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Abstract. In this article, we study a class of groups which are commensurable with a direct product of the
discrete Heisenberg group and a free abelian group, or a free abelian group by using zeta functions of groups defined
by Grunewald, Segal, and Smith as generating functions of the number of subgroups of given index n. We will show
that zeta functions determine their isomorphism classes for groups belonging to the above class

1. Introduction

In this paper, we study a certain type of groups by using zeta functions of groups that
were introduced in [2], by F. J. Grunewald, D. Segal, and G. C. Smith to study the subgroup
growth of finitely generated groups.

Given a finitely generated group G, let an(G) be the number of subgroups of index n,
for each positive integer n. The zeta function of G is defined as the Dirichlet series associated
to the sequence {an(G)}n, and this function is denoted by ζG i.e.,

ζG(s) :=
∞∑

n=1

an(G)n−s =
∑

H :[G:H ]<∞
[G : H ]−s .

For each prime p, ζG,p(s) is also defined as

ζG,p(s) :=
∞∑

k=0

apk(G)p−ks .

EXAMPLE 1. If G = Z, the subgroup of each index of G is unique, so that ζZ(s) is
equal to the Riemann zeta function denoted by ζ(s), and ζZ,p(s) is its Euler p-factor ζp(s)

i.e., (1 − p−s )−1.

EXAMPLE 2. ([2]) If G = Zm, we have

ζZm(s) = ζ(s)ζ(s − 1) · · · ζ(s − m + 1) .

Received September 26, 2011; revised March 26, 2012; revised April 16, 2012



164 FUMITAKE HYODO

Next example is the case where G is a non-abelian group.

EXAMPLE 3 ([4], Theorem 2.22). Define a subgroup U3(Z) of GL3(Z) as follows:

U3(Z) :=
⎧⎨
⎩

⎛
⎝1 a b

0 1 c

0 0 1

⎞
⎠

∣∣∣∣∣∣ a, b, c ∈ Z

⎫⎬
⎭ ,

and put G = U3(Z) × Zm−1 for a positive integer m. Then we have

ζU3(Z)×Zm−1(s) = ζ
Zm+1(s)ζ(2s − m − 1)ζ(2s − m − 2)

ζ(3s − m − 2)
.

The above group U3(Z) is usually called the discrete Heisenberg group.
In general, zeta functions are expected to have good properties such as natural Euler prod-

uct expansions, mermorphic extensions to the whole complex plane, and functional equations.
It was shown that if G is torsion-free, finitely generated, and nilpotent, the zeta function

of G satisfies following good properties (cf. [2], [6]):

1. {an(G)}n has a polynomial growth i.e., there exists c ∈ Z>0 such that an(G) < nc.
Hence ζG(s) has a non-empty domain of convergence.

2. {an(G)}n is multiplicative, hence ζG(s) = ∏
p ζG,p(s).

3. For all p, there exists a rational function fp(X) ∈ Q(X) such that ζG,p(s) = fp(p−s ),
hence ζG,p(s) can be continued to a meromorphic function on the whole complex
plane.

4. For all but finitely many primes p, ζG,p(s) satisfies a local functional equation
(cf. [6]).

Now a fundamental question that arises here is to ask, what kind of equivalence class
of G is determined by the zeta function ζG(s). In particular, does ζG(s) = ζG′(s) implies
G ∼= G′ ? Unfortunately, the latter question has a negative answer (cf. [1], Proposition B,
or [3], Example 4), but it is known that normal zeta functions determine finitely generated,
torsion free, nilpotent groups in a certain class up to commensurability (Corollary 8.3 in [2]),
where normal zeta functions mean generating functions obtained by counting only normal
subgroups. Recall that G and H are commensurable if and only if there exists a group which
is isomorphic to a subgroup of finite index in each of G and H .

The purpose of this article is to give a positive answer to the latter question in the case
G belongs to a class of finitely generated, torsion-free, and nilpotent groups to which the
discrete Heisenberg group belongs and which every G in this class is commensurable with

U3(Z) × Zm−1 for some m, or a free abelian group. It is achieved by computing the explicit
form of the zeta function for G belonging to our class.

The construction of this paper is as follows. In section 2, we introduce the class of groups
which we study in this paper. Section 3 is a preparation to section 4, where we state the main
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theorems, and give a part of the proof of them. Finally, we complete this by calculating the
zeta functions in section 5 and 6.

2. The group (Zn, Zm; f )

The group we study in this paper is given for a pair of nonnegative integers n, m ∈ Z≥0

and a bilinear map f : Zn × Zn → Zm, and we shall denoted by (Zn, Zm; f ).

