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Abstract. Let G be a simple algebraic group over C. By taking the quasi-classical limit of the ring of differ-
ential operators on the corresponding quantized algebraic group at roots of 1 we obtain a Poisson manifold ΔG×K,
where ΔG is the subgroup of G×G consisting of the diagonal elements, and K is a certain subgroup of G×G. We
show that this Poisson structure coincides with the one introduced by Semenov-Tyan-Shansky geometrically in the
framework of Manin triples.

1. Introduction

In this paper we will explicitly compute the Poisson bracket of a certain Poisson manifold
arising from the ring of differential operators on a quantized algebraic group at roots of 1. This
result will be a foundation in the author’s recent works regarding the Beilinson-Bernstein type
localization theorem for representations of quantized enveloping algebras at roots of 1 (see
[16], [17]).

Let G be a simple algebraic group over C with Lie algebra g. Take Borel subgroups B+
and B− of G such that H = B+ ∩ B− is a maximal torus of G. Set N± = [B±, B±]. We
define a subgroupK of G×G by

K = {(tx, t−1y) | t ∈ H, x ∈ N+, y ∈ N−} ⊂ B+ × B− ⊂ G×G .
Let ζ ∈ C× be a primitive �-th root of 1, where � is an odd positive integer satisfying cer-
tain conditions depending on g, and let Uζ be the De Concini-Kac type quantized enveloping
algebra of g at ζ . It is expected that there exists a certain correspondence between repre-
sentations of Uζ and modules over the ring DBζ of differential operators on the quantized

flag manifold Bζ . Since DBζ is closely related to the ring DGζ of differential operators on
the quantized algebraic group Gζ , it is an important step in establishing the expected corre-
spondence to investigate the ring DGζ in detail. Note that DGζ is nothing but the Heisenberg
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double C[Gζ ] ⊗ Uζ of the Hopf algebras C[Gζ ] and Uζ , where C[Gζ ] is the coordinate al-
gebra of Gζ . We have natural central embeddings C[G] ⊂ C[Gζ ], C[K] ⊂ Uζ of Hopf
algebras, and hence G and K become Poisson algebraic groups. By De Concini-Procesi [4]
and De Concini-Lyubashenko [3] these Poisson algebraic group structures of G and K turn
out to be the ones defined geometrically from the Manin triple (G×G,ΔG,K), where ΔG
is the subgroup of G × G consisting of diagonal elements. The aim of the present paper is
to give a description of the Poisson algebra structure of C[G] ⊗ C[K] induced by the central
embedding

(1.1) C[G] ⊗C[K] ⊂ C[Gζ ] ⊗ Uζ
of algebras.

Let (a,m, l) be a Manin triple over C. Assume that we are given a connected algebraic
group A with Lie algebra a and connected closed subgroupsM and L of A with Lie algebras
m and l respectively. Then Semenov-Tyan-Shansky [13], [14] showed that A has a natural
structure of Poisson manifold. Hence by considering the pull-back with respect to the local
isomorphismM ×L→ A ((m, l) �→ ml) the manifoldM ×L also turns out to be a Poisson
manifold.

THEOREM 1.1. The Poisson structure of G× K induced from the central embedding
(1.1) coincides with the one defined geometrically from the Manin triple (G×G,ΔG,K).

As explained above, the coincidence of the two Poisson brackets

C[G×K] × C[G×K] → C[G×K]
is already known for the parts C[G]×C[G] → C[G] and C[K]×C[K] → C[K] by [4], [3].
Hence we will be only concerned with the mixed part of the Poisson bracket between C[G]
and C[K]. We point out that a closely related result in the case of ζ = 1 for general Manin
triples already appeared in [14].

In [14] it is noted that the Poisson manifold L associated to a Manin triple (a,m, l) can
also be recovered as a Hamiltonian reduction with respect to the action of M on M × L. In
order to pass from DGζ to DBζ we need to consider Hamiltonian reduction for more general

situation. As a result we obtain the following.

PROPOSITION 1.2. The varieties

Y ={(N−g, (k1, k2)) ∈ (N−\G)×K | gk1k
−1
2 g−1 ∈ HN−},

Y t ={(B−g, (k1, k2) ∈ (B−\G)×K | gk1k
−1
2 g−1 ∈ tN−} (t ∈ H)

turn out to be Poisson manifolds with respect to the Poisson tensors induced from that of

G × K . Moreover, the Poisson tensors of Y and Y t are non-degenerate. Hence they are
symplectic manifolds.

In fact the Poisson manifold arising from the Poisson structure of the center of DBζ
coincides with Y above (see [16]). The non-degeneracy of the Poisson tensor plays a crucial
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role in the argument of [16].
The contents of this paper is as follows. In Section 2 we recall the definition of the

Poisson structure due to Semenov-Tyan-Shansky, and show that the technique of the Hamil-
tonian reduction works for certain cases. The case of the typical Manin triple (g ⊕ g,Δg, k)

is discussed in detail. In Section 3 we give a summary of some of the known results on quan-
tized enveloping algebras at roots of 1 due to Lusztig [9], De Concini-Kac [2], De Concini-
Lyubashenko [3], De Concini-Procesi [4], Gavarini [6]. In Section 4 we show that the Poisson
structure arising from the algebra of differential operators acting on quantized coordinate al-
gebra of G at roots of 1 coincides with the one coming from the typical Manin triple.

2. Poisson structures arising from Manin triples

2.1. Manin triples. We first recall standard facts on Poisson structures (see e.g., [5],
[4]). A commutative associative algebra R over C equipped with a bilinear map { , } : R ×
R→ R is called a Poisson algebra if it satisfies

(a) {a, a} = 0 (a ∈ R),
(b) {a, {b, c}} + {b, {c, a}} + {c, {a, b}} = 0 (a, b, c ∈ R),
(c) {a, bc} = b{a, c} + {a, b}c (a, b, c ∈ R).

A map F : R → R′ between Poisson algebras R, R′ is called a homomorphism of Pois-
son algebras if it is a homomorphism of associative algebras and satisfies F({a1, a2}) =
{F(a1), F (a2)} for any a1, a2 ∈ R. The tensor product R⊗C R′ of two Poisson algebras R,
R′ over C is equipped with a canonical Poisson algebra structure given by

(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2 ,

{a1 ⊗ b1, a2 ⊗ b2} = {a1, a2} ⊗ b1b2 + a1a2 ⊗ {b1, b2}
for a1, a2 ∈ R, b2, b2 ∈ R′. A commutative Hopf algebra R over a field C equipped with a
bilinear map { , } : R × R → R is called a Poisson Hopf algebra if it is a Poisson algebra
and the comultiplication R→ R⊗C R is a homomorphism of Poisson algebras (in this case
the counit R→ C and the antipode R→ R become automatically a homomorphism and an
anti-homomorphism of Poisson algebras respectively).

For a smooth algebraic variety X over C let OX (resp. ΘX, ΩX) be the sheaf of regular
functions (resp. vector fields, 1-forms). We denote the tangent and the cotangent bundles ofX
by TX and T ∗X respectively. A smooth affine algebraic variety X over C is called a Poisson
variety if we are given a bilinear map { , } : C[X] ×C[X] → C[X] so that C[X] is a Poisson
algebra. In this case {f, g}(x) for f, g ∈ C[X] and x ∈ X depends only on dfx, dgx , and

hence we have δ ∈ Γ (X,∧2
ΘX) (called the Poisson tensor of the Poisson variety X) such

that

{f, g}(x) = δx(dfx, dgx) .

Consequently we also have the notion of Poisson variety which is not necessarily affine.
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Let S be a linear algebraic group over C with Lie algebra s. For a ∈ s we define vector
fields Ra,La ∈ Γ (S,ΘS) by

(Ra(f ))(s) = d

dt
f (exp(−ta)s)|t=0 (f ∈ OS, s ∈ S) ,

(La(f ))(s) = d

dt
f (s exp(ta))|t=0 (f ∈ OS, s ∈ S) .

For ξ ∈ s∗ we also define 1-forms L∗ξ , R∗ξ ∈ Γ (S,ΩS) by

〈L∗ξ , La〉 = 〈R∗ξ , Ra〉 = 〈ξ, a〉 (a ∈ s) .

For s ∈ S we define �s : S → S by �s(x) = sx.
A linear algebraic group S over C is called a Poisson algebraic group if we are given a

bilinear map { , } : C[S] × C[S] → C[S] so that C[S] is a Poisson Hopf algebra. Let δ be

the Poisson tensor of S as a Poisson variety, and define ε : S → ∧2 s by (d�s)(ε(s)) = δs

for s ∈ S. Here, we identify the tangent space (T S)1 at the identity element 1 ∈ S with s by

La ↔ a (a ∈ s). By differentiating ε at 1 we obtain a linear map s → ∧2 s. It induces an
alternating bilinear map [ , ] : s∗ × s∗ → s∗. Then this [ , ] gives a Lie algebra structure of
s∗. Moreover, the following bracket product gives a Lie algebra structure of s⊕ s∗:

[(a, ϕ), (b,ψ)] = ([a, b] + ϕb − ψa, aψ − bϕ + [ϕ,ψ]) .
Here, s× s∗ � (a, ϕ)→ aϕ ∈ s∗ and s∗ × s � (ϕ, a)→ ϕa ∈ s are the coadjoint actions of
s and s∗ on s∗ and s respectively. In other words (s⊕ s∗, s, s∗) is a Manin triple with respect
to the symmetric bilinear form ρ on s ⊕ s∗ given by ρ((a, ϕ), (b,ψ)) = ϕ(b) + ψ(a). We
say that (a,m, l) is a Manin triple with respect to a symmetric bilinear form ρ on a if

(a) a is a finite-dimensional Lie algebra,
(b) ρ is a-invariant and non-degenerate,
(c) m and l are subalgebras of a such that a = m⊕ l as a vector space,
(d) ρ(m,m) = ρ(l, l) = {0}.
Conversely, for each Manin triple we can associate a Poisson algebraic group by re-

versing the above process as follows. Let (a,m, l) be a Manin triple with respect to a bi-
linear form ρ on a and let M be a linear algebraic group with Lie algebra m. Denote by
πm : a → m, πl : a → l the projections with respect to the direct sum decomposition
a = m⊕ l. We sometimes identify m∗ and l∗ with l and m respectively via the non-degenerate
bilinear form ρ|m×l : m× l → C. Hence we have also a natural identification

(2.1) a∗ = (m⊕ l)∗ ∼= m∗ ⊕ l∗ ∼= l⊕m = a .

