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Abstract. In [3], local moves, called simple ribbon moves for links are defined. In this paper, we study
primeness of knots which can be transformed into the trivial knot by a single simple ribbon move.

1. Introduction

All links are assumed to be ordered and oriented, and they are considered up to ambient

isotopy in an oriented 3-sphere S3. A knot which is the connected sum of two non-trivial
knots is said to be composite. A non-trivial knot which is not composite is said to be prime.
It is known that any knot with unknotting number one is prime by [5]. The local moves as
illustrated in Figure 1 are called the pass move ([1]) and the �-move ([4]). There is a non-
prime knot which can be transformed into the trivial knot O by a single pass-move. The
square knot is an example (see Figure 2). On the other hand, it is not known whether any knot
which can be transformed into the trivial knot by a single �-move is prime.

In [3], local moves, called simple ribbon moves or SR-moves for links are defined. In
this paper, we study primeness of knots which can be transformed into the trivial knot by a
single simple ribbon move.

Let H be a 3-ball in S3 and D = D1 ∪ · · · ∪ Dm (resp. B = B1 ∪ · · · ∪ Bm) a union of
mutually disjoint disks in int H (resp. H ) satisfying the following:

FIGURE 1
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FIGURE 2

(i) Bi ∩ ∂H = ∂Bi ∩ ∂H is an arc;
(ii) Bi ∩ ∂D = ∂Bi ∩ ∂Di is an arc; and

(iii) Bi ∩ int D = Bi ∩ int Dπ(i) is a single arc of ribbon type (Figure 3), where π is a
certain permutation on {1, 2, . . . ,m}.

Then we call ∪
i
(∂(Bi ∪ Di) − int (Bi ∩ ∂H)) an SR-tangle and denote it by T , and we call

each Bi a band.

FIGURE 3

Let � be a link in S3 such that � ∩ H = � ∩ ∂H consists of arcs. Take an SR-tangle T
such that B ∩ ∂H = � ∩ ∂H . Then let L be the link obtained from � by substituting T for
� ∩ ∂H . We call the transformation either from � to L or from L to � a simple ribbon-move
or an SR-move, and H (resp. T ) the associated 3-ball (resp. tangle) of the SR-move. The
transformation from � to L (resp. from L to �) is called an SR+-move (resp. SR−-move)(see
Figure 4 for an example).

Since every permutation is a product of cyclic permutations, we rename the indices of
the bands and disks as

B = n∪
k=1

Bk = n∪
k=1

(
mk∪
i=1

Bk
i ) and D = n∪

k=1
Dk = n∪

k=1
(

mk∪
i=1

Dk
i ) , where

(1) 1 ≤ m1 ≤ m2 ≤ · · · ≤ mn;
(2) Bk

i ∩ ∂D = ∂Bk
i ∩ ∂Dk

i is an arc; and

(3) Bk
i ∩ int D = Bk

i ∩ int Dk
i+1 is a single arc of ribbon type, where the lower indices

are considered modulo mk.
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FIGURE 4

For an SR-tangle T , we call
mk∪
i=1

(∂(Bk
i ∪Dk

i )− int(Bk
i ∩∂H)) the (k-th) component of the

SR-move or of the SR-tangle, denote it by T k , and call mk the index of the component (k =
1, 2, . . . , n). The type of the SR-move or of the SR-tangle is the ordered set (m1,m2, . . . ,mn)

of the indices.
Let T k

i = ∂(Bk
i ∪ Dk

i ) − int (Bk
i ∩ ∂H). We say that the string T k

i of the SR-tangle is

trivial if T k
i ∪ (Bk

i ∩ ∂H) bounds a non-singular disk in H whose interior is in int H and does

not intersect with T . We say that the k-th component T k of the SR-tangle is trivial if T k
i is

trivial for any i. In fact, T k is trivial if T k
i is trivial for some i, which is easy to see. We say

that an SR-tangle is reducible if T k
i is trivial for a pair of i and k. Otherwise we say that the

SR-tangle is irreducible. We say that an SR-tangle is trivial if T k
i is trivial for any i and k.

