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Abstract. This paper is concerned with invariant densities for transformations on R which are the boundary
restrictions of inner functions of the upper half plane. G. Letac [9] proved that if the corresponding inner function has
a fixed point z0 in C\R or a periodic point z0 in C\R with period 2, then a Cauchy distribution (1/π)Im (1/(x − z0))

is an invariant probability density for the transformation. Using Cauchy’s integral formula, we give an easier proof
of Letac’s result. An easy sufficient condition for such transformations to be isomorphic to piecewise expanding
transformations on an finite interval is given by the explicit form of the density. Transformations of the forms

αx + β − ∑n
k=1 bk/(x − ak), αx − ∑∞

k=1 {bk/(x − ak) + bk/(x + ak)} and αx + β tan x are studied as examples.

1. Introduction and Results

A various kind of 1-dimensional transformations have been found to have absolutely
continuous invariant measures ([2], [3], [4], [8], [10]). However, there are not many transfor-
mations whose densities are explicitly known. The first aim of this article is to show that a
transformation R on the real line R has an invariant probability density (1/π)Im (1/(x − z0)),
if it is a boundary restriction of an inner function of the upper half plane and if there exists
z0 = x0 + iy0 ∈ C\R with R(z0) = z0 or with R(z0) = z0. This explicit form of the invariant
density allows us to obtain the ergodic properties of the transformation by using known results
for transformations on finite intervals.

Precisely, we have the following Theorem 1, which was already proved by G. Letac
([9]). We give an easier proof by applying Cauchy’s integral formula to the defining function
in the theory of Sato’s hyperfunction. The proofs and the examples will be found in Section
2 and Section 3, respectively. By C+ we denote the upper half plane {z ∈ C; Im(z) > 0} and
C− = {z ∈ C; Im(z) < 0}.

THEOREM 1. Let R(z) be a function defined on C+ ∪ (R \ E) and R(R \ E) ⊂ R,
where E is a coutable subset of R. Suppose further the following:

(1) R(z) is holomorphic in C+ and satisfies that R (C+) ⊂ C+ or R (C+) ⊂ C−.
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(2) R(z) is continuous on R \ E.
Then, for all z0 = x0 + iy0 ∈ C+, the equation∫ ∞

−∞
f (R(x))

(
Im

1

x − z0

)
dx =

∫ ∞

−∞
f (x)

∣∣∣∣Im 1

x − R(z0)

∣∣∣∣ dx

holds for all essentially bounded function f (x).

From this Theorem 1 we can easily derive the following corollaries. If there exists a fixed
point z0 in C\R, we can immediately get that a Cauchy distribution (1/π)Im (1/(x − z0)) dx

is an invariant probability of the transformation R on R.

COROLLARY 1. Let R(z) be a function which satisfies the assumptions in Theorem 1.
Suppose also that R has a fixed point z0 = x0 + iy0 ∈ C+.

Then we have∫ ∞

−∞
f (R(x))

(
Im

1

x − z0

)
dx =

∫ ∞

−∞
f (x)

(
Im

1

x − z0

)
dx

for all bounded function f (x), that is, a Cauchy distribution (1/π)Im(1/(x − z0))dx is an
invariant probability of the transformation R on R.

In case there is a point z0 ∈ C+ with R(z0) = z0, the same result can be derived from
the fact that Im (1/(x − z0)) = −Im (1/(x − z0)).

COROLLARY 2. Let R(z) be a function which satisfies the assumptions in Theorem 1.
Suppose also that R has a point z0 = x0 + iy0 ∈ C+ with R(z0) = z0.

Then we have∫ ∞

−∞
f (R(x))

(
Im

1

x − z0

)
dx =

∫ ∞

−∞
f (x)

(
Im

1

x − z0

)
dx

for all bounded function f (x), that is, a Cauchy distribution (1/π)Im(1/(x − z0))dx is an
invariant probability of the transformation R on R.

In the article [7] the same results for a class of rational transformations

R(x) = αx + β −
n∑

k=1

bk

x − ak

are given by using the factor theorem, and their applications are discussed. We can use the
same idea in order to get the central limit theorem for more general transformations. Here we
repeat the outline.

Suppose that R has a point z0 = x0 + iy0 ∈ C+ with R(z0) = z0 or R(z0) = z0. We can
also use our result to study the ergodic properties of (R,μ) on R, where μ is an absolutely
continuous probability measure with a density (1/π)Im (1/(x − z0)). Note that we clearly
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have

Im
1

x − z0
= y0

(x − x0)2 + y0
2 = d

dx
arctan

(
x − x0

y0

)
for z0 = x0 + iy0 ∈ C+. Denote

ϕ(x) = arctan

(
x − x0

y0

)
.

