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Abstract. In [3], local moves, called simple ribbon moves for links are defined. In this paper, we study
primeness of knots which can be transformed into the trivial knot by a single simple ribbon move.

1. Introduction

All links are assumed to be ordered and oriented, and they are considered up to ambient
isotopy in an oriented 3-sphere S3. A knot which is the connected sum of two non-trivial
knots is said to be composite. A non-trivial knot which is not composite is said to be prime.
It is known that any knot with unknotting number one is prime by [5]. The local moves as
illustrated in Figure 1 are called the pass move ([1]) and the A-move ([4]). There is a non-
prime knot which can be transformed into the trivial knot O by a single pass-move. The
square knot is an example (see Figure 2). On the other hand, it is not known whether any knot
which can be transformed into the trivial knot by a single A-move is prime.

In [3], local moves, called simple ribbon moves or S R-moves for links are defined. In
this paper, we study primeness of knots which can be transformed into the trivial knot by a
single simple ribbon move.

Let H be a3-ballin S and D = D; U---U D,, (resp. B = By U---U By,) a union of
mutually disjoint disks in int H (resp. H) satisfying the following:

:H:«—» % ’\—/f — 7\/—\

the pass move the A-move

FIGURE 1
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FIGURE 2

(i) BiNoH = 0B; N0dH is an arc;
(i1) B; N 0D = 0B; N dD; is an arc; and
(iii) B; Nint D = B; Nint Dy ;) is a single arc of ribbon type (Figure 3), where 7 is a
certain permutation on {1, 2, ..., m}.
Then we call U(d(B; U D;) — int (B; N dH)) an SR-tangle and denote it by 7', and we call
1

each B; a band.

an arc of ribbon type

FIGURE 3

Let £ be a link in $3 such that £ N H = £ N 3 H consists of arcs. Take an SR-tangle 7
such that 5N dH = £ N dH. Then let L be the link obtained from ¢ by substituting 7 for
£ N oH. We call the transformation either from £ to L or from L to £ a simple ribbon-move
or an SR-move, and H (resp. T) the associated 3-ball (resp. tangle) of the SR-move. The
transformation from £ to L (resp. from L to £) is called an SR™-move (resp. SR™-move)(see
Figure 4 for an example).

Since every permutation is a product of cyclic permutations, we rename the indices of
the bands and disks as

B =

n X noomgo n k no mg P
B=U(UB) and D= U D" = U (U D;), where
= k=1 i=1 k=1 =1 i=

k=1

(D 1<=mi=mpy=<---<my;

(2) B¥NaD = 3B* N 3D is an arc; and

3) Bl.k NintD = B{‘ Nint fo 41 1s a single arc of ribbon type, where the lower indices
are considered modulo my.
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i an SR*T-move

i an SR -move i

FIGURE 4

For an SR-tangle 7, we call U (3 (B¥UDK) —int(B¥Nd H)) the (k-th) component of the
i=1

SR-move or of the SR-tangle, denote it by 7%, and call my, the index of the component (k =
1,2,...,n). The type of the S R-move or of the S R-tangle is the ordered set (m1, ma, ..., my)
of the indices.

Let Tl.k = G(Bl.k U Dl’?) — int (B{‘ N o H). We say that the string Tl.k of the SR-tangle is
trivial if Tl.k U (Bf N d H) bounds a non-singular disk in H whose interior is in int H and does
not intersect with 7. We say that the k-th component 7% of the SR-tangle is trivial if Tl.k is
trivial for any i. In fact, 7% is trivial if Tik is trivial for some i, which is easy to see. We say
that an S R-tangle is reducible if Tl.k is trivial for a pair of i and k. Otherwise we say that the
S R-tangle is irreducible. We say that an S R-tangle is trivial if Tik is trivial for any i and k.