Consider an SR-move transforming � into L. We say that a string T k
i of the SR-move is

trivial if T k
i ∪ (Bk

i ∩ ∂H) bounds a non-singular disk in S3 whose interior does not intersect

with L . We say that the k-th component T k of the SR-move is trivial if T k
i is trivial for any

i. We say that an SR-move is reducible if T k
i is trivial for a pair of i and k. Otherwise we say

that the SR-move is irreducible. We say that an SR-move is trivial if T k
i is trivial for any i

and k. Clearly any trivial SR-move does not change the link type.

FIGURE 5

From the definitions, an SR-move is reducible (resp. trivial) if its associated tangle is
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reducible (resp. trivial). The opposite holds for non-split links.

PROPOSITION 1.1 ([3, Theorem 1.11]). An SR-move on a non-split link is reducible
(resp. trivial) if and only if its associated tangle is reducible (resp. trivial).

It is easy to see that any SR-move of type (1) is trivial. Thus any knot which can be
transformed into the trivial knot by a single SR−-move of type (1) is trivial, and hence not
prime. Let K be the knot as illustrated in Figure 6, which can be transformed into the trivial
knot by a single SR−-move of type (2). It is easily to see that K is the square knot (Figure 2),
and thus K is not prime.

FIGURE 6

An SR-tangle is said to be separable if there exists a non-singular disk F properly em-
bedded in H − T such that each component of H − F contains a component of T . Then the
following is our main theorem.

THEOREM 1.2. Let K be a knot in S3 which is not the square knot. If K can be
transformed into the trivial knot by a single SR−-move whose associated tangle is neither
type (1) nor separable, then K is prime.

REMARK 1.3. From Corollaries 1.12, 1.15, 1.21 of [3], K in the statement is non-
trivial.

The following is used in the proof of the theorem.

LEMMA 1.4 ([3, Corollary 1.20]). If an SR-tangle is reducible, then it is separable.

2. Proof of Theorem 1.2

Let K be a composite knot in S3 which is not the square knot and can be transformed into
the trivial knot by a single SR−-move whose associated tangle is not separable. Let B ∪D be
the set of bands and disks which gives the SR−-move. Since K can be transformed into the

trivial knot by a single SR−-move, there exist a non-singular disk D0 ⊂ (S3 − H) such that

∂D0 is a certain trivial knot and a set of bands B′ = n∪
k=1

(
mk∪
i=1

B ′k
i ) ⊂ (S3 − intH) such that

each band B ′k
i satisfies that B ′k

i ∩ ∂H = ∂B ′k
i ∩ ∂H is an arc, that B ′k

i ∩ ∂D0 = ∂B ′k
i ∩ ∂D0
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is an arc, and that B ′k
i ∩ intD0 consists of arcs of ribbon type (may be empty). Then we have

a ribbon disk C = D0 ∪ (B ∪ B′) ∪ D for K . For a convenience, in the following we denote

Bk
i ∪ B ′k

i by Bk
i , and B ∪ B′ by B.

Let fC : D∗
0∪(∪i,kD

k∗
i

)∪(∪i,kB
k∗
i

) → S3 be an immersion of a disk such that fC(D∗
0 ) =

D0, fC(Dk∗
i ) = Dk

i and fC(Bk∗
i ) = Bk

i . We denote
(∪i,kD

k∗
i

)
(resp.

(∪i,kB
k∗
i

)
) by D∗ (resp.

B∗) and D∗
0 ∪ D∗ ∪ B∗ by C∗. In the followings, we omit the upper index k unless we need

to emphasize it. Denote the arc of Bi−1 ∩ intDi by αi , and the pre-image of αi on D∗
i (resp.

B∗
i−1) by α∗

i (resp. α̇∗
i ). Denote the arc of Bi ∩ ∂H by βi,0, and the pre-image of βi,0 on B∗

i

by β∗
i,0. Each Bi may intersect with intD0, and then denote the arc of Bi ∩ intD0 by βi,1, . . . ,

βi,ti , and their pre-images on B∗
i (resp. on D∗

0 ) by β∗
i,1, . . . , β∗

i,ti
(resp. β̇∗

i,1, . . . , β̇∗
i,ti

), where

we assign the indices so that β∗
i,j is closer to β∗

i,0 than β∗
i,l on B∗

i if j < l (see Figure 7).