Then we can prove that the transformation T (t) := ϕ(R(ϕ−1(t))) on (−π/2, π/2) preserves
the normalized Lebesgue measure λ and that (T , λ) is isomorphic to (R,μ). Hence, the above
results enable us to get the ergodic properties of the transformation R on R from those of T

on (−π/2, π/2) .
If the transformation R(x) is piecewise monotonic, it is clear that so is T . The piecewise

monotonic transformations on finite intervals have been investigated by many authors. In
particular, if piecewise monotonic transformations on finite intervals are uniformly expansive,
then it has been shown that they have good ergodic properties ([2], [3], [4], [5], [6], [8]). As
in [7] the relation

(T n)′(t) = |x − z0|2
|Rn(x) − z0|2 (Rn)′(x)

holds for almost all t ∈ (−π/2, π/2), where t = ϕ(x). This gives an easy sufficient condition
for T to be piecewise expanding, while N. F. G. Martin gave another sufficient condition
([11]).

Consequently, combining this relation with the known results, we can easily prove the

following Theorem 2, where N(0, σ 2)(y) (σ 2 > 0) stands for the distribution function of
Gaussian measure with mean 0 and variance σ 2 and N(0, 0)(y) stands for that of Dirac mea-
sure. We give only a sketch of the proof in Section 2, because it is the same to the proof
of Theorem 4 in the article [7]. Examples that satisfy the assumptions of Theorem 2 will be
found in Section 3.

THEOREM 2. Suppose that the function R(z) on C+ is not 1 to 1 and satisfies the
assumptions in Corollary 1 or Corollary 2. Suppose also the following:

(i) R \ E is a union of at most countable intervals Ij .

(ii) The restriction of R(x) to each interval Ij is monotonic and of C2-class.
(iii) The inequality

inf
x∈R\E

∣∣∣∣ |x − z0|2
|Rn(x) − z0|2 (Rn)′(x)

∣∣∣∣ > 1 (1)

holds for some positive integer n.
(iv) The set {R(Ij ); j } consists of a finite number of intervals.



180 HIROSHI ISHITANI

Suppose further that f (x) is a function of bounded variation on R and that ν is a probability
measure on R with a density dν/dμ with respect to the invariant probability measure μ.

Then the central limit theorem holds for the transformation R : the limit

lim
n→∞

1

n

∫ { n−1∑
k=0

(f (Rkx) − μ(f ))

}2

dμ =: σ 2 (2)

exists and

lim
n→∞ ν

{
1√
n

n−1∑
k=0

(f (Rkx) − μ(f )) ≤ y

}
= N(0, σ 2)(y) (3)

holds for all continuity points of N(0, σ 2)(y). If we suppose further that σ 2 > 0 and that

(1 + x2)(dν/dx) is of bounded variation, then there exists a constant C > 0 such that

sup
y∈R

∣∣∣∣ν{
1√
n

n−1∑
k=0

(f (Rkx) − μ(f )) ≤ y

}
− N(0, σ 2)(y)

∣∣∣∣ ≤ C√
n

. (4)

holds for all n ∈ N.

Corollaries 1 and 2 can be also applied to get invariant densities for a class of transforma-
tions on finite intervals. Let us consider a transformation T (t) := {f (t)}π on the finite interval
[−π/2, π/2), where f (t) is a real valued function on [−π/2, π/2) and {a}π := a − kπ for
−(π/2) + kπ ≤ a < (π/2) + kπ . Remark that R(x) := tan T (arctan x) is a transformation
of R and tan{f (arctan x)}π = tan f (arctan x). Then Corollaries 1 and 2 can be applied to the
transformation R(x) := tan T (arctan x), and we can easily get the following.

PROPOSITION 1. Suppose that the real valued function f (arctan x) on R can be ex-
tended to a function g(z) which satisfies the assumptions in Theorem 1. Suppose also that
there exists z0 = x0 + iy0 ∈ C+ with tan g(z0) = z0 or tan g(z0) = z0. Then the transforma-
tion T (t) := {f (t)}π on [−π/2, π/2) has the invariant probability density

1

π

(
y0(1 + tan2 t)

(tan t − x0)2 + y0
2

)
.

As examples, transformations {α tan t}π (α > 1) and {−α cot t}π (α > 0) on
[−π/2, π/2) are studied in Section 3.

2. Proofs

In this section we first give the proof of Theorem 1 and secondly the sketch of the proof
of Theorem 2.
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2.1. Proof of Theorem 1. Though G. Letac ([9]) has already proved a version of our
Theorem 1, we give another proof by using Cauchy’s integral formula.

