-\gamma}) \frac{1}{p!} \Theta_{R-\rho}^{(s+p)}.$$

Then we have the following estimates:

There exists a positive constant C such that for $t \in S$

$$(1) \qquad \left\| \left(t \frac{\partial}{\partial t} \right)^{s} \left\{ \left(t \frac{\partial}{\partial t} \right)^{-1} u \right\} \right\|_{\rho} \leq \frac{1}{q} U \zeta^{s} |t|^{q} \exp(-c|t|^{-\gamma}) \frac{1}{p!} \Theta_{R-\rho}^{(s+p)},$$

$$(2) \qquad \left\| \left(t \frac{\partial}{\partial t} \right)^{s} \left\{ t^{-\gamma} \left(t \frac{\partial}{\partial t} \right)^{-1} u \right\} \right\|_{0}^{s} \leq \frac{C}{c\gamma} U \zeta^{s} |t|^{q} \exp(-c|t|^{-\gamma}) \frac{1}{p!} \Theta_{R-\rho}^{(s+p)},$$

(3)
$$\left\| \left(t \frac{\partial}{\partial t} \right)^s (t^{-\gamma} u) \right\|_{\varrho} \le \frac{C}{c\gamma} U \zeta^{s+1} |t|^q \exp(-c|t|^{-\gamma}) \frac{1}{p!} \Theta_{R-\rho}^{(s+p+1)}.$$

PROOF. We can show this proposition by the same way as the proof of Proposition (2.10) in [3]. Then we give a proof for only (1). We have $(t\partial/\partial t)^s (t\partial/\partial)^{-1} u = (t\partial/\partial)^{-1} (t\partial/\partial t)^s u$ and

$$\int_0^{|t|} \tau^q \exp(-c\tau^{-\gamma}) \frac{d\tau}{\tau} \le \frac{1}{q} |t|^q \exp(-c|t|^{-\gamma}).$$

Hence we can obtain (1).

Q.E.D.

To prove Theorem 2.3 we consider the following equation:

(2.13)
$$\mathcal{L}^{**}w(t,x) = W(t,x) \in X_{p+m^*,\delta k,c,\gamma}(S \times D_R)$$

where

(2.14)
$$\mathcal{L}^{**} := \mathcal{L}^* \left(t \frac{\partial}{\partial t} \right)^{-j^*} \left(\frac{\partial}{\partial x_1} \right)^{-m^*}.$$

Let $A_{j,\alpha} = ||a_{j,\alpha}||_{0,0,0,\gamma}$.

PROPOSITION 2.11. Let $p \ge 0$ and $k \ge 1$. For the equation (2.13) we assume that there exists a positive constant W such that

$$(2.15) \qquad \left\| \left(t \frac{\partial}{\partial t} \right)^{s} W \right\|_{\rho} \leq \mathcal{W} \zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma}) \frac{1}{(j^{*}(k-1))!} \Theta_{R-\rho}^{(s+p+m^{*})}$$

for $0 < \rho < R$ and $t \in S$. Then we get the solution $w(t, x) \in X_{p+m^*, \delta k, c, \gamma}(S \times D_{\rho})$ of (2.13) that satisfies

$$(2.16) \qquad \left\| \left(t \frac{\partial}{\partial t} \right)^{s} w \right\|_{\rho} \leq \frac{1}{1 - C(\zeta, \tau)} \mathcal{W} \zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma}) \frac{1}{(j^{*}(k-1))!} \Theta_{R-\rho}^{(s+p+m^{*})}$$

for $t \in S$ and $0 < \rho < R$ where

$$\begin{split} C(\zeta,\tau) := \sum_{\substack{j+|\alpha|=l^*\\ |\alpha|=m^*,\alpha_1 < m^*}} A_{j,\alpha} (M_0 e)^{|\alpha'|} (2\tau)^{m^*-\alpha_1} \\ + \sum_{\substack{j+|\alpha| \le l^*\\ |\alpha| < m^*}} A_{j,\alpha} \left(\frac{C}{c\gamma}\right)^{l^*-j-|\alpha|} \zeta^{m^*-|\alpha|} (M_0 e)^{|\alpha'|} (2\tau)^{m^*-\alpha_1} \end{split}$$

and $|\alpha'| = \alpha_2 + \cdots + \alpha_n$.

PROOF. We construct a formal solution $w(t, x) = \sum_{i=0}^{\infty} w_i(t, x)$ of (2.13) with

$$\begin{split} w_0(t,x) &= W(t,x) \\ w_i(t,x) &= -\sum_{\substack{j+|\alpha|=l^*\\|\alpha|=m^*,\alpha_1< m^*}} a_{j,\alpha}(t,x) \left(\frac{\partial}{\partial x}\right)^{\alpha-m^*e_1} w_{i-1}(t,x) \\ &- \sum_{\substack{j+|\alpha|\leq l^*\\|\alpha|< m^*}} t^{-\gamma(l^*-j-|\alpha|)} a_{j,\alpha}(t,x) \left(t\frac{\partial}{\partial t}\right)^{j-(l^*-m^*)} \left(\frac{\partial}{\partial x}\right)^{\alpha-m^*e_1} w_{i-1}(t,x) \end{split}$$

for $i \ge 1$. Then for $i \ge 0$ we get

for $t \in S$ and $0 < \rho < R$.

Let us show the estimate (2.17). It is trivial that the estimate (2.17) holds for i = 0 by $w_0(t, x) = W(t, x)$.

For $i \ge 1$ we show the estimate (2.17) on induction. We assume that the estimate (2.17) holds for i' = 0, 1, ..., i - 1.