FIGURE 7

Since K is composite, there is a decomposing sphere � for K such that K = k1	k2.
We may assume that � intersects with C and with ∂H transversely. Since � intersects with
K = ∂C in two points, the pre-image S∗ of � ∩ C on C∗ consists of an arc γ ∗ and loops,
which are mutually disjoint. Let nC be the number of such loops and nH be the number of

loops of � ∩ ∂H . Since D and D0 are in intH and in S3 − H , respectively, a triple point of
� ∪ C ∪ ∂H is made of �, Bi , and one from D0, Dj , and ∂H . Let nt be the number of the
triple points and let nd the number of intersections of � and ∂B∩ ∂D0. Define the complexity
of � as the lexicographically ordered set (nC, nH , nt , nd).

PROOF OF THEOREM 1.2. Suppose that there exists a composite knot K in S3 which
is not the square knot and can be transformed into the trivial knot by a single SR−-move
whose associated tangle is not separable. Take a ribbon disk C(= D0 ∪ D ∪ B) for K so
that the number of intersections of B ∩ D0 is minimal among such ribbon disks. Then take a
decomposing sphere � for K with the minimal complexity.

First take a look at S∗ ∩ (D∗ ∪ B∗). Let ρ∗ be a connected component of it, and ρ =
fC(ρ∗). Assume that ρ∗ is on D∗

i ∪ B∗
i .

CLAIM 2.1. ρ∗ is not a loop which bounds a disk in D∗
i ∪ B∗

i − (α∗
i ∪ α̇∗

i+1 ∪ β∗
i,0 ∪

· · · ∪ β∗
i,ti

).

PROOF. Assume otherwise. We may assume that ρ∗ is innermost on D∗
i ∪ B∗

i , i.e., the
disk δ∗ which ρ∗ bounds on D∗

i ∪ B∗
i does not contain any other loops of S∗ ∩ (D∗

i ∪ B∗
i ).
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Then replacing a neighborhood of ρ in � with two parallel copies of δ, we can obtain two
2-spheres �1 and �2 one of which, say �1, intersects with K twice. Then �1 is another
decomposing sphere with less complexity than that of �, which contradicts that � has the
minimal complexity. �

CLAIM 2.2. ρ∗ does not have a subarc which bounds a disk on D∗
i ∪ B∗

i with a subarc
of α∗

i , α̇∗
i+1, or β∗

i,j whose interior does not intersect with α∗
i , α̇∗

i+1, or β∗
i,j .

PROOF. Assume otherwise. Then there may exist several such subarcs, each of which
is of ρ∗ or of another connected component of S∗ ∩ (D∗

i ∪ B∗
i ). Take a subarc which is

innermost among such subarcs, that is, it bounds a disk δ∗ on D∗
i ∪ B∗

i with a subarc of α∗
i

(resp. α̇∗
i , β∗

i,j ) whose interior does not intersect with any other such subarcs. Here we may

assume that the subarc is of ρ∗, and R1 and R2 are the ends of the subarc. Since δ∗ does not
contain any loops from Claim 2.1, we can deform � along δ by isotopy so to eliminate R1

and R2 (see Figure 8), which contradicts that � has the minimal complexity. �

FIGURE 8

CLAIM 2.3. ρ∗ is not a loop.

PROOF. Suppose that ρ∗ is a loop. Then, there are two cases by Claims 2.1 and 2.2:
ρ∗ bounds a disk in D∗

i which contains α∗
i or only one end of α∗

i . Here we may assume that
ρ∗ is innermost on D∗

i ∪ B∗
i , i.e., the disk δ∗ which ρ∗ bounds on D∗

i ∪ B∗
i does not contain

any other loops of S∗ ∩ (D∗
i ∪ B∗

i ).
Consider the former case. Since δ intersects with K in two points, one of the two compo-

nents of � − ρ does not intersect with K . Let �ρ be the closure of the component and Ti the
string ∂(Di∪Bi)∩H . Then Ti∪(Bi∩∂H) bounds a non-singular disk (Di −δ)∪�ρ∪(Bi ∩H)

in S3 whose interior does not intersect with K . Thus the SR-move is reducible. Therefore the
associated tangle of the SR-move is separable from Proposition 1 and Lemma 1, which is a
contradiction.