Form ∈ M we denote by Ad(m) : a → a the adjoint action. Then we have the following (see
e.g., [5], [4]).

PROPOSITION 2.1. The algebraic group M is endowed with a structure of Poisson
algebraic group whose Poisson tensor δM is given by
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δMm (L
∗
ξ , L

∗
η) = ρ(πm(Ad(m)(ξ)),Ad(m)(η)) (ξ, η ∈ l = m∗) ,

δMm (R
∗
ξ , R

∗
η) = −ρ(πm(Ad(m−1)(ξ)),Ad(m−1)(η)) (ξ, η ∈ l = m∗)

for m ∈ M .

2.2. Semenov-Tyan-Shansky Poisson structure. Let (a,m, l) be a Manin triple over
C with respect to a bilinear form ρ on a. We assume that we are given a connected algebraic
group A and its closed connected subgroups M and L with Lie algebras a,m, l respectively.
Define an alternating bilinear form ω on a by

ω(a + b, a′ + b′) = ρ(a, b′)− ρ(b, a′) (a, a′ ∈ m, b, b′ ∈ l) .

Denote the adjoint action of A on a by Ad : A→ GL(a).

PROPOSITION 2.2 (Semenov-Tyan-Shansky [13], [14]). The smooth affine variety A

is endowed with a structure of Poisson variety whose Poisson tensor δ̃ is given by

δ̃g(L
∗
ξ , L

∗
η) =

1

2
(ω(Ad(g)(ξ),Ad(g)(η))+ ω(ξ, η)) (ξ, η ∈ a∗, g ∈ A) .

Here, we identify a with a∗ via (2.1).

Note that we can rewrite δ̃ in terms of ρ as

δ̃g(R
∗
a , R

∗
b) = ρ(a, (−πm + Ad(g)πl Ad(g−1))(b))

= ρ(a, (πl − Ad(g)πm Ad(g−1))(b)) ,

δ̃g(L
∗
a, L

∗
b) = ρ(a, (−πm + Ad(g−1)πl Ad(g))(b))

= ρ(a, (πl − Ad(g−1)πm Ad(g))(b)) (g ∈ A, a, b ∈ a) .

Consider the map

(2.2) Φ :M × L→ A ((m, l) �→ ml) .

Since Φ is a local isomorphism, we obtain a Poisson structure of M × L whose Poisson

tensor δ is the pull-back of δ̃ with respect to Φ. Let us give a concrete description of δ. By
Proposition 2.1 M is endowed with a structure of Poisson algebraic group. By the symmetry
of the notion of a Manin triple L is also a Poisson algebraic group whose Poisson tensor δL is
given by

δLl (L
∗
ξ , L

∗
η) = ρ(πl(Ad(l)(ξ)),Ad(l)(η)) (l ∈ L, ξ, η ∈ m = l∗) ,

δLl (R
∗
ξ , R

∗
η) = −ρ(πl(Ad(l−1)(ξ)),Ad(l−1)(η)) (l ∈ L, ξ, η ∈ m = l∗) .

By a standard computation we have the following.

PROPOSITION 2.3. The Poisson tensor δ is given by

δ(m,l) : ((T ∗M)m ⊕ (T ∗L)l)× ((T ∗M)m ⊕ (T ∗L)l)→ C
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for (m, l) ∈ M × L with

δ(m,l)|(T ∗M)m×(T ∗M)m = δMm ,(2.3)

δ(m,l)|(T ∗L)l×(T ∗L)l = δLl ,(2.4)

δ(m,l)(L
∗
a, R

∗
ξ ) = ρ(a, ξ) (a ∈ l = m∗, ξ ∈ m = l∗) .(2.5)

As noted in [14] the Poisson tensors δ̃ and δ are non-degenerate at generic points, and
hence some open subsets ofA andM×L turn out to be symplectic manifolds. We give below
the condition on the point of A and M × L so that the Poisson tensor is non-degenerate.

LEMMA 2.4. (i) Let g ∈ A. Then δ̃g is non-degenerate if and only if

Ad(g)(l) ∩m = Ad(g)(m) ∩ l = {0} .
(ii) Let (m, l) ∈ M × L. Then we have

dim rad δ(m,l) = dim(l ∩ Ad(ml)(m)) .

Especially, δ(m,l) is non-degenerate if and only if

Ad(m−1)(l) ∩ Ad(l)(m) = {0} .
PROOF. (i) Set F = −πm + Ad(g)πl Ad(g−1) : a → a for simplicity. By definition

δ̃g is non-degenerate if and only if F is an isomorphism.
Assume that F is an isomorphism. Since F is surjective, we must have a = m+Ad(g)(l)

by the definition of F . By dim a = dim m + dim l we have a = m ⊕ Ad(g)(l) and m ∩
Ad(g)(l) = 0. Then

Ker F = {a ∈ a | πm(a) = Ad(g)πl Ad(g−1)(a) = 0} = l ∩ Ad(g)(m) .

Hence the injectivity of F implies l ∩ Ad(g)(m) = {0}.
Assume Ad(g)(l) ∩ m = Ad(g)(m) ∩ l = {0}. By Ad(g)(l) ∩ m = {0} we have a =

m⊕ Ad(g)(l). Then Ker F = l ∩ Ad(g)(m) = {0}. Hence F is an isomorphism.
(ii) For g = ml we have

Ad(g)(l) ∩m = Ad(m)(Ad(l)(l) ∩ Ad(m−1)(m)) = Ad(m)(l ∩m) = {0}.
Hence by the proof of (i) we obtain

dim rad δ(m,k) = dim Ker(−πm + Ad(g)πl Ad(g−1))

= dim(l ∩Ad(g)(m)) .

�

COROLLARY 2.5. (i) The Poisson structure of A induces a symplectic structure of
the open subset

Ũ = {g ∈ A | Ad(g)(l) ∩m = Ad(g)(m) ∩ l = {0}}
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of A
(ii) The Poisson structure of M × L induces a symplectic structure of the open subset

U := {(m, l) ∈ M × L | Ad(m−1)(l) ∩ Ad(l)(m) = {0}}
of M × L.

2.3. A variant of Hamiltonian reduction. Let X be a Poisson variety with Poisson
tensor δ and let S be a connected linear algebraic group acting on the algebraic variety X (we
do not assume that S preserves the Poisson structure of X). Assume also that we are given an
S-stable smooth subvariety Y ofX on which S acts locally freely. Denote by s the Lie algebra
of S.

For y ∈ Y the linear map

s � a �→ ∂a ∈ (T Y )y , (∂af )(y) = d

dt
f (exp(−ta)y)|t=0

is injective by the assumption. Hence we may regard s ⊂ (T Y )y for y ∈ Y . This gives an
embedding

Y × s ⊂ T Y ⊂ (T X|Y )
of vector bundles on Y . Correspondingly, we have

T ∗Y X ⊂ (Y × s)⊥ ⊂ (T ∗X|Y )
where

(Y × s)⊥ = {v ∈ (T ∗X|Y ) | 〈v, Y × s〉 = 0} ,
and T ∗Y X denotes the conormal bundle.

By restricting δ ∈ Γ (∧2(T X)) to Y we obtain δ|Y ∈ Γ (∧2(T X|Y )). For y ∈ Y re-
stricting the anti-symmetric bilinear form (δ|Y )y on (T ∗X)y to ((Y × s)⊥)y we obtain an

anti-symmetric bilinear form δ̂y on ((Y ×s)⊥)y . Then we have δ̂ ∈ Γ (∧2((T X|Y )/(Y ×s))).
Denote the action of g ∈ S by rg : X → X. Then for y ∈ Y the isomorphism
(drg )y : (T X)y → (T X)gy induces

(drg )y : (T Y )y → (T Y )gy , (drg )y : s � a �→ Ad(g)(a) ∈ s ,

where s is identified with subspaces of (T Y )y and (T Y )gy . In particular, S naturally acts on

Γ (∧2((T X|Y )/(Y × s))).

PROPOSITION 2.6. Assume that δ̂ is S-invariant and (T ∗Y X)y ⊂ rad(δ̂y) for any y ∈
Y . Then the quotient space S\Y admits a natural structure of Poisson variety as follows. Let

ϕ,ψ be functions on S\Y , and let ϕ̃, ψ̃ be the corresponding S-invariant functions on Y . Take

extensions ϕ̂, ψ̂ of ϕ̃, ψ̃ to X (not necessarily S-invariant). Then {ϕ̂, ψ̂}|Y is S-invariant and
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does not depend on the choice of ϕ̂, ψ̂ . We define {ϕ,ψ} to be the function corresponding to

{ϕ̂, ψ̂}|Y .

Moreover, if we have (T ∗Y X)y = rad(δ̂y) for any y ∈ Y , then the Poisson tensor of S\Y
is non-degenerate. Hence S\Y turns out to be a symplectic variety.

PROOF. For F ∈ OX, ∂ ∈ ΘX, y ∈ Y we have 〈(dF )y, ∂〉 = (∂(F ))(y), and hence

F |Y is S-invariant (resp. F |Y is a locally constant function) if and only if dF |Y ∈ (Y × s)⊥
(resp. dF |Y ∈ T ∗Y X).

Take ϕ,ψ and ϕ̃, ψ̃ , ϕ̂, ψ̂ as above. We first show that {ϕ̂, ψ̂}|Y does not depend on the

choice of ϕ̂, ψ̂ . For that it is sufficient to show that {ϕ̂, ψ̂}|Y = 0 if ψ̃ = 0. By dϕ̂|Y ∈
(Y × s)⊥, dψ̂|Y ∈ T ∗Y X we have

{ϕ̂, ψ̂}(y) = δy((dϕ̂)y, (dψ̂)y) = δ̂y((dϕ̂)y, (dψ̂)y) = 0

by the assumption.

Let us show that {ϕ̂, ψ̂}|Y is S-invariant. For g ∈ S, y ∈ Y we have

{ϕ̂, ψ̂}(gy) = δ̂gy((dϕ̂)gy, (dψ̂)gy) = δ̂y (d(ϕ̂ ◦ rg )y, d(ψ̂ ◦ rg )y)
= {ϕ̂ ◦ rg , ψ̂ ◦ rg }(y)

by the S-invariance of δ̂. Since ϕ̃, ψ̃ are S-invariant, we have ϕ̂ ◦ rg |Y = ϕ̃ and ψ̂ ◦ rg |Y = ψ̃ .