DEFINITION 1. Let n,m and f be as above. Then we define the group (Zn, Zm; f )

as follows:

1. As a set we have (Zn, Zm; f ) = Zn × Zm.
2. The composition of (a, b), (a′, b′) ∈ Zn × Zm is defined by

(a, b)(a′, b′) := (a + a′, b + b′ + f (a, a′)).

The associative law for this composition is easily checked using that f is a bilinear form.
Note also that the identity element of this group is (0, 0), and the inverse element of (a, b) is
(−a,−b + f (a, a)).

Free abelian groups, the discrete Heisenberg group are isomorphic to (Zn, Zm; f ) for
some n,m, f as follows.

EXAMPLE 4. If n = 0, then this group is isomorphic to Zm.

EXAMPLE 5. If n = 2, m = 1 and f : Z2 × Z2 → Z is given by((
a

c

)
,

(
a′
c′

))
�→ ac′ ,

then this group is isomorphic to the discrete Heisenberg group.

It is easy to see that the group G = (Zn, Zm; f ) has the following properties.

1. For every k ∈ Z, (a, b)k = (ka, kb + k(k−1)
2 f (a, a)), so this group is torsion free.

2. The commutator of (a, b), (a′, b′) is

[(a, b), (a′, b′)] = (0, f (a, a′) − f (a′, a)).

Especially, we have

[(a, b), (0, b′)] = (0, 0).

3. The subgroup N = {(0, b) | b ∈ Zm} is contained in the center of G, and G/N is
isomorphic to Zn. Hence G is nilpotent.

4. Let {ei}ni=1, {e′
j }mj=1 be the standard basis of Zn, Zm respectively. Then G is gener-

ated by {(ei, 0)}, {(0, e′
j )}. Hence G is finitely generated.

Thus we see that the group (Zn, Zm; f ) is finitely generated, torsion free, and nilpotent
of class 2 and Hirsch length n + m. From now on, we consider the following two problems.
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1. To classify the groups {(Zn, Zm; f )} up to isomorphism.
2. To compute explicitly the zeta function of (Zn, Zm; f ).
These questions are not independent. It is indeed an interesting question to ask if the zeta

function of (Zn, Zm; f ) determines its isomorphism class.

3. Expressions by matrices

Let Mn(Z
m) be the set of n×n matrices whose entries are elements of the abelian group

Zm. It has a natural additive group structure. We define actions of the rings Mm(Z) and
Mn(Z) on this group. For

A =
⎛
⎜⎝

a11 . . . a1n

...
. . .

...

an1 . . . ann

⎞
⎟⎠ ∈ Mn(Z

m), b =
⎛
⎜⎝

b1
...

bn

⎞
⎟⎠ ∈ Zn ,

we define the product Ab by

Ab :=
⎛
⎜⎝

a11b1 + a12b2 + · · · + a1nbn

...

an1b1 + an2b2 + · · · + annbn

⎞
⎟⎠

the product t bA is defined similarly, where tb is the transpose of b. Using these products we
put, for a matrix B = (b1, . . . , bn) ∈ Mn(Z),

AB := (Ab1, . . . , Abn) ∈ Mn(Z
m) ,

tBA := (tb1A, . . . , t bnA) ∈ Mn(Z
m) .

In this way we regard Mn(Z
m) as a right and left Mn(Z)-module. Also for B ∈ Mm(Z), we

define:

BA :=
⎛
⎜⎝

Ba11 . . . Ba1n

...
. . .

...

Ban1 . . . Bann

⎞
⎟⎠ ∈ Mn(Z

m) .

Thus Mn(Z
m) is regarded as a left Mm(Z)-module as well.

From a bilinear map f : Zn × Zn → Zm, we define the matrix A by

A :=
⎛
⎜⎝

f (e1, e1) . . . f (e1, en)
...

. . .
...

f (en, e1) . . . f (en, en)

⎞
⎟⎠ ∈ Mn(Z

m) .

Then we have f (a, a′) = t aAa′ for every (a, a′) ∈ Zn × Zn.
So we shall often denote the group (Zn, Zm; f ) by (Zn, Zm; A). With this notation

Example 5 can be stated as follows:
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EXAMPLE 6. If A =
(

0 1
0 0

)
, then (Z2, Z1; A) is isomorphic to U3(Z)

The n-th discrete Heisenberg groups Hn (cf. [5] ) is isomorphic to (Z2n, Z; A) for some
A ∈ M2n(Z):

EXAMPLE 7. If A =
(

O En

O O

)
, Hn is isomorphic to (Z2n, Z; A), where En is the

identity matrix in Mn(Z).