For $\alpha_1 < m^*$ by Lemma 2.4 we have

(2.18)
$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} \left\{ \left(\frac{\partial}{\partial x} \right)^{\alpha - m^{*} e_{1}} w_{i-1} \right\} \right\|_{\rho}$$

$$\leq \left\{ C(\zeta, \tau) \right\}^{i-1} (2\tau)^{m^{*} - \alpha_{1}} (M_{0}e)^{|\alpha'|} \mathcal{W}\zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma})$$

$$\times \frac{1}{(j^{*}(k-1))!} \Theta_{R-\rho}^{(s+p+|\alpha|)} .$$

Therefore by (2.18) and Proposition 2.8 we get

$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} \left\{ \sum_{\substack{j+|\alpha|=l^{*} \\ |\alpha|=m^{*},\alpha_{1}< m^{*}}} a_{j,\alpha} \left(\frac{\partial}{\partial x} \right)^{\alpha-m^{*}e_{1}} w_{i-1} \right\} \right\|_{\rho}$$

$$(2.19) \qquad \leq \sum_{\substack{j+|\alpha|=l^{*} \\ |\alpha|=m^{*},\alpha_{1}< m^{*}}} A_{j,\alpha} \left\{ C(\zeta,\tau) \right\}^{i-1} (2\tau)^{m^{*}-\alpha_{1}} (M_{0}e)^{|\alpha'|} \mathcal{W}\zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma})$$

$$\times \frac{1}{(j^{*}(k-1))!} \Theta_{R-\rho}^{(s+p+m^{*})}$$

for $t \in S$ and $0 < \rho < R$.

For $|\alpha| < m^*$ and $j + |\alpha| \le l^*$, by the estimate (2.18) we get

$$\begin{split} & \left\| \left(t \frac{\partial}{\partial t} \right)^{s} \left\{ \left(t \frac{\partial}{\partial t} \right)^{m^{*} - |\alpha|} \left(\frac{\partial}{\partial x} \right)^{\alpha - m^{*} e_{1}} w_{i-1} \right\} \right\|_{\rho} \\ & \leq \left\{ C(\zeta, \tau) \right\}^{i-1} (2\tau)^{m^{*} - \alpha_{1}} (M_{0}e)^{|\alpha'|} \zeta^{m^{*} - |\alpha|} \mathcal{W} \zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma}) \\ & \times \frac{1}{(j^{*}(k-1))!} \Theta_{R-\rho}^{(s+p+m^{*})} \end{split}$$

and by Proposition 2.8 and 2.10-(2) we get

$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} \left\{ \sum_{\substack{j+|\alpha| \leq l^{*} \\ |\alpha| < m^{*}}} t^{-\gamma(l^{*}-j-|\alpha|)} a_{j,\alpha} \left(t \frac{\partial}{\partial t} \right)^{j-(l^{*}-m^{*})} \left(\frac{\partial}{\partial x} \right)^{\alpha-m^{*}e_{1}} w_{i-1} \right\} \right\|_{\rho} \\
(2.20) \qquad \leq \sum_{\substack{j+|\alpha| \leq l^{*} \\ |\alpha| < m^{*}}} A_{j,\alpha} \left\{ C(\zeta,\tau) \right\}^{i-1} \left(\frac{C}{c\gamma} \right)^{l^{*}-j-|\alpha|} (2\tau)^{m^{*}-\alpha_{1}} (M_{0}e)^{|\alpha'|} \zeta^{m^{*}-|\alpha|} \mathcal{W} \zeta^{s} |t|^{\delta k} \\
\times \exp(-c|t|^{-\gamma}) \frac{1}{(j^{*}(k-1))!} \Theta_{R-\rho}^{(s+p+m^{*})}$$

for $t \in S$ and $0 < \rho < R$. By the estimates (2.19) and (2.20) we obtain the estimate (2.17) for $i \ge 0$. By the definition of $C(\zeta, \tau)$ we have $C(\zeta, \tau) < 1$ for a sufficiently small $\tau > 0$. Hence the solution $w(t, x) = \sum_{i > 0} w_i(t, x)$ converges and holds the estimate (2.16).

Q.E.D.

Let us consider the following equation:

$$\mathcal{L}^* u(t, x) = W(t, x).$$

By Proposition 2.11 following proposition holds for (2.21);

PROPOSITION 2.12. Let $p \ge 0$ and $k \ge 1$. For the function $W(t,x) \in X_{p+m^*,\delta k,c,\gamma}(S \times D_\rho)$ assume that there exists a positive constant \mathcal{W} such that

$$\left\| \left(t \frac{\partial}{\partial t} \right)^s W \right\|_{\rho} \leq \mathcal{W} \zeta^s |t|^{\delta k} \exp(-c|t|^{-\gamma}) \frac{1}{(j^*(k-1))!} \Theta_{R-\rho}^{(s+p+m^*)} \quad \text{for } t \in S.$$

Then we get the solution $u(t, x) \in X_{p, \delta k, c, \gamma}(S \times D_{\rho})$ of (2.21) that satisfies

$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} u \right\|_{\rho} \leq \left(\frac{j^{*}}{\delta} \right)^{j^{*}} (2\tau)^{m^{*}} \frac{1}{1 - C(\zeta, \tau)} \mathcal{W} \zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma})$$
$$\times \frac{1}{(j^{*}k)!} \Theta_{R-\rho}^{(s+p)} \quad for \ t \in S.$$

PROOF. For the solution w(t, x) of the equation (2.13), we have

(2.22)
$$u(t,x) = \left(t\frac{\partial}{\partial t}\right)^{-j^*} \left(\frac{\partial}{\partial x_1}\right)^{-m^*} w(t,x).$$

By Proposition 2.11 and Lemma 2.4-(2), we have

$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} \left\{ \left(\frac{\partial}{\partial x_{1}} \right)^{-m^{*}} w \right\} \right\|_{\rho} \leq (2\tau)^{m^{*}} \frac{1}{1 - C(\zeta, \tau)} \mathcal{W} \zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma})$$

$$\times \frac{1}{(j^{*}(k-1))!} \Theta_{R-\rho}^{(s+p)} \quad \text{for } t \in S.$$

By Proposition 2.10-(1) and Lemma 2.5-(1) we obtain the desired result. Q.E.D.

