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S1-equivariant CMC-hypersurfaces in the Hyperbolic
3-space and the Corresponding Lagrangians

Keiichi KIKUCHI

Tokai University

Abstract. A family of S1-equivariant hypersurfaces of constant mean curvature can be obtained by using the
Lagrangians with suitable potentials in the hyperbolic 3-space. The conservation law is effectively applied to the

construction of S1-equivariant hypersurfaces of constant mean curvature in the hyperbolic 3-space.

1. Introduction

W-Y. Hsiang [5] investigated the rotation hypersurfaces of constant mean curvature in

the spherical or hyperbolic n-space. In [2], Eells and Ratto have constructed rotation(S1-
equivariant) minimal hypersurfaces in the unit 3-sphere, where they used a certain first inte-
gral which is invariant with respect to the horizontal rotation angle of generating curves on
the orbit space. In [8], A certain family of S1-equivariant CMC (constant mean curvature)
hypersurfaces was constructed in the unit 3-sphere equipped with parametrized metric. In its
construction, the Lagrangians with potentials appear and the corresponding Hamiltonians and

the conservation laws are used effectively. In the construction of S1-equivariant CMC hyper-
surfaces in the hyperbolic 3-space, it is cleared that the conserved quantity can be obtained
by using the Lagrangian of the corresponding dynamical system with respect to the Hsiang-
Lawson metric [2], [6] on the orbit space via the Hamilton equation [10] when we consider
the horizontal angle of generating curves as “time”. We should remark that the correspond-

ing Lagrangian has the vanishing potential when we construct the S1-equivariant minimal
hypersurfaces. However, in case that we construct S1-equivariant non-minimal CMC hyper-
surfaces in the hyperbolic 3-space, the corresponding potentials are nonvanishing functions.

We determine the potential function of the Lagrangian which corresponds to S1-equivariant
CMC-surfaces immersed in the hyperbolic 3-space (Theorem 4.3). As a result we can see that
the corresponding potential function depends on the constant mean curvature H itself.

Received November 16, 2011; revised April 26, 2012
Mathematics Subject Classification: 53C43, 70H05, 70H33
Key words and phrases: S1-equivariant CMC surface, Lagrangians, conservation laws



208 KEIICHI KIKUCHI

2. Preliminaries

We identify R4 with the space of quaternions H = span{1, i, j, k}. The Minkowski
inner product 〈 , 〉M on H is defined by

〈w1, w2〉M := −a1a2 + b1b2 + c1c2 + d1d2 ,

where wm = am + bmi + cmj + dmk, m = 1, 2.
The hyperbolic space H 3 is defined by

H 3 = {w ∈ H; 〈w,w〉M = −1, �(w) > 0} .

Then the orbit space X by the S1-action rt on H 3:

rt (w) = a + bi + eit (cj + dk) , w = a + bi + cj + dk ∈ H 3 ,

is represented by

X = {(cosh θ)eiφ + (sinh θ)j ; 0 ≤ θ < +∞, −∞ < φ < +∞} ,

where eiφ := cosh φ + sinh φ i.

Let X\∂X denote by X◦. The orbital metric h on X is given by h = h1dθ2+h2dφ2, where

h1=1, h2 = cosh2 θ . Moreover, the volume function is V =2π sinh θ and the Hsiang-Lawson

metric ĥ = ĥ1dθ2 + ĥ2dφ2, where ĥ1 = 4π2 sinh2 θ , ĥ2 = 4π2 sinh2 θ cosh2 θ .
γ : J ⊂ R → (X◦, h) denotes a curve parametrized by arclength s. τ (γ ) = ∇γ̇ γ̇ and

τ̂ (γ ) = ∇̂γ̇ γ̇ stand for the tension fields of γ with respect to the metrics h and ĥ, respectively.
The geodesic curvature κ(γ ) at γ (s) is defined by κ(γ ) := h(τ(γ ), η) where η denotes

the unit normal vector field to γ .

3. S1-equivariant CMC-immersion

For a curve γ : J → X◦, we consider an S1-equivariant map μ : M = γ −1(H 3) → H 3

such that γ ◦ π = σ ◦ μ, where π : M → J and σ : H 3 → X◦ are Riemannian submersions.
Throughout the paper, we assume that μ is an S1-equivariant constant mean curvature H

immersion. Then we have

κ(γ ) − η(log V ) = 2H , (1)

since

h(τ(γ ), η) − η(log V ) = h(τ̂ (γ ), η) .