Let us define

F(z) := 1

2π i

∫ ∞

−∞
1

x − z
f (x)dx (5)

for a continuous function f (x) on R with a compact support. Note that F(z) is known as a
defining function in the theory of Sato’s hyperfunction ([13]). It is clear that F(z) has the
following properties:

LEMMA 1. Let f (x) be a continuous function on R with a compact support.
Then F(z), defined by (5), has the following properties:
(1) F (z) is holomorphic in C+ ∪ C−.
(2) ReF(z) is bounded on C+ ∪ C−. Precisely, we have the estimation

|ReF(z)| ≤ 1

2
‖f ‖∞ . (6)

(3) ReF(z) converges to (1/2)f (x) as z ∈ C+ tends to x ∈ R: that is,

lim
z→x,z∈C+

ReF(z) = 1

2
f (x) . (7)

PROOF. It seems that the above results are clear and well known. Hence we repeat the
sketch of the proof of the equation (7) only.

First, we prove that ReF(x + iy) uniformly converges to (1/2)f (x) as y → +0. Putting
t = (s − x)/y, we get that∣∣∣∣ReF(x + iy) − 1

2
f (x)

∣∣∣∣ =
∣∣∣∣ 1

2π

∫ ∞

−∞
Im

(
1

s − (x + iy)

)
f (s)ds − 1

2
f (x)

∣∣∣∣
=

∣∣∣∣ 1

2π

∫ ∞

−∞
y

(s − x)2 + y2 f (s)ds − 1

2
f (x)

∣∣∣∣
= 1

2

∣∣∣∣ 1

π

∫ ∞

−∞
1

t2 + 1
(f (x + yt) − f (x)) dt

∣∣∣∣ .

Since f (x) is uniformly continuous, for any ε > 0 there exists δ(ε) > 0 such that if
|x1 − x2| < δ(ε), then |f (x1) − f (x2)| < ε. Note also that

1

π

∫ ∞

−∞
1

t2 + 1
dt = 1 .

Then for sufficiently large M(ε) we clearly get

1

π

∫
|t |≥M(ε)

1

t2 + 1
dt <

ε

2‖f ‖∞
. (8)
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Hence, if 0 < y < δ(ε)/M(ε), then we easily have the estimation∣∣∣∣ReF(x + iy) − 1

2
f (x)

∣∣∣∣ = 1

2

∣∣∣∣ 1

π

∫ ∞

−∞
1

t2 + 1
(f (x + yt) − f (x)) dt

∣∣∣∣
≤ 1

2

{ ∣∣∣∣ 1

π

∫
|t |≥M(ε)

2‖f ‖∞
t2 + 1

dt

∣∣∣∣ +
∣∣∣∣ 1

π

∫ M(ε)

−M(ε)

ε

t2 + 1
dt

∣∣∣∣}
< ε (9)

for any x ∈ R.
This uniform convergence of ReF(x + iy) and the uniform continuity of f (x) immedi-

ately show the equation (7). �

Remarking the above properties of a defining function F(z), we can get the following
key lemma.

LEMMA 2. Suppose that R(z) satisfies the conditions in Theorem 1 and that f is a
continuous function with a compact support. Suppose also R (C+) ⊂ C+. Then the equation

ReF(R(z0)) = 1

2π

∫ ∞

−∞
Im

1

x − z0
f (R(x))dx . (10)

holds for all z0 ∈ C+.

PROOF. Let us define

φz0(w) := z0w + z0

w + 1
. (11)

Then we have φz0(U) = C+ and φz0(S
1) = R, where U stands for the open unit disk

{z ∈ C : |z| < 1} and S1 for the unit circle {z ∈ C : |z| = 1}. Lemma 1 shows that
F(R(φz0(w))) is holomorphic in U . By γε we denote the positively oriented circle with cen-
ter 0 and radius 1 − ε (0 < ε < 1). Cauchy’s integral formula shows that

F(R(φz0(0))) = 1

2π i

∫
γε

F (R(φz0(w)))

w
dw

= 1

2π

∫ π

−π

F (R(φz0((1 − ε)eiθ )))dθ .

Therefore we get

ReF(R(z0)) = ReF(R(φz0(0))) = 1

2π

∫ π

−π

ReF(R(φz0((1 − ε)eiθ )))dθ . (12)

Since the inequality

|ReF(z)| ≤ 1

2
‖f ‖∞
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and the equation

lim
ε↓0

ReF(R(φz0((1 − ε)eiθ ))) = 1

2
f (R(φz0(e

iθ ))) a.e.

hold from Lemma 1, the dominated convergence theorem shows that

ReF(R(z0)) = 1

4π

∫ π

−π

f (R(φz0(e
iθ )))dθ . (13)

Note that φ−1
z0

(z) = −z + z0

z − z0
and (φ−1

z0
)′(z) = z0 − z0

(z − z0)2 hold. Then, putting eiθ = φ−1
z0

(x),

we can rewrite the right hand of (13) as

1

4π

∫ π

−π

f (R(φz0(e
iθ )))dθ = 1

4π i

∫ ∞

−∞
f (R(x))

(φ−1
z0

)′(x)

φ−1
z0 (x)

dx

= 1

4π i

∫ ∞

−∞
f (R(x))

(
1

(x − z0)
− 1

(x − z0)

)
dx

= 1

2π

∫ ∞

−∞
f (R(x))Im

(
1

x − z0

)
dx .