In the latter case, replacing a neighborhood of ρ in � with two parallel copies of δ,
we can obtain two 2-spheres �1 and �2 each of which intersects with K twice. Since �

is a decomposing sphere, either �1 or �2 is also a decomposing sphere, which induces a
contradiction that � has the minimal complexity. �
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From Claim 2.3, ρ∗ is an arc. Now let ξ∗
i,1 be the subarc of ∂(D∗

i ∪ B∗
i ) − ∂D∗

0 such that

∂ξ∗
i,1 = ∂α̇∗

i+1 and ξ∗
i,2 the arc ∂B∗

i ∩ ∂D∗
0 . Let ξ∗

i,3 be one of the two arcs of ∂(D∗
i ∪ B∗

i ) −
int(ξ∗

i,1 ∪ ξ∗
i,2) and ξ∗

i,4 the other arc (Figure 9). Here we may assume that ρ∗ does not have an

end on any of ∂α̇∗
i+1, ∂β∗

i,0, . . . , ∂β∗
i,ti

, and ∂ξ∗
i,2.

FIGURE 9

CLAIM 2.4. The ends of ρ∗ are on ξ∗
i,1 ∪ ξ∗

i,2.

PROOF. Assume otherwise. Then ρ∗ has an end p on ξ∗
i,3 or ξ∗

i,4. It is sufficient to

consider the former case from the symmetry. Let �∗ be the closure of the component of
B∗

i − (α̇∗
i+1 ∪ β∗

i,0 ∪ · · · ∪ β∗
i,ti

∪ ξ∗
i,2) which contains p. Then we have that ρ∗ is in �∗ or not.

If ρ∗ is in �∗, then we have two cases that the other end of ρ∗ than p is on ξ∗
i,3 or on ξ∗

i,4.

In the former case, ρ∗ bounds a disk δ∗ in �∗ with a subarc of ξ∗
i,3. Here note that δ∗ does

not contain any other components of S∗ ∩ (D∗
i ∪ B∗

i ) from Claim 2.1 and that � intersects
with K in two points. Then ∂δ − ρ is one of the two components of K − � and trivial, since

δ is an embedded disk in the closure of a component of S3 − �. Thus it contradicts that �

is a decomposing sphere for K . In the latter case, let δ∗ be the closure of the component

of (Dk∗
i ∪ Bk∗

i ) − ρ∗ which contains Dk∗
i . From Claim 2.3 and that � intersects with K in

two points, we have that intδ∗ ∩ S∗ = ∅, and thus ∂δ − intρ is the arc of K ∩ Ω , where Ω

is the closure of the component of S3 − � containing δ. Then ∂αk
i is on ∂δ − intρ, since

∂αk
i = intδ ∩ K . Therefore we have that αk

i = αk
i+1, which tells us that mk = 1. Then we

may consider ∂δ − intρ as an SR-tangle of type (1) in Ω , and thus it is trivial. However this
contradicts that � is a decomposing sphere.

If ρ∗ is not in �∗, then let q be the point of ρ∗∩(∂�∗−(ξ∗
i,3 ∪ξ∗

i,4)) such that the interior

of the subarc ρ∗
pq of ρ∗ bounded by p and q does not intersect with ∂�∗ − (ξ∗

i,3 ∪ ξ∗
i,4). Let ζ

be the one of α̇∗
i+1, β∗

i,0, . . . , β∗
i,ti

, and ξ∗
i,2 which contains q . Let s be the point ζ ∩ ξ∗

i,3, and

let ξ∗
ps (resp. ζqs) the subarc of ξ∗

i,3 (resp. ζ ) bounded by p (resp. q) and s. Then ρ∗
pq , ξ∗

ps , and

ζqs bound a disk δ∗. If intδ∗ ∩S∗ = ∅, then we can deform � along δ by isotopy so to reduce
the complexity of � as illustrated in Figure 10, which is a contradiction. If intδ∗ ∩ S∗ 
= ∅,
then δ∗ ∩ S∗ consists of ρ∗

pq and a subarc of an arc which has an end on the interior of ξ∗
ps

and intersects with the interior of ζqs from Claims 2.2 and 2.3 and that � intersects with K
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in two points. In this case, we can reduce the complexity of � by 2 using the deformation as
illustrated in Figure 10 twice, which is also a contradiction. �

FIGURE 10

CLAIM 2.5. ∂ρ∗ is not contained in ξ∗
i,1.