2.2. Proof of Theorem 2.3. Let us give a proof of Theorem 2.3. We will show the estimate (2.7) by the same way as the proof of Proposition 3.6 in [3], and show that the series $\sum_{k\geq 0} U_k t^k$ converges in a neighborhood of t=0 by majorant functions and Implicit's function theorem as in [1].

Set $A_q := ||a_q||_{0,0,0,\gamma}$. Then we can assume that a series

$$\sum_{|q|>1} \frac{A_q}{(R-\rho)^{m(|q|-1)}} Z^q$$

converges in a neighborhood of Z = 0.

Set

$$W_{1,k}(u_{k'}; k' < k) := \sum_{\substack{1 \le |q| \le k \\ l_q \le l^*}} t^{\sigma_q} a_q(t, x)$$

$$\times \sum_{|k(q)|+1 = k} \prod_{j+|\alpha| \le m} \prod_{i=1}^{q_{j,\alpha}} \left(t \frac{\partial}{\partial t} \right)^j \left(\frac{\partial}{\partial x} \right)^{\alpha} u_{k(j,\alpha,i)}(t, x)$$

$$(2.23) \quad W_{2,k}(u_{k'}; k' < k) := \sum_{\substack{1 \le |q| \le k \\ l_q > l^*}} t^{\sigma_q} a_q(t, x)$$

$$\times \sum_{\substack{|k(q)|+\frac{\gamma^*}{t}(l_q-l^*)=k}} \prod_{j+|\alpha|\leq m} \prod_{i=1}^{q_{j,\alpha}} \left(t\frac{\partial}{\partial t}\right)^j \left(\frac{\partial}{\partial x}\right)^{\alpha} u_{k(j,\alpha,i)}(t,x)$$

$$W_k(u_{k'}; k' < k) := W_{1,k}(u_{k'}; k' < k) + W_{2,k}(u_{k'}; k' < k)$$
.

We show that the estimate (2.7) holds for $k \ge 1$. We give the assumption on the function g(t, x) again:

$$\left\| \left(t \frac{\partial}{\partial t} \right)^s g \right\|_{\rho} \le G \zeta^s |t|^{\delta} \exp(-c_0 |t|^{-\gamma}) \Theta_{R-\rho}^{(s+p_1+m^*)} \quad \text{for } t \in S = S_{\theta}(T).$$

Let us show the estimate (2.7) on k = 1. We solve an equation

$$\mathcal{L}^* u_1(t, x) = q(t, x).$$

We get a solution $u_1(t, x)$ of the above equation by

$$\mathcal{L}^{**}w_1(t,x) = g(t,x) \quad \text{and} \quad u_1(t,x) = \left(t\frac{\partial}{\partial t}\right)^{-j^*} \left(\frac{\partial}{\partial x_1}\right)^{-m^*} w_1(t,x).$$

By Proposition 2.11 we get

$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} w_{1} \right\|_{\rho} \leq \frac{1}{1 - C(\zeta, \tau)} G \zeta^{s} |t|^{\delta} \exp(-c|t|^{-\gamma}) \frac{1}{j^{*}!} \Theta_{R - \rho}^{(s + p_{1} + m^{*})} \quad \text{for } t \in S$$

and by Proposition 2.12

(2.24)
$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} u_{1} \right\|_{\rho}$$

$$\leq \left(\frac{j^{*}}{\delta} \right)^{j^{*}} (2\tau)^{m^{*}} \frac{1}{1 - C(\zeta, \tau)} G\zeta^{s} |t|^{\delta} \exp(-c|t|^{-\gamma}) \frac{1}{j^{*}!} \Theta_{R-\rho}^{(s+p_{1})} \quad \text{for } t \in S.$$

If we take a sufficiently small $\tau > 0$ so that

$$\left(\frac{j^*}{\delta}\right)^{j^*} (2\tau)^{m^*} \frac{1}{1 - C(\zeta, \tau)} \le 1,$$

then by the estimate (2.24) we get

$$\left\| \left(t \frac{\partial}{\partial t} \right)^s u_1 \right\|_{\varrho} \le G \zeta^s |t|^{\delta} \exp(-c|t|^{-\gamma}) \frac{1}{j^*!} \Theta_{R-\rho}^{(s+p_1)} \quad \text{for } t \in S.$$

By setting $U_1 = G$, the estimate (2.7) holds for k = 1.

For $k \ge 2$ let us show the estimate (2.7) on induction. Let us assume that the estimate (2.7) holds for k' = 1, 2, ..., k - 1. By Lemma 2.4-(1) for $k(j, \alpha, i) < k$ we get

$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} \left\{ \left(t \frac{\partial}{\partial t} \right)^{j} \left(\frac{\partial}{\partial x} \right)^{\alpha} u_{k(j,\alpha,i)} \right\} \right\|_{\rho}$$

$$\leq \frac{\zeta^{j} (M_{0}e)^{|\alpha|}}{\tau^{\alpha_{1}}} U_{k(j,\alpha,i)} \zeta^{s} |t|^{\delta k(j,\alpha,i)} \exp(-c|t|^{-\gamma}) \frac{1}{(j^{*}k(j,\alpha,i))!} \Theta_{R-\rho}^{(s+p_{k(j,\alpha,i)}+j+|\alpha|)}.$$