This completes the proof. �

This Lemma 2 immediately shows Theorem 1. In fact, from Lemma 2

ReF(R(z0)) = 1

2π

∫ ∞

−∞
f (R(x))Im

(
1

x − z0

)
dx .

holds for a continuous function f with compact support and z0 ∈ C+. On the other hand, the
definition (5) of F(z) implies

ReF(R(z0)) = 1

2π

∫ ∞

−∞
f (x)Im

(
1

x − R(z0)

)
dx .

Hence, if we suppose the assumptions of Theorem 1 and R(C+) ⊆ C+, then the result of
Theorem 1 for a continuous function f with compact support∫ ∞

−∞
f (R(x))Im

(
1

x − z0

)
dx =

∫ ∞

−∞
f (x)Im

(
1

x − R(z0)

)
dx (14)

clearly follows. Remark that Im
1

x − z0
and Im

1

x − R(z0)
are integrable on (−∞,∞). Then

we can insist that the result (14) holds for all essentially bounded function f (x). This proves
Theorem 1 in case R(C+) ⊆ C+.

If R(C+) ⊆ C−, put R̃(z) := 2x0 − R(z). Then we clearly get that R̃(z) satisfies the
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assumptions in Theorem 1 and R̃(C+) ⊆ C+. Thus we have, putting y = 2x0 − x,∫ ∞

−∞
f (R(x))Im

(
1

x − z0

)
dx =

∫ ∞

−∞
f (2x0 − R̃(x))Im

(
1

x − z0

)
dx

=
∫ ∞

−∞
f (2x0 − x)Im

(
1

x − R̃(z0)

)
dx

=
∫ ∞

−∞
f (y)Im

(
1

2x0 − y − R̃(z0)

)
dy

=
∫ ∞

−∞
f (y)Im

(
1

−y + R(z0)

)
dy

=
∫ ∞

−∞
f (y)

∣∣∣∣Im (
1

y − R(z0)

)∣∣∣∣ dy .

This proves the result in the case R(C+) ⊆ C−. Thus the proof of Theorem 1 is completed.

2.2. Proof of Theorem 2. Let z0 = x0 + iy0 ∈ C+ satisfy the relation R(z0) = z0

or R(z0) = z0. Then Corollary 1 or Corollary 2 shows that dμ := (1/π)ϕ′(x)dx is an
invariant probability for the transformation R where ϕ(x) := arctan{(x − x0)/y0}. Define the

transformation T on the interval (−π/2, π/2) by T (t) := ϕ(R(ϕ−1(t))). Then we can get
the following Lemma, which is a key to the proof of Theorem 2.

LEMMA 3. Suppose that the conditions on R in Theorem 2 are satisfied. Then (R,μ)

is measure theoretically isomorphic to (T , λ), where λ denotes the normalized Lebesgue mea-
sure on the interval (−π/2, π/2) and is invariant under T . Furthermore, T has the following
properties:

(1) The restrictions T |ϕ(Ij ) of T to the intervals ϕ(Ij ) are monotonic and of C2-class.

(2) The set {T (ϕ(Ij )); j } consists of a finite number of intervals.
(3) The equation

(T n)′(t) = |x − z0|2
|Rn(x) − z0|2 (Rn)′(x) (15)

holds for all t /∈ {ϕ(E)} where x = ϕ−1(t), and hence the inequality

inf
t /∈ϕ(E)

∣∣(T n)′(t)
∣∣ > 1 (16)

holds for some positive integer n.

PROOF. Recall that we have

Im
1

x − z0
= y0

(x − x0)2 + y0
2 = d

dx
arctan

(
x − x0

y0

)
= ϕ′(x) .
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This is followed by

λ(A) = 1

π

∫ π
2

− π
2

IA(t)dt = 1

π

∫ ∞

−∞
IA(ϕ(x))ϕ′(x)dx = μ(ϕ−1(A)) .

Hence, we have that λ(A) = μ(ϕ−1(A)) and (R,μ) is measure theoretically isomorphic to
(T , λ). This immediately shows that T preserves the normalized Lebesgue measure λ, since
R preserves μ.

Because R|Ij and ϕare monotonic and of C2-class, T |ϕ(Ij ) are also monotonic and of

C2-class. Similarly, it is also clear that the set {T (ϕ(Ij )); j } consists of a finite number of
intervals.

