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Abstract. We present a Robinson-Schensted-Knuth type one-to-one correspondence between the set of pic-
tures and the set of pairs of Littlewood-Richardson crystals.

1. Introduction

Combinatorics of pictures has been initiated in [1, 2, 6, 14]. Picture is a certain bijective
order morphism between two skew Young diagrams with some partial/total orders. The re-
markable result for pictures is that there exists a kind of RSK type one to one correspondence

as follows. Let κi (i = 1, 2) be skew Young diagrams with |κ1| = |κ2|(= N). There exists a
bijection:

P(κ1, κ2)
1:1←→

∐
μ

(
P(μ, κ1)× P(μ, κ2)

)
, (1.1)

where μ runs over the set of Young diagrams with |μ| = N and P(κ1, κ2) is a set of pictures
from κ1 to κ2. Since some set of pictures can be identified with a set of permutations, this
correspondence can be seen as an analogue of the RSK correspondence. In [3, 13], certain
generalizations have been done using various combinatorial methods.

In [11, 12], we introduced the one to one correspondence between “Littlewood-
Richardson crystals” and pictures.

P(μ, ν \ λ)
1:1←→ B(μ)νλ , (1.2)

where λ,μ, ν are Young diagrams with |λ|+|μ| = |ν|. This seems to give a new interpretation
of pictures from the view point of the theory of crystal bases.

In this article, we shall describe the following bijections

P(κ1, κ2)
1:1←→ S(κ1, κ2)

1:1←→ W(κ1, κ2)
1:1←→

∐
μ

(
B(μ)ν

1

λ1 × B(μ)ν
2

λ2

)
, (1.3)
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where P(κ1, κ2) is the set of pictures from κ1 to κ2, S(κ1, κ2) is the set of Littlewood-
Richardson skew tableaux associated with (κ1, κ2), W(κ1, κ2) is the set of lexicographic

two-rowed array (of column type) associated with (κ1, κ2) and the last one is a set of pairs
of Littlewood-Richardson crystals. Thus, applying (1.2) to the last one in (1.3) we obtain the
original correspondence (1.1). The pictures treated in this article are defined by the order J

(see Sect.2), which is a kind of admissible orders. More general setting, namely defined by
general admissible orders will be discussed elsewhere.

As is well known that the crystal B(μ) of type gln (or sln) is realized as the set of Young
tableaux [9] and the Littlewood-Richardson crystal B(μ)νλ is a subset of B(μ) with the certain
special conditions ’highest conditions’ [10, 11, 12]. Thus, the last term in (1.3) is a set of pairs
of same shaped Young tableaux and then bijections in (1.3) turn out to be a generalization of
the RSK correspondence.

As claimed in [11, 12], these methods would open the door to generalize the theory
of pictures to wider classes. Indeed, in preparing this manuscript, we received the preprint
‘Admissible pictures and Uq(gl(m; n))- Littlewood-Richardson tableaux’ by J. H. Jung, S-J.
Kang and Y-W. Lyoo, which gives the first bijection in (1.3) and generalizes it to the the super
case Uq(gl(m; n)). This is a kind of the evidence of our claims, unfortunately, which was not
done by us.

The organizations of the article is as follows: in Sect.2 and 3, the basics of pictures and
crystals are reviewed. In Sect.4, we introduce several combinatorial procedures and notions
required in this article; column bumping, RSK correspondence, Knuth equivalence, crystal
equivalence and etc. The main theorem is given in Sect.5. and its proof is described separately
in the subsequent sections.

2. Pictures

2.1. Young diagrams and Young tableaux. Let λ = (λ1, λ2, . . . , λm) be a Young
diagram or a partition, which satisfies λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0. For Young diagrams λ and
μ with μ ⊂ λ, a skew diagram λ \ μ is obtained by subtracting set-theoretically μ from λ.

In this article we frequently consider a (skew) Young diagram as a subset of N × N by
identifying the box in i-th row and j -th column with (i, j) ∈ N×N.

EXAMPLE 2.1. A Young diagram λ = (2, 2, 1) is expressed by {(1, 1), (1, 2), (2, 1),

(2, 2), (3, 1)}.
As in [4], in the sequel, a “(skew) Young tableau” means a semi-standard (skew) tableau.

For a skew Young tableau S of shape λ \ μ, we also consider a “coordinate” in N×N like as
a skew diagram λ \ μ. Then an entry of S in (i, j) is denoted by Si,j and called (i, j)-entry.
For k > 0, define ([11])

S(k) = {(l,m) ∈ λ \ μ|Sl,m = k} . (2.1)
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There is no two elements in one column in S(k). For a skew Young tableau S with (i, j)-entry

Si,j = k, we define p(S; i, j) ([11]) as the number of (i, j)-entry from the right in S(k).

2.2. Picture. First, we shall introduce the original notion of “picture” as in [14].
We define the following two kinds of orders on a subset X ⊂ N×N: For (a, b), (c, d) ∈

X,
(i) (a, b) �P (c, d) iff a ≤ c and b ≤ d .

(ii) (a, b) �J (c, d) iff a < c, or a = c and b ≥ d .
Note that the order �P is a partial order and �J is a total order.

DEFINITION 2.2 ([14]). Let X,Y ⊂ N×N.
(i) A map f : X→ Y is said to be PJ-standard if it satisfies

For (a, b), (c, d) ∈ X, if (a, b) �P (c, d), then f (a, b) �J f (c, d) .