Hence the independence of {ϕ̂, ψ̂}|Y on the choice of ϕ̂, ψ̂ implies

{ϕ̂ ◦ rg , ψ̂ ◦ rg }(y) = {ϕ̂, ψ̂}(y)
for g ∈ S and y ∈ Y .

The remaining assertions are now clear. �

Now we apply the above general result to our Poisson varieties M × L and A.
Assume that we are given a connected closed subgroup F ofM . Let f be the Lie algebra

of F and set f⊥ = {a ∈ a | ρ(f, a) = 0}. The action F × A � (x, g) �→ xg ∈ A of F on A
induces an injection

f � a �→ Ra ∈ (T A)g (g ∈ A) .
Define a subbundle (A× f)⊥ of T ∗A by

((A× f)⊥)g = {R∗c | c ∈ f⊥} ⊂ (T ∗A)g ,

and set δ̂ = δ̃|(A×f)⊥×(A×f)⊥ .

LEMMA 2.7. If f⊥ ∩ l is a Lie subalgebra of l, then δ̂ is F -invariant.

PROOF. By definition δ̂g for g ∈ A is given by

δ̂g(R
∗
c , R

∗
c′) = ρ(c, (−πm + Ad(g)πl Ad(g−1))(c′)) (c, c′ ∈ f⊥) .
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On the other hand for x ∈ F, g ∈ A the isomorphism (T ∗A)g ∼= (T ∗A)xg induced by the
action of x is given by

(T ∗A)g ∼= (T ∗A)xg
(
R∗b �→ R∗Ad(x)(b)

)
.

Hence it is sufficient to show

ρ(Ad(x)(c), πm Ad(x)(c′)) = ρ(c, πm(c
′)) (x ∈ F, c, c′ ∈ f⊥) .

Since F is connected, this is equivalent to its infinitesimal counterpart

ρ([a, c], πm(c
′))+ ρ(c, πm([a, c′])) = 0 (a ∈ f, c, c′ ∈ f⊥) .

Note that f⊥ = m⊕ (f⊥ ∩ l). If c ∈ m, then we have [a, c] ∈ m and hence ρ([a, c], πm(c
′)) =

ρ(c, πm([a, c′])) = 0. If c′ ∈ m, then

ρ([a, c], πm(c
′))+ ρ(c, πm([a, c′])) = ρ([a, c], c′)+ ρ(c, [a, c′]) = 0

by the invariance of ρ. Hence we may assume that c, c′ ∈ f⊥ ∩ l. In this case we have

ρ([a, c], πm(c
′))+ ρ(c, πm([a, c′])) = ρ(c, πm([a, c′])) = ρ(c, [a, c′])

= −ρ([c′, c], a) ∈ ρ(
f⊥ ∩ l, f

) = 0 .

�

By Proposition 2.6 and Lemma 2.7 we have the following.

PROPOSITION 2.8. Assume that f⊥ ∩ l is a Lie subalgebra of l. Let V be an F -stable
smooth subvariety of A such that the action of F on V is locally free. Assume also that for
g ∈ V we have

rad(δ̂g ) ⊃ (T ∗VA)g .

Then F\V has a structure of Poisson variety whose Poisson bracket is defined as follows:
Let ϕ,ψ be functions on F\V , and denote by ϕ̃, ψ̃ the corresponding F -stable functions on

V . Take extensions ϕ̂, ψ̂ of ϕ̃, ψ̃ respectively to A. Then {ϕ̂, ψ̂}|V is F -stable and dose not

depend on the choice of ϕ̂, ψ̂ . We define {ϕ,ψ} to be the function on F\V corresponding to

{ϕ̂, ψ̂}|V .
If, moreover,

rad(δ̂g) = (T ∗V A)g

holds for any g ∈ V , then the Poisson tensor of F\V is non-degenerate (hence F\V turns
out to be a symplectic variety).

2.4. A special case. Let G be a connected simple algebraic group over C, and let H
be its maximal torus. We take Borel subgroups B+, B− of G such that H = B+ ∩ B−, and
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set N± = [B±, B±]. Denote the Lie algebras of G, H , B±, N± by g, h, b±, n±. Define
subalgebrasΔg and k of g⊕ g by

Δg = {(a, a) | a ∈ g} ,
k = {(h+ x,−h+ y) | h ∈ h, x ∈ n+, y ∈ n−} ,

and denote by ΔG, K the connected closed subgroups of G × G with Lie algebras Δg, k

respectively. In particular, ΔG = {(g, g) | g ∈ G}. We fix an invariant non-degenerate
symmetric bilinear form κ : g×g → C, and define a bilinear form ρ : (g⊕g)× (g⊕g)→ C
by

ρ((a, b), (a′, b′)) = κ(a, a′)− κ(b, b′) .
Then (g⊕ g,Δg, k) is a Manin triple with respect to the bilinear form ρ.

By Proposition 2.2 (resp. Proposition 2.3) we have a Poisson structure of G ×G (resp.

ΔG×K) with Poisson tensor δ̃ (resp. δ). Moreover, the Poisson structure of ΔG×K is the
pull-back of that of G×G with respect to

Φ : ΔG×K → G×G (((g, g), (k1, k2)) �→ (gk1, gk2)) .

LEMMA 2.9.

ImΦ = {(g1, g2) ∈ G×G | g−1
1 g2 ∈ N+HN−} .

PROOF. We have

(gk1)
−1(gk2) = k−1

1 k2 ∈ N+HN− .

Assume g−1
1 g2 ∈ N+HN−. Then for (k1, k2) ∈ K with k−1

1 k2 = g−1
1 g2 we have

(g1, g2) = (g1k
−1
1 , g2k

−1
2 )(k1, k2) ∈ ImΦ .

�

PROPOSITION 2.10. δ((g,g),(k1,k2)) is non-degenerate if and only if we have

gk1k
−1
2 g−1 ∈ N+HN−.

PROOF. Note that

(2.6) dim rad(δ((g,g),(k1,k2))) = dim(k ∩ Ad(gk1, gk2)(Δg))

by Lemma 2.4. In general for (g1, g2) ∈ G × G set d(g1, g2) := dim(k ∩ Ad(g1, g2)(Δg)).

For (k1, k2) ∈ K and (g, g) ∈ ΔG we have

d((k1, k2)(g1, g2)(g, g)) = d(g1, g2) ,

and hence d(g1, g2) is regarded as a function onK\(G×G)/ΔG. Denote byW = NG(H)/H

the Weyl group ofG. A standard fact on simple algebraic groups tells us that for any (g1, g2) ∈
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G ×G there exists some w ∈ W and t ∈ H such that K(g1, g2)ΔG � (tẇ, 1), where ẇ is a
representative of w. By

d(tẇ, 1) = dim(k ∩ Ad(tẇ, 1)(Δg)) = dim(Ad((tẇ, 1)−1)(k) ∩Δg) ,

Ad((tẇ, 1)−1)(k) = {(w−1h+ ẇ−1x,−h+ y) | h ∈ h, x ∈ n+, y ∈ n−}
we see easily that d(tẇ, 1) = 0 if and only if w = 1. The assertion follows from this
easily. �

COROLLARY 2.11. The Poisson structure of ΔG× K induces a symplectic structure
of the open subset

U := {((g, g), (k1, k2)) ∈ ΔG×K | gk1k
−1
2 g−1 ∈ N+HN−} .

Set

Y = {((g, g), (k1, k2)) ∈ ΔG×K | gk1k
−1
2 g−1 ∈ B−} ⊂ U ⊂ ΔG×K,

Ỹ = Φ(Y ) ⊂ G×G .
Then we have

(2.7) Ỹ = {(g1, g2) ∈ G×G | g1g−1
2 ∈ B−, g−1

1 g2 ∈ N+HN−} .
Moreover, setting

Z̃ = {(g, b) ∈ G× B− | g−1b−1g ∈ N+HN−}
we have

(2.8) Ỹ ∼= Z̃ ((g1, g2)↔ (g1, g1g−1
2 ) , (g, b−1g)↔ (g, b)) .

Since N+HN− is an open subset of G, Z̃ is open in G × B−. In particular, Z̃ is a smooth

variety. Hence Ỹ is also smooth. Define an action of N− on G×G by

x(g1, g2) = (xg1, xg2) (x ∈ N−, (g1, g2) ∈ G×G) .
Then Ỹ is N−-invariant. Moreover, (2.8) preserves the action of N−, where the action of N−

on Z̃ is given by

x(g, b) = (xg, xbx−1) (x ∈ N−, (g, b) ∈ Z̃) .
For C ⊂ G such that C � c �→ N−c ∈ N−\G is an open embedding we have

{(g, b) ∈ Z̃ | g ∈ N−C}
= {(yc, yby−1) | y ∈ N−, c ∈ C, b ∈ B−, c−1b−1c ∈ N+HN−}
∼= N− × {(c, b) ∈ C × B− | c−1b−1c ∈ N+HN−} ,

and hence the action of N− on Z̃ is locally free. Hence we have the following.
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LEMMA 2.12. Ỹ is a smooth variety, and the action of N− on Ỹ is locally free.

Set Δn− = {(a, a) | a ∈ n−}. We have obviously the following.

LEMMA 2.13. We have

(Δn−)⊥ ∩ k = {(h,−h+ y) | y ∈ n−} .
In particular, (Δn−)⊥ ∩ k is a Lie subalgebra of k.

For (g1, g2) ∈ Ỹ we have

T (G×G)(g1,g2) = {R(a1,a2) | (a1, a2) ∈ g⊕ g} ,
T ∗(G×G)(g1,g2) = {R∗(u1,u2)

| (u1, u2) ∈ g⊕ g} ,
〈R(a1,a2), R

∗
(u1,u2)

〉 = κ(a1, u1)− κ(a2, u2) .

By (2.8) we have also

(T Ỹ )(g1,g2) = {R
(a,Ad(g2g

−1
1 )(a))

| a ∈ g} ⊕ {R(0,b) | b ∈ b−}

for (g1, g2) ∈ Ỹ . By Lemma 2.12 the natural map n− → (T Ỹ )(g1,g2) is injective and is given
by

n− � c �→ R(c,c) ∈ (T Ỹ )(g1,g2) .