Recall that ϕ(x) = arctan{(x − x0)/y0} and hence ϕ−1(t) = x0 + y0 tan t . Then we
easily have

(T n)′(t) = ϕ′(Rn(ϕ−1(t))) (Rn)′(ϕ−1(t)) (ϕ−1)′(t)

= y0

(Rn(ϕ−1(t)) − x0)2 + y0
2 (Rn)′(ϕ−1(t))y0(1 + tan2 t)

= (x − x0)
2 + y0

2

(Rn(x) − x0)2 + y0
2 (Rn)′(x)

= |x − z0|2
|Rn(x) − z0|2 (Rn)′(x) ,

where x = ϕ−1(t). This completes the proof. �

Lemma 3 shows that the dynamical system (R,μ) on the real line R is isomorphic to
(T , λ) on the finite interval (−π/2, π/2) and that (T , λ) is piecewise smooth and piecewise
monotonic. The relation (16) implies that the transformation T is piecewise expanding and
smooth enough if the assumptions in Theorem 2 are satisfied.

On the other hand it is already known that such T has a finite number of absolutely
continuous ergodic invariant measures λ1, λ2, . . . , λM and the other absolutely continuous
invariant measures are convex combinations of them (cf. [3], [4], [5] and [10]). Birkhoff’s

ergodic theorem shows that if f̃ ∈ L1(λi) then

lim
n→∞

1

n

n−1∑
k=0

f̃ (T kt) =
∫

f̃ dλi (λi a.e.)

holds. Note that the supports of ergodic measures are mutually disjoint and that the normal-

ized Lebesgue measure λ is also a convex combination of λ1, λ2, . . . , λM . Hence if f̃ is a

λ-integrable function, then f̃ is λi -integrable for all i = 1, 2, . . . ,M . This observation shows
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that for a λ-integrable function f̃

lim
n→∞

1

n

n−1∑
k=0

f̃ (T kt) = f̃ ∗(t) (λ a.e.) (17)

holds and f̃ ∗(t) = ∫
f̃ dλi for λ-a.e.t ∈ supp {λi} (i = 1, 2, . . . ,M).

In order to prove our result, we apply Theorem 1 in [6] to the transformation in question

(see also [5] and [12]). Hence, if f̃ is a function of bounded variation defined on the inter-
val (−π/2, π/2) and if ν̃ is an absolutely continuous probability measure, then there exist

nonnegative constants c1, c2, . . . , cM with
∑M

i=1 ci = 1 and σi
2 ≥ 0 (i = 1, 2, . . . ,M) for

which

lim
n→∞ ν̃

{
1√
n

n−1∑
k=0

(f̃ (T kt) − f̃ ∗(t)) ≤ y

}
=

M∑
i=1

ciN(0, σi
2)(y) (18)

holds for all continuity points of the right hand side. If we assume further that σi
2 > 0 for all

i = 1, 2, . . . ,M , and that dν̃/dλ is of bounded variation, then

sup
y∈R

∣∣∣∣ν̃{
1√
n

n−1∑
k=0

(f̃ (T kt) − f̃ ∗(t)) ≤ y

}
−

M∑
i=1

ciN(0, σi
2)(y)

∣∣∣∣ ≤ C√
n

(19)

for some C > 0.
J. Aaronson ([1]) proved that (R,μ) is exact if R(z) is not 1 to 1. Therefore the number

M of absolutely continuous ergodic measures for T is equal to 1. It follows that λ is the unique

invariant probability and f̃ ∗(t) = λ(f̃ ). Let f (x) be a function of bounded variation on R.

Then f̃ (t) := (f ◦ ϕ−1)(t) is also a function of bounded variation, because ϕ−1(t) is strictly
increasing. Suppose that ν is a probability measure on R which is absolutely continuous with
respect to μ. Then it is clear that the probability measure ν̃(A) := ν(ϕ−1A) is absolutely
continuous with respect to λ.
Note that we have

ν̃

{
t ∈ (−π/2, π/2) ; 1√

n

n−1∑
k=0

(
f̃ (T kt) − λ(f̃ )

) ≤ y

}

= (ν ◦ ϕ−1)

{
t ∈ (−π/2, π/2) ; 1√

n

n−1∑
k=0

(
f̃ (T kt) − λ(f̃ )

) ≤ y

}

= ν

{
x ∈ R ; 1√

n

n−1∑
k=0

((
f ◦ ϕ−1)(T kϕ(x)

) − λ(f ◦ ϕ−1)
) ≤ y

}

= ν

{
x ∈ R ; 1√

n

n−1∑
k=0

(
f (Rkx) − μ(f )

) ≤ y

}
.

(20)
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Therefore we get the relation (3), combining (18), (20) and the fact that M = 1.
On the other hand we have

ν̃(A) =
∫

ϕ−1A

dν

dx
(x)dx

=
∫

A

dν

dx
(ϕ−1(t))(ϕ−1)′(t)dt

=
∫

A

dν

dx
(ϕ−1(t))y0(1 + tan2 t)dt

=
∫

A

dν

dx
(ϕ−1(t))y0

(
1 +

(
ϕ−1(t) − x0

y0

)2)
dt .