PROOF. Assume otherwise. Then ρ∗ bounds a disk δ∗ with a subarc μ∗ of ξ∗
i,1 in the

subdisk of D∗
i ∪ B∗

i bounded by ξ∗
i,1 and α̇∗

i+1 from Claim 2.2. From Claim 2.3 and that �

intersects with K in two points, we have that intδ∗ ∩ S∗ = ∅, and thus μ is the arc of K ∩ Ω ,

where Ω is the closure of the component of S3 − � containing δ. Moreover note that μ∗
is in intξ∗

i,1, and thus ∂α̇∗
i+1 is not on μ∗. Hence δ∗ does not contain any ends of α∗

i , since

otherwise Ω ∩ K consists of more than one string. Thus μ is a trivial tangle in Ω , which
contradicts that � is a decomposing sphere for K . �

From Claims 2.4 and 2.5, S∗ ∩ (D∗
i ∪B∗

i ) consists of at most two arcs each of which has
an end on both of ξ∗

i,1 and ξ∗
i,2 and arcs whose boundaries are on ξ∗

i,2. If an arc whose boundary

is on ξ∗
i,2 bounds with a subarc of ξ∗

i,2 a disk δ∗ on D∗
i ∪ B∗

i which does not contain an end of

α∗
i , then from Claim 2.2, the arc is in the component of B∗

i − (α̇∗
i+1 ∪ β∗

i,0 ∪ · · · ∪ β∗
i,ti

) which

contains ξ∗
i,2. However then we can deform � along δ by isotopy so to eliminate δ∗, which

contradicts that � has the minimal complexity. Thus a connected component of S∗∩(D∗
i ∪B∗

i )

is either

• an arc which has an end on both of ξ∗
i,1 and ξ∗

i,2 and which intersects with each of α∗
i ,

α̇∗
i+1, β

∗
i,0, . . . , β

∗
i,ti

once,

• an arc whose boundary is on ξ∗
i,2 and which intersects with each of α̇∗

i+1, β
∗
i,0, . . . , β

∗
i,ti

twice and bounds with a subarc of ξ∗
i,2 a disk on D∗

i ∪ B∗
i containing α∗

i , or

• an arc whose boundary is on ξ∗
i,2 and which intersects with α∗

i once and intersects with

each of α̇∗
i+1, β

∗
i,0, . . . , β

∗
i,ti

twice.

Take a look at the number 	(S∗ ∩ αk∗
i ) of intersections of S∗ and αk∗

i (1 ≤ i ≤ mk).

If an arc ρ∗ of S∗ ∩ (Dk∗
i ∪ Bk∗

i ) is of the first type (resp. last two types), then we have
that 	(ρ∗ ∩ α̇∗

i+1) = 	(ρ∗ ∩ α∗
i ) (resp. 	(ρ∗ ∩ α̇∗

i+1) > 	(ρ∗ ∩ α∗
i )). Thus we have that

	(S∗ ∩ α∗
i+1) = 	(S∗ ∩ α̇∗

i+1) ≥ 	(S∗ ∩ α∗
i ), since fC(α̇∗

i ) = fC(α∗
i ). Here note that we
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FIGURE 11

have that 	(S∗ ∩ α∗
i+mk

) = 	(S∗ ∩ α∗
i ), since i + mk ≡ i modulo mk . Hence we have that

	(S∗ ∩ α∗
mk

) = 	(S∗ ∩ α∗
mk−1) = · · · = 	(S∗ ∩ α∗

1 ). Therefore S∗ ∩ (D∗ ∪B∗) does not have

arcs of the last two types.
Hence S∗ ∩ (D∗ ∪B∗) consists of at most two arcs of the first type of the above, each of

which is a component of γ ∗ ∩ (D∗ ∪ B∗), since � intersects with K in two points. Therefore
we have the following five cases with respect to γ ∗:

(Case A) ∂γ ∗ is on ∂D∗
0 − ∂B∗, and thus γ ∗ is on D∗

0 and S∗ ∩ (D∗ ∪ B∗) = ∅;

(Case B) γ ∗ has an end on both of ∂Dk∗
1 and ∂Dl∗

1 with mk = ml = 1;

(Case C) γ ∗ has an end on both of ∂D∗
0 − ∂B∗ and ∂Dk∗

1 with mk = 1;

(Case D) ∂γ ∗ is on ∂Dk∗
1 with mk = 1; or

(Case E) γ ∗ has an end on both of ∂Dk∗
1 and ∂Dk∗

2 with mk = 2.
Now we know that S∗ consists of γ ∗ and loops on D∗

0 . In the followings, we also take
a look at the intersections of � ∩ (C ∪ ∂H) on �, which consists of γ , the loops of � ∩ D0,
and the loops of � ∩ ∂H .