(ii) A map f : X→ Y is a picture if it is bijective and both f and f−1 are PJ-standard.

Taking two skew Young diagrams κ1, κ2 ⊂ N× N, denote the set of pictures by:

P(κ1, κ2) := {f : κ1 → κ2 | f is a picture.}
Next, we shall generalize the notion of pictures by using a total order on a subset X ⊂

N×N, called an “admissible order”, though we do not treat this generalization in this article:

DEFINITION 2.3. (i) A total order �A on X ⊂ N × N is called admissible if it
satisfies:

For any (a, b), (c, d) ∈ X if a ≤ c and b ≥ d then (a, b) �A (c, d).

(ii) For X,Y ⊂ N × N and a map f : X → Y , if f satisfies that if (a, b) �P (c, d),
then f (a, b) �A f (c, d) for any (a, b), (c, d) ∈ X, then f is called PA-standard.

(iii) Let �A (resp. �A′ ) be an admissible order on X(resp. Y ) ⊂ N × N. A bijective
map f : X → Y is called an (A,A′)-admissible picture or simply, an admissible

picture if f is PA-standard and f−1 is PA′-standard.

3. Crystals

The basic references for the theory of crystals are [7], [8].

3.1. Readings and Additions. Let B = { i | 1 ≤ i ≤ n + 1} be the crystal of the
vector representation V (Λ1) of the quantum group Uq(An) ([9]). As in [11], we shall identify
a dominant weight of type An with a Young diagram in the standard way, e.g., the fundamental
weight Λ1 is identified with a square box . For a Young diagram λ, let B(λ) be the crystal
of the finite-dimensional irreducible Uq(An)-module V (λ). Set N := |λ|. Then there exists

an embedding of crystals: B(λ) ↪→ B⊗N and an element in B(λ) is realized by a Young
tableau of shape λ ([9]). Note that this embedding can be extended to skew tableaux, that is,
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there exists an embedding of crystals S(κ) ↪→ B⊗N , where S(κ) is the set of skew tableaux
of shape κ with N = |κ | ([5]). Indeed, there are some dominant weights λ1, . . . , λk such that
S(κ) ∼= B(λ1)⊕ · · · ⊕ B(λk). Such an embedding is not unique, which is called a ‘reading’
and described by:

DEFINITION 3.1 ([5]). Let A be an admissible order on a (skew) Young diagram λ

with |λ| = N . For T ∈ B(λ) (resp. S(λ)), by reading the entries in T according to A, we
obtain the map

RA : B(λ)(resp. S(λ)) −→ B⊗N (T �→ i1 ⊗ · · · ⊗ iN )) ,

which is called an admissible reading associated with the order A. The map RA is an em-
bedding of crystals. In particular, in case that taking the order J as an admissible order, we
denote the embedding RJ by ME and call it a middle-eastern reading.

DEFINITION 3.2. For i ∈ {1, 2, . . . , n+1} and a Young diagram λ = (λ1, λ2, . . . , λn),
we define

λ[i] := (λ1, λ2, . . . , λi + 1, . . . , λn)

which is said to be the addition of i to λ. In general, for i1, i2, . . . , iN ∈ {1, 2, . . . , n+ 1} and
a Young diagram λ, we define

λ[i1, i2, . . . , iN ] := (· · · ((λ[i1])[i2]) · · · )[iN ] ,
which is called the addition of i1, . . . , iN to λ.

EXAMPLE 3.3. For a sequence i = 31212, the addition of i to λ = is:

3
−→ 1 −→ 2 −→ 1 −→ 2 .

REMARK. For a Young diagram λ, the addition λ[i1, . . . , iN ] is not necessarily a Young
diagram. For instance, a sequence i′ = 22133 and λ = (2, 2), the addition λ[i′] = (3, 3, 2) is
a Young diagram. But, in the second step of the addition, it becomes the diagram λ[2, 2] =
(2, 3), which is not a Young diagram.

3.2. Littlewood-Richardson Crystal. As an application of the description of crystal
bases of type An, we see the so-called “Littlewood-Richardson rule” of type An.

For a sequence i = i1i2 · · · iN (ij ∈ {1, 2, . . . , n + 1}) and a Young diagram λ, let

λ̃ := λ[i1, i2, . . . , iN ] be an addition of i1, i2, . . . , iN to λ. Then set

B(λ : i) =
{

B(λ̃) if λ[i1, . . . , ik] is a Young diagram for any k = 1, 2, . . . , N ,

∅ otherwise.
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THEOREM 3.4 ([5, 10]). Let λ and μ be Young diagrams with at most n rows. Then
we have

B(λ)⊗ B(μ) ∼=
⊕

T ∈ B(μ),

ME(T ) = i1 ⊗ · · · ⊗ iN

B(λ : i1, i2, . . . , iN ) . (3.1)

Define

B(μ)νλ :=

⎧⎪⎪⎨
⎪⎪⎩ T ∈ B(μ)

ME(T ) = i1 ⊗ i2 ⊗ · · · ⊗ ik ⊗ · · · ⊗ iN .

For any k = 1, . . . , N,

λ[i1, . . . , ik] is a Young diagram and
λ[i1, . . . , iN ] = ν.

⎫⎪⎪⎬
⎪⎪⎭ ,

which is called the Littlewood-Richardson crystal associated with a triplet (λ, μ, ν).