Hence under the identification n− ⊂ (T Ỹ )(g1,g2) ⊂ T (G×G)(g1,g2) we have

(n−)⊥ ={R∗(u1,u2)
| u1 − u2 ∈ b−} = {R∗(u,u+v) | u ∈ g, v ∈ b−} ,

((T Ỹ )(g1,g2))
⊥ ={R∗

(Ad(g2g
−1
1 )(y),y)

| y ∈ n−} .

LEMMA 2.14. For (g1, g2) ∈ Ỹ we have

rad(δ̃(g1,g2)|(n−)⊥×(n−)⊥) = ((T Ỹ )(g1,g2))
⊥ .

PROOF. For u ∈ g, v ∈ b− we have R∗(u,u+v) ∈ rad(δ̃(g1,g2)|(n−)⊥×(n−)⊥) if and only if

δ̃(g1,g2)(R
∗
(a,a+b), R

∗
(u,u+v)) = 0 for any a ∈ g, b ∈ b−. Setting

(−πΔg + Ad(g1, g2)πk Ad(g−1
1 , g−1

2 ))(u, u+ v) = (x, y)

we have

δ̃(g1,g2)(R
∗
(a,a+b), R∗(u,u+v)) = κ(a, x)− κ(a + b, y) = κ(a, x − y)− κ(b, y) .

HenceR∗(u,u+v) ∈ rad(δ̃(g1,g2)|(n−)⊥×(n−)⊥) if and only if x = y ∈ n−. By (g1, g2) ∈ Φ(ΔG×
K) we have g⊕ g = Δg⊕ Ad(g1, g2)(k). Therefore,

R∗(u,u+v) ∈ rad
(
δ̃(g1,g2)|(n−)⊥×(n−)⊥

)
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⇐⇒ πΔg(u, u+ v) = (y, y) (∃y ∈ n−) , πk Ad(g−1
1 , g−1

2 )(u, u+ v) = 0

⇐⇒ u ∈ n− , Ad(g−1
1 , g−1

2 )(u, u+ v) ∈ Δg

⇐⇒ u ∈ n− , v = Ad(g2g−1
1 )(u)− u .

It follows that

rad
(
δ̃(g1,g2)|(n−)⊥×(n−)⊥

) = {
R∗
(u,Ad(g2g

−1
1 )(u))

∣∣ u ∈ n−
} = (

(T Ỹ )(g1,g2)

)⊥
.

�

By Proposition 2.8 and the above argument we obtain the following.

PROPOSITION 2.15. We have a natural Poisson structure of N−\Ỹ whose Poisson

tensor is non-degenerate and defined as follows (hence N−\Ỹ turns out to be a symplectic

variety) : Let ϕ,ψ be functions on N−\Ỹ , and let ϕ̃, ψ̃ be the corresponding N−-invariant

functions on Ỹ . Take extensions ϕ̂, ψ̂ of ϕ̃, ψ̃ to G × G. Then {ϕ̂, ψ̂}|Ỹ is N−-invariant

and does not depend on the choice of ϕ̂, ψ̂ . We define {ϕ,ψ} to be the function on N−\Ỹ
corresponding to {ϕ̂, ψ̂}|Ỹ .

By considering the pull-back to Y via Φ we also obtain the following.

PROPOSITION 2.16. Consider the action of N− on Y given by

x((g, g), (k1, k2)) = ((xg, xg), (k1, k2)) (x ∈ N−, ((g, g), (k1, k2)) ∈ Y ) .
Then we have a natural Poisson structure of N−\Y whose Poisson tensor is non-degenerate
and defined as follows (hence N−\Y turns out to be a symplectic variety): Let ϕ,ψ be func-

tions on N−\Y , and let ϕ̃, ψ̃ be the correspondingN−-invariant functions on Y . Take exten-

sions ϕ̂, ψ̂ of ϕ̃, ψ̃ to ΔG × K . Then {ϕ̂, ψ̂}|Y is N−-invariant and does not depend on the

choice of ϕ̂, ψ̂ . We define {ϕ,ψ} to be the function on N−\Y corresponding to {ϕ̂, ψ̂}|Y .

Note that

(2.9) N−\Y ∼= {(N−g, (k1, k2)) ∈ (N−\G)×K | gk1k
−1
2 g−1 ∈ B−}.

Fix t ∈ H and set

Yt = {((g, g), (k1, k2)) ∈ ΔG×K | gk1k
−1
2 g−1 ∈ tN−} ⊂ U ⊂ ΔG×K .

Then by a similar argument we have the following.

PROPOSITION 2.17. Consider the action of B− on Yt given by

x((g, g), (k1, k2)) = ((xg, xg), (k1, k2)) (x ∈ B−, ((g, g), (k1, k2)) ∈ Yt ) .
Then we have a natural Poisson structure of B−\Yt whose Poisson tensor is non-degenerate
and defined as follows (hence B−\Yt turns out to be a symplectic variety) : Let ϕ,ψ be
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functions on B−\Yt , and let ϕ̃, ψ̃ be the corresponding B−-invariant functions on Yt . Take

extensions ϕ̂, ψ̂ of ϕ̃, ψ̃ to ΔG×K . Then {ϕ̂, ψ̂}|Yt is B−-invariant and does not depend on

the choice of ϕ̂, ψ̂ . We define {ϕ,ψ} to be the function on B−\Yt corresponding to {ϕ̂, ψ̂}|Yt .
Note that we have

(2.10) B−\Yt ∼= {(B−g, (k1, k2)) ∈ (B−\G)×K | gk1k
−1
2 g−1 ∈ tN−} .

3. Quantized enveloping algebras

3.1. Lie algebras. In the rest of this paper we will use the notation of Section 2.4. In
particular, g is a finite-dimensional simple Lie algebra over C, and G is a connected algebraic
group with Lie algebra g. We further assume that G is simply-connected and the symmetric
bilinear form

(3.1) ( , ) : h∗ × h∗ → C

induced by κ satisfies (β, β)/2 = 1 for short roots β. We denote byΔ ⊂ h∗,Q ⊂ h∗,Λ ⊂ h∗
and W ⊂ GL(h∗) the set of roots, the root lattice

∑
α∈Δ Zα, the weight lattice and the Weyl

group respectively. By our normalization of (3.1) we have

(Λ,Q) ⊂ Z , (Λ,Λ) ⊂ 1

|Λ/Q|Z .

For β ∈ Δ we set

gβ = {x ∈ g | [h, x] = β(h)x (h ∈ h)} .
We choose a system of positive roots Δ+ ⊂ h∗ so that n± = ⊕

β∈Δ+ g±β . Let {αi}i∈I ,

{si}i∈I ⊂ W be the corresponding sets of simple roots and simple reflections respectively. Set

Q+ =
∑
α∈Δ+

Z�0α =
⊕
i∈I

Z�0αi ⊂ h∗ .

We denote the longest element ofW byw0. For each i ∈ I we take ei ∈ gαi , fi ∈ g−αi , hi ∈ h

such that [ei, fi ] = hi and αi(hi) = 2.
Define subalgebras k0, k+, k− of k by

k0 = {(h,−h) | h ∈ h} , k+ = {(x, 0) | x ∈ n+} , k− = {(0, y) | y ∈ n−} .
Then we have k = k+ ⊕ k0 ⊕ k−. For i ∈ I set

xi = (ei , 0) ∈ k+ , yi = (0, fi) ∈ k− , ti = (hi,−hi) ∈ k0 .

We denote by K0, K± the connected closed subgroups of K with Lie algebras k0, k± respec-
tively.
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3.2. Quantized enveloping algebra of g. For n ∈ Z and m ∈ Z�0 we set

[n]t = tn − t−n
t − t−1

∈ Z[t, t−1] , [m]t ! = [m]t [m− 1]t · · · [2]t [1]t ∈ Z[t, t−1] ,
[
n

m

]
t

= [n]t [n− 1]t · · · [n−m+ 1]t/[m]t ! ∈ Z[t, t−1] .

The quantized enveloping algebra U = Uq(g) of g is an associative algebra over F =
C(q1/|Λ/Q|) with identity element 1 generated by the elements Kλ (λ ∈ Λ), Ei, Fi (i ∈ I)
satisfying the following defining relations:

K0 = 1 , KλKμ = Kλ+μ (λ,μ ∈ Λ) ,(3.2)

KλEiK
−1
λ = q(λ,αi)Ei (λ ∈ Λ, i ∈ I) ,(3.3)

KλFiK
−1
λ = q−(λ,αi)Fi (λ ∈ Λ, i ∈ I) ,(3.4)

EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

(i, j ∈ I) ,(3.5)

1−aij∑
n=0

(−1)nE
(1−aij−n)
i EjE

(n)
i = 0 (i, j ∈ I, i �= j) ,(3.6)

1−aij∑
n=0

(−1)nF
(1−aij−n)
i FjF

(n)
i = 0 (i, j ∈ I, i �= j) ,(3.7)

where qi = q(αi,αi)/2,Ki = Kαi , aij = 2(αi, αj )/(αi, αi ) for i, j ∈ I , and

E
(n)
i = Eni /[n]qi ! , F

(n)
i = Fni /[n]qi !

for i ∈ I and n ∈ Z�0. Algebra homomorphisms Δ : U → U ⊗ U, ε : U → F and an

algebra anti-automorphism S : U → U are defined by:

Δ(Kλ) = Kλ ⊗Kλ ,(3.8)

Δ(Ei) = Ei ⊗ 1+Ki ⊗ Ei, Δ(Fi) = Fi ⊗K−1
i + 1⊗ Fi,

ε(Kλ) = 1 , ε(Ei) = ε(Fi) = 0 ,(3.9)

S(Kλ) = K−1
λ , S(Ei) = −K−1

i Ei , S(Fi) = −FiKi ,(3.10)

and U is endowed with a Hopf algebra structure with the comultiplicationΔ, the counit ε and
the antipode S.

We define subalgebras U0, U�0, U�0, U+, U− of U by

U0 = 〈Kλ | λ ∈ Λ〉 ,(3.11)

U�0 = 〈Kλ,Ei | λ ∈ Λ, i ∈ I 〉 ,(3.12)
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U�0 = 〈Kλ,Fi | λ ∈ Λ, i ∈ I 〉 ,(3.13)

U+ = 〈Ei | i ∈ I 〉 ,(3.14)

U− = 〈Fi | i ∈ I 〉 .(3.15)

The following result is standard.