Here we use an inequality $\prod_{j+|\alpha|\leq m}\prod_{i=1}^{q_{j,\alpha}}p_{k(j,\alpha,i)}!/(j^*k(j,\alpha,i))!\leq |p(q)|!/(j^*|k(q)|)!$ where $|p(q)|=\sum_{j+|\alpha|\leq m}\sum_{i=1}^{q_{j,\alpha}}p_{k(j,\alpha,i)}$. Then by Proposition 2.8 and 2.9 we obtain

$$(2.25) \qquad \left\| \left(t \frac{\partial}{\partial t} \right)^{s} \left\{ a_{q} \prod_{j+|\alpha| \leq m} \prod_{i=1}^{q_{j,\alpha}} \left(t \frac{\partial}{\partial t} \right)^{j} \left(\frac{\partial}{\partial x} \right)^{\alpha} u_{k(j,\alpha,i)} \right\} \right\|_{\rho}$$

$$\leq \frac{A_{q}}{(R-\rho)^{l_{q}(|q|-1)}} \left\{ \prod_{j+|\alpha| \leq m} \prod_{i=1}^{q_{j,\alpha}} \frac{\zeta^{j} (M_{0}e)^{|\alpha|}}{\tau^{\alpha_{1}}} U_{k(j,\alpha,i)} \right\} \zeta^{s} |t|^{\delta |k(q)|} \exp(-c|t|^{-\gamma})$$

$$\times \frac{1}{(j^{*}|k(q)|)!} \Theta_{R-\rho}^{(s+|p(q)|+l_{q})}.$$

Let us give an estimate for $W_{1,k}$. In the case $1 \le |q| \le k$ and |k(q)| + 1 = k, it follows from $\sigma_q = -\gamma(l^* - l_q) + J_q^1$ that by Proposition 2.10-(3) we get

$$\begin{split} \left\| \left(t \frac{\partial}{\partial t} \right)^{s} W_{1,k} \right\|_{\rho} &\leq \sum_{\substack{1 \leq |q| \leq k \\ l_{q} \leq l^{*}}} \left(\frac{C}{c \gamma} \right)^{l^{*} - l_{q}} \zeta^{l^{*} - l_{q}} \frac{A_{q}}{(R - \rho)^{l_{q}(|q| - 1)}} \\ & \times \sum_{|k(q)| + 1 = k} \left\{ \prod_{j + |\alpha| \leq m} \prod_{i = 1}^{q_{j,\alpha}} \frac{\zeta^{j} (M_{0}e)^{|\alpha|}}{\tau^{\alpha_{1}}} U_{k(j,\alpha,i)} \right\} \\ & \times \zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma}) \frac{1}{(j^{*}(k - 1))!} \Theta_{R - \rho}^{(s + |p(q)| + l^{*})} \,. \end{split}$$

Further we have

(2.26)
$$0 \le p_k + m^* - (|p(q)| + l^*)$$

$$= \left[\frac{\delta}{\gamma^*} (|k(q)| + 1) \right] - \sum_{j+|\alpha| \le m} \sum_{i=1}^{q_{j,\alpha}} \left[\frac{\delta}{\gamma^*} k(j,\alpha,i) \right] := I_{k(q)}.$$

For all $i=1,\ldots,q_{j,\alpha}$ and (j,α) with $j+|\alpha|\leq m$ if $\delta k(j,\alpha,i)/\gamma^*=n(j,\alpha,i)-\varepsilon(j,\alpha,i)$ with $n(j,\alpha,i)\in \mathbf{N}$ and $0\leq \varepsilon(j,\alpha,i)<1$ then we have the maximum of $I_{k(q)}$. Then we get $[\delta k(j,\alpha,i)/\gamma^*]=n(j,\alpha,i)-\eta(j,\alpha,i)$ with $\eta(j,\alpha,i)=0$ or 1,

(2.27)
$$\sum_{j+|\alpha| \le m} \sum_{i=1}^{q_{j,\alpha}} \left[\frac{\delta}{\gamma^*} k(j,\alpha,i) \right] = \sum_{j+|\alpha| \le m} \sum_{i=1}^{q_{j,\alpha}} n(j,\alpha,i) - \sum_{j+|\alpha| \le m} \sum_{i=1}^{q_{j,\alpha}} \eta(j,\alpha,i)$$

and

(2.28)
$$\left[\frac{\delta}{\gamma^*} (|k(q)| + 1) \right] = \left[\sum_{j+|\alpha| \le m} \sum_{i=1}^{q_{j,\alpha}} n(j,\alpha,i) - \sum_{j+|\alpha| \le m} \sum_{i=1}^{q_{j,\alpha}} \varepsilon(j,\alpha,i) + \frac{\delta}{\gamma^*} \right]$$

$$\le \sum_{j+|\alpha| \le m} \sum_{i=1}^{q_{j,\alpha}} n(j,\alpha,i) + 1$$

by $\gamma^*/\delta \in \mathbb{N}$. Then by the inequalities (2.26), (2.27) and (2.28)

$$(2.29) p_k + m^* - (|p(q)| + l^*) \le \sum_{i+|\alpha| \le m} \sum_{i=1}^{q_{j,\alpha}} \eta(j,\alpha,i) + 1 \le |q| + 1 \le 2|q|$$

holds for $|q| \ge 1$. By the inequality (2.29) and Lemma 2.5-(2) we obtain

(2.30)
$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} W_{1,k} \right\|_{\rho} \leq \sum_{\substack{1 \leq |q| \leq k \\ l_{q} \leq l^{*}}} \left(\frac{C\zeta}{c\gamma} \right)^{t-l_{q}} \times \frac{M_{1}^{2|q|} A_{q}}{(R-\rho)^{l_{q}(|q|-1)}} \sum_{|k(q)|+1=k} \left\{ \prod_{j+|\alpha| \leq m} \prod_{i=1}^{q_{j,\alpha}} \frac{\zeta^{j} (M_{0}e)^{|\alpha|}}{\tau^{\alpha_{1}}} U_{k(j,\alpha,i)} \right\} \times \zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma}) \frac{1}{(j^{*}(k-1))!} \Theta_{R-\rho}^{(s+p_{k}+m^{*})}.$$