4. Robinson-Schensted-Knuth(RSK) correspondence

In this section we review the Robinson-Schensted-Knuth(RSK) correspondence with re-
spect to the column bumping procedure. For the contents of this section see [4] (in particular,
Appendix A.).

4.1. Column Bumping and RSK Correspondence. For an integer x and a Young
tableau T , we define the column bumping procedure:

DEFINITION 4.1. (i) (a) If all entries in the 1-st column of T are greater than x, put
x just beneath the 1-st column and the procedure is over.

(b) Otherwise, let y be the top entry in the 1-st column that is equal to or smaller
than x and put x in the box and bump the entry y out.

(c) Do the same one for y and the second column. If it does not stop at the last
column, make a new box next to the last column and put the entry in the new
box.

We denote the resulting tableau by x → T .
(ii) The shape of x → T is a diagram added one box to the original shape of T . We

shall denote the added new box by New(x) and call the new box by x.

The following lemma is known as the ‘column bumping lemma’.

LEMMA 4.2. Let T be a tableau and x, x ′ positive integers. In the column bumping
x ′ → (x → T ), we have:

(i) If x < x ′, then New(x ′) is weakly left of and strictly below New(x).
(ii) If x ≥ x ′, then New(x) is strictly left of and weakly below New(x ′).

It is shown similarly to the row bumping lemma ([4]).
As is well-known that there is the reverse operation of this procedure, which is called an

reverse (column) bumping.
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DEFINITION 4.3. A two-rowed array w =
(

u1u2 · · · um

v1v2 · · · vm

)
is in lexicographic order

(of column type) if it satisfies: (i) u1 ≤ u2 ≤ · · · ≤ um. (ii) If uk = uk+1, then vk ≥ vk+1.

Let w be a two-rowed array in the lexicographic order with length m as above. We call
the following procedure the RSK procedure:

(i) Set P1 = v1 and Q1 = u1.
(ii) We obtain (Pk+1,Qk+1) from (Pk,Qk) by Pk+1 = vk+1 → Pk and put uk+1 to

the same place in Qk as the new box by vk+1 in Pk+1.
(iii) Set R(w) := (P,Q) = (Pm,Qm).

Note that P and Q are Young tableaux with entries 1, . . . ,m and the same shape. We call
the tableau Q the recording tableau of P . This procedure is reversible by using the reverse
column bumping: For a pair of Young tableaux (P,Q), we apply the reverse bumping to
P starting from the box in P which is in the same position as the box with the right-most
maximum entry in Q and remove the entry from Q. Repeat this procedure until the tableaux
become empty. We obtain the two-rowed array from (P,Q), which gives the reverse of the
RSK procedure.

THEOREM 4.4 (RSK correspondence). Let W[n;m] be the set of two-rowed array in
the lexicographic order (of column type) with length m and entries 1, . . . , n and P[n;m] be
the set of pairs of same-shaped Young tableaux with m boxes and entries 1, . . . , n. Then the
map R as above gives a bijection between W[n;m] and P[n;m].

4.2. Knuth equivalence and Crystal equivalence. In this article, a word means a
finite sequence of non-negative integers.

DEFINITION 4.5 (Knuth equivalence).
(i) Each of the following transformations between 3-letter words is called an ele-

mentary Knuth transformation:

(a) K : yxz←→ yzx if x < y ≤ z

(b) K ′ : xzy ←→ zxy if x ≤ y < z.

(ii) If two words with same length w and w′ are Knuth equivalent if one can be
transformed to the other by a sequence of the elementary Knuth transformations
and we denote it by w

k∼w′.

Here let us mention the relation between the crystal B and the Knuth equivalence. The
following lemma is well-known:

LEMMA 4.6. There exists the following non-trivial isomorphism of crystals: R : B⊗
B⊗ B→ B⊗ B⊗ B by :

R( b ⊗ a ⊗ c ) = b ⊗ c ⊗ a , R( b ⊗ c ⊗ a ) = b ⊗ a ⊗ c if a ≤ b < c,

R( c ⊗ a ⊗ b ) = a ⊗ c ⊗ b , R( a ⊗ c ⊗ b ) = c ⊗ a ⊗ b if a < b ≤ c,

R = id, otherwise.
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This is known as a combinatorial R matrix. Indeed,

B⊗3 ∼= B( )⊕ B
( )⊕2 ⊕ B

( )
,

and the map R flips two components B( ) each other. Using this, we induce certain

equivalent relation between elements in B⊗m.

DEFINITION 4.7 (Crystal equivalence). Two elements b, b′ in B⊗m are crystal equiv-
alent, denoted by b

c∼ b′ if one is obtained by the others by applying a sequence of R’s.

The following is trivial by the theory of crystal bases:

PROPOSITION 4.8. If b
c∼ b′ (b, b′ ∈ B⊗m), then ẽib

c∼ ẽib
′ or ẽib = ẽib

′ = 0 (resp.

f̃ib
c∼ f̃ib

′ or f̃ib = f̃ib
′ = 0) for any i.

By the definitions we can easily see:

LEMMA 4.9. For words w = a1a2 · · · am and w′ = b1b2 · · · bm, set b := am ⊗· · ·⊗ a1

and b′ := bm ⊗ · · · ⊗ b1 . Then we have w
k∼w′ if and only if b

c∼ b′.

DEFINITION 4.10. For a skew Young tableau S, a word w(S) is defined by reading
the entries in each row from left to right and from the bottom row to the top row, which is
called a skew tableau word of S.