PROPOSITION 3.1. (i) {Kλ | λ ∈ Λ} is an F-basis of U0.
(ii) The linear maps

U− ⊗U0 ⊗ U+ → U ← U+ ⊗ U0 ⊗ U− ,
U+ ⊗ U0 → U�0 ← U0 ⊗ U+ , U− ⊗ U0 → U�0 ← U0 ⊗ U−

induced by the multiplication are all isomorphisms of vector spaces.

For γ ∈ Q we set

U±γ = {x ∈ U± | KλxK−1
λ = q(λ,γ )x (λ ∈ Λ)} .

We have U±±γ = {0} unless γ ∈ Q+, and

U± =
⊕
γ∈Q+

U±±γ , dimU±±γ <∞ (γ ∈ Q+) .

For i ∈ I we can define an algebra automorphism Ti of U by

Ti(Kμ) = Ksiμ (μ ∈ Λ) ,

Ti(Ej ) =
{∑−aij

k=0 (−1)kq−ki E
(−aij−k)
i EjE

(k)
i (j ∈ I, j �= i) ,

−FiKi (j = i) ,

Ti(Fj ) =
{∑−aij

k=0 (−1)kqki F
(k)
i FjF

(−aij−k)
i (j ∈ I, j �= i) ,

−K−1
i Ei (j = i) .

For w ∈ W we define an algebra automorphism Tw of U by Tw = Ti1 · · · Tin where w =
si1 · · · sin is a reduced expression. The automorphism Tw does not depend on the choice of a
reduced expression (see Lusztig [10]).

We fix a reduced expression

w0 = si1 · · · siN
of w0, and set

βk = si1 · · · sik−1(αik ) (1 � k � N) .

Then we have Δ+ = {βk | 1 � k � N}. For 1 � k � N set

(3.16) Eβk = Ti1 · · · Tik−1(Eik ) , Fβk = Ti1 · · · Tik−1(Fik ) .
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Then {EmNβN · · ·Em1
β1

| m1, . . . ,mN � 0} (resp. {FmNβN · · ·Fm1
β1

| m1, . . . ,mN � 0}) is an

F-basis of U+ (resp. U−), called the PBW-basis (see Lusztig [9]). For 1 � k � N, m � 0
we also set

(3.17) E
(m)
βk

= Emβk/[m]qβk !, F
(m)
βk

= Fmβk/[m]qβk !,
where qβ = q(β,β)/2 for β ∈ Δ+.

There exists a bilinear form

(3.18) τ : U�0 × U�0 → F ,

called the Drinfeld paring, which is characterized by

τ (x, y1y2) = (τ ⊗ τ )(Δ(x), y1 ⊗ y2) (x ∈ U�0, y1, y2 ∈ U�0) ,(3.19)

τ (x1x2, y) = (τ ⊗ τ )(x2 ⊗ x1,Δ(y)) (x1, x2 ∈ U�0, y ∈ U�0) ,(3.20)

τ (Kλ,Kμ) = q−(λ,μ) (λ, μ ∈ Λ) ,(3.21)

τ (Kλ, Fi ) = τ (Ei,Kλ) = 0 (λ ∈ Λ, i ∈ I) ,(3.22)

τ (Ei, Fj ) = δij /(q
−1
i − qi) (i, j ∈ I) .(3.23)

PROPOSITION 3.2 ([7], [8], [11]). We have

τ (E
mN
βN

· · ·Em1
β1
Kλ,F

nN
βN
· · ·Fn1

β1
Kμ)

= q−(λ,μ)
N∏
k=1

δmk,nk (−1)mk [mk]qβk !q
mk(mk−1)/2
βk

(qβk − q−1
βk
)−mk .

3.3. Quantized coordinate algebra of G. We denote by C the subspace of U∗ =
HomF(U,F) spanned by the matrix coefficients of finite dimensional U -modulesE such that

E =
⊕
λ∈Λ

Eλ with Eλ = {v ∈ E | Kμv = q(λ,μ)v (∀μ ∈ Λ)} .

Then C is endowed with a structure of Hopf algebra via

〈ϕψ, u〉 = 〈ϕ ⊗ ψ,Δ(u)〉 (ϕ,ψ ∈ C, u ∈ U) ,
〈1, u〉 = ε(u) (u ∈ U) ,
〈Δ(ϕ), u⊗ u′〉 = 〈ϕ, uu′〉 (ϕ ∈ C, u, u′ ∈ U) ,
ε(ϕ) = 〈ϕ, 1〉, (ϕ ∈ C) ,
〈S(ϕ), u〉 = 〈ϕ, S(u)〉 (ϕ ∈ C, u ∈ U),

where 〈 , 〉 : C × U → F is the canonical paring. C is also endowed with a structure of
U -bimodule by

〈u′ϕu′′, u〉 = 〈ϕ, u′′uu′〉 (ϕ ∈ C, u, u′, u′′ ∈ U) .
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The Hopf algebra C is a q-analogue of the coordinate algebra C[G] of G (see [9], [15]).
Set

(U±)� =
⊕
γ∈Q+

HomF(U
±±γ ,F) ⊂ HomF(U,F) .

For λ ∈ Λ define an algebra homomorphism χλ : U0 → F by χλ(Kμ) = q(λ,μ). Under the

identification U− ⊗ U0 ⊗ U+ ∼= U of vector spaces we have

(3.24) C ⊂ (U−)� ⊗
(⊕
λ∈Λ

Fχλ

)
⊗ (U+)� ⊂ U∗ .

3.4. Ring of differential operators. In general for a Hopf algebra H over C we use
the following notation for the comultiplicationΔ : H→ H⊗H:

Δ(u) =
∑
(u)

u(0) ⊗ u(1) (u ∈ H).

We have an F-algebra structure of D = C ⊗F U , called the Heisenberg double of C and
U (see e.g. [12]). It is given by

(ϕ ⊗ u)(ϕ′ ⊗ u′) =
∑
(u)

ϕ(u(0)ϕ
′)⊗ u(1)u′ (ϕ, ϕ′ ∈ C, u, u′ ∈ U) .

In our case the algebra D is an analogue of the ring of differential operators on G. We will
identify U and C with subalgebras of D by the embeddings U � u �→ 1 ⊗ u ∈ D and
C � ϕ �→ ϕ ⊗ 1 ∈ D respectively.

3.5. Quantized enveloping algebra of k. The quantized enveloping algebra V =
Uq(k) of k is an associative algebra over F with identity element 1 generated by the elements
Zλ (λ ∈ Λ), Xi, Yi (i ∈ I) satisfying the following defining relations:

Z0 = 1 , ZλZμ = Zλ+μ (λ,μ ∈ Λ) ,(3.25)

ZλXiZ
−1
λ = q(λ,αi)Xi (λ ∈ Λ, i ∈ I) ,(3.26)

ZλYiZ
−1
λ = q(λ,αi)Yi (λ ∈ Λ, i ∈ I) ,(3.27)

XiYj − YjXi = 0 (i, j ∈ I),(3.28)

1−aij∑
n=0

(−1)nX
(1−aij−n)
i XjX

(n)
i = 0 (i, j ∈ I, i �= j) ,(3.29)

1−aij∑
n=0

(−1)nY
(1−aij−n)
i Yj Y

(n)
i = 0 (i, j ∈ I, i �= j) ,(3.30)
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where

X
(n)
i = Xni /[n]qi ! , Y

(n)
i = Yni /[n]qi ! .

We define subalgebras V 0, V�0, V�0, V +, V − of V by

V 0 = 〈Zλ | λ ∈ Λ〉 ,(3.31)

V�0 = 〈Zλ,Xi | λ ∈ Λ, i ∈ I 〉 ,(3.32)

V�0 = 〈Zλ, Yi | λ ∈ Λ, i ∈ I 〉 ,(3.33)

V + = 〈Xi | i ∈ I 〉 ,(3.34)

V − = 〈Yi | i ∈ I 〉 .(3.35)

Similarly to Proposition 3.1 we have the following.

PROPOSITION 3.3. (i) {Zλ | λ ∈ Λ} is an F-basis of V 0.
(ii) The linear maps

V − ⊗ V 0 ⊗ V + → V ← V+ ⊗ V 0 ⊗ V− ,
V + ⊗ V 0 → V�0 ← V 0 ⊗ V + , V − ⊗ V 0 → V�0 ← V 0 ⊗ V −

induced by the multiplication are all isomorphisms of vector spaces.

Moreover, we have algebra isomorphisms

j�0 : V�0 → U�0 (Yi �→ Fi, Zλ �→ K−λ) ,

j�0 : V�0 → U�0 (Xi �→ Ei, Zλ �→ Kλ) .

We define a bilinear form

(3.36) σ : U × V → F

by

σ(u+u0S(u−), v−v+v0)= τ (u+, j�0(v−))τ (u0, j
�0(v0))τ (j

�0(v+), u−)
(u± ∈ U±, u0 ∈ U0, v± ∈ V±, v0 ∈ V 0) .

The following result is a consequence of Gavarini [6, Theorem 6.2].

PROPOSITION 3.4. We have

σ(u, vv′) = (σ ⊗ σ)(Δ(u), v ⊗ v′) (u ∈ U, v, v′ ∈ V ) .
3.6. A-forms. We fix a subring A of F containing C[q±1/|Λ/Q|]. We denote by ULA

the Lusztig A-form of U , i.e., ULA is the A-subalgebra of U generated by the elements

E
(m)
i , F

(m)
i , Kλ (i ∈ I, m � 0, λ ∈ Λ) .
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Set

U
L,±
A = ULA ∩ U± , U

L,0
A = ULA ∩ U0 ,

U
L,�0
A = ULA ∩ UL,�0 , U

L,�0
A = ULA ∩ UL,�0 .

Then ULA , U
L,0
A , U

L,�0
A , U

L,�0
A are endowed with structures of Hopf algebras over A via the

Hopf algebra structure of U , and the multiplication of ULA induces isomorphisms

ULA � U
L,−
A ⊗ UL,0A ⊗ UL,+A � U

L,+
A ⊗UL,0A ⊗ UL,−A ,

U
L,�0
A � U

L,0
A ⊗UL,+A � U

L,+
A ⊗ UL,0A ,

U
L,�0
A � U

L,0
A ⊗UL,−A � U

L,−
A ⊗ UL,0A

of A-modules. Fix a subset Λ0 of Λ such that Λ0 → Λ/2Q is bijective. Then UL,+A , UL,−A ,

U
L,0
A are free A-modules with bases

{E(mN)βN
· · ·E(m1)

β1
| m1, . . . ,mN � 0} ,

{F (mN)βN
· · ·F (m!)β1

| m1, . . . ,mN � 0} ,{
Kλ

∏
i∈I

[
Ki

ni

]
| λ ∈ Λ0, ni � 0

}

respectively, where

[
Ki

m

]
=

m−1∏
s=0

q−si Ki − qsi K−1
i

qs+1
i − q−s−1

i

(m � 0) .