Consider an S R-move transforming ¢ into L. We say that a string Tl.k of the SR-move is
trivial if Tl.k U (Bl.k N d H) bounds a non-singular disk in $3 whose interior does not intersect
with L . We say that the k-th component 7% of the SR-move is rivial if Tl.k is trivial for any
i. We say that an S R-move is reducible if Tik is trivial for a pair of i and k. Otherwise we say

that the SR-move is irreducible. We say that an SR-move is trivial if Tl.k is trivial for any i
and k. Clearly any trivial S R-move does not change the link type.

s %@N e

T! T? ToT T Ty T T T3 T3 T T
type (1,1) type (2,3) type (1,1,3)

FIGURE 5

From the definitions, an SR-move is reducible (resp. trivial) if its associated tangle is
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reducible (resp. trivial). The opposite holds for non-split links.

PROPOSITION 1.1 ([3, Theorem 1.11]). An SR-move on a non-split link is reducible
(resp. trivial) if and only if its associated tangle is reducible (resp. trivial).

It is easy to see that any SR-move of type (1) is trivial. Thus any knot which can be
transformed into the trivial knot by a single SR™-move of type (1) is trivial, and hence not
prime. Let K be the knot as illustrated in Figure 6, which can be transformed into the trivial
knot by a single SR™-move of type (2). It is easily to see that K is the square knot (Figure 2),

and thus K is not prime.
(\”,_\6)’\

K

FIGURE 6

An SR-tangle is said to be separable if there exists a non-singular disk F properly em-
bedded in H — 7 such that each component of H — F contains a component of 7. Then the
following is our main theorem.

THEOREM 1.2. Let K be a knot in S® which is not the square knot. If K can be
transformed into the trivial knot by a single SR~ -move whose associated tangle is neither
type (1) nor separable, then K is prime.

REMARK 1.3. From Corollaries 1.12, 1.15, 1.21 of [3], K in the statement is non-
trivial.

The following is used in the proof of the theorem.

LEMMA 1.4 ([3, Corollary 1.20]). If an SR-tangle is reducible, then it is separable.

2. Proof of Theorem 1.2

Let K be a composite knot in $> which is not the square knot and can be transformed into
the trivial knot by a single SR~ -move whose associated tangle is not separable. Let BU D be
the set of bands and disks which gives the SR™-move. Since K can be transformed into the
trivial knot by a single SR~ -move, there exist a non-singular disk Dy C (S — H) such that

. . .. n o mg .
9Dy is a certain trivial knot and a set of bands B’ = U (U B’f) C (S3 — intH) such that
k=1 i=1

each band B'* satisfies that B'X N0 H = dB’* N 9 H is an arc, that B’ N 9Dy = 9B’ N oDy
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is an arc, and that B’ f N intDy consists of arcs of ribbon type (may be empty). Then we have
a ribbon disk C = Dy U (B U B’) U D for K. For a convenience, in the following we denote
BFU B’ by B, and BU B' by B.

Let fe : DEU(Uik DX*)U(U; x BF*) — S be an immersion of a disk such that f¢ (D) =
Do, fo(D¥*) = DF and fc(BY) = BF. We denote (U; x D¥*) (resp. (Ui« B¥*)) by D* (resp.
B*) and D5 U D* U B* by C*. In the followings, we omit the upper index k unless we need
to emphasize it. Denote the arc of B;_; N intD; by «;, and the pre-image of «; on Dl.* (resp.
B} ) by af (resp. &). Denote the arc of B; N 9 H by f; 0, and the pre-image of S; o on B/
by B/,- Each B; may intersect with intDo, and then denote the arc of B; NintDg by Bi 1, ...,
Bi.i;» and their pre-images on B} (resp. on D) by B, ..., ﬁi’fti (resp. Bi’fl, e B;fti), where
we assign the indices so that ﬁ;fj is closer to ', than Biyon Bfif j <1 (see Figufe 7).

* * %k * * * *
D; o; Oy 0 i1 | Pig B;

FIGURE 7

Since K is composite, there is a decomposing sphere ¥ for K such that K = kfks.
We may assume that X intersects with C and with d H transversely. Since ¥ intersects with
K = 9C in two points, the pre-image S* of ¥ N C on C* consists of an arc y* and loops,
which are mutually disjoint. Let nc be the number of such loops and ny be the number of
loops of ¥ N dH. Since D and Dy are in intH and in S — H, respectively, a triple point of
¥ UCU 0H is made of X, B;, and one from Dy, D, and 0 H. Let n, be the number of the
triple points and let n; the number of intersections of ¥ and 33N d Dy. Define the complexity
of ¥ as the lexicographically ordered set (n¢, ny, 1y, ng).