The following is given in [4].

PROPOSITION 4.11. For a Young tableau T and a positive integer x, we have w(x →
T )

k∼x · w(T ), and furthermore, for positive integers x1, . . . , xm we have

w(x1→ (x2→ (· · · (xm−1 → xm))))
k∼ x1x2 · · · xm−1xm .

5. Main Theorem

Let κi (i = 1, 2) be skew diagrams with |κ1| = |κ2| =: N and λi, νi (i = 1, 2) be Young
diagrams satisfying κi = νi \ λi . Now, let us define the the map S:

S : P(κ1, κ2)→
∐
μ

(
B(μ)ν

1

λ1 × B(μ)ν
2

λ2

)
(f �→ (T 1, T 2)) ,

where μ runs over the set of Young diagrams with |κ1| = |κ2| = |μ|(= N).
Set

S(κ1, κ2) :=
⎧⎨
⎩S

S is a skew tableau of shape κ1 and the number of entry i is κ2
i ,

ME(S) = i1 ⊗ i2 ⊗ · · · ⊗ ik ⊗ · · · ⊗ iN satisfies that λ2[i1, . . . , ik] is
a Young diagram for k = 1, . . . , N and λ2[i1, . . . , iN ] = ν2.

⎫⎬
⎭ ,



120 TOSHIKI NAKASHIMA AND MIKI SHIMOJO

W(κ1, κ2) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩w =

(
w1

w2

) w is a lexicographic two-rowed array of length N,

�{i ∈ wj } = κ
j
i (j = 1, 2),

the column bumping of w2 is in B(μ)ν
2

λ2 and

the recording tableau by w1 is in B(μ)ν
1

λ1 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where an element in S(κ1, κ2) is called a Littlewood-Richardson skew tableau associated with
(κ1, κ2). Let us define maps:

S1 : P(κ1, κ2)→ S(κ1, κ2) , S2 : S(κ1, κ2)→W(κ1, κ2) ,

S3 :W(κ1, κ2)→
∐
μ

(
B(μ)ν

1

λ1 × B(μ)ν
2

λ2

)
.

DEFINITION 5.1. (i) For a picture f = (f1, f2) ∈ P(κ1, κ2) (where f1, f2 mean

a coordinate of a box in κ2), let S be a skew tableau of shape κ1 whose (i, j)-entry Si,j =
f1(i, j). Define S1(f ) := S.

(ii) For S ∈ S(κ1, κ2), writing ME(S) = a1 ⊗ a2 ⊗ · · · ⊗ aN , define a word w2 =
a1a2 · · · aN . Let bi (i = 1, 2, . . . , N) be the row number of the place of ai in S and

set w1 = b1b2 · · · bN . Define

S2(S) := w =
(

w1

w2

)
=

(
b1 b2 . . . bN

a1 a2 . . . aN

)
.

(iii) For a two-rowed array w =
(

w1

w2

)
=

(
b1 b2 . . . bN

a1 a2 . . . aN

)
∈ W(κ1, κ2), ap-

plying the column bumping procedure to w2, obtain the tableau T 2 = aN →
(· · · (a2 → a1)). Let T 1 be the recording tableau of T 2 using w1. Define

S3(w) = (T 1, T 2).
(iv) Finally, define S = S3 ◦ S2 ◦ S1.

Next, let us define a map C

C :
∐
μ

(
B(μ)ν

1

λ1 × B(μ)ν
2

λ2

)→ P(κ1, κ2) .

To carry out this task, we define the following maps:

C3 :
∐
μ

(
B(μ)ν

1

λ1 × B(μ)ν
2

λ2

)→W(κ1, κ2) ,

C2 :W(κ1, κ2)→ S(κ1, κ2) , C1 : S(κ1, κ2)→ P(κ1, κ2) .

DEFINITION 5.2. (i) For a pair of tableaux (T 1, T 2) ∈ ∐
μ

(
B(μ)ν

1

λ1 × B(μ)ν
2

λ2

)
,

apply the reverse column bumping to T 2 by using T 1 as a recording tableau and set

cNcN−1 · · · c1 the sequence obtained from T 2 (ci is the N + 1− i-th entry bumped out from
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T 2.). Set w2 := c1 · · · cN and let di be the entry in the same place in T 1 as the (N − i+ 1)-th

removed box in T 2 and set w1 := d1 · · · dN . Define C3(T
1, T 2) = w =

(
w1

w2

)
.

(ii) For

w =
(

w1

w2

)
=

(
d1d2 · · · dN

c1c2 · · · cN

)
∈W(κ1, κ2),

put c1c2 · · · cN to κ1 according to the middle-eastern ordering and set S the result-

ing skew tableau, whose shape is κ1. Define C2(w) = S.

(iii) For S ∈ S(κ1, κ2), define C1(S) = f by f (i, j) := (Sij , λ2
Sij
+ p(S; i, j)) for

(i, j) ∈ κ1, where p(S; i, j) is as above and Sij is the (i, j)-entry of S.
(iv) Finally, we define C = C1 ◦ C2 ◦ C3.

Note that well-definedness of each map will be shown later.

THEOREM 5.3. In the above setting, the maps S and C are both well-defined bijective

maps between P(κ1, κ2) and
∐

μ

(
B(μ)ν

1

λ1 × B(μ)ν
2

λ2

)
, and inverse each other.