4. Classification of isomorphism classes of {(Zn, Zm; A)}
According to the problem in section 2, we classify the set of groups {(Zn, Zm; A) |A ∈

Mn(Z
m)} up to isomorphism. First of all the following two isomorphisms are obvious :

PROPOSITION 1.

(1) (Zn, Zm; tXAX) ∼= (Zn, Zm; A) (X ∈ GLn(Z))

(a, b) �→ (Xa, b)

(2) (Zn, Zm; A) ∼= (Zn, Zm; YA) (Y ∈ GLm(Z))

(a, b) �→ (a, Yb)

In what follows we shall fix n and m, and denote our group by G(A) := (Zn, Zm; A)

for A ∈ Mn(Z
m). We consider the relations of a system of generators of G(A). Put xi =

(ei , 0) (1 ≤ i ≤ n), yi = (0, e′
j ) (1 ≤ j ≤ m), zij (A) = [xi, xj ] (1 ≤ i < j ≤ n). Then

zij (A)’s are generated by y1, . . . , ym. Moreover, xi’s and yj ’s form a system of generators of
G(A), and satisfy the following relations:

1. [xi, xj ] = zij (A) (1 ≤ i < j ≤ n)

2. [xi, yj ] is the identity element (1 ≤ i ≤ n, 1 ≤ j ≤ m)

3. [yi, yj ] is the identity element (1 ≤ i < j ≤ m).

Let G̃(A) denote the quotient group of the free group on the words
{x1, . . . , xn, y1, . . . , ym} by the above relations. Then we have:

LEMMA 1. The canonical homomorphism

G̃(A) −→ G(A)

is an isomorphism.

PROOF. The surjectivity is trivial. By the above relations, we see that each x ∈ G(A)

is uniquely expressed in the following way

x =
n∏

i=1

x
ai

i

m∏
j=1

y
bj

j , ai, bj ∈ Z.
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Since G̃(A) has the same property, this morphism is injective. �

PROPOSITION 2. If A − A′ is symmetric, then the map (Zn, Zm; A) → (Zn, Zm; A′)
induced by the identity map of Zn × Zm is an isomorphism.

PROOF. By the above Lemma, it is sufficient to prove G̃(A) = G̃(A′). For all x, y ∈
Zn × Zm, the commutator of x and y in (Zn, Zm; A) is equal to the commutator of them in

(Zn, Zm; A′). So the relations of the generators of G̃(A) and G̃(A′) are the same, Hence

G̃(A) = G̃(A′). �

Now, we can state the main theorem of this paper. It gives the classification and the
concrete expression of zeta functions of these groups in the case n = 2.

For α ∈ Z we put

G(α) =
(

Z2, Z;
(

0 α

0 0

))
.

THEOREM 1. (1) For each A ∈ M2(Z
m), there exists a unique α ∈ Z≥0 such that

(Z2, Zm; A) is isomorphic to G(α) × Zm−1.
(2) The Euler p-factor of ζG(α)×Zm−1(s) is given as

ζG(α)×Zm−1,p(s)

= ζZm+2,p(s)

(
1 − p−ρ(s,α) ζp(2s − m − 1)ζp(2s − m − 2)

ζp(s)ζp(s − 1)

)
,

where ρ(s, α) = (s − m − 1)(vp(α) + 1), and vp(∗) denotes the p-adic additive valuation.

(We make the convention that p−ρ(s,0) ≡ 0.)

(3) If α = 1, we recover the result of Example 3, i.e.,

ζG(1)×Zm−1(s) = ζ
Zm+1(s)ζ(2s − m − 1)ζ(2s − m − 2)

ζ(3s − m − 2)
,

REMARK 1. This theorem implies ζG(α)×Zm−1 is finitely uniform in the sense of
[4],1.2.4.

REMARK 2. For each A ∈ M2(Z
m), there exists a non negative integer α such that

(Z2, Zm; A) is isomorphic to G(α) × Zm−1. If α �= 0, G(α) is isomorphic to the finite
index subgroup of G(1). This embedding is defined by (e1, 0) �→ (αe1, 0), (e2, 0) �→
(e2, 0), (0, 1) �→ (0, 1). If α = 0, G(α) is isomorphic to Z3. Thus (Z2, Zm; A) is com-

mensurable with U3(Z) × Zm−1 or Zm+2.