Let us give an estimate for $W_{2,k}(t,x)$. In the case $1 \le |q| \le k$ and $|k(q)| + \frac{\gamma^*}{\delta}(l_q - l^*) = k$, we have $p_k + m^* - (|p(q)| + l_q) \ge j^*(k - |k(q)| - 1) \ge 0$. It follows from $\sigma_q = \gamma^*(l_q - l^*) + J_q^2$ that by the estimate (2.25) we have

$$\begin{split} \left\| \left(t \frac{\partial}{\partial t} \right)^{s} W_{2,k} \right\|_{\rho} &\leq \sum_{\substack{1 \leq |q| \leq k \\ l_{q} > l^{*}}} \frac{A_{q}}{(R - \rho)^{l_{q}(|q| - 1)}} \\ &\times \sum_{|k(q)| + \gamma^{*}(l_{q} - l^{*})/\delta = k} \left\{ \prod_{j+|\alpha| \leq m} \prod_{i=1}^{q_{j,\alpha}} \frac{\zeta^{j} (M_{0}e)^{|\alpha|}}{\tau^{\alpha_{1}}} U_{k(j,\alpha,i)} \right\} \\ &\times \zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma}) \frac{(j^{*}(k - 1))!}{(j^{*}|k(q)|)!} \frac{1}{(j^{*}(k - 1))!} \Theta_{R-\rho}^{(s+|p(q)| + l_{q})} \,. \end{split}$$

By Lemma 2.5-(2) we get

$$\begin{split} \left\| \left(t \frac{\partial}{\partial t} \right)^{s} W_{2,k} \right\|_{\rho} &\leq \sum_{\substack{1 \leq |q| \leq k \\ l_{q} > l^{*}}} \frac{A_{q}}{(R - \rho)^{l_{q}(|q| - 1)}} \\ & \times \sum_{|k(q)| + \gamma^{*}(l_{q} - l^{*})/\delta = k} \left\{ \prod_{j+|\alpha| \leq m} \prod_{i=1}^{q_{j,\alpha}} \frac{\zeta^{j}(M_{0}e)^{|\alpha|}}{\tau^{\alpha_{1}}} U_{k(j,\alpha,i)} \right\} \\ & \times \zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma}) \frac{(j^{*}(k - 1))!}{(j^{*}|k(q)|)!} \\ & \times \frac{M_{1}^{p_{k} + m^{*} - (|p(q)| + l_{q})}}{(p_{k} + m^{*}) \cdots (|p(q)| + l_{q} + 1)} \frac{1}{(j^{*}(k - 1))!} \Theta_{R - \rho}^{(s + p_{k} + m^{*})} \end{split}$$

for $t \in S$. By $(p_k + m^*) - (|p(q)| + l_q) \ge j^*(k - |k(q)| - 1)$,

$$\frac{(j^*(k-1))!}{(j^*|k(q)|)!} \frac{1}{(p_k+m^*)\cdots(|p(q)|+l_q+1)} \le 1$$

holds. By the same way as in (2.29) we have $p_k + m^* - (|p(q)| + l_q) \le p_k + l^* - (|p(q)| + l_q) \le |q| + \frac{\gamma^*}{\delta} j^* (l_q - l^*)$ and $|q| + \frac{\gamma^*}{\delta} j^* (l_q - l^*) \le (1 + \frac{\gamma^*}{\delta} j^* (m - l^*)) |q| =: \kappa |q|$. Then we obtain

$$\left\| \left(t \frac{\partial}{\partial t} \right)^{s} W_{2,k} \right\|_{\rho} \leq \sum_{\substack{1 \leq |q| \leq k \\ l_{q} > l^{*}}} \frac{M_{1}^{\kappa|q|} A_{q}}{(R - \rho)^{l_{q}(|q| - 1)}}$$

$$\times \sum_{|k(q)| + \gamma^{*}(l_{q} - l^{*})/\delta = k} \left\{ \prod_{j+|\alpha| \leq m} \prod_{i=1}^{q_{j,\alpha}} \frac{\zeta^{j} (M_{0}e)^{|\alpha|}}{\tau^{\alpha_{1}}} U_{k(j,\alpha,i)} \right\}$$

$$\times \zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma}) \frac{1}{(j^{*}(k - 1))!} \Theta_{R - \rho}^{(s + p_{k} + m^{*})}$$

for $t \in S$. By the estimates (2.30) and (2.31) for $0 < \zeta < 1$ the following estimate holds:

$$\begin{split} \left\| \left(t \frac{\partial}{\partial t} \right)^{s} W_{k} \right\|_{\rho} &\leq \sum_{\substack{1 \leq |q| \leq k \\ l_{q} \leq l^{*}}} \left(\frac{C\zeta}{c\gamma} \right)^{l^{*} - l_{q}} \frac{M_{1}^{2|q|} A_{q}}{(R - \rho)^{l_{q}(|q| - 1)}} \\ &\times \sum_{|k(q)| + 1 = k} \left\{ \prod_{j + |\alpha| \leq m} \prod_{i = 1}^{q_{j,\alpha}} \frac{\zeta^{j} (M_{0}e)^{|\alpha|}}{\tau^{\alpha_{1}}} U_{k(j,\alpha,i)} \right\} \\ &\times \zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma}) \frac{1}{(j^{*}(k - 1))!} \Theta_{R - \rho}^{(s + p_{k} + m^{*})} \end{split}$$

$$+ \sum_{\substack{1 \le |q| \le k \\ l_q > l^*}} \frac{M_1^{\kappa |q|} A_q}{(R - \rho)^{l_q(|q| - 1)}}$$

$$\times \sum_{|k(q)| + \gamma^* (l_q - l^*)/\delta = k} \left\{ \prod_{j + |\alpha| \le m} \prod_{i = 1}^{q_{j,\alpha}} \frac{\zeta^{j} (M_0 e)^{|\alpha|}}{\tau^{\alpha_1}} U_{k(j,\alpha,i)} \right\}$$

$$\times \zeta^{s} |t|^{\delta k} \exp(-c|t|^{-\gamma}) \frac{1}{(j^* (k - 1))!} \Theta_{R - \rho}^{(s + p_k + m^*)}.$$