On the orbit space (X◦, h), the velocity vector field of a curve γ (s) = (θ(s), φ(s)) is
given by the following component functions:

θ ′(s) = cos λ(s) , φ′(s) = sin λ(s)

cosh θ(s)
. (2)
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LEMMA 3.1. The following formulas hold on (X◦, h)

η(s) = − sin λ(s)
∂

∂θ
+ cos λ(s)

cosh θ(s)

∂

∂φ
, (3)

τ (γ ) = τ (γ )1
∂

∂θ
+ τ (γ )2

∂

∂φ
, (4)

where

τ (γ )1 = θ ′′(s) − sinh θ(s) cosh θ(s)φ′(s)2

and

τ (γ )2 = φ′′(s) + 2 sinh θ(s)

cosh θ(s)
θ ′(s)φ′(s) .

Then, using the formula (1), we have the following differential equation (5) of generat-

ing curves on X◦ which corresponds to S1-equivariant CMC-hypersurfaces immersed in H 3,
since using Lemma 3.1 the geodesic curvature κ(γ ) is given by

κ(γ ) = λ′(s) + tanh θ(s) sin λ(s) ,

λ′(s) + (tanh θ(s) + coth θ(s)) sin λ(s) − 2H = 0 . (5)

4. An application of conservation laws

We consider a generating curve γ (s) = (θ(s), φ(s)) on X◦ such that θ = θ(φ) and
φ′(s) > 0. Then we can consider the space Ξ(θ, θ#) of motion with θ# = dθ / dφ and time
φ. Let L = L(θ, θ#) be a Lagrangian on Ξ(θ, θ#). Via the Legendre transformation, we have
the Hamiltonian H on the phase space Ξ∗(θ, p):

H = θ#p − L , p = ∂L
∂θ#

The conservation laws of our system imply the following

PROPOSITION 4.1. Let the Lagrangian L on Ξ(θ, θ#) be the following form:

L =
√

ĥ1(θ#)2 + ĥ2 + G(θ) ,

where ĥ is the Hsiang-Lawson metric on X◦ and G(θ) is a potential function on the configu-
ration space. Then we have

d

dφ

{
ĥ2√

ĥ1(θ#)2 + ĥ2

+ G(θ)

}
= 0 , (6)

where the conserved quantity in (6) represents the Hamiltonian of our system.
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By means of the Hamilton equation (6), we shall determine the potential G(θ) which cor-
responds to S1-equivariant CMC-hypersurfaces immersed in H 3 via the differential equation
(5) of generating curves on the orbit space X◦.

The direct computation yields the following

LEMMA 4.2. Assume that θ and λ are functions of φ and dλ / dφ = λ′(s) / φ′(s).
Then we have

d

dφ

ĥ2√
ĥ1(θ#)2 + ĥ2

= Ψ {λ′(s) + (tanh θ(s) + coth θ(s)) sin λ(s)} , (7)

where

Ψ = 2π sinh θ(s) cosh2 θ(s) cot λ(s) .

By using the conservation law (6) and (7), we have the following

THEOREM 4.3. On our system we have the following potential function G(θ), La-
grangian L and Hamiltonian H.

G(θ) = −πH cosh 2θ ,

L = π sinh 2θ(s)

sin λ(s)
− πH cosh 2θ(s) ,

and

H = −2π sinh θ(s) cosh θ(s) sin λ(s) + πH cosh 2θ(s) .

Let γ (s) = (θ(s), φ(s)) be a generating curve on X◦ such that θ = θ(φ) and φ′(s) > 0.
Then we set the initial conditions: θ0 := θ(0), φ(0) = 0, θ ′(0) = 0 and λ(0) = π

2 . Then we
have the following

LEMMA 4.4. (
d2θ

dφ2

)
s=0

= 2 cosh2 θ0(coth 2θ0 − H) . (8)

PROOF. The conservation law implies that

ĥ2√
ĥ1(θ#)2 + ĥ2

+ G(θ) = C ,

where

C = 2π sinh θ0 cosh θ0 − πH cosh 2θ0 ,
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then
(

dθ

dφ

)2

= ĥ2

ĥ1

{
ĥ2

(C − G(θ))2 − 1

}
. (9)

Since (C − G(θ0))
2 = ĥ2(θ0) and

(
d2θ

dφ2

)
s=0

= 1

2

(
d

dθ

)
s=0

(
dθ

dφ

)2

, (10)

using (9) we have

2(C − G(θ0))
3
(

d2θ

dφ2

)
s=0

= ĥ2(θ0)

ĥ1(θ0)

{
2π2

(
∂G

∂θ

)
s=0

sinh2 2θ0 + (C − G(θ0))

(
∂ĥ2

∂θ

)
s=0

}
,

from which, a direct computation implies the formula (8).