We denote by VA the A-subalgebra of V generated by the elements

X
(m)
i , Y

(m)
i , Zλ,

[
Zi

m

]
(i ∈ I, m � 0, λ ∈ Λ) ,

where Zi = Zαi for i ∈ I and

[
Zi

m

]
=

m−1∏
s=0

q−si Zi − qsi Z−1
i

qs+1
i − q−s−1

i

(m � 0) .

Set

V±A = VA ∩ V± , V 0
A = VA ∩ V 0,

V
�0
A = VA ∩ V�0 , V

�0
A = VA ∩ V�0 .

Then the multiplication of VA induces isomorphisms

VA � V−A ⊗ V 0
A ⊗ V +A � V+A ⊗ V 0

A ⊗ V−A ,
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V
�0
A � V 0

A ⊗ V+A � V+A ⊗ V 0
A ,

V
�0
A � V 0

A ⊗ V−A � V−A ⊗ V 0
A

of A-modules, and we have

j�0(V
�0
A ) = U

L,�0
A , j�0(V+A ) = U

L,+
A , j�0(V 0

A) = U
L,0
A ,

j�0(V
�0
A ) = U

L,�0
A , j�0(V−A ) = U

L,−
A , j�0(V 0

A) = U
L,0
A .

Set

UA = {u ∈ U | σ(u, VA) ⊂ A} ,(3.37)

U±A = U± ∩ UA , U0
A = U0 ∩ UA ,(3.38)

U
�0
A = U�0 ∩ UA , U

�0
A = U�0 ∩ UA .(3.39)

Then we have

U+A = {x ∈ U+ | τ (x,UL,−A ) ∈ A} ,(3.40)

U−A = {y ∈ U− | τ (UL,+A , y) ∈ A} ,(3.41)

U0
A =

∑
λ∈Λ

AKλ ,(3.42)

and the multiplication of U induces isomorphisms

UA � U+A ⊗ U0
A ⊗ U−A ,

U
�0
A � U0

A ⊗ U+A � U+A ⊗ U0
A ,

U
�0
A � U0

A ⊗ U−A � U−A ⊗ U0
A

of A-modules.
For i ∈ I we set

(3.43) Ai = (qi − q−1
i )Ei , Bi = (qi − q−1

i )Fi .

For 1 � k � N we also set

(3.44) Aβk = (qβk − q−1
βk
)Eβk , Bβk = (qβk − q−1

βk
)Fβk .

By Proposition 3.2 we have the following.

LEMMA 3.5. {AmNβN · · ·A
m1
β1

| m1, . . . ,mN � 0} (resp. {BmNβN · · ·Bm1
β1

| m1, . . . ,

mN � 0}) is an A-basis of U+A (resp. U−A ). In particular, we have U±A ⊂ U
L,±
A , and

UA ⊂ ULA .
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It follows that UA coincides with the A-form of U considered in De Concini-Procesi [4].
In particular, we have the following.

PROPOSITION 3.6. (i) U0
A, U+A , U−A , U

�0
A , U

�0
A , UA are A-subalgebras of U .

(ii) U0
A, U

�0
A , U

�0
A , UA are Hopf algebras over A.

Let ι : UA → ULA be the inclusion. We denote by

(3.45) σA : UA × VA → A .

the bilinear form induced by σ : U × V → F.
We set

CA = {ϕ ∈ C | 〈ϕ,ULA 〉 ⊂ A} ,(3.46)

DA = CA ⊗A UA ⊂ D .(3.47)

Then CA is a Hopf algebra over A as well as a ULA -bimodule, and DA is an A-subalgebra of
D. It easily follows that

(3.48)

(⊕
λ∈Λ

Fχλ

)
∩ HomA(U

L,0
A ,A) =

⊕
λ∈Λ

Aχλ .

Hence by (3.24) we have

(3.49) CA =
(
(U

L,−
A )� ⊗

(⊕
λ∈Λ

Aχλ

)
⊗ (UL,+A )�

)
∩ C ⊂ HomA(U

L
A ,A) ,

where (UL,±A )� = HomA(U
L,±
A ,A) ∩ (U±)�.

3.7. Specialization. For z ∈ C× set

Az =
{
f/g | f, g ∈ C[q±1/|Λ/Q|], g(z) �= 0

} ⊂ F ,

and define an algebra homomorphism

πz : Az → C

by πz(q1/|Λ/Q|) = z. We set

ULz = C⊗Az U
L
Az , Vz = C⊗Az VAz , Uz = C⊗Az UAz ,

Cz = C⊗Az CAz , Dz = C⊗Az DAz .

with respect to πz. Then ULz , Uz, Cz are Hopf algebras over C, and Vz, Dz are C-algebras.
We denote by

πU
L

z : ULAz → ULz , πVz : VAz → Vz , πUz : UAz → Uz,
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πCz : CAz → Cz , πDz : DAz → Dz

the natural homomorphisms. We also define UL,±z , UL,0z , U
L,�0
z , U

L,�0
z , V ±z , V 0

z , V
�0
z ,

V
�0
z , U±z , U0

z , U
�0
z , U

�0
z similarly. The bilinear form σAz : UAz × VAz → Az induces a

bilinear form

(3.50) σz : Uz × Vz → C .

Set

Jz = {v ∈ Vz | σz(Uz, v) = {0}} , J 0
z = Jz ∩ V 0

z .

LEMMA 3.7. Jz is a two-sided ideal of Vz, and we have Jz = V−z V+z J 0
z . In particular,

we have Jz ∩ V�0 = V +z J 0
z , and Jz ∩ V�0 = V −z J 0

z .

PROOF. By Proposition 3.4 Jz is a two-sided ideal. Set V ′z = Vz/V
−
z V

+
z J

0
z . Since the

multiplication of Vz induces an isomorphism Vz � V −z ⊗ V+z ⊗ V 0
z , we have

V ′z � (V−z ⊗ V +z ⊗ V 0
z )/(V

−
z ⊗ V +z ⊗ J 0

z ) � V−z ⊗ V +z ⊗ (V 0
z /J

0
z ) .

Let σ ′z : Uz × V ′z → C be the bilinear form induced by σz. Then we see easily from the

definition of σ and Proposition 3.2 that {v ∈ V ′z | σ ′z(Uz, v) = {0}} = {0}. Hence Jz =
V −z V +z J 0

z . �

We define an algebra V z by V z = Vz/Jz, and denote by πVz : VAz → V z the canonical

homomorphism. Let σz : Uz × V z → C be the bilinear form induced by (3.50). Denote the

images of V 0
z , V±z , V

�0
z , V

�0
z under Vz → V z by V

0
z , V

±
z , V

�0
z , V

�0
z respectively. Then the

multiplication of V z induces isomorphisms

V z � V
−
z ⊗ V+z ⊗ V 0

z ,

V
�0
z � V

+
z ⊗ V 0

z , V
�0
z � V

−
z ⊗ V 0

z .

Let λ ∈ Λ. By abuse of notation we also denote by χλ : UL,0z → C the algebra
homomorphism induced by χλ : U → F. We see easily the following

LEMMA 3.8. {χλ | λ ∈ Λ} is a linearly independent subset of (UL,0z )∗.

LEMMA 3.9. The bilinear form σz is perfect in the sense that

u ∈ Uz , σ z(u, V z) = {0} �⇒ u = 0 ,(3.51)

v ∈ V z , σ z(Uz, v) = {0} �⇒ v = 0 .(3.52)
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PROOF. (3.52) is clear from the definition. We see easily from the definition of σ and
Proposition 3.2 that the proof of (3.51) is reduced to showing

u ∈ U0
z , σz(u, V

0
z ) = {0} �⇒ u = 0 .

This follows from Lemma 3.8 in view of

U0
z =

⊕
λ∈Λ

CKλ , V 0
z
∼= UL,0z .

�

Set

I 0
z = j�0(J 0

z ) ⊂ UL,0z ,

I
�0
z = UL,+z I 0

z ⊂ U
L,�0
z , I

�0
z = UL,−z I 0

z ⊂ U
L,�0
z ,

Iz = UL,−z UL,+z I 0
z ⊂ ULz .

The we have

(3.53) I 0
z = {u ∈ UL,0z | χλ(u) = 0 (λ ∈ Λ)} .

LEMMA 3.10. I 0
z , I

�0
z , I

�0
z , Iz are Hopf ideals of UL,0z , U

L,�0
z , U

L,�0
z , ULz respec-

tively.

PROOF. From (3.53) we see easily that I 0
z is a Hopf ideal of UL,0z . It remains to show

I 0
z U

L,±
z ⊂ U

L,±
z I 0

z . Using j�0, j�0 we see that this is equivalent to J 0
z V

±
z ⊂ V ±z J 0

z . This
follows from Lemma 3.7. �

We define a Hopf algebra U
L

z by U
L

z = ULz /Iz, and denote by πU
L

z : ULAz → U
L

z the

canonical homomorphism. Denote the images of UL,0z , UL,±z , U
L,�0
z , U

L,�0
z under ULz →

U
L

z by U
L,0
z , U

L,±
z , U

L,�0
z , U

L,�0
z respectively. We also denote by

(3.54) j
�0
z : V�0

z → U
L,�0
z , j

�0
z : V�0

z → U
L,�0
z

the algebra isomorphisms induced by j�0 and j�0.
By (3.49) and Lemma 3.8 we have

(3.55) Cz ⊂ (UL,−z )� ⊗
(⊕
λ∈Λ

Cχλ

)
⊗ (UL,+z )� ⊂ (ULz )

∗ ,

where (UL,±z )� = C ⊗A (U
L,±
A )� ⊂ HomC(U

L,±
z ,C). Hence the natural paring 〈 , 〉 :

Cz × ULz → C descends to

〈 , 〉 : Cz × ULz → C ,
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by which the canonical map Cz → (U
L

z )
∗ is injective. Moreover, Cz turns out to be a U

L

z -
bimodule.