Set

$$(2.32) U_{k} = M \sum_{\substack{1 \leq |q| \leq k \\ l_{q} \leq l^{*}}} \left(\frac{C\zeta}{c\gamma} \right)^{l^{*}-l_{q}}$$

$$\times \frac{M_{1}^{2|q|} A_{q}}{(R - \rho)^{l_{q}(|q| - 1)}} \sum_{|k(q)| + 1 = k} \left\{ \prod_{j+|\alpha| \leq m} \prod_{i=1}^{q_{j,\alpha}} \frac{\zeta^{j}(M_{0}e)^{|\alpha|}}{\tau^{\alpha_{1}}} U_{k(j,\alpha,i)} \right\}$$

$$+ M \sum_{\substack{1 \leq |q| \leq k \\ l_{q} > l^{*}}} \frac{M_{1}^{\kappa|q|} A_{q}}{(R - \rho)^{l_{q}(|q| - 1)}}$$

$$\times \sum_{|k(q)| + \nu^{*}(l_{q} - l^{*})/\delta = k} \left\{ \prod_{j+|\alpha| \leq m} \prod_{i=1}^{q_{j,\alpha}} \frac{\zeta^{j}(M_{0}e)^{|\alpha|}}{\tau^{\alpha_{1}}} U_{k(j,\alpha,i)} \right\}$$

where

$$M := \left(\frac{j^*}{\delta}\right)^{j^*} (2\tau)^{m^*} \frac{1}{1 - C(\zeta, \tau)} \quad \text{(in Proposition 2.12)}.$$

By Proposition 2.12, we get

$$\left\| \left(t \frac{\partial}{\partial t} \right)^s u_k \right\|_{\varrho} \le U_k \xi^s |t|^{\delta k} \exp(-c|t|^{-\gamma}) \frac{1}{(j^*k)!} \Theta_{R-\rho}^{(s+p_k)} \quad \text{for } t \in S.$$

Hence the estimate (2.7) holds for $k \ge 1$.

Let us show that $\sum_{k\geq 1} U_k t^k$ is a convergent power series in a neighborhood of the origin t=0. Coefficients U_k ($k\geq 1$) are given by $U_1=G$ and the relation (2.32) for $k\geq 2$. Let us

consider the following equation:

$$(2.33) Y = Gt + Mt \sum_{\substack{|q| \ge 1 \\ l_q \le l^*}} \left(\frac{C\zeta}{c\gamma}\right)^{l^* - l_q} \frac{M_1^{2|q|} A_q}{(R - \rho)^{m(|q| - 1)}} \prod_{j+|\alpha| \le m} \left(\frac{\zeta^j (M_0 e)^{|\alpha|}}{\tau^{\alpha_1}} Y\right)^{q_{j,\alpha}} + M \sum_{\substack{|q| \ge 1 \\ l_q > l^*}} t^{(l_q - l^*)\gamma^*/\delta} \frac{M_1^{\kappa|q|} A_q}{(R - \rho)^{m(|q| - 1)}} \prod_{j+|\alpha| \le m} \left(\frac{\zeta^j (M_0 e)^{|\alpha|}}{\tau^{\alpha_1}} Y\right)^{q_{j,\alpha}}.$$

We can show that the equation (2.33) has a holomorphic solution $Y(t) = \sum_{k \ge 1} Y_k t^k$ in a neighborhood of t = 0 with $U_k \le Y_k$ for $k \ge 1$ by Implicit's function theorem at (t, Y) = (0, 0). Hence $\sum_{k \ge 1} U_k t^k$ converges in a neighborhood of the origin t = 0. Q.E.D.

3. Proof of Theorem 1.5

In this section we prove Theorem 1.5 by Theorem 2.3.

Set $l^* = l_{\mathcal{L},i-1}$, $m^* = m_i$, $j^* = j_{\mathcal{L},i-1} = l_{\mathcal{L},i-1} - m_i$, $\gamma = \gamma_{\mathcal{L},i}$, $\gamma^* = \gamma_{\mathcal{L},i-1}$ and $c^*(t,x) = t^{\sigma_{\mathcal{L},i-1}} c_{j_{\mathcal{L},i-1},m_i e_1}(t,x)$ where $c_{j_{\mathcal{L},i-1},m_i e_1}(0,0) \neq 0$.

We consider an equation

(3.1)
$$L(u(t,x))/c^*(t,x) = f(t,x)/c^*(t,x)$$

for the equation (1.2).

REMARK 3.1. For $L(t^{\nu}u(t,x))$ with $t^{\nu}u(t,x) \in t^{\nu}Asy^0_{\{\gamma\}}(S_{\theta}(T) \times D_R)$, $NP(L;\nu) = NP(\mathcal{L};\nu)$ holds for a sufficiently large $\nu \in \mathbb{N}$ by Lemma 1.1. Hence we can assume $NP(L) = NP(\mathcal{L})$ for the equation (1.2).