PROOF OF THEOREM 1.2.  Suppose that there exists a composite knot K in $3 which
is not the square knot and can be transformed into the trivial knot by a single SR™-move
whose associated tangle is not separable. Take a ribbon disk C(= Do U D U B) for K so
that the number of intersections of 3 N Dy is minimal among such ribbon disks. Then take a
decomposing sphere X for K with the minimal complexity.

First take a look at S* N (D* U B*). Let p* be a connected component of it, and p =
fe(p*). Assume that p* is on D U B}

CLAIM 2.1.  p* is not a loop which bounds a disk in DY U B} — (af U} | U B U
U :3;?:,»)'

PROOF. Assume otherwise. We may assume that p* is innermost on D;‘ U Bl.*, i.e., the
disk 6* which p* bounds on D} U B does not contain any other loops of S* N (D} U B).
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Then replacing a neighborhood of p in ¥ with two parallel copies of §, we can obtain two
2-spheres X1 and X, one of which, say X, intersects with K twice. Then X; is another
decomposing sphere with less complexity than that of ¥, which contradicts that ¥ has the
minimal complexity. O

CLAIM 2.2.  p* does not have a subarc which bounds a disk on D} U B} with a subarc

of af, & g, or ﬁi,j whose interior does not intersect with o, @, or ﬂi,j.

PROOF. Assume otherwise. Then there may exist several such subarcs, each of which
is of p* or of another connected component of S* N (D} U Bf). Take a subarc which is
innermost among such subarcs, that is, it bounds a disk 6* on D} U B} with a subarc of
(resp. ¢, l* j) whose interior does not intersect with any other such subarcs. Here we may
assume that the subarc is of p*, and R; and R; are the ends of the subarc. Since §* does not
contain any loops from Claim 2.1, we can deform X along é by isotopy so to eliminate R
and R; (see Figure 8), which contradicts that ¥ has the minimal complexity. O

FIGURE 8

CLAIM 2.3. p*isnota loop.

PROOF. Suppose that p* is a loop. Then, there are two cases by Claims 2.1 and 2.2:
p* bounds a disk in D} which contains o or only one end of . Here we may assume that
p* is innermost on D} U B, i.e., the disk 6* which p* bounds on D} U B} does not contain
any other loops of S* N (D} U B).

Consider the former case. Since § intersects with K in two points, one of the two compo-
nents of ¥ — p does not intersect with K. Let X, be the closure of the component and 7; the
string 3(D; UB;)NH. Then T; U(B; Nd H) bounds a non-singular disk (D; —§)UX,U(B;NH)
in S® whose interior does not intersect with K. Thus the SR-move is reducible. Therefore the
associated tangle of the SR-move is separable from Proposition 1 and Lemma 1, which is a
contradiction.

In the latter case, replacing a neighborhood of p in ¥ with two parallel copies of 4§,
we can obtain two 2-spheres X1 and X, each of which intersects with K twice. Since X
is a decomposing sphere, either X1 or X, is also a decomposing sphere, which induces a
contradiction that ¥ has the minimal complexity. O
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From Claim 2.3, p* is an arc. Now let £*, be the subarc of 9(D; U B}) — 9 D such that
85;_51 = 04}, | and Ei’fz the arc 9B N dD;. Let Ei’f3 be one of the two arcs of d(D} U B}) —
int(§ :1 U E;‘z) and El.’f4 the other arc (Figure 9). Here we may assume that p* does not have an
end on any of 9¢;", |, 8,3;_"0, cee, Bﬁi’f[i, and 85;‘2.

*
7,3

Q; P 1,0 i, 1| * | Mists

*
7,2

* *
,1 2,4

FIGURE 9

CLAIM 2.4. The ends of p* are on &) UES,.

PROOF. Assume otherwise. Then p* has an end p on &5 or &,. It is sufficient to
consider the former case from the symmetry. Let A* be the closure of the component of
B — (¢ U ,B;jo U.--u ﬂ;ft,- U Si’fz) which contains p. Then we have that p* is in A* or not.
If p* is in A*, then we have two cases that the other end of p* than p is on &5 oron &,.

