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S1-equivariant CMC-hypersurfaces in the Hyperbolic
3-space and the Corresponding Lagrangians

Keiichi KIKUCHI

Tokai University

Abstract. A family of S 1—equivariant hypersurfaces of constant mean curvature can be obtained by using the
Lagrangians with suitable potentials in the hyperbolic 3-space. The conservation law is effectively applied to the

construction of S -equivariant hypersurfaces of constant mean curvature in the hyperbolic 3-space.

1. Introduction

W-Y. Hsiang [5] investigated the rotation hypersurfaces of constant mean curvature in
the spherical or hyperbolic n-space. In [2], Eells and Ratto have constructed rotation(S'-
equivariant) minimal hypersurfaces in the unit 3-sphere, where they used a certain first inte-
gral which is invariant with respect to the horizontal rotation angle of generating curves on
the orbit space. In [8], A certain family of S'-equivariant CMC (constant mean curvature)
hypersurfaces was constructed in the unit 3-sphere equipped with parametrized metric. In its
construction, the Lagrangians with potentials appear and the corresponding Hamiltonians and
the conservation laws are used effectively. In the construction of S'-equivariant CMC hyper-
surfaces in the hyperbolic 3-space, it is cleared that the conserved quantity can be obtained
by using the Lagrangian of the corresponding dynamical system with respect to the Hsiang-
Lawson metric [2], [6] on the orbit space via the Hamilton equation [10] when we consider
the horizontal angle of generating curves as “time”. We should remark that the correspond-
ing Lagrangian has the vanishing potential when we construct the S'-equivariant minimal
hypersurfaces. However, in case that we construct S'-equivariant non-minimal CMC hyper-
surfaces in the hyperbolic 3-space, the corresponding potentials are nonvanishing functions.
We determine the potential function of the Lagrangian which corresponds to S!-equivariant
CMC-surfaces immersed in the hyperbolic 3-space (Theorem 4.3). As a result we can see that
the corresponding potential function depends on the constant mean curvature H itself.

Received November 16, 2011; revised April 26, 2012
Mathematics Subject Classification: 53C43, 70H05, 70H33
Key words and phrases: S l-equivariant CMC surface, Lagrangians, conservation laws



208 KEIICHI KIKUCHI

2. Preliminaries

We identify R* with the space of quaternions H = span{l,i, j, k}. The Minkowski
inner product (, )3 on His defined by

(w1, wa2)y = —araz + biby + crco +dida,
where w,, = am + bi +cmj +dmk, m =1, 2.
The hyperbolic space H? is defined by
H?>={weH; (w,wy=-1, Rw) > 0}.

Then the orbit space X by the S!-action r; on H?3:

ri(w)=a+bi+eé'(cj+dk), w=a+bi+cj+dkeH>,
is represented by

X = {(coshB)e;y + (sinhf)j; 0 <O < 400, —00 < ¢ < +00},
where e; := cosh¢ + sinh¢ i.

Let X\ 0X denote by X°. The orbital metric 4 on X is given by i = h1d92+h2d¢2, where
h1=1, hy =cosh? 6. Moreover, the volume function is V=27 sinh6 and the Hsiang-Lawson
metric i =h1d6? + hadp?, where hy =42 sinh? 0, h =472 sinh? 6 cosh? 6.

vy 1 J C R — (X°, h) denotes a curve parametrized by arclength s. 7(y) = V;y and

T(y) = @}; y stand for the tension fields of y with respect to the metrics & and h, respectively.
The geodesic curvature « (y) at y (s) is defined by x(y) := h(z(y), n) where n denotes
the unit normal vector field to y.

3. S'-equivariant CMC-immersion

Fora curve y : J — X°, we consider an S'-equivariant map . : M =y~ (H?) — H3
suchthaty omr =0 o u, wherer : M — Jando : H 3 _ X° are Riemannian submersions.
Throughout the paper, we assume that 4 is an S'-equivariant constant mean curvature H
immersion. Then we have

k(y) —n(logV) =2H, (1
since
h(t(y),n) —n(ogV) = h(z(y),n).