This shows

dν̃

dλ
= dν

dx
(ϕ−1(t))y0

(
1 +

(
ϕ−1(t) − x0

y0

)2)
.

Therefore, because ϕ−1 is strictly increasing, the total variation of dν̃/dλ on the interval
(−π/2, π/2) is equal to the one of

y0

(
1 +

(
x − x0

y0

)2)
dν

dx
(x)

on the real line R. Thus, if (x2 + 1)(dν/dx) is of bounded variation, so is dν̃/dλ. This and
(19) show the inequality (4) of Theorem 2.

3. Examples

In this section we consider examples which satisfy the assumptions in Theorems 1 and
2.

First let us note the following remark.

REMARK 1. Let us define R̃(z) := −R(z) + 2x0. Then we have the following:
(1) R̃(C+) ⊆ C− holds, if and only if R(C+) ⊆ C+.
(2) R̃(x0 + iy0) = x0 − iy0, if and only if R(x0 + iy0) = x0 + iy0.

Therefore, it is enough to consider only the examples which satisfy R(C+) ⊆ C+.

3.1. Rational transformations R(x) = αx +β −∑n
k=1 bk/(x−ak). Let us consider

the rational transformations of the form

R(z) = αz + β −
n∑

k=1

bk

z − ak

, (21)

where 0 ≤ α < 1, bk > 0 (k = 1, . . . , n), a1 < a2 < · · · < an.
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In the article [7], these transformations were proved, by using the different method, to
have the same result. A sufficient condition for the existence of a fixed point z0 ∈ C \ R is
given in Proposition 3.1 of [7].

PROPOSITION 2. Let us define

R(x) = αx + β −
n∑

k=1

bk

x − ak

for 0 ≤ α < 1, bk > 0 (k = 1, . . . , n), a1 < a2 < · · · < an. Assume further that a1 ≤
(β/(1 − α)), an ≥ (β/(1 − α)) and

ai+1 − ai <

√
{bi

1/3 + bi+1
1/3}3

1 − α
(22)

for i = 1, 2, . . . , n − 1. Then there exists z0 ∈ C+ \ R with R(z0) = z0.

Therefore, the transformations of the form (21) have the result of Corollary 1, if the
assumptions of Proposition 2 are satisfied. The ergodic properties of these transformations
are discussed in [7].

Let us consider the transformation R(x) = αx − x−1 with 0 < α < 1. We can eas-
ily get that there exists a unique fixed point z0 = iy0 = i

√
1/(1 − α) of R in C+ in this

case. Corollary 1 shows that dμ = π−1Im (1/(x − iy0)) dx is an invariant probability for the
transformation R.

Let us consider the transformation T (t) := ϕ(R(ϕ−1(t))), where ϕ(x) := arctan(x/y0).
Using Lemma 3 we have

T ′(t) = |x − z0|2
|R(x) − z0|2 R′(x)

= αx2 + 1

α2x2 + 1 − α
.

(23)

Hence, the transformation T on (−π/2, π/2) is uniformly expansive. Precisely, we have

T ′(t) ≥ min

(
1

α
,

1

1 − α

)
> 1

for all t �= 0 ([7]). It is also clear that R(z) is not 1 to 1. Therefore, R(x) = αx − x−1

(0 < α < 1) satisfies the assumptions of Theorem 2, so that we have the ergodic theorem and
the ordinary central limit theorem for (R,μ).

If the number n of poles is more than 2, it is generally not easy to get the desired esti-
mation of |T ′(t)|. However, there are some examples that satisfy the assumption of Theorem
2.
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Let us consider the transformation

R(x) = αx − 1

x − 1
− 1

x + 1

with 0 ≤ α < 1. We can easily get that R(iy0) = iy0, where y0 = √
(1 + α)/(1 − α). We

can obtain

T ′(t) = α(x2 − 1)2 + 2x2 + 2

α2(x2 − 1)2 + (1 − α)2x2 + (1 − α)(1 + α)
. (24)

Using the equation (24), for 0 < α < 1 we also get the inequality

T ′(t) ≥ min

(
1

α
,

1

1 − α

)
> 1

for all t /∈ {−π/2, ϕ(−1), ϕ(1), π/2} ([7]). If α = 0, then it is clear that the right hand side
of (24) is equal to 2 and

T (t) =

⎧⎪⎪⎨⎪⎪⎩
2t + π (−π/2 < t < −π/4) ,

2t (−π/4 < t < π/4) ,

2t − π (π/4 < t < π/2) .

Consequently, Theorem 2 can be also applied to these transformations.

3.2. Transformations R(x) = αx − ∑∞
k=1{bk/(x − ak) + bk/(x + ak)}. Define

R(z) = αz −
∞∑

k=1

{
bk

z − ak

+ bk

z + ak

}
(25)

for 0 ≤ α < 1, 0 < ak , and 0 < bk(k = 1, 2, . . . ). Then it is clear that R(C+) ⊆ C+ and the
assumptions of Theorem 1 are satisfied. In order to check the existence of the fixed point we
have the following sufficient condition.