In the former case, p* bounds a disk §* in A* with a subarc of &;. Here note that §* does
not contain any other components of S* N (D} U B}) from Claim 2.1 and that T intersects
with K in two points. Then 9§ — p is one of the two components of K — X and trivial, since
8 is an embedded disk in the closure of a component of S> — ¥. Thus it contradicts that
is a decomposing sphere for K. In the latter case, let §* be the closure of the component
of (Dl’?* U Bl.k*) — p* which contains Dl’?*. From Claim 2.3 and that X intersects with K in
two points, we have that inté* N $* = ¢J, and thus 98 — intp is the arc of K N £2, where £2
is the closure of the component of §* — ¥ containing 8. Then 8al’.‘ is on 98§ — intp, since
aaf = int§ N K. Therefore we have that af = oef.‘ e
may consider 36 — intp as an SR-tangle of type (1) in £2, and thus it is trivial. However this
contradicts that ¥ is a decomposing sphere.

If p* is notin A*, then let g be the point of p*N (I A™ — (§3 UE;‘4)) such that the interior
of the subarc pj,, of p* bounded by p and g does not intersect with 9 A* — (EZ‘3 U Sif4). Let¢

which tells us that m; = 1. Then we

be the one of ¢ RE ﬂi’fo, e, :3;},-’ and 5:2 which contains g. Let s be the point £ N 5:3’ and
let E;‘s (resp. ¢ys) the subarc of EZ‘3 (resp. ¢) bounded by p (resp. ¢) and s. Then p;‘,q, E;;X, and
¢4s bound a disk §*. If inté* N S* = ¢J, then we can deform X along § by isotopy so to reduce
the complexity of X as illustrated in Figure 10, which is a contradiction. If inté* N S* # ¢,
then §* N S* consists of p},, and a subarc of an arc which has an end on the interior of &
and intersects with the interior of {,s from Claims 2.2 and 2.3 and that ¥ intersects with K
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in two points. In this case, we can reduce the complexity of X by 2 using the deformation as
illustrated in Figure 10 twice, which is also a contradiction. |

ok % *
&j,q or ,Bi,j 0D

A~ d
5;,3 or §Z4

5;,3 or 524

FIGURE 10

CLAIM 2.5. 9dp* is not contained in &.

PROOF. Assume otherwise. Then p* bounds a disk §* with a subarc u* of 5: | in the
subdisk of D} U B} bounded by &, and ¢, | from Claim 2.2. From Claim 2.3 and that ©
intersects with K in two points, we have that intd* N §* = ¢, and thus u is the arc of K N £2,
where £2 is the closure of the component of §3 — ¥ containing 8. Moreover note that *
is in intsl?f \» and thus 9 | is not on w*. Hence §* does not contain any ends of o, since
otherwise 2 N K consists of more than one string. Thus u is a trivial tangle in £2, which
contradicts that ¥ is a decomposing sphere for K. O

From Claims 2.4 and 2.5, §* N (D} U B}) consists of at most two arcs each of which has
an end on both of &7, and £, and arcs whose boundaries are on £,. If an arc whose boundary
is on £, bounds with a subarc of £, a disk 6* on D} U B} which does not contain an end of
oef‘, then from Claim 2.2, the arc is in the component of Bl.* — (o'e?‘_H U ﬁ;fo U---u ,Bi*jti) which
contains £,. However then we can deform X along § by isotopy so to eliminate §*, which

contradicts that ¥ has the minimal complexity. Thus a connected component of S*N(D}UB})
is either

e an arc which has an end on both of £*, and £, and which intersects with each of o],

Sk * k
@ ﬂi,O’ e, ﬂi,t,- once,

e an arc whose boundary is on él.’z and which intersects with each of @, :31',0’ R ,Bl.’tl_
twice and bounds with a subarc of £, a disk on D} U B containing &', or

e an arc whose boundary is on &, and which intersects with « once and intersects with

2k * * :
each ofal.H, :31',0’ R ,Bl.’tl_ twice.

Take a look at the number £(S* N al’.‘*) of intersections of S* and af* 1 <i < my).