On the orbit space (X°, k), the velocity vector field of a curve y(s) = (0(s), ¢(s)) is
given by the following component functions:

0'(s) = cosh(s),  ¢'(s) = SBAE)

" coshf(s) @
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LEMMA 3.1. The following formulas hold on (X°, h)

— _sna i—f— cos A(s) i 3)
n(s) = =SS g+ o) 99 (
)=t 0 ») i 4
Ty —T)/l%‘l'TVZ%,
where
7(y)1 = 0" (s) — sinh6(s) cosh 6 (s)¢’ (s)*
and
o +25inh9(s)9/ ,
T(y)2=¢"(s) m ()9 (s) .

Then, using the formula (1), we have the following differential equation (5) of generat-
ing curves on X° which corresponds to S!-equivariant CMC-hypersurfaces immersed in H3,
since using Lemma 3.1 the geodesic curvature k (y) is given by

k(y) = A (s) 4 tanh O (s) sin A(s) ,
X (s) 4 (tanh @ (s) 4 coth&(s)) sinA(s) —2H =0. ®))

4. An application of conservation laws

We consider a generating curve y(s) = (6(s), ¢(s)) on X° such that 6 = 6(¢) and
¢'(s) > 0. Then we can consider the space Z (8, 6%) of motion with 6% = d6 / d¢ and time
¢. Let L = L(6, 6%) be a Lagrangian on Z (6, 6*). Via the Legendre transformation, we have
the Hamiltonian H on the phase space Z*(9, p):

oL
06*

The conservation laws of our system imply the following

Hzé#p—ﬁ, p=

PROPOSITION 4.1. Let the Lagrangian L on E (6, 6%) be the following form:

L=1/h6*?2+h+GO),

where h is the Hsiang-Lawson metric on X° and G (0) is a potential function on the configu-
ration space. Then we have

L= |
—— 4+ G@H); =0, (6)
a0 Ji@*)? + by

where the conserved quantity in (6) represents the Hamiltonian of our system.
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By means of the Hamilton equation (6), we shall determine the potential G (6) which cor-
responds to S'-equivariant CMC-hypersurfaces immersed in H> via the differential equation
(5) of generating curves on the orbit space X°.

The direct computation yields the following

LEMMA 4.2. Assume that 6 and A are functions of ¢ and d). | d¢p = \'(s) | ¢'(s).
Then we have

d hy

dé \/1711(9#)2 + /’Alz

W = 27 sinh §(s) cosh? O (s) cot A(s) .

= W{N (s) + (tanh O(s) + cothOH(s)) sin A(s)}, @)

where

By using the conservation law (6) and (7), we have the following
THEOREM 4.3. On our system we have the following potential function G(0), La-
grangian L and Hamiltonian 'H.
G(0) = —m H cosh 26,

7 sinh 20 (s)

- — m H cosh26(s),
sin A(s)

and
H = —2m sinh 6 (s) coshd(s) sin A(s) + 7w H cosh26(s) .

Let y(s) = (0(s), ¢ (s)) be a generating curve on X° such that & = 6(¢) and ¢'(s) > 0.
Then we set the initial conditions: 8y := 0(0), ¢(0) = 0, 8/(0) = 0 and A(0) = % Then we
have the following

LEMMA 4.4.

d?e )
— = 2cosh” fy(coth26p — H) . 3
d¢2 s=0

PROOF. The conservation law implies that

A

hy

Vh1(0H2 + hy

C = 2 sinh 6y cosh 6y — 7 H cosh 26y ,

+G0)=C,

where
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A hy }
@y _mf_ h 9
<d¢> hl{(C—G(9))2 ®

Since (C — G(6p))? = h2(8o) and

d26 1/d do\?
(E) = 5(@)?_0(%) ’ 1o

then

using (9) we have

d%o
2(C - G(6 ))3(—>
’ d¢2 s=0

_ @0 [, 2(0GY Lo B oy
= 700 {271 <ae )s=o sinh” 26 + (C G(eo))( 50 )s=o}’

from which, a direct computation implies the formula (8).
Lemma 4.4 implies the following.