Let α, α′ be distinct nonnegative integers, and put G = G(α) × Zm−1, G′ = G(α′) ×
Zm−1. By the above theorem, G is not isomorphic to G′, and there exists a prime number p

such that ζG,p(s) �= ζG′,p(s). Hence we have:
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THEOREM 2. A group G ∈ {(Z2, Zm; A) | A ∈ M2(Z
m), m ∈ Z≥1} is determined by

ζG(s) up to isomorphism.

PROOF OF THEOREM 1. We prove first the existence of α in the statement (1). It is

easy to see that, for A ∈ M2(Z
m) there exists a ∈ Zm such that A −

(
0 a
0 0

)
is symmetric.

Then Proposition 2 implies that (Z2, Zm; A) is isomorphic to (Z2, Zm;
(

0 a
0 0

)
). Considering

the actions of GLm(Z) described above, we see that the GLm(Z)-orbit of

(
0 a
0 0

)
contains

a unique element of the form

(
0 αe′

1
0 0

)
. (Consider the elementary transformation of the

m × 1 matrix a.) So by Proposition 1 we have (Z2, Zm;
(

0 a
0 0

)
) ∼= (Z2, Zm;

(
0 αe′

1
0 0

)
).

Since it is clear that (Z2, Zm;
(

0 αe′
1

0 0

)
) ∼= G(α) × Zm−1, it follows that (Z2, Zm; A) ∼=

G(α) × Zm−1. �

Next, assuming the statement (2), we prove the uniqueness of α in the first statement
(The proof of (2) will be given in section 5 and 6). It is sufficient to show that, if α, α′ are

distinct nonnegative integers then G(α) × Zm−1 and G(α′) × Zm−1 are not isomorphic. The
assumption α �= α′ implies vp(α) �= vp(α′) for some prime p. From the result of (2), it

follows that ζG(α)×Zm−1,p �= ζG(α′)×Zm−1,p, which clearly implies that G(α) × Zm−1 is not

isomorphic to G(α′) × Zm−1.

REMARK 3. For each n ≥ 3, we consider the problem whether zeta functions of
groups determine the isomorphism classes of {(Zn, Zm; A) | A ∈ M2(Z

m), m ∈ Z≥1}. If
n = 4, there exists a counter example (cf. [1], Proposition B, or [3], Example 4). For each
G = (Zn, Zm; A), let

B =
(

A O

O O

)
∈ Mn+k(Z

m) ,

then G × Zk ∼= (Zn+k, Zm; B) is an element of {(Zn+k, Zm; A) | A ∈ M2(Z
m)}. Hence in

the case n ≥ 4, the above problem has an negative answer. Thus our remaining problem is the
case n = 3. Our study on this problem is currently in progress.

5. Explicit form of the zeta function

We shall prove the statement (2) of Theorem 1. We can also prove this by the method in
[2], section 2, but here, we will give an elementary proof. For the proof, we shall define some
symbols.
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Let us consider an exact sequence of groups:

1 → N → G → g → 1 .

We choose and fix a subgroup M of N and a subgroup h of g. Let A(M, h) denote the set of
subgroups H of G such that H ∩ N = M , and that the image of H by the homomorphism
G → g is equal to h, i.e., the following diagram

1 −−−−→ N −−−−→ G −−−−→ g −−−−→ 1�⏐⏐ �⏐⏐ �⏐⏐
1 −−−−→ M −−−−→ H −−−−→ h −−−−→ 1

is commutative, and the second horizontal sequence is exact. It follows that [G : H ] = [g :
h][N : M] for each H ∈ A(M, h). Let a(M, h) denote the cardinality of A(M, h). Then the
zeta function of G is expressed as

ζG(s) =
∑
M,h

a(M, h)[N : M]−s[g : h]−s ,

where the sum is taken over all M, h satisfying [N : M] < ∞, [g : h] < ∞. Similarly the
local zeta function at a prime p is expressed as

ζG,p(s) =
∑
M,h

a(M, h)[N : M]−s[g : h]−s ,

where the sum is taken over all M, h for which [N : M], [g : h] are p-th power.
We next assume that M is a normal subgroup of G, so that we have the canonical homo-

morphism G/M → g. Let Homg(h,G/M) denote the set of all elements in Hom(h,G/M)

through which the inclusion map h → g factors. Then we have:

LEMMA 2. There is an bijective map between A(M, h) and Homg(h,G/M).