If an arc p* of $* N (Df* U B{‘*) is of the first type (resp. last two types), then we have
that 8(p* N &) = (p* N ) (resp. 2(p* Naf ) > d(p* N«af)). Thus we have that

1

S  Negfy ) = 8(S* Naf ) = 8(S* N o), since fe(d)) = felo;). Here note that we
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* *
Q; @
*
Q;
N1 N
Qity Qi1 Qi1
/B* * *
* 2,0 * 7,0 * 7,0
7,1 7,1 3,1
N : : N I
* * *
4t 3,84 iyt
FIGURE 11

have that £(S* N a?‘+mk) = #(S* Naf), since i + my = i modulo my. Hence we have that
8(S* Ny, ) =8(S*N oz,’;lk_l) = .- = (8" Naj). Therefore S* N (D* U B*) does not have
arcs of the last two types.

Hence &§* N (D* U B*) consists of at most two arcs of the first type of the above, each of
which is a component of y* N (D* U B*), since ¥ intersects with K in two points. Therefore
we have the following five cases with respect to y*:

(Case A) dy* is on 9 D — dB*, and thus y* is on D§j and §* N (D* U B*) = @;
(Case B) y* has an end on both of 8D’1‘* and 8Dll* with mp =m; = 1;

(Case C) y* has an end on both of 9 D§ — 9B* and BD’f* with my = 1;

(Case D) 9y ™ is on E)D’l‘* with my = 1; or

(Case E) y* has an end on both of 8D’1‘* and 8D’2‘* with my = 2.

Now we know that S* consists of y* and loops on Djj. In the followings, we also take
a look at the intersections of ¥ N (C U d H) on X, which consists of y, the loops of ¥ N Dy,
and the loops of X N0 H.

CLAIM 2.6. Eachloop of ¥ N Dy and £ N dH on X intersects with y.

PROOF. Assume otherwise and take an innermost loop A of the loops on X which do
not intersect with y, and let X, be the subdisk of ¥ bounded by A which does not contain y.
Thus (intX;) N (CUJH) = @.

If A is aloop of X N Dy, then let § be the subdisk of Dy which A bounds and B), the 3-ball
which =; U § bounds in $3 — 0 Dg. Here § may intersect with B or X. If § N B # @, then let
&' be a subdisk of § such that §' C int8 and (int§ — 8") N (BU X) = . Let Dy, be the disk
obtained from Dy by replacing 8’ with a parallel copy X} of X, such that 9%, = 94" and the
interior of the 3-ball bounded by X, Ei, and § — int$’ does not intersect with CU £ U H.
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Then we obtain another ribbon disk D(’) U D U B such that the number of intersections of
B and D(’) is less than that of B and Dg, which contradicts the minimality of the number of
intersections of B and Dg. If § N B = @, then let A’ be an innermost loop of ¥ N Dy in § (A
may be A) and let 8" the subdisk of Dy which A’ bounds. Replacing a neighborhood of A’ in
¥ with two parallel copies of §’, we obtain two 2-spheres | and X, one of which, say X,
intersects with K twice. Then X is another decomposing sphere with less complexity than
that of ¥, which contradicts that ¥ has the minimal complexity.

If Aisaloop of ¥ N9 H, then X separates d H into two disks 61 and 8, such that §; Uédy =
d0H and 81 N 82 = A. If §; (resp. §2) does not intersect with C, then replacing a neighborhood
of 1 in ¥ with two parallel copies of §; (resp. §2), we obtain two 2-spheres ¥ and ¥, one
of which, say ¥, intersects with K twice. Then X is another decomposing sphere with less
complexity than that of ¥, which contradicts that ¥ has the minimal complexity. Thus both

of 81 and &, intersect with C. We have that X, is either in H orin S° — H.

In the former case, X, divide H into two 3-balls, one of which is bounded by X, and
81, say Hi, and the other of which is bounded by X, and §;, say H>. Since both of 41 and >
intersect with C and ¥, N C = @, both of H; and H, contain a component of the SR-tangle.
However then the S R-tangle is separable, which contradicts the assumption.