PROPOSITION 3. Assume that

∞∑
k=1

bk < ∞ and 1 − α <

∞∑
n=1

2bn

a2
n

< ∞ . (26)

Then there exists y0 > 0 such that R(y0i) = y0i holds.

PROOF. From the definition (25) of R we have the equation

R(yi) = αyi −
∞∑

n=1

{
bn

yi − an

+ bn

yi + an

}

=
(

α +
∞∑

n=1

{
2bn

y2 + a2
n

})
yi .
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On the other hand the assumption (26) shows that there exists y0 > 0 which satisfies the
relation

α +
∞∑

n=1

2bn

y2
0 + a2

n

= 1 .

This completes the proof. �

Thus we have the result of Theorem 1 for transformations in question.

3.3. Transformations R(x) = αx + β tan x. Let us consider the transformation

R(z) = αz + β tan z (27)

for 0 ≤ α and 0 < β. Then R(z) is holomorphic in C+ ∪ C−. Remark that we have

Re (tan(x + iy)) = 2 sin 2x

(e2y + e−2y) + 2 cos 2x
(28)

and

Im (tan(x + iy)) = e2y − e−2y

(e2y + e−2y) + 2 cos 2x
. (29)

Hence, we immediately get the relations R (C+) ⊂ C+ and R (C−) ⊂ C− from the equation
(29).

In order to apply Corollary 1 we have the following proposition which gives a sufficient
condition for the existence of the fixed point z0 ∈ C+.

PROPOSITION 4. If 0 ≤ α < 1 < α + β, then there exists a unique positive number
y0 which satisfies R(iy0) = iy0.

PROOF. The well known equation tan iz = i tanh z shows that

R(iy) = i
{
αy + β tanh y

} = i

{
αy + β

ey − e−y

ey + e−y

}
.

Clearly tanh y has the following properties ;

tanh 0 = 0 , lim
y→∞ tanh y = 1 , tanh′ 0 = 1 , tanh′ y > 0 , tanh′′ y < 0 (y > 0) .

These properties and the assumption 0 ≤ α < 1 < α + β enable us to have a unique positive
number y0 which satisfies the equation αy0 +β tanh(y0) = y0. This proves our assertion. �

From this proposition and Corollary 1, it follows that a transformation R(x) =
αx + β tan x has an invariant probability density y0/π(x2 + y0

2) if 0 ≤ α < 1 < α + β.
In order to check the condition (1) we have the following estimation.
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PROPOSITION 5. Suppose that 0 ≤ α < 1 < α + β. Then for all n ≥ 2 the estimation

ess. inf

∣∣∣∣ |x − z0|2
|Rn(x) − z0|2 (Rn)′(x)

∣∣∣∣ > min

{
1,

βy0
2

(α + β)

}
(α + β)n−2 (30)

holds, where z0 = iy0 stands for the fixed point of R.

PROOF. First, remark that the chain rule ensures us to have the inequality

|x − z0|2
|Rn(x) − z0|2 (Rn)′(x)

=
(

x2 + y0
2(

αx + β tan Rn−1(x)
)2 + y0

2

) n∏
k=1

{
R′(Rk−1(x))

}
=

(
x2 + y0

2(
αx + β tan Rn−1(x)

)2 + y0
2

) n∏
k=1

{
α + β + β tan2(Rk−1(x))

}
≥

((
x2 + y0

2
) (

α + β + β tan2(Rn−1(x))
)(

αx + β tan Rn−1(x)
)2 + y0

2

)
(α + β)n−1

for all x ∈ R \ E. If |x| ≤ ∣∣tan Rn−1(x)
∣∣, then we clearly have the estimation(

x2 + y0
2
) (

α + β + β tan2(Rn−1(x))
)(

αx + β tan Rn−1(x)
)2 + y0

2
≥ y0

2
(
α + β + β tan2(Rn−1(x))

)
(α + β)2 tan2 Rn−1(x) + y0

2

≥ min

{
βy0

2

(α + β)2
, (α + β)

}
.

If |x| ≥ ∣∣tan Rn−1(x)
∣∣, then it is also clear that the inequality(

x2 + y0
2
) (

α + β + β tan2(Rn−1(x))
)(

αx + β tan Rn−1(x)
)2 + y0

2
≥

(
x2 + y0

2
)
(α + β)

(α + β)2x2 + y0
2

≥ 1

α + β

holds. Thus we get the inequality (30) . �

From Propositions 4 and 5 it follows that Theorem 2 can be applied to the transformation
R(x) = αx + β tan x if 0 ≤ α < 1 < α + β. J. Aaronson remarked that transformations
(R,μ) in question are exact if it is not 1 to 1 ([1]). Therefore we have the following.