PROOF. For each H ∈ A(M, h), the homomorphism composed by the canoni-
cal isomorphism h → H/M and the inclusion map H/M → G/M is an element of
Homg(h,G/M). On the other hand, for each element t ∈ Homg(h,G/M), the inverse image
of t (h) by the canonical homomorphism G → G/M is an element of A(M, h). Thus we can
construct the two maps between A(M, h) and Homg(h,G/M). It is easy to see that the two
maps are inverse of each other. �

In the following, we consider the case that g is isomorphic to Zk for some positive integer
k, and N is contained in the center of G, h and M are of finite index. We remark that M is a
normal subgroup of G, [G,G] ⊂ N , and h is a free abelian group of rank k. Let {h1, . . . , hk}
denote a basis of h and {h̃1, . . . , h̃k} denote lifts of h1, . . . , hk to G respectively.

LEMMA 3. A map t : h → G/M is an element of Homg(h,G/M) if and only if it
satisfies the following properties.
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1. The image of t (hi) under the canonical homomorphism G/M → g is equal to hi .

2. t (h
l1
1 · · · hlk

k ) = t (h1)
l1 · · · t (hk)

lk for any l1, . . . , lk ∈ Z.
3. t (hi) and t (hj ) are commutative for each i, j .

PROOF. If t ∈ Homg(h,G/M), it is easy to see that t satisfies the above properties.
Suppose, conversely, that t satisfies the above properties. Then by properties 2 and 3, we see
that t ∈ Hom(h,G/M). By the property 1, we also see that t ∈ Homg(h,G/M). �

COROLLARY 1. Suppose that t is as above, and satisfies property 1 and 2. Then t ∈
Homg(h,G/M) if and only if [h̃i , h̃j ] ∈ M for all i, j .

PROOF. Let ĥi , ĥj denote the images of h̃i , h̃j by the canonical map G → G/M .

Then [h̃i , h̃j ] ∈ M if and only if [ĥi , ĥj ] = 1. By the above lemma, it is sufficient to

prove [ĥi , ĥj ] = [t (hi), t (hj )]. Since t satisfies the property 1, the images of ĥi and t (hi)

by G/M → g are the same. Since N/M is contained in the center of G/M , we have [ĥi ,

ĥj ] = [t (hi), t (hj )]. �

COROLLARY 2. The number of maps t : h → G/M which satisfy 1 and 2 is equal to

[N : M]k .

PROOF. Let ϕ denote the map G/M → g induced from the map G → g. Since
{h1, ...hk} is a basis of h, we have

#{t : h → G/M | t satisfies 1 and 2 }

= #
k∏

i=1

ϕ−1(hi)

=
k∏

i=1

#ϕ−1(hi)

= [N : M]k . �

We notice that the condition [h̃i , h̃j ] ∈ M is independent of t . Therefore we have:

PROPOSITION 3.{
a(M, h) = [N : M]k , if [h̃i , h̃j ] ∈ M for all i, j

a(M, h) = 0 , otherwise.

Now we apply these results to the computation of ζG(s).

COROLLARY 3.

ζG(s) =
∑

a(M,h) �=0

[N : M]k−s[g : h]−s ,



172 FUMITAKE HYODO

where the sum is extended on M, h such that [N : M], [g : h] are finite. Similarly we have

ζG,p(s) =
∑

a(M,h) �=0

[N : M]k−s[g : h]−s ,

where the sum is taken on M, h such that [N : M], [g : h] are p-th power. Especially if G is
abelian, then

ζG(s) = ζg(s)ζN(s − k) ,

ζG,p(s) = ζg,p(s)ζN,p(s − k) ,

and

an(G) =
∑
lm=n

am(g)al(N)lk.

We remark that the validity of the statements in corollary 1 and proposition 3 are inde-

pendent of the choice of {h̃1, . . . , h̃k}.
COROLLARY 4. Suppose that k = 2 and x1, x2 ∈ G are such that the images of x1, x2

to g form a basis of g. Then in order that a(M, h) �= 0, it is necessary and sufficient that

[x1, x2][g:h] ∈ M .

PROOF. Let x1, x2 be the images of x1, x2 respectively. Then there exist a, b, c, d ∈ Z

satisfying ad − bc > 0, such that

h1 := xa
1x

b
2 , h2 := xc

1x
d
2

form a basis of h. Put h̃1 = xa
1 xb

2 , h̃2 = xc
1x

d
2 . Since N is contained in the center, we have

[h̃1, h̃2] = [x1, x2]ad−bc. We also note that [g : h] = ad − bc. Thus we have

[h̃1, h̃2] = [x1, x2][g:h]. �

COROLLARY 5. Let the assumptions be as above, and let Nn = N/〈[x1, x2]n〉. Then
we have

ζG(s) =
∑
n≥0

an(g)n−sζNn(s − 2) ,

ζG,p(s) =
∑
l≥0

1 − pl+1

1 − p
p−lsζN

pl ,p(s − 2) .