In the latter case, X, divide S3 — H into two 3-balls, one of which is bounded by X; and
81 and the other of which is bounded by X, and §,. This is impossible to occur, since both of

81 and &, intersect with C, C N S3 — H is a (singular) disk, and £; NC = . O

(Case A) Since y is on Dy and Dy is in $3 — H, neither a loop of Dyp N X nor a loop of
d H N ¥ intersects with . However this contradicts Claim 2.6. Thus there are no loops on %,
which induces that S* consists of only y* and ¥ is in §* — H. Therefore if each component
of dD§ — y* contains a component of d3* N d Dy, then each component of §3 — ¥ contains

Df U Bl.k for a certain pair of i and k. However, this is impossible, since D is contained in

H and ¥ is in $* — H and thus a component of §3 — ¥ is in §3 — H. Hence one of the
two components of 9D — y*, say u*, does not contain any components of dB8* N 3 Dj.
Therefore w is the arc of K N §2, where 2 is the closure of a component of $3 — ¥. Now let
8* be the subdisk of Djj bounded by y* and p*. Since S* consists of only y*, we have that
intd* N §* = @. Thus § is an embedded disk in £2. Moreover §* does not contain an end of
ﬂlk* for any pair of i and &, since otherwise £2 N K consists of more than one string. Hence p
is trivial in £2, which contradicts that ¥ is a decomposing sphere for K.

(Case B and C) Let p* be the arc of S* N (D’f* U B’f*), let A* (resp. A*) the intersection

of p* with a’l‘* (resp. with o'z’f*), and let p; the subarc of p* bounded by A* and A* (see the
leftside of Figure 12). Note that pg bounds a disk § on X, and that § does not contain any
loop intersections from Claim 2.6. Then we can deform D’l‘ u B{‘ along § to eliminate a’l‘ by
isotopy, which tells us the k-th component of our SR-tangle is trivial. This contradicts that
our SR-tangle is not separable from Lemma 1.4
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(Case D) Let p} and p; be the two arcs of y* N (D’f* u B’f*). If p; and py does not
intersect each other, then we can obtain a contradiction as the previous case. Thus p; and

o2 intersect in two points A = fe(A*) = fe(A*) and B = fo(B*) = fo(B*), where
A* =piN a’l‘*, A* = Py N o'/l‘*, B* = pi N a’l‘*, and B* = PN dc’l‘* (see the rightside of
Figure 12). Let &7 be the subdisk of Dll‘* U B{‘* bounded by the subarc ¢;* of p} bounded by
A* U B*, the subarc of o'z’f* bounded by B* U A*, the subarc ¢5 of pJ bounded by A* U B*,
and the subarc of oz’f* bounded by B* U A*. From Claim 2.1, we have that int§; N X = .

Thus 8 is properly embedded in the closure of the component of S° — . However then, take
a subdisk &2 of ¥ bounded by ¢; and &,. Since §;1 is a Mobius band, §; U 7 is a projective
plane, which cannot be embedded in S°. Thus we have a contradiction.

FIGURE 12

In the rest of the paper, we devote ourselves to Case E. We omit the upper index k of Dl’.‘
and B{‘ (i = 1, 2) unless we need to emphasize it.

(Case E) In this case y* can be divided into five subarcs as y* = y;;l U y;,fl U ygo u ygz U
ygz, where yy is y* N X*. Take a look at S* N D, which consists of V[*>0 and the pre-images
of the loops of £ N Dy. Then y;; may intersect with :31* ;»and each loop of §* N Dy intersects
with ﬂ;f j from Claim 2.6 (see Figure 13 for an example).

Now take a look at the intersections of ¥ N (C U dH) on X, which consists y, the loops
of ¥ N Dy, and the loops of £ N d H. Here note that each of the five subarcs of y is simple,
that yp, intersects with y — yp, only in a point on yp
in a point on yp,,, and in points on yp, (i =1,2).

.+1» and that yp, intersects with y — yp,

CLAIM 2.7. We have that int(yp, U ¥p,) Nintyp, = @.