Lemma 4.4 implies the following.

LEMMA 4.5. Under the initial conditions above with respect to a generating curve θ

= θ(φ(s)) on X◦, assume that H > 1. Then
(

d2θ

dφ2

)
s=0

≥ 0 (resp.,≤ 0)

if and only if

θ0 ≤ θH (resp.,≥ θH ) , (11)

where

θH := 1

4
log

(
H + 1

H − 1

)
.

Let H > 1 and we choose θ0 such that θH < θ0 < 3θH . Under the initial conditions

above with respect to a generating curve θ = θ(φ(s)), using Lemma 4.5 we have
(

d2θ
dφ2

)
s=0 <

0 and there exists the value φ1 = φ(s1) of φ such that θ = θ(φ(s)) decreases strictly until φ1,
where the value of dθ / dφ equals to zero at φ = φ1, and θ = θ(φ(s)) takes a local minimum
at φ = φ1.

In fact, suppose that this is not valid, then we may assume that there exists a such that 0
≤ a < θ0 < +∞ and lims→+∞ θ(s) = a, lims→+∞ θ ′(s) = 0, lims→+∞ λ(s) = π

2 .
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Then, by making use of (9), we have

(
dθ

dφ

)2

= 4 cosh2 θ(s) sinh(θ(s) + θ0) sinh(θ(s) − θ0)ΦΩ

{sinh 2θ0 + 2H sinh(θ(s) + θ0) sinh(θ(s) − θ0)}2 , (12)

where

Φ = cosh(θ(s) − θ0) + H sinh(θ(s) − θ0) ,

Ω = cosh(θ(s) + θ0) − H sinh(θ(s) + θ0) .

Furthermore, by using the differential equation (5) of generating curves, we obtain
a = θH . Hence we have θ0 < a + arctanh(1/H), since θH < θ0 < 3θH and 2θH =
arctanh(1/H), which implies cosh(a − θ0) + H sinh(a − θ0) > 0. Moreover, we can easily
prove that cosh(a + θ0) − H sinh(a + θ0) is not equal to zero. Consequently, since 0 ≤ a <

θ0, from the formula (12) we see that lims→+∞(dθ / dφ)2 is not zero, which contradicts the
assumption lims→+∞ θ ′(s) = 0.

Consequently we can continue θ = θ(φ(s)) as the generating curve satisfying the differ-
ential equation (5) by the reflection. Thus we have

THEOREM 4.6. In case that H > 1 and θH < θ0 < 3θH , we obtain S1-equivariant

CMC-H hypersurfaces immersed in H 3, whose generating curves have the periodicity on the
orbit space X◦. If θ0 = θH , then we obtain S1-equivariant CMC-H hypersurfaces embedded

in H 3. The corresponding Lagrangian and Hamiltonian are given by the formulas in Theorem
4.3.

OBSERVATION. Let 0 < H < 1. Then we can choose the initial value θ0 = θ(0) such
that tanh 2θ0 = H . This initial condition implies that C = 0 and using the formula (9) we
have

(
dθ

dφ

)2

= 1

H 2 cosh2 θ(tanh2 2θ − H 2) .

Now we consider the generating curve θ(s) = θ(φ(s)) issuing from the point (θ0, φ(0))

on X◦. Let s1 > 0 be sufficiently small. Then, noting that
(

dθ
dφ

)
s=0 = 0 and

(
d2θ

dφ2

)
s=0 > 0, we

have

φ(s) = H

∫ θ(s)

θ(s1)

1

cosh θ
√

tanh2 2θ − H 2
dθ ,

where s ≥ s1 > 0 and assume φ = φ(s) ≥ 0.
This formula describes the behavior of the generating curves in case that 0 < H < 1.

COROLLARY 4.7. In case that H > 1 and θ0 = θH , we have a CMC-H embedding
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μ : L × S1 → H 3,

μ(φ, t) = (cosh θH )eiφ + (sinh θH )eit j

= cosh θH cosh φ + (cosh θH sinh φ)i + (sinh θH cos t)j + (sinh θH sin t)k ,

where θH = 1
4 log

(
H+1
H−1

)
, L = (−∞,+∞), 0 ≤ t < 2π .
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