PROOF. By corollary 3, we have

ζG(s) =
∑

h,M: a(M,h) �=0,[g:h]<∞, [N :M]<∞
[g : h]−s [N : M]2−s

=
∑

h:[g:h]<∞
[g : h]−s

∑
M: a(M,h) �=0,[N :M]<∞

[N : M]2−s .
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By Corollary 4, we also have

ζG(s) =
∑
h

[g : h]−s
∑

[x1,x2][g:h]∈M

[N : M]2−s

=
∑
n≥1

∑
[g:h]=n

n−s
∑

[x1,x2]n∈M

[N : M]2−s .

Hence we obtain

ζG(s) =
∑
n≥0

an(g)n−sζNn(s − 2)

and similarly

ζG,p(s) =
∑
l≥0

apl (g)p−lsζN
pl ,p(s − 2) .

By Corollary 3, we have

apl (g) = apl (Z2) =
∑

0≤i≤l

api (Z)piapl−i (Z)

=
∑

0≤i≤l

pi . �

6. Calculation of the zeta function of G(α) × Zm−1

Now, we will complete the proof of the theorem 1 by proving (2). We consider the case:

G = 〈x1, x2, y1, . . . , ym|[x1, x2] = yα
1 , [xi, yj ] = 1, [yi, yj ] = 1〉

∼= G(α) × Zm−1 ,

N = 〈y1, . . . , ym〉 , g = G/N ∼= Z2

By Corollary 5, we only have to compute the local factor ζN
pl ,p(s).

Since [x1, x2] = yα
1 and {y1, . . . , ym} is a basis of N ∼= Zm, we see that Npl =

N/〈[x1, x2]pl 〉 is isomorphic to Zm−1 × Z/αplZ.
By Corollary 3, we have then

ζ
Zm−1×Z/αplZ,p(s) = ζ

Zm−1,p(s)ζZ/αplZ,p(s − m + 1) .

It is easy to see

ζZ/αplZ,p(s − m + 1) = ζ
Z/pl+vp(α)

Z,p(s − m + 1)

= 1 − p−(s−m+1)(1+l+vp(α))

1 − p−(s−m+1)
,
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where vp(∗) is the p-adic additive valuation.
Next, we calculate ζG,p(s), i.e.,

ζ
Zm−1,p(s − 2)

∑
l≥0

1 − pl+1

1 − p
p−ls 1 − p−(s−m−1)(1+l+vp(α))

1 − p−(s−m−1)
.

Put t = s − m − 1, β = 1 + vp(α).

∑
l≥0

1 − pl+1

1 − p
p−ls 1 − p−t (l+β)

1 − p−t

= 1

(1 − p)(1 − p−t )

∑
l≥0

p−ls (1 − pl+1)(1 − p−t (l+β))

= 1

(1 − p)(1 − p−t )

∑
l≥0

p−ls (1 − pl+1 − p−t (l+β) + p−t (l+β)+l+1)

= 1

(1 − p)(1 − p−t )

∑
l≥0

(p−ls − p1−l(s−1) − p−tβ−l(s+t ) + p1−tβ−l(s+t−1))

= 1

(1 − p)(1 − p−t )

{
1

1 − p−s
− p

1 − p−(s−1)
− p−tβ

1 − p−(s+t )
+ p−tβ+1

1 − p−(s+t−1)

}

= 1

(1 − p)(1 − p−t )

{
1 − p

(1 − p−s )(1 − p−(s−1))
− p−tβ 1 − p

(1 − p−(s+t ))(1 − p−(s+t−1))

}

= ζp(t)ζp(s)ζp(s − 1)

(
1 − p−tβ ζp(s + t)ζp(s + t − 1)

ζp(s)ζp(s − 1)

)
.

By Corollary 3, ζ
Zm−1,p(s − 2)ζp(s − 1)ζp(s)ζp(t) = ζ

Zm+2,p(s). Hence we have

ζG,p(s) = ζZm+2,p(s)

(
1 − p−tβ ζp(s + t)ζp(s + t − 1)

ζp(s)ζp(s − 1)

)
.

This completes the proof of theorem 1.
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