3.8. Specialization to 1. For an algebraic groups S over C with Lie algebra s we
will identify the coordinate algebra C[S] of S with a subspace of the dual space U(s)∗ of the
enveloping algebra U(s) by the canonical Hopf paring

〈 , 〉 : C[S] ⊗ U(s)→ C

given by

〈ϕ, u〉 = (Lu(ϕ))(1) (ϕ ∈ C[S], u ∈ U(s)) .
Here, U(s) � u �→ Lu ∈ EndC(C[S]) is the algebra homomorphism given by

(La(ϕ))(g) = d

dt
ϕ(g exp(ta))|t=0 (a ∈ g, g ∈ S, ϕ ∈ C[S]) .

We see easily that J1 is generated by the elements πV1 (Zλ) − 1 ∈ V1 for λ ∈ Λ. From
this we see easily the following.

LEMMA 3.11. (i) We have an isomorphism V 1 ∼= U(k) of algebras satisfying

πV1 (Xi)↔ xi , πV1 (Yi)↔ yi ,

πV1

([
Zi

m

])
↔

(
ti

m

)
:= ti (ti − 1) · · · (ti −m+ 1)/m! .

(ii) We have an isomorphism U
L

1
∼= U(g) of Hopf algebras satisfying

πU
L

1 (Ei)↔ ei , πU
L

1 (Fi)↔ fi,

πU
L

1

([
Ki

m

])
↔

(
hi

m

)
:= hi(hi − 1) · · · (hi −m+ 1)/m! .

In the rest of this paper we will occasionally identify V 1 and U
L

1 with U(k) and U(g)
respectively.

From the identification U
L

1 = U(g) we have the following.

LEMMA 3.12. The canonical paring

〈 , 〉 : C1 × UL1 → C

induces an isomorphism

(3.56) C1 ∼= C[G] (⊂ U(g)∗ ∼= (U
L

1 )
∗)

of Hopf algebras.
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In [4] De Concini-Procesi proved an isomorphism

(3.57) U1 ∼= C[K]
of Poisson Hopf algebras. They established (3.57) by giving a correspondence between gener-
ators of both sides and proving the compatibility after a lengthy calculation. Later Gavarini [6]
gave a more natural approach to the isomorphism (3.57) using the Drinfeld paring. Namely
we have the following.

PROPOSITION 3.13 (Gavarini [6]). The bilinear form σ 1 : U1 × V 1 → C induces a
Hopf algebra isomorphism

(3.58) Υ : U1 → C[K] (⊂ U(k)∗ � V
∗
1) .

The enveloping algebra U(k±) has the direct sum decomposition

U(k±) =
⊕
β∈Q+

U(k±)±β,

where

U(k±)±β,= {x ∈ U(k±) | [(h,−h), x] = β(h)x (h ∈ h)}
for β ∈ Q+ (note that we have an isomorphism h � h↔ (h,−h) ∈ k0). Then we have

C[K±] =
⊕
β∈Q+

(U(k±)±β)∗ ⊂ U(k±)∗.

Moreover, we have

C[K0] =
⊕
λ∈Λ

Cχ̂λ ⊂ U(k0)
∗ ,

where χ̂λ : U(k0) → C is the algebra homomorphism given by χ̂λ(h,−h) = λ(h) (h ∈ h).
The isomorphism

K+ ×K− ×K0 � K ((g+, g−, g0)↔ g+g−g0)

of algebraic varieties induced by the product of the group K gives an identification

(3.59) C[K+] ⊗ C[K−] ⊗ C[K0] � C[K]
of vector spaces. On the other hand the multiplication of the algebra U(k) induces an identi-
fication

U(k+)⊗ U(k−)⊗U(k0) � U(k) .

Then the canonical embedding C[K] ⊂ U(k)∗ is given by

C[K] � C[K+] ⊗ C[K−] ⊗ C[K0] ⊂ U(k+)∗ ⊗ U(k−)∗ ⊗ U(k0)∗
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⊂ (U(k+)⊗ U(k−)⊗ U(k0))∗ = U(k)∗ .

For i ∈ I we define ai ∈ C[K−] ⊂ U(k−)∗, bi ∈ C[K+] ⊂ U(k+)∗ by

〈ai, U(k−)−β 〉 = 0 (β �= αi) , 〈ai, yi〉 = −1 ,

〈bi, U(k+)β〉 = 0 (β �= αi) , 〈bi, xi〉 = 1 .

We identify C[K±],C[K0] with subalgebras of C[K] via (3.59), and regard ai, bi , χ̂λ (i ∈
I, λ ∈ Λ) as elements of C[K]. By the above argument we see easily the following.

LEMMA 3.14. Under the identification (3.58) we have

πU1 (Ai)↔ ai , πU1 (Bi)↔ biχ̂−αi , πU1 (Kλ)↔ χ̂λ (i ∈ I, λ ∈ Λ) .

Let ι1 : U1 → U
L

1 be the homomorphism induced by the inclusion ι : UA1 → ULA1
. By

Lemma 3.5 we see easily the following.

LEMMA 3.15. For x ∈ U1 we have ι1(x) = ε(x)1.

From this we obtain the following easily.

LEMMA 3.16. D1 is a commutative algebra. In particular, it is identified as an alge-
bra with the coordinate algebra C[G] ⊗ C[K] of G×K .

3.9. Specialization to roots of 1. From now on, we fix an integer � > 1 satisfying
(a) � is odd,
(b) � is prime to 3 if g is of typeG2,
(c) � is prime to |Λ/Q|,

and a primitive �-th root ζ ∈ C of 1. Note that πζ : Aζ → C sends q to ζ |Λ/Q|, which is also
a primitive �-th root of 1 by our assumption (c).

REMARK 3.17. Denote by UDK
C[q±1/|Λ/Q|] the De Concini-Kac C[q±1/|Λ/Q|]-form of

U (see [2]). Namely UDK
C[q±1/|Λ/Q|] is the C[q±1/|Λ/Q|]-subalgebra of U generated by

{Kλ,Ei, Fi | λ ∈ Λ, i ∈ I }. Then we have Uζ � C ⊗C[q±1/|Λ/Q|] UDKC[q±1/|Λ/Q|] with re-

spect to q1/|Λ/Q| �→ ζ .

We denote by ξ̃ : ULζ → UL1 Lusztig’s Frobenius morphism (see [9]). Namely, ξ̃ is an

algebra homomorphism given by

ξ̃ (πU
L

ζ (E
(n)
i )) =

{
πU

L

1 (E
(n/�)

i ) (� | n)
0 (� � | n) ,(3.60)

ξ̃ (πU
L

ζ (F
(n)
i )) =

{
πU

L

1 (F
(n/�)
i ) (� | n)

0 (� � | n) ,(3.61)
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ξ̃

(
πU

L

ζ

([
Ki

m

]))
=

⎧⎪⎪⎨
⎪⎪⎩
πU

L

1

([
Ki

m/�

])
(� |m)

0 (� � |m) ,
(3.62)

ξ̃ (πU
L

ζ (Kλ)) = πU
L

1 (Kλ) (λ ∈ Λ) .(3.63)

It is a Hopf algebra homomorphism. Moreover, for any β ∈ Δ+ we have

ξ̃ (πU
L

ζ (E
(n)
β )) =

{
πU

L

1 (E
(n/�)
β ) (� | n)

0 (� � | n) ,(3.64)

ξ̃ (πU
L

ζ (F
(n)
β )) =

{
πU

L

1 (F
(n/�)
β ) (� | n)

0 (� � | n) .(3.65)

LEMMA 3.18. We have ξ̃ (Iζ ) ⊂ I1.

PROOF. It is sufficient to show ξ̃ (I 0
ζ ) ⊂ I 0

1 . For z ∈ C×, m = (mi)i∈I ∈ ZI�0
, and

ν ∈ Λ0 set

Km,ν(z) = πU
L

z

(
Kν

∏
i∈I

[
Ki

mi

])
∈ UL,0z .

Any element u of UL,0z is uniquely written as a finite sum

u =
∑
m,ν

cm,νKm,ν(z) (cm,ν ∈ C) .

Then we have u ∈ I 0
z if and only if

∑
m,ν

cm,νq
(λ,ν)

[
(λ, α∨i )
mi

]
qi

∣∣∣∣
q1/|Λ/Q|=z

= 0 (∀λ ∈ Λ) .

Hence it is sufficient to show that

(3.66)
∑
m,ν

cm,νq
(λ,ν)

[
(λ, α∨i )
mi

]
qi

∣∣∣∣
q1/|Λ/Q|=ζ

= 0 (∀λ ∈ Λ)

implies

(3.67)
∑
m,ν

c�m,ν

(
(μ, α∨i )
mi

)
= 0 (∀μ ∈ Λ) .

Indeed (3.67) follows by setting λ = �μ in (3.66). �
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We denote by

(3.68) ξ : ULζ → U
L

1 (= U(g))

the Hopf algebra homomorphism induced by ξ̃ . By Lusztig [9] we have the following.

PROPOSITION 3.19. There exists a unique linear map

(3.69) t ξ : C1 (= C[G])→ Cζ

satisfying

(3.70) 〈t ξ(ϕ), v〉 = 〈ϕ, ξ(v)〉 (ϕ ∈ C1, v ∈ ULζ ) .
It is an injective Hopf algebra homomorphism whose image is contained in the center of Cζ .

LEMMA 3.20. There exists an algebra homomorphism

(3.71) η : V ζ → V 1

such that

η(v) = (j
�0
1 )−1(ξ(j

�0
ζ (v))) (v ∈ V�0

ζ ) ,

η(v) = (j
�0
1 )−1(ξ(j

�0
ζ (v))) (v ∈ V�0

ζ ) .

PROOF. It is sufficient to show that the linear map η : V ζ → V 1 defined by

η(v−v�0) = (j
�0
1 )−1(ξ(j

�0
ζ (v−)))(j

�0
1 )−1(ξ(j

�0
ζ (v�0)))

for v− ∈ V
−
ζ , v�0 ∈ V

�0
ζ is an algebra homomorphism. This follows easily from

[V+ζ , V −ζ ] = 0. �

By Gavarini [6, Theorem 7.9] we have the following.

PROPOSITION 3.21. There exists a unique linear map

(3.72) t η : U1 → Uζ

satisfying

(3.73) σζ (
tη(u), v) = σ 1(u, η(v)) (u ∈ U1, v ∈ V ζ ) .

It is an injective Hopf algebra homomorphism whose image is contained in the center of Uζ .