Here note that the set
∐

μ

(
B(μ)ν

1

λ1 × B(μ)ν
2

λ2

)
consists of pairs of same shaped Young

tableaux, which means that this theorem is an analogue of the RSK correspondence.

EXAMPLE 5.4. We take the following skew diagrams:

κ1 = κ2 =

Let fa ∈ P(κ1, κ2) be

fa = κ1 (1, 3) (1, 4) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

κ2 (1, 3) (3, 1) (1, 4) (3, 2) (2, 3) (4, 2) (4, 1)

Here we have

Sa = S1(fa) =
2 4 4

1 3
1 3

and then ME(Sa) = 3 ⊗ 1 ⊗ 3 ⊗ 1 ⊗ 4 ⊗ 4 ⊗ 2 .

Then we get wa = S2(Sa) =
(

1122333
3131442

)
and then finally, we have

T 2 : 3 ��� 1 3 ��� 1 3
3 ��� 1 1 3

3 ���
1 1 3
3
4

���
1 1 3
3 4
4

���
1 1 3
2 3 4
4

= T 2
a ,

T 1 : 1 ��� 1 1 ��� 1 1
2 ��� 1 1 2

2 ���
1 1 2
2
3

���
1 1 2
2 3
3

���
1 1 2
2 3 3
3

= T 1
a ,
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that is, S3(wa) = (T 1
a , T 2

a ).

Conversely, for (T 1, T 2) =
(

1 1 2
2 3 3
3

,
1 1 3
2 3 4
4

)
, applying the reverse column bumping to T 2

using T 1, we get c7 = 2, c6 = 4, c5 = 4, c4 = 1, c3 = 3, c2 = 1, c1 = 3 and d1 = d2 =
1, d3 = d4 = 2, d5 = d6 = d7 = 3 and then

w = C3(T
1, T 2) =

(
1122333
3131442

)
.

We obtain

S = C2(w) =
c7 c6 c5

c4 c3

c2 c1

=
2 4 4

1 3
1 3

and then finally, we have

C1(S) = κ1 (1, 3) (1, 4) (2, 2) (2, 3) (3, 1) (3, 2) (3, 3)

κ2 (1, 3) (3, 1) (1, 4) (3, 2) (2, 3) (4, 2) (4, 1)
= fa .

To show the theorem, it suffices to prove:

(i) The well-definedness of S.
(ii) The well-definedness of C.

(iii) Bijectivity of S and C.

We shall show these in the subsequent sections.

6. Well-definedness of S
For the well-definedness of S, we shall prove the following:

PROPOSITION 6.1. The maps Si (i = 1, 2, 3) are well-defined.

Indeed, the well-definedness of S3 is obvious by the definition.

6.1. Well-definedness of S1. For f ∈ S(κ1, κ2), by the similar argument in [11, 12],
we can show that S := S1(f ) is a skew tableau. Thus, we may show:

LEMMA 6.2. For any k = 1, . . . , n and the skew tableau S = S1(f ), we have

ẽk(ME(Yλ2)⊗ME(S)) = 0 ,

where Yλ2 is a Young tableau of shape λ2 satisfying that all the entries in k-th row are k

(k = 1, . . . , n), which is called a highest tableau.

PROOF. Write

ME(Yλ2)⊗ME(S) = i1 ⊗ · · · ⊗ iN .

By the rule of the action of ẽk , we may show

�{j |ij = k, j ≤ p} ≥ �{j |ij = k + 1, j ≤ p} (6.1)
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for any p = 1, . . . , N . In the skew diagram κ2, we have

C B

A D
λ2

k−λ2
k+1︷ ︸︸ ︷ ← k-th row

← k + 1-th row (in κ2)

For boxes (k, j), (k + 1, j) ∈ κ2, by the fact (k, j) �P (k + 1, j), we have

(x1, y1) := f−1(k, j) �J f−1(k + 1, j) =: (x2, y2) .

It is evident from the definition of the map S1 that

Sx1,y1 = k , Sx2,y2 = k + 1 .

This implies that in the tensor product ME(Yλ2)⊗ME(S) = i1 ⊗· · ·⊗ iN , k’s from A appear
earlier than k + 1’s from B and then they are cancelled each other with respect to the action

of ẽk . In ME(Yλ2), the number of k exceeds the one of k + 1 by λ2
k − λ2

k+1. Thus, k + 1’s
from the part C in the figure also have been cancelled by k’s in ME(Yλ2). Hence we obtain
(6.1) and then ẽk(ME(Yλ2)⊗ME(S)) = 0 for any k.

Thus, we have the well-definedness of S1.

6.2. Well-definedness of S2. First, let us show that the two-rowed array w := S2(S)

(S ∈ S(κ1, κ2)) is in the lexicographic order, that is, b1 ≤ b2 ≤ · · · ≤ bN and aj ≥ aj+1 if
bj = bj+1, where aj , bj are as in Definition 5.1. It follows immediately from the definition
of bi’s that b1 ≤ b2 ≤ · · · ≤ bN . Let k satisfy b1 ≤ k ≤ bN and {bi, bi+1, . . . , bi+r }
the maximal subsequence of w1 such that bi = · · · = bi+r = k, which implies that
ai, ai+1, . . . , ai+r are the entries in the k-th row of S. Since S is a skew tableau, we ob-
tain that ai ≥ ai+1 ≥ · · · ≥ ai+r , which means that w is in the lexicographic order. Let T 2

be the tableau from w2 by the column bumping and show that T 2 ∈ B(μ)ν
2

λ2 , i.e.,

ẽk(ME(Yλ2)⊗ME(T 2)) = 0

for any k = 1 . . . , n. For this purpose, we see the following lemma.