PROOF. Assume otherwise. Then yp, has a subarc ¢ which bounds a disk §; on X
with a subarc of yp, (i = 1, 2), where we may assume that §; does not contain any subarcs
of yp, and of yp,. Here §; may intersect with a loop of X N Dy in an arc whose ends are
on ¢. However then, we can eliminate the intersections from an outermost one by deforming
B along the subdisk of §; bounded by the intersection and a subarc of { by isotopy, which
contradicts the minimality of the number of intersections of B N Dy. Hence inté; N C = #.
Now we have two cases that an end of ¢ is on dyp, N dyp, or not. In either case, we can



158 TETSUO SHIBUYA AND TATSUYA TSUKAMOTO

DI* D Dl D2+ D3+ the loops of XN Dy on

the loop of XN OH on ¥

FIGURE 13

deform B; along 8, by isotopy so to eliminate the intersection(s) of intyp; and intyp, (an end
or the ends of ¢). However this also contradicts the minimality of the number of intersections
of BN Dy. O

* " p " . the loops of XN Dy on
D¥* D¥ D} D3 D} P 0

YDy

) —
S AD,

S,

the loop of ¥ NJH on X

FIGURE 14

CLAIM 2.8. Each loop on X intersects with y exactly in two points B1; N X and
B2, NE(j=0,1,....,0n =n).

PROOF. Let Bj (resp. B}) be the closure of the component of By — a3 (resp. By — o)
which intersects with d H, and let 1 a loop on . Note that A intersects with y from Claim
2.6, moreover only in YB| O Vg, since B; ; is on Bl./ i=1,2,j=0,1,...,¢). First we
claim that A intersects with VB! at most once (i = 1,2). If A is of ¥ N dH, then it is clear,

since each band of B intersects with 9 H only once. Assume that A is of ¥ N Dy and intersects
with yp/ in more than once. Such a loop has a subarc which bounds a disk on ¥ with a subarc

of ypr (i = 1,2). Let § be an innermost disk among such disks. We may assume that § is
bounded by a subarc of A and a subarc of VB! Then we can deform B; along § by isotopy so
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to eliminate the two intersections. However this contradicts the minimality of the number of
intersections of B N Dy.

Therefore we complete the proof, since yg, U yp, U VB, and a subarc of yp, form a cycle
on X. O

DI* D D+ D%* D3+ the loops of XN Dy on

YD,

the loop of ¥ NJOH on X

FIGURE 15

From Claim 2.8, we have that ¥ N9 H consists of only one loop, i.e., the loop of ¥ NdH
which intersects with yp, is the loop of ¥ N 0 H which intersects with yg,, and thus ¥ N H is
a disk . Note that Xy NC = Ty N (BX U DX). Therefore the S R-tangle consists of only
one component, since otherwise we can take a disk Xz x {1} or ¥y x {—1} to separate the
k-th component from another component.

D> D} the loops of ¥ N Dy on ¥

YD,

—
& O

the loop of XN OH on ¥

FIGURE 16

CLAIM 2.9. There do not exist loops of ¥ N Dy.

PROOF. Assume otherwise. Then take an innermost one, say A on %, i.e., a loop which
bounds a disk on ¥ that contains the loop of ¥ N d H but does not contain any other loops
of ¥ N Dy. Let A, be the annulus on ¥ bounded by A and the loop of ¥ N dH and let B; ;
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the subband of B; bounded by S; 0 and B; 1 (i = 1, 2), where note that §; 1 intersects with A.
Then we have that (H U Ay U B, 1 UB2 1) N Dy =AU B11UpB21.

Now let § be the subdisk of Dy bounded by XA and take a subdisk § of Dy such that
SNBUZ) = (6. UPB11UpBri) N(BUZ). Then take a disk § with 98 = 385 and
int§’ N (C U T U H) = @ which bounds a 3-ball with § containing H U A, U B; | U By 1. Let
Dy = (Do —$8)Ué', and then (BUD) U Dy, is another ribbon disk for K such that the number
of intersections of B and D(/) is less than that of B and Dy, which is a contradiction. |

6/

FIGURE 17

Therefore we have that BN Dyp = ¥ and ¥ NC = y, and thus CU H U X is as illustrated
in Figure 18. Then we know that K is the square knot, which contradicts the assumption.

1x 1x
Dl D2

—) /

FIGURE 18

Hence we can conclude that there does not exist a composite knot which is not the square
knot and can be transformed into the trivial knot by a single SR™-move whose associated
tangle is not separable. This completes the proof. (]
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