CLAIM 2.6. Each loop of � ∩ D0 and � ∩ ∂H on � intersects with γ .

PROOF. Assume otherwise and take an innermost loop λ of the loops on � which do
not intersect with γ , and let �λ be the subdisk of � bounded by λ which does not contain γ .
Thus (int�λ) ∩ (C ∪ ∂H) = ∅.

If λ is a loop of �∩D0, then let δ be the subdisk of D0 which λ bounds and Bλ the 3-ball

which �λ ∪ δ bounds in S3 − ∂D0. Here δ may intersect with B or �. If δ ∩ B 
= ∅, then let
δ′ be a subdisk of δ such that δ′ ⊂ int δ and (int δ − δ′) ∩ (B ∪ �) = ∅. Let D′

0 be the disk

obtained from D0 by replacing δ′ with a parallel copy �′
λ of �λ such that ∂�′

λ = ∂δ′ and the
interior of the 3-ball bounded by �λ, �′

λ, and δ − int δ′ does not intersect with C ∪ � ∪ H .
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Then we obtain another ribbon disk D′
0 ∪ D ∪ B such that the number of intersections of

B and D′
0 is less than that of B and D0, which contradicts the minimality of the number of

intersections of B and D0. If δ ∩ B = ∅, then let λ′ be an innermost loop of � ∩ D0 in δ (λ′
may be λ) and let δ′ the subdisk of D0 which λ′ bounds. Replacing a neighborhood of λ′ in
� with two parallel copies of δ′, we obtain two 2-spheres �1 and �2 one of which, say �1,
intersects with K twice. Then �1 is another decomposing sphere with less complexity than
that of �, which contradicts that � has the minimal complexity.

If λ is a loop of �∩∂H , then λ separates ∂H into two disks δ1 and δ2 such that δ1 ∪δ2 =
∂H and δ1 ∩ δ2 = λ. If δ1 (resp. δ2) does not intersect with C, then replacing a neighborhood
of λ in � with two parallel copies of δ1 (resp. δ2), we obtain two 2-spheres �1 and �2 one
of which, say �1, intersects with K twice. Then �1 is another decomposing sphere with less
complexity than that of �, which contradicts that � has the minimal complexity. Thus both

of δ1 and δ2 intersect with C. We have that �λ is either in H or in S3 − H .
In the former case, �λ divide H into two 3-balls, one of which is bounded by �λ and

δ1, say H1, and the other of which is bounded by �λ and δ2, say H2. Since both of δ1 and δ2

intersect with C and �λ ∩ C = ∅, both of H1 and H2 contain a component of the SR-tangle.
However then the SR-tangle is separable, which contradicts the assumption.

In the latter case, �λ divide S3 − H into two 3-balls, one of which is bounded by �λ and
δ1 and the other of which is bounded by �λ and δ2. This is impossible to occur, since both of

δ1 and δ2 intersect with C, C ∩ S3 − H is a (singular) disk, and �λ ∩ C = ∅. �

(Case A) Since γ is on D0 and D0 is in S3 − H , neither a loop of D0 ∩ � nor a loop of
∂H ∩� intersects with γ . However this contradicts Claim 2.6. Thus there are no loops on �,

which induces that S∗ consists of only γ ∗ and � is in S3 − H . Therefore if each component
of ∂D∗

0 − γ ∗ contains a component of ∂B∗ ∩ ∂D∗
0 , then each component of S3 − � contains

Dk
i ∪ Bk

i for a certain pair of i and k. However, this is impossible, since D is contained in

H and � is in S3 − H and thus a component of S3 − � is in S3 − H . Hence one of the
two components of ∂D∗

0 − γ ∗, say μ∗, does not contain any components of ∂B∗ ∩ ∂D∗
0 .