LEMMA 6.3. ME(S) is crystal equivalent to ME(T 2).

PROOF. For w2 = a1a2 · · · aN , since T 2 is obtained by the column bumping procedure

of aN · · · a1, we know that w(S) = aNaN−1 . . . a1
k∼ w(T 2), which means ME(S)

c∼ME(T 2)

by Lemma 4.9.

By the Lemma 6.3, we have ME(S)
c∼ME(T 2) and then ME(Yλ2) ⊗

ME(S)
c∼ME(Yλ2)⊗ME(T 2). We also have

ẽk(ME(Yλ2)⊗ME(S)) = 0 ,

for any k by Lemma 6.2. This and Proposition 4.8 show that

ẽk(ME(Yλ2)⊗ME(T 2)) = 0 ,
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for any k and then we have T 2 ∈ B(μ)ν
2

λ2 .

For w := S2(S), we set (T 1, T 2) := S3(w). For our purpose, it suffices to show T 1 ∈
B(μ)ν

1

λ1 , that is, ẽk(ME(Yλ2)⊗ME(T 1)) = 0 for any k.

LEMMA 6.4. Let 1 ≤ c1, . . . , ck ≤ n. For some i ∈ {1, . . . , k − 1} assume that

b1 := · · ·⊗ ci−1 ⊗ ci ⊗ ci+1 ⊗ ci+2 ⊗· · · c∼ · · ·⊗ ci−1 ⊗ ci+1 ⊗ ci ⊗ ci+2 ⊗· · · =: b2 .

Applying the column bumping procedure to both b1 and b2, the place of the new box New(ci)

(resp. New(ci+1)) from b1 coincides with the one of the new box New(ci+1) (resp. New(ci))

from b2.

PROOF. Set x := ci , y := ci−1 and z := ci+1. First we consider the case x ≤ y < z.
Let Tp (resp. Tq )be the tableau obtained from b1 (resp. b2) by the column bumping procedure.
It follows immediately from the condition x ≤ y < z that

w(Tp)
k∼ ck · · · zxy · · · c1

k∼ ck · · · xzy · · · c1
k∼ w(Tq) ,

which shows that Tp = Tq . Define the tableau T ′ by the column bumping

T ′ := z→ (x → (y → (· · · (c2→ c1)))) (6.2)

= x → (z→ (y → (· · · (c2→ c1)))) . (6.3)

Let X = New(x) and Z = New(z) be the new boxes in each column bumping. Since
x < z, applying the column bumping lemma to the bumping (6.2) we have:

X

Z

Similarly, in (6.3), we have

Z

X

These mean that X (resp. Z) in (6.2) coincides with X (resp. Z) in (6.3). We can show
the case x < y ≤ z and the case x = ci , z = ci+1 and y = ci+2 similarly.

To show ẽk(ME(Yλ1) ⊗ME(T 1)) = 0 for any k, we see the k-th and k + 1-th rows of
S.

d1 . . . dj . . .

. . . am+1 . . . an

b1

a1

bm

am ← k-th row

← k + 1-th row (in S)
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By this figure, we know that for i = 2, 3, . . . ,m

a1 < bi−1 ≤ bi .

This induces the following transformations of ME(S) by the map R in Lemma 4.6:

ME(S)= · · · ⊗ a2 ⊗ a1 ⊗ bm ⊗ bm−1 ⊗ · · · ⊗ b1 ⊗ dj ⊗ · · ·
c∼ · · · ⊗ a2 ⊗ bm ⊗ a1 ⊗ bm−1 ⊗ · · · ⊗ b1 ⊗ dj ⊗ · · ·

. . . . . . . . . . . .
c∼ · · · ⊗ a2 ⊗ bm ⊗ bm−1 ⊗ · · · ⊗ b2 ⊗ a1 ⊗ b1 ⊗ dj ⊗ · · · .

Furthermore, we have aj < bi−1 ≤ bi for 2 ≤ j < i ≤ m. Thus, repeating the above
transformations we get

ME(S)
c∼ · · ·⊗ am ⊗ bm ⊗ am−1 ⊗ bm−1 ⊗· · ·⊗ a2 ⊗ b2 ⊗ a1 ⊗ b1 ⊗ dj ⊗· · · =: w′ , (6.4)

which means that the resulting tableaux by column bumping of ME(S) and w′ are same

as T 2 by Lemma 6.4. Considering the column bumping of w′, set A1 := New(a1) and
B1 := New(b1) in T 2. We have

A1

B1

Since the entry a1 (resp. b1) has been placed at the k (resp. k + 1)-th row in S, in T 1 we
have

k

k + 1

So, in ME(T 1) the k as above appears earlier than the k+ 1. We know that the positions
of New(ai) and New(bi) in T 1 are in the similar relation to the one of New(a1) and New(b1)

and then in ME(T 1) the k’s from a1, . . . , am cancel the k + 1’s from b1, . . . , bm. Moreover,
in ME(Yλ1) we have �{k} − �{k + 1} = λ1

k − λ1
k+1. Thus, k + 1’s from d1, . . . , dj have been

cancelled in ME(T 1) and this implies ẽk(ME(Yλ2) ⊗ ME(T 1)) = 0 for any k. Now, we

obtain T 1 ∈ B(μ)ν
1

λ1 and the well-definedness of the map S2 and then S, which completes the
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proof of Proposition 6.1.