We set

(3.2)
$$\mathcal{L}^* = \{c^*(t, x)\}^{-1} \mathcal{L}_i,$$

(3.3)
$$L^*(u(t,x)) = (L(u(t,x)) - \mathcal{L}_i u(t,x))/c^*(t,x)$$

and

(3.4)
$$q(t,x) = f(t,x)/c^*(t,x) =: t^{\delta}h(t,x)$$

where $L^*(u)$ is in (2.2) and $h(t, x) = f(t, x)/\{t^\delta c^*(t, x)\}$. By Remark 3.1 $L^*(u(t, x))$ is the following form:

$$(3.5) L^*(u(t,x)) = \sum_{|q| \ge 1} t^{\sigma_q - \sigma_{\mathcal{L},i-1}} a_q(t,x) \prod_{j+|\alpha| \le m} \left\{ \left(t \frac{\partial}{\partial t} \right)^j \left(\frac{\partial}{\partial x} \right)^{\alpha} u(t,x) \right\}^{q_{j,\alpha}}$$

where $a_q(t, x) = c_q(t, x)/c_{j_{\mathcal{L}, i-1}, m_i e_1}(t, x)$, and numbers $\sigma_q - \sigma_{\mathcal{L}, i-1} \in \mathbf{Z}$ satisfy

(3.6)
$$\sigma_q - \sigma_{\mathcal{L},i-1} = \begin{cases} -\gamma(l^* - l_q) + J_q^1 & (J_q^1 > 0) & \text{for } l_q \le l^* \\ \gamma^*(l_q - l^*) + J_q^2 & (J_q^2 \ge 0) & \text{for } l_q > l^* \end{cases}.$$

If i = 1 then we define $\gamma^* = \infty$. Further if we take $0 < c_0 < c$ then we have

$$(3.7) h(t,x) \in X_{p_1+m^*,0,c_0,\nu}(S \times D_R).$$

Therefore it is sufficient to show Theorem 1.5 for the equation (3.1).

Let us show Theorem 1.5. By Theorem 2.3 we have the following estimate: There exist positive constants A and B such that for $k \ge 1$ and $t \in S_{\theta}(T)$

(3.8)
$$\begin{aligned} \|u_{k}(t,\cdot)\|_{\rho} &\leq AB^{k}|t|^{\delta k}\exp(-c|t|^{-\gamma}) & \text{if} \quad \{q; \ l_{q} > l^{*}\} = \emptyset \\ \|u_{k}(t,\cdot)\|_{\rho} &\leq AB^{k}|t|^{\delta k}\exp(-c|t|^{-\gamma})\Gamma\left(\frac{\delta k}{\gamma^{*}} + 1\right) & \text{if} \quad \{q; \ l_{q} > l^{*}\} \neq \emptyset. \end{aligned}$$

By the estimate (3.8), if $\{q; l_q > l^*\} = \emptyset$ then the formal solution $\sum_{k \ge 1} u_k(t, x)$ becomes a genuine solution of the equation (3.1). We get Theorem 1.5-(2).

From now we will show Theorem 1.5-(1) in the case $\{q;\ l_q>l^*\}\neq\emptyset$. It is our purpose to show the following two propositions;

Let
$$S = S_{\theta}(T)$$
 and $S_0 = S_{\theta_0}(T_0)$ with $0 < \theta_0 < \pi/(2\gamma^*)$ and $S_0 \subseteq S$.

PROPOSITION 3.2. Let $u_k(t,x)$ be constructed in the relation 2.5 for $k \ge 1$. Then there exists a function $u_{S_0}(t,x) \in Asy^0_{\{v*\}}(S_0 \times D_{R_0})$ such that

$$||u_{S_0} - \sum_{k=0}^N u_k||_{\rho} \le AB^{N+1} \Gamma\left(\frac{(N+1)\delta}{\gamma^*} + 1\right) |t|^{(N+1)\delta} \exp(-c|t|^{-\gamma}) \quad for \ t \in S_0.$$

For the function $u_{S_0}(t, x)$ set

$$g_{S_0}(t,x) := \mathcal{L}^* u_{S_0}(t,x) - \sum_{|q| \ge 1} t^{\sigma_q - \sigma_{\mathcal{L},i-1}} a_q(t,x) \prod_{j+|\alpha| \le m} \left\{ \left(t \frac{\partial}{\partial t} \right)^j \left(\frac{\partial}{\partial x} \right)^{\alpha} u_{S_0}(t,x) \right\}^{q_{j,\alpha}} - g(t,x).$$

PROPOSITION 3.3. We have $g_{S_0}(t, x) \in Asy^0_{\{v*\}}(S_0 \times D_{R_1})$ for $0 < R_1 < R_0$.

We get Theorem 1.5-(1) by Proposition 3.3.

Let us give proofs of Proposition 3.2 and 3.3. We can show these proposition by the same way as in [3] for the norm (2.3).

We define the follows for the functions $u_k(t, x)$ in Theorem 2.3:

$$\begin{cases} \widehat{u}_k(t, x, \xi) = \frac{u_k(t, x)}{t^{\delta k + \gamma^*}} \frac{\xi^{\delta k / \gamma^*}}{\Gamma(\delta k / \gamma^* + 1)} \\ \widetilde{u}_N(t, x, \xi) = \sum_{k=N+1}^{\infty} \widehat{u}_k(t, x, \xi) \\ \widetilde{u}(t, x, \xi) = \sum_{k=0}^{\infty} \widehat{u}_k(t, x, \xi) . \end{cases}$$

By Theorem 2.3 there exists a positive constant $\hat{\xi}_0$ such that $\widetilde{u}_N(t, x, \xi)$ and $\widetilde{u}(t, x, \xi)$ converge in $S \times D_\rho \times \{|\xi| \leq \hat{\xi}_0\}$.