THEOREM 3. Let R(x) = αx + β tan x and 0 ≤ α < 1 < α + β. Suppose further that
f (x) is a function of bounded variation on R and that ν is a probability measure on R with a
density dν/dμ. Then the limit

lim
n→∞

1

n

∫ { n−1∑
k=0

(f (Rkx) − μ(f ))

}2

dμ =: σ 2
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exists and

lim
n→∞ ν

{
1√
n

n−1∑
k=0

(f (Rkx) − μ(f )) ≤ y

}
= N(0, σ 2)(y)

holds for all continuity points of N(0, σ 2)(y).

If we suppose further that σ 2 > 0 and that (1 + x2)(dν/dx) is of bounded variation,
then there exists a constant C > 0 such that

sup
y∈R

∣∣∣∣ν{
1√
n

n−1∑
k=0

(f (Rkx) − μ(f )) ≤ y

}
− N(0, σ 2)(y)

∣∣∣∣ ≤ C√
n

holds for all n ∈ N.

3.4. Transformations on a finite interval. We discuss some examples which satisfy
the assumptions in Proposition 1.

Let us consider f (t) := α tan t on [−π/2, π/2). Then g(x) = f (arctan x) on R can
be extended to a function g(z) = αz on C, which satisfies the assumptions of Theorem 1.
As in the above subsection, it is clear that for α > 1 there exists z0 = iy0 ∈ C+ such
that tan(αiy0) = iy0. Hence, the transformation T (t) := {α tan t}π on [−π/2, π/2) has the
invariant probability density

1

π

(
y0(1 + tan2 t)

tan2 t + y0
2

)
.

Consider a function f (t) := −α cot t on [−π/2, π/2). Then g(x) = f (arctan x) on R
can be extended to a function g(z) = (−α/z) on C, which also satisfies the assumptions of
Theorem 1. Using the equation tan(−α/iy0) = i tanh(α/y0), we can prove that for α > 0
there exists z0 = iy0 ∈ C+ such that tan(−α/iy0) = iy0. Hence, the transformation T (t) :=
{−α cot t}π on [−π/2, π/2) has the invariant probability density

1

π

(
y0(1 + tan2 t)

tan2 t + y0
2

)
.

References

[ 1 ] J. AARONSON, Ergodic theory for inner functions of the upper half plane, Ann. Inst. Henri Poincare 14 (1978),
233–253.

[ 2 ] R. BOWEN, Bernoulli maps of the interval, Israel J. Math. 28 (1977), 161–168.
[ 3 ] A. BOYARSKY and P. GÓRA, Laws of chaos: invariant measures and dynamical systems in one dimension,

Birkhäuser: Boston, 1997.
[ 4 ] F. HOFBAUER and G. KELLER, Ergodic properties of invariant measures for piecewise monotonic transfor-

mations, Math. Zeitschrift. 180 (1982), 119–140.
[ 5 ] H. ISHITANI, A central limit theorem of mixed type for a class of 1-dimensional transformations, Hiroshima

Math. J. 16 (1986), 161–188.



TRANSFORMATIONS WHICH PRESERVE CAUCHY DISTRIBUTIONS 193

[ 6 ] H. ISHITANI, Central limit theorems for the random iterations of 1-dimensional transformations, Dynamics of
complex systems, Kokyuroku, RIMS, Kyoto Univ. 1404 (2004), 21–31.

[ 7 ] H. ISHITANI and K. ISHITANI, Invariant measures for a class of rational transformations and ergodic proper-
ties, Tokyo J. Math. 30 (2007), 325–341.

[ 8 ] A. LASOTA and J. A. YORKE, On the existence of invariant measures for piecewise monotonic transforma-
tions, Trans. Amer. Math. Soc. 186 (1973), 481–488.

[ 9 ] G. LETAC, Which Functions Preserve Cauchy Laws? Proc. Amer. Math. Soc. 67 (1977), 277–286.
[10] T. Y. LI and J. A. YORKE, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc. 235

(1978), 183–192.
[11] N. F. G. MARTIN, On finite Blaschke products whose restrictions to the unit circle are exact endomorphisms,

Bull. London Math. Soc. 15 (1983), 343–348.
[12] J. ROUSSEAU-EGELE, Une théorème de la limite locale pour une classe de transformations dilatantes et mono-

tones par morceaux, Ann. Probab. 11 (1983), 772–788.
[13] M. SATO, Theory of hyperfunctions I, J. Fac. Sci. Univ. Tokyo, Sec. I 8 (1959), 139–193.

Present Address:
DEPARTMENT OF MATHEMATICS,
MIE UNIVERSITY,
TSU, MIE, 514–8507 JAPAN.
e-mail: ishitani@edu.mie-u.ac.jp