7. Well-definedness of C

To show the well-definedness of the map C, we should prove that f := C(T 1, T 2) is a

PJ-picture from κ1 to κ2. In the course of the proof, we shall also show that the maps C1, C2

and C3 are well-defined. Indeed, the well-definedness of C3 is immediate from the definition.

PROPOSITION 7.1. Let S be the filling of shape κ1 appearing in the definition of C2.

Then S is a skew tableau of shape κ1.

PROOF. For w =
(

w1

w2

)
∈ W(κ1, κ2), set (T 1, T 2) := S3(w), which is in

∐
μ

(
B(μ)ν

1

λ1 × B(μ)ν
2

λ2

)
as we have seen in the previous section. Since T 1 is in B(μ)ν

1

λ1 ,

the number of entry k’s(k = 1, . . . , n) is h := ν1
k − λ1

k . Let X1, . . . , Xh be the positions of

all k’s in T 1 from right to left. Note that (T 1)
(k) = {X1, . . . , Xh}. And let xj (j = 1, . . . , h)

be the entry in T 2 at the same position as Xj . By the definition of C2, the entries in k-th row
of S consist of the elements obtained by reverse column bumping, that is, the entry Sk,λ1+i is
the element by the inverse column bumping of xi .

Now, assume that Sk,λ1+i > Sk,λ1+i+1. In the column bumping of w2 = ME(S) to T 2,
the new box by Sk,λ1+i (resp. Sk,λ1+i+1) has xi (resp. xi+1) as an entry and it is placed at
Xi (resp. Xi+1). Applying the column bumping lemma (Lemma 4.2) to these new boxes, we
have

xi+1

xi

This contradicts to the fact that xi is on the right side of xi+1 and shows that Sk,λ1+i ≤
Sk,λ1+i+1.

Next, let us check the condition for vertical directions in S. Suppose that Sk,j ≥ Sk+1,j .
Then in S we obtain the following A,B: satisfying A ≥ B, ai < bj for i ≤ j , i = 1, . . . , x

and j = 1, . . . ,m. Indeed, we get these by the following way.

(i) Find the left-most pair (as, bs) with as ≥ bs .
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(ii) If as ≥ bm, then set A := as and B := bm.
(iii) Otherwise, compare as and bm−1 and if as ≥ bm−1, then set A := as and B :=

bm−1.
(iv) Otherwise, repeat the above procedure until getting as ≥ bl for l ≥ s. Then set

A := as and B := bl .

Since we have a1 < bj−1 ≤ bj for j = 2, . . . ,m, and a1 < B ≤ by+1 we have

ME(S) = · · · ⊗ an ⊗ · · · · · · ⊗ ax+1 ⊗ A ⊗ ax ⊗ · · · ⊗ a1 ⊗ bm ⊗ bm−1 ⊗ · · ·
· · · ⊗ by+1 ⊗ B ⊗ by · · · ⊗ b1 ⊗ cz ⊗ · · · ⊗ c1 ⊗ · · ·

c∼ · · · ⊗ an ⊗ · · · · · · ⊗ ax+1 ⊗ A ⊗ ax ⊗ · · · ⊗ bm ⊗ a1 ⊗ bm−1 ⊗ · · ·
· · · ⊗ by+1 ⊗ B ⊗ by · · · ⊗ b1 ⊗ cz ⊗ · · · ⊗ c1 ⊗ · · ·

c∼ · · · ⊗ an ⊗ · · · · · · ⊗ ax+1 ⊗ A ⊗ ax ⊗ · · · ⊗ a2 ⊗ bm ⊗ bm−1 ⊗ · · ·
· · · ⊗ by+1 ⊗ B ⊗ by · · · ⊗ b2 ⊗ a1 ⊗ b1 ⊗ cz ⊗ · · · .

Due to the conditions ai < bk−1 ≤ bk and ai < B ≤ by+1 for 2 ≤ k < i ≤ x , we can repeat
the transformations above and get

ME(S)
c∼ · · · ⊗ an ⊗ · · · ⊗ ax+1 ⊗ A ⊗ bm ⊗ bm−1 ⊗ · · · ⊗ by+1 ⊗ B ⊗ by ⊗ · · ·

· · · ⊗ bx+1 ⊗ ax ⊗ bx ⊗ · · · ⊗ a2 ⊗ b2 ⊗ a1 ⊗ b1 ⊗ cz ⊗ · · · .
It follows from the conditions A < bi ≤ bi+1 for i = y + 1, . . . ,m and B ≤ A < by+1 that

ME(S)
c∼ · · · ⊗ an ⊗ · · · ⊗ ax+1 ⊗ bm ⊗ bm−1 ⊗ · · · ⊗ by+2 ⊗ A ⊗ by+1 ⊗ B ⊗ by ⊗ · · ·

· · · ⊗ bx+1 ⊗ ax ⊗ bx ⊗ · · · ⊗ a1 ⊗ b1 ⊗ cz ⊗ · · ·
c∼ · · · ⊗ an ⊗ · · · ⊗ ax+1 ⊗ bm ⊗ bm−1 ⊗ · · · ⊗ by+2 ⊗ A ⊗ B ⊗ by+1 ⊗ by ⊗ · · ·

· · · ⊗ bx+1 ⊗ ax ⊗ bx ⊗ · · · ⊗ a1 ⊗ b1 ⊗ cz ⊗ · · · ⊗ c1 ⊗ · · · . (7.1)

Now, let us see the following Claim 1–3:

CLAIM 1. In (7.1) one can find that A and B (A ≥ B) are neighboring each other.
Thus, applying the column bumping of (7.1), by the column bumping lemma (Lemma 4.2)
we obtain
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A′

B ′

in T 2,

where A′ := New(A) and B ′ := New(B).