Therefore μ is the arc of K ∩ Ω , where Ω is the closure of a component of S3 − �. Now let
δ∗ be the subdisk of D∗

0 bounded by γ ∗ and μ∗. Since S∗ consists of only γ ∗, we have that
intδ∗ ∩ S∗ = ∅. Thus δ is an embedded disk in Ω . Moreover δ∗ does not contain an end of
β̇k∗

i for any pair of i and k, since otherwise Ω ∩ K consists of more than one string. Hence μ

is trivial in Ω , which contradicts that � is a decomposing sphere for K .

(Case B and C) Let ρ∗ be the arc of S∗ ∩ (Dk∗
1 ∪ Bk∗

1 ), let A∗ (resp. Ȧ∗) the intersection

of ρ∗ with αk∗
1 (resp. with α̇k∗

1 ), and let ρ∗
0 the subarc of ρ∗ bounded by A∗ and Ȧ∗ (see the

leftside of Figure 12). Note that ρ0 bounds a disk δ on �, and that δ does not contain any

loop intersections from Claim 2.6. Then we can deform Dk
1 ∪ Bk

1 along δ to eliminate αk
1 by

isotopy, which tells us the k-th component of our SR-tangle is trivial. This contradicts that
our SR-tangle is not separable from Lemma 1.4
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(Case D) Let ρ∗
1 and ρ∗

2 be the two arcs of γ ∗ ∩ (Dk∗
1 ∪ Bk∗

1 ). If ρ1 and ρ2 does not
intersect each other, then we can obtain a contradiction as the previous case. Thus ρ1 and

ρ2 intersect in two points A = fC(A∗) = fC(Ȧ∗) and B = fC(B∗) = fC(Ḃ∗), where

A∗ = ρ∗
1 ∩ αk∗

1 , Ȧ∗ = ρ∗
2 ∩ α̇k∗

1 , B∗ = ρ∗
2 ∩ αk∗

1 , and Ḃ∗ = ρ∗
1 ∩ α̇k∗

1 (see the rightside of

Figure 12). Let δ∗
1 be the subdisk of Dk∗

1 ∪ Bk∗
1 bounded by the subarc ζ ∗

1 of ρ∗
1 bounded by

A∗ ∪ Ḃ∗, the subarc of α̇k∗
1 bounded by Ḃ∗ ∪ Ȧ∗, the subarc ζ ∗

2 of ρ∗
2 bounded by Ȧ∗ ∪ B∗,

and the subarc of αk∗
1 bounded by B∗ ∪ A∗. From Claim 2.1, we have that intδ1 ∩ � = ∅.

Thus δ1 is properly embedded in the closure of the component of S3 −�. However then, take
a subdisk δ2 of � bounded by ζ1 and ζ2. Since δ1 is a Möbius band, δ1 ∪ δ2 is a projective

plane, which cannot be embedded in S3. Thus we have a contradiction.

FIGURE 12

In the rest of the paper, we devote ourselves to Case E. We omit the upper index k of Dk
i

and Bk
i (i = 1, 2) unless we need to emphasize it.

(Case E) In this case γ ∗ can be divided into five subarcs as γ ∗ = γ ∗
D1

∪γ ∗
B1

∪γ ∗
D0

∪γ ∗
B2

∪
γ ∗
D2

, where γ ∗
X is γ ∗ ∩ X∗. Take a look at S∗ ∩ D∗

0 , which consists of γ ∗
D0

and the pre-images

of the loops of � ∩D0. Then γ ∗
D0

may intersect with β̇∗
i,j , and each loop of S∗ ∩D∗

0 intersects

with β̇∗
i,j from Claim 2.6 (see Figure 13 for an example).

Now take a look at the intersections of � ∩ (C ∪ ∂H) on �, which consists γ , the loops
of � ∩ D0, and the loops of � ∩ ∂H . Here note that each of the five subarcs of γ is simple,
that γDi intersects with γ − γDi only in a point on γBi+1 , and that γBi intersects with γ − γBi

in a point on γDi+1 and in points on γD0 (i = 1, 2).

CLAIM 2.7. We have that int(γB1 ∪ γB2) ∩ intγD0 = ∅.