LEMMA 4.5. Under the initial conditions above with respect to a generating curve 6
=0(¢(s)) on X°, assume that H > 1. Then

d?0
(F&)SZO >0 (resp.,<0)

if and only if

6o <0n (resp..=0n), (1D

1 H+1
Oy = —log [ ——) .
H 40g<H—1>

Let H > 1 and we choose 6y such that 8y < 6y < 30y. Under the initial conditions

where

above with respect to a generating curve 0 = 0(¢(s)), using Lemma 4.5 we have (%ﬁ)szo <

0 and there exists the value ¢1 = ¢ (s1) of ¢ such that & = (¢ (s)) decreases strictly until ¢,
where the value of d6 / d¢ equals to zero at ¢ = ¢, and 6 = 0 (¢ (s)) takes a local minimum
at¢ = ¢1.

In fact, suppose that this is not valid, then we may assume that there exists a such that 0
<a <6 <+ocand limy—, 100 0(s) = a, limy—, 100 0'(s) = 0, limg— 400 A(s) = 7.
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Then, by making use of (9), we have

<d9 )2 _ 4 cosh? 0(s) sinh(6(s) + 6p) sinh(O(s) — 6p) P2

de¢ ) — {sinh26 + 2H sinh(6(s) + o) sinh(6(s) — 6p) 12 (12)

where

@ = cosh(8(s) — 6p) + H sinh(6(s) — o) ,

§£2 = cosh(0(s) + 6p) — H sinh(0(s) + 6p) .

Furthermore, by using the differential equation (5) of generating curves, we obtain
a = 0y. Hence we have 6y < a + arctanh(1/H), since 0y < 6y < 30y and 20y =
arctanh(1/H), which implies cosh(a — 6p) + H sinh(a — 6p) > 0. Moreover, we can easily
prove that cosh(a + 6p) — H sinh(a + 6p) is not equal to zero. Consequently, since 0 < a <
6o, from the formula (12) we see that lims_, 1 5, (d0 / dqb)2 is not zero, which contradicts the
assumption limg_ o0 0'(s) = 0.

Consequently we can continue 8 = 6 (¢ (s)) as the generating curve satisfying the differ-
ential equation (5) by the reflection. Thus we have

THEOREM 4.6. In case that H > 1 and 0y < 6y < 30y, we obtain Sl-equivariant
CMC-H hypersurfaces immersed in H>, whose generating curves have the periodicity on the
orbit space X°. If 0y = Oy, then we obtain S'-equivariant CMC-H hypersurfaces embedded
in H3. The corresponding Lagrangian and Hamiltonian are given by the formulas in Theorem
4.3.

OBSERVATION. Let0 < H < 1. Then we can choose the initial value 6y = 6(0) such
that tanh 26p = H. This initial condition implies that C = 0 and using the formula (9) we
have

2
do 1
(%) = cosh? 6 (tanh® 26 — H?) .
Now we consider the generating curve 6 (s) = 6(¢(s)) issuing from the point (6, ¢ (0))
d*0
de?

on X°. Let s; > 0 be sufficiently small. Then, noting that (%)S:O =0 and ( )szo > 0, we

have

6(s) 1
¢(s)=H

6(s1) cosh®+/tanh?26 — H?

where s > 51 > 0 and assume ¢ = ¢(s) > 0.
This formula describes the behavior of the generating curves in case that 0 < H < 1.

COROLLARY 4.7. In case that H > 1 and 6y = 0y, we have a CMC-H embedding
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u:LxSl—>H3,

14(¢. 1) = (coshfp ey + (sinhOp)e’’ j
= cosh 6y cosh ¢ + (cosh 6y sinh ¢)i + (sinh Oy cost)j + (sinh Oy sint)k

H+1

where Oy = }Tlog (F). L = (=00, +00),0 <1 < 27.
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