CLAIM 2. Next, in the column bumping of ME(S), since a1 ≤ · · · ≤ ax ≤ A, by
the column bumping lemma (Lemma 4.2) the new boxes by a1, . . . , ax are placed on the
right-side of A′. Similarly, since c1 ≤ · · · ≤ cz ≤ b1 ≤ · · · ≤ by ≤ B, the new boxes by
c1, . . . , cz, b1, . . . , bx are placed on the right-side of B ′.

CLAIM 3. As the definition of the map S3, the tableau T 1 is the recording tableau of T 2.
Then, it follows from Claim 2 that there are x entries k’s on the right-side of A′ and z + y

entries k + 1’s on the right-side of the same place as B ′ in T 1. We also know from Claim 1
that B ′ is on the right-side of A′ and then there exist z+ y+ 1 entries k+ 1’s on the right-side
of A′.

In ME(Yλ1)⊗ME(T 1) let n1 (resp. n2) be the number of k (resp. k+1) on the left-side
of A′. Claim 3 implies that

n1 = λ1 + x , n2 = λ1 + z + y + 1 . (7.2)

Since z = λ1
k − λ1

k+1 and x ≤ y, one gets

n2 − n1 = (λ1
k+1 + z+ y + 1)− (λ1

k + x) ≥ 1 ,

which contradicts that T 1 ∈ B(μ)ν
1

λ1 and the case Sk,j ≥ Sk+1,j never occur. Thus, S is a

skew tableau. It is immediate from the definition of C2 that w(S)
k∼ w(T ), which means S is

a Littlewood-Richardson skew tableau and then C2 is well-defined.

PROOF OF WELL-DEFINEDNESS OF C . For the purpose we may show that f is bi-

jective, f and f−1 are PJ-picture. The bijectivity of f is obtained by the similar way
to that in [11, 12]. In order to show that f and f−1 are PJ-picture, we may see for any

(i, j), (i, j + 1), (i + 1, j) ∈ κ1 and any (a, b), (a, b+ 1), (a + 1, b) ∈ κ2,

f (i, j) �J f (i, j + 1) , f (i, j) �J f (i + 1, j) ,

f−1(a, b) �J f−1(a, b + 1) , f−1(a, b) �J f−1(a + 1, b) .

These are also shown by the similar way to those in [11, 12].
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8. Bijectivity of S and C

It suffices to show that C ◦S = id and S ◦ C = id. To carry out these, we shall prove that
Ci ◦ Si = id and Si ◦ Ci = id for i = 1, 2, 3.

8.1. S1 and C1. Take S ∈ S(κ1, κ2) and set S′ := S1 ◦ C1(S). We have C1(S)(i, j) =
(Sij , λ2

Sij
+ p(S; i, j)). Hence, by the definition of S1 we have S′ij = Sij , which implies

S′ = S and then S1 ◦ C1 = id.
For f ∈ P(κ1, κ2), set g := C1 ◦ S1(f ). The following lemma can proved similarly to

[11, Lemma 5.2], [12, Lemma 5.4].

LEMMA 8.1. Set S = S1(f ). Considering Yλ2 ⊗ME(S), the entry Sij is added to

the position f (i, j) ∈ κ2.

Since Sij = f1(i, j) and g(i, j) = (Sij , λ
2
Sij
+p(S; i, j)), we get g1(i, j) = f1(i, j). We

know that Sij (= k) is the p(S; , i, j)-th entry equal to k and f2(i, j) = λ2
Sij
+ p(S; , i, j) =

g2(i, j), which shows f = g and then C1 ◦ S1 = id.

8.2. S2 and C2. Set w′ := S2 ◦ C2(w) for w ∈W(κ1, κ2) and write

w =
(

w1

w2

)
=

(
d1d2 · · · dN

c1c2 · · · cN

)
, w′ =

(
w′1
w′2

)
=

(
b1b2 · · · bN

a1a2 · · · aN

)
.

Note that the number of i in w1 is just equal to κ1
i . For S := C2(w), we have ME(S) =

c1 ⊗ c2 ⊗· · ·⊗ cn and then w2 = w′2 by the definition of S2. The number bi is the row number

of ai in S. Thus, since the number of i in w′1 is κ1
i , d1 ≤ · · · ≤ dN and b1 ≤ · · · ≤ bN , we

have w1 = w′ = 1 and then w = w′, which means S2 ◦ C2 = id.
It is trivial from the definition of the maps S2 and C2 that C2 ◦ S2 = id.

8.3. S3 and C3. We have seen the well-definedness of the maps S3 and C3 and these
maps are certain restriction of usual RSK correspondence in terms of column bumping. Thus,
we obtain S3 ◦ C3 = id and C3 ◦ S3 = id.

Now, we obtain Si ◦ Ci = id and Ci ◦ Si = id (i = 1, 2, 3) and then S ◦ C = id and
C ◦ S = id. So, we have completed the proof of Theorem 5.3.
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