PROOF. Assume otherwise. Then γBi has a subarc ζ which bounds a disk δζ on �

with a subarc of γD0 (i = 1, 2), where we may assume that δζ does not contain any subarcs
of γB1 and of γB2 . Here δζ may intersect with a loop of � ∩ D0 in an arc whose ends are
on ζ . However then, we can eliminate the intersections from an outermost one by deforming
B along the subdisk of δζ bounded by the intersection and a subarc of ζ by isotopy, which
contradicts the minimality of the number of intersections of B ∩ D0. Hence intδζ ∩ C = ∅.
Now we have two cases that an end of ζ is on ∂γBi ∩ ∂γD0 or not. In either case, we can
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FIGURE 13

deform Bi along δζ by isotopy so to eliminate the intersection(s) of intγBi and intγD0 (an end
or the ends of ζ ). However this also contradicts the minimality of the number of intersections
of B ∩ D0. �

FIGURE 14

CLAIM 2.8. Each loop on � intersects with γ exactly in two points β1,j ∩ � and
β2,j ∩ � (j = 0, 1, . . . , t1 = t2).

PROOF. Let B ′
1 (resp. B ′

2) be the closure of the component of B1 − α2 (resp. B2 − α1)
which intersects with ∂H , and let λ a loop on �. Note that λ intersects with γ from Claim
2.6, moreover only in γB ′

1
or γB ′

2
, since βi,j is on B ′

i (i = 1, 2, j = 0, 1, . . . , ti ). First we

claim that λ intersects with γB ′
i

at most once (i = 1, 2). If λ is of � ∩ ∂H , then it is clear,

since each band of B intersects with ∂H only once. Assume that λ is of � ∩D0 and intersects
with γB ′

i
in more than once. Such a loop has a subarc which bounds a disk on � with a subarc

of γB ′
i
(i = 1, 2). Let δ be an innermost disk among such disks. We may assume that δ is

bounded by a subarc of λ and a subarc of γB ′
1
. Then we can deform B1 along δ by isotopy so
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to eliminate the two intersections. However this contradicts the minimality of the number of
intersections of B ∩ D0.

Therefore we complete the proof, since γB1 ∪γD0 ∪γB ′
2

and a subarc of γD1 form a cycle

on �. �

FIGURE 15

From Claim 2.8, we have that � ∩∂H consists of only one loop, i.e., the loop of � ∩∂H

which intersects with γB1 is the loop of � ∩ ∂H which intersects with γB2 , and thus � ∩ H is

a disk �H . Note that �H ∩ C = �H ∩ (Bk ∪ Dk). Therefore the SR-tangle consists of only
one component, since otherwise we can take a disk �H × {1} or �H × {−1} to separate the
k-th component from another component.

FIGURE 16

CLAIM 2.9. There do not exist loops of � ∩ D0.

PROOF. Assume otherwise. Then take an innermost one, say λ on �, i.e., a loop which
bounds a disk on � that contains the loop of � ∩ ∂H but does not contain any other loops
of � ∩ D0. Let Aλ be the annulus on � bounded by λ and the loop of � ∩ ∂H and let Bi,1
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the subband of Bi bounded by βi,0 and βi,1 (i = 1, 2), where note that βi,1 intersects with λ.
Then we have that (H ∪ Aλ ∪ B1,1 ∪ B2,1) ∩ D0 = λ ∪ β1,1 ∪ β2,1.

Now let δλ be the subdisk of D0 bounded by λ and take a subdisk δ of D0 such that
δ ∩ (B ∪ �) = (δλ ∪ β1,1 ∪ β2,1) ∩ (B ∪ �). Then take a disk δ′ with ∂δ′ = ∂δ and
intδ′ ∩ (C ∪ � ∪ H) = ∅ which bounds a 3-ball with δ containing H ∪ Aλ ∪ B1,1 ∪ B2,1. Let
D′

0 = (D0 − δ)∪ δ′, and then (B∪D)∪D′
0 is another ribbon disk for K such that the number

of intersections of B and D′
0 is less than that of B and D0, which is a contradiction. �

FIGURE 17

Therefore we have that B ∩ D0 = ∅ and � ∩ C = γ , and thus C ∪ H ∪ � is as illustrated
in Figure 18. Then we know that K is the square knot, which contradicts the assumption.

FIGURE 18

Hence we can conclude that there does not exist a composite knot which is not the square
knot and can be transformed into the trivial knot by a single SR−-move whose associated
tangle is not separable. This completes the proof. �
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