LEMMA 3.4. There exist positive constants $\hat{\xi}$ with $0 < \hat{\xi} < \hat{\xi}_0$, A_i and B_i (i = 0, 1) such that for $S \times \{|\xi| \le \hat{\xi}\}$

(3.9)
$$\|\widetilde{u}_{N}(t,\cdot,\xi)\|_{\rho} \leq A_{0}B_{0}^{N+1}|t|^{-\gamma^{*}}\exp(-c|t|^{-\gamma})|\xi|^{(N+1)\delta/\gamma^{*}}$$
and for $S \times \{|\xi| > \hat{\xi}\}$

(3.10)
$$\sum_{k=0}^{N} \|\widehat{u}_k(t,\cdot,\xi)\|_{\rho} \le A_1 B_1^{N+1} |t|^{-\gamma^*} \exp(-c|t|^{-\gamma}) |\xi|^{(N+1)\delta/\gamma^*}.$$

We can show Lemma 3.4 as in Lemma 4.1 in [3]. We omit the details. PROOF OF PROPOSITION 3.2. Set

$$u_{S_0}(t,x) = \int_0^{\hat{\xi}} \exp(-\xi t^{-\gamma *}) \widetilde{u}(t,x,\xi) d\xi.$$

Then we have

$$\begin{split} u_{S_0}(t,x) - \sum_{k=0}^N u_k(t,x) &= \int_0^{\hat{\xi}} \exp(-\xi t^{-\gamma *}) \widetilde{u}_N(t,x,\xi) d\xi \\ &- \int_{\hat{\xi}}^{\infty} \exp(-\xi t^{-\gamma *}) \sum_{k=0}^N \widehat{u}_k(t,x,\xi) d\xi \\ &= I_{1,N} + I_{2,N} \,. \end{split}$$

By Lemma 3.4 for $t \in S_0$ the following estimates hold:

$$||I_{1,N}||_{\rho} \le A_0 B_0^{N+1} \exp(-c|t|^{-\gamma})|t|^{(N+1)\delta} \Gamma\left(\frac{(N+1)\delta}{\gamma^*} + 1\right)$$

and

$$||I_{2,N}||_{\rho} \le A_1 B_1^{N+1} \exp(-c|t|^{-\gamma})|t|^{(N+1)\delta} \Gamma\left(\frac{(N+1)\delta}{\gamma^*} + 1\right).$$

Hence we obtain Proposition 3.2.

Q.E.D.

Let us show Proposition 3.3. Set

$$v_N(t,x) = \sum_{k=1}^{N} u_k(t,x), \quad w_N(t,x) = u_{S_0}(t,x) - v_N(t,x)$$

and

$$W(u) := \sum_{|q| \ge 1} t^{\sigma_q} c_q(t, x) \prod_{j+|\alpha| \le m} \left\{ \left(t \frac{\partial}{\partial t} \right)^j \left(\frac{\partial}{\partial x} \right)^{\alpha} u \right\}^{q_{j,\alpha}}$$

for the equation (3.1). Then we have

(3.11)
$$g_{S_0}(t,x) = \mathcal{L}^*(v_N + w_N) - W(v_N + w_N) - g(t,x),$$

$$\mathcal{L}^* v_N = \sum_{k=1}^N \mathcal{L}^* u_k(t, x)$$
 and

(3.12)
$$\begin{cases} \mathcal{L}^* u_1(t, x) = g(t, x) \\ \mathcal{L}^* u_k(t, x) = W_k(u_{k'} : k' < k) & \text{for } k \ge 2. \end{cases}$$

By the relation (3.12) we have

(3.13)
$$\mathcal{L}^* v_N - W(v_N) - g(t, x) = \sum_{k=2}^N W_k(u_{k'}: k' < k) - W(v_N)$$

and by relations (3.11) and (3.13)

$$g_{S_0}(t, x) = \left\{ \sum_{k=2}^{N} W_k(u_{k'}: k' < k) - W(v_N) \right\}$$

$$+ \left\{ \mathcal{L}^* w_N(t, x) - W(v_N + w_N) + W(v_N) \right\}$$

$$= J_{1,N} + J_{2,N}.$$

Set

$$v_{N,k}(t,x) := \begin{cases} u_k(t,x) & \text{for } 1 \le k \le N \\ 0 & \text{for } k \ge N+1 \end{cases}$$

Then we have $v_N(t, x) = \sum_{k=1}^{\infty} v_{N,k}(t, x)$ and

$$J_{1,N} = \sum_{k \ge N+1} \{ W_{1,k}(v_{N,k'}; k' < k) + W_{2,k}(v_{N,k'}; k' < k) \}.$$

LEMMA 3.5. For $0 < \rho_0 < \rho$ there exist positive constants c_1 and c_2 such that if $c_1/(N+1) \le |t|^{\gamma*} \le c_1/N$ then

$$||J_{1,N}||_{\rho_0}, ||J_{2,N}||_{\rho_0} \leq A \exp(-c_2|t|^{-\gamma*}).$$

We can show Lemma 3.5 as in Lemma 4.4 in [3]. We omit the details.

PROOF OF PROPOSITION 3.3. By Lemma 3.5 we obtain

$$||g_{S_0}||_{\rho_0} \le A \exp(-c_2|t|^{-\gamma})^*$$

for $c_1/(N+1) \le |t|^{\gamma*} \le c_1/N$ where c_2 and A are independent of N. Therefore we can show $g_{S_0}(t,x) \in Asy^0_{\{\gamma*\}}(S_0 \times D_{\rho_0})$ and we get Proposition 3.3. Q.E.D.

References

- [1] GÉRARD, R. and TAHARA, H., Singular Nonlinear Partial Differential Equations, Vieweg, 1996.
- [2] ÖUCHI, S., Formal solutions with Gevrey type estimates of nonlinear partial differential equations, J. Math. Sci. Univ. Tokyo 1 (1994), 205–237.
- [3] ÕUCHI, S., Genuine solutions and formal solutions with Gevrey type estimates of nonlinear partial differential equations, J. Math. Sci. Univ. Tokyo 2 (1995), 375–417.

Present Address:

College of Engineer and Design, Shibaura Institute of Technology, 307 Hukasaku, Minuma-ku, Saitama, 337–8570 Japan.