Moreover, for any β ∈ Δ+ we have

t η(πU1 (Aβ)) = πUζ (A
�
β) ,

t η(πU1 (Bβ)) = πUζ (B
�
β) .
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Let ιζ : Uζ → U
L

ζ be the homomorphisms induced by ι : Uζ → U
L

ζ . We see easily the

following.

LEMMA 3.22. (i) For x ∈ Uζ we have ξ(ιζ (x)) = ε(x)1.
(ii) For y ∈ U1 we have ιζ (t η(y)) = ε(y)1.

PROPOSITION 3.23. The image of the linear map

t ξ ⊗ t η : D1(= C1 ⊗ U1)→ Dζ (= Cζ ⊗ Uζ )
is contained in the center of Dζ . In particular, t ξ ⊗ t η is an algebra homomorphism.

PROOF. Let ϕ ∈ C1 and x ∈ Uζ . For u ∈ ULζ we have∑
(x)

〈ιζ (x(0)) · t ξ(ϕ), u〉x(1) =
∑
(x)

〈t ξ(ϕ), uιζ (x(0))〉x(1)

=
∑
(x)

〈ϕ, ξ(uιζ (x(0)))〉x(1) = 〈ϕ, ξ(u)〉x = 〈t ξ(ϕ), u〉x ,

and hence xtξ(ϕ) = t ξ(ϕ)x in Dζ . It follows that t ξ(ϕ) is contained in the center for any
ϕ ∈ C1.

Let y ∈ U1. For ψ ∈ Cζ we have

(tη(y))ψ =
∑
(y)

(ιζ (
tη(y(0))) · ψ)tη(y(1)) =

∑
(y)

ε(y(0))ψ
tη(y(1)) = ψ(tη(y)) ,

and hence t η(y) is contained in the center for any y ∈ U1. �

4. Poisson structure arising from quantized enveloping algebras

The following result is well-known (see [4]).

PROPOSITION 4.1. Let B be a commutative algebra over C. We assume that we are
given h̄ ∈ B such that B/h̄B ∼= C.

Let R be a (not necessarily commutative) B-algebra such that h̄ : R → R is injective.
Then the center Z(R/h̄R) of R/h̄R is endowed with a structure of Poisson algebra by

{b1, b2} =
(
b1b2 − b2b1

h̄

)
(b1, b2 ∈ R, b1, b2 ∈ Z(R/h̄R)) .

Assume moreover that R is a Hopf algebra and that there exists a Hopf subalgebra H
of R/h̄R such that H ⊂ Z(R/h̄R) and {H,H } ⊂ H . Then H is naturally a Poisson Hopf
algebra.
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We will apply this fact to the situation B = Aζ , h̄ = �(q� − q−�), and R =
CAζ , UAζ ,DAζ . Note that we have Aζ /�(q

� − q−�)Aζ
∼= C by

Ker πζ = Aζ (q
1/|Λ/Q| − ζ ) = Aζ �(q

� − q−�) .
The cases R = CAζ , UAζ is already known. Namely, we have the following.

THEOREM 4.2 ([3]). The Hopf subalgebra Im t ξ ofZ(Cζ ) is closed under the Poisson
bracket given in Proposition 4.1. Moreover, the isomorphism Im t ξ ∼= C[G] is that of Poisson
Hopf algebras, where the Poisson Hopf algebra structure of C[G] is the one for C[ΔG] ∼=
C[G] attached to the Manin triple (g⊕ g,Δg, k).

THEOREM 4.3 ([4], [6]). The Hopf subalgebra Im t η of Z(Uζ ) is closed under the

Poisson bracket given in Proposition 4.1. Moreover, the isomorphism Im t η ∼= C[K] is that of
Poisson Hopf algebras, where the Poisson Hopf algebra structure of C[K] is the one attached
to the Manin triple (g⊕ g, k,Δg).

In the rest of this paper we will deal with the case where R = DAζ . The following is the
main result of this paper.

THEOREM 4.4. The subalgebra Im(t ξ ⊗ t η) of Z(Dζ ) is closed under the Poisson
bracket given in Proposition 4.1. Moreover, under the identification

Im(t ξ ⊗ t η) ∼= C[G] ⊗ C[K] ∼= C[ΔG] ⊗ C[K]
this Poisson algebra structure coincides with the one attached to the Manin triple (g ⊕
g,Δg, k) as in Proposition 2.3.

Set

J = Ker(ξ ◦ πULζ ) ⊂ ULAζ ,

I = {x ∈ UAζ | 〈x, VAζ 〉 ⊂ �(q� − q−�)Aζ } .
LEMMA 4.5. Let h ∈ Im(t ξ) and ϕ ∈ Im(t η). Take p ∈ C[G] andΦ ∈ UAζ such that

h = t ξ(p) and ϕ = πUζ (Φ) respectively. Assume

Φ ⊗ 1−
∑
(Φ)

Φ(1) ⊗ ι(Φ(0)) ∈ �(q� − q−�)
∑
r

Ψr ⊗Xr + I ⊗ J ⊂ UAζ ⊗ ULAζ

with Ψr ∈ UAζ , Xr ∈ ULAζ . Then we have

{h, ϕ} =
∑
r

t ξ((ξ ◦ πULζ )(Xr) · p)⊗ πUζ (Ψr)

with respect to the Poisson structure of Z(Dζ ) given in Proposition 4.1.
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PROOF. Take H ∈ CAζ such that h = πCζ (H). For u ∈ ULAζ , v ∈ VAζ we see easily

that

〈{h, ϕ}, πULζ (u)⊗ πVζ (v)〉

= πζ

(
〈H,u(〈Φ, v〉1 −

∑
(Φ)

〈Φ(1), v〉ι(Φ(0)))〉/�(q� − q−�)
)
.

Write

Φ ⊗ 1−
∑
(Φ)

Φ(1) ⊗ ι(Φ(0)) = �(q� − q−�)
∑
r

Ψr ⊗Xr +
∑
s

Ξs ⊗ Ys ,

where Ξs ∈ I, Ys ∈ J . Then we have

〈{h, ϕ}, πULζ (u)⊗ πVζ (v)〉

=
∑
r

πζ (〈Ψr, v〉)πζ (〈H,uXr 〉)+
∑
s

πζ

( 〈Ξs, v〉
�(q� − q−�)

)
πζ (〈H,uYs〉)

=
∑
r

〈πUζ (Ψr), πVζ (v)〉〈h, πU
L

ζ (u)πU
L

ζ (Xr)〉

+
∑
s

πζ

( 〈Ξs, v〉
�(q� − q−�)

)
〈h, πULζ (u)πU

L

ζ (Ys)〉 .

By h = t ξ(p) we have

〈h, πULζ (u)πU
L

ζ (Xr)〉 = 〈p, (ξ ◦ πULζ )(u)(ξ ◦ πULζ )(Xr)〉
= 〈(ξ ◦ πULζ )(Xr) · p, (ξ ◦ πULζ )(u)〉 = 〈t ξ((ξ ◦ πULζ )(Xr) · p), πULζ (u)〉 .

Similarly, we have

〈h, πULζ (u)πU
L

ζ (Ys)〉 = 〈p · (ξ ◦ πULζ )(u), (ξ ◦ πULζ )(Ys)〉 = 0 .

Now the assertion is clear. �

Now let us show Theorem 4.4. By Theorem 4.2 and Theorem 4.3 it is sufficient to show
that for h ∈ Im(t ξ), ϕ ∈ Im(tη) our Poisson bracket {h, ϕ} defined above coincides with the
one coming from the Manin triple. In order to avoid confusion we denote by { , }′ the Poisson
bracket of C[G] ⊗ C[K] coming from the Manin triple. We need to show

(4.1) {h, ϕ} = {h, ϕ}′ (∀h ∈ Im(t ξ))

for any ϕ ∈ Im(t η). If (4.1) holds for ϕ ∈ Im(tη), we have

(4.2) {f, ϕ} = {f, ϕ}′ (∀f ∈ Im(t ξ ⊗ t η))
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by

{hψ, ϕ} = {h, ϕ}ψ + h{ψ, ϕ} = {h, ϕ}′ψ + h{ψ, ϕ}′ = {hψ, ϕ}′

for h ∈ Im(t ξ), ψ ∈ Im(tη). Hence for each ϕ ∈ Im(t η) (4.1) is equivalent to (4.2). Then
it follows from the definition of the Poisson algebra that (4.1) for ϕ = ϕ1, ϕ = ϕ2 imply
those for ϕ = ϕ1ϕ2, ϕ = {ϕ1, ϕ2}. Therefore it is sufficient to show (4.1) in the cases where ϕ
belongs to a generator system of the Poisson algebra Im(tη). By [4] the Poisson algebra C[K]
is generated by the elements of the form χ̂λ, ai, bi for λ ∈ Λ, i ∈ I . Under the isomorphism
C[K] ∼= Im(t η) of Poisson algebras we have

χ̂λ ←→ πUζ (K�λ) (λ ∈ Λ) ,
aiχ̂−αi ←→ πUζ ((qi − q−1

i )�E�i K
−�
i ) (i ∈ I) ,

biχ̂−αi ←→ πUζ ((qi − q−1
i )�F �i ) (i ∈ I) .

Hence we have only to show (4.1) in the cases

ϕ = πUζ (K�λ) , ϕ = πUζ ((qi − q−1
i )�E�i K

−�
i ) , ϕ = πUζ ((qi − q−1

i )�F �i )

for λ ∈ Λ, i ∈ I .
For bases {Xr } and {Yr } of g and k respectively such that ρ((Xr,Xr), Ys) = δrs we have

{h, ϕ}′ =
∑
r

LXr (h)RYr (ϕ) (h ∈ C[G], ϕ ∈ C[K]).

From this we can easily deduce

{h, χ̂λ}′ = −1

2
LHλ(h)χ̂λ (λ ∈ Λ) ,(4.3)

{h, aiχ̂−αi }′ = − (αi , αi)
2

Lei (h)χ̂−αi (i ∈ I) ,(4.4)

{h, biχ̂−αi }′ = − (αi , αi)
2

Lfi (h)χ̂−αi (i ∈ I) ,(4.5)

where Hλ ∈ h is given by κ(Hλ,H) = λ(H) (H ∈ h).

Let us show (4.1) for ϕ = πUζ ((qi − q−1
i )�F �i ). For Φ = (qi − q−1

i )�F �i we have

Φ ⊗ 1−
∑
(Φ)

Φ(1) ⊗ ι(Φ(0))

= (qi − q−1
i )�

(
F�i ⊗ 1−

�∑
r=0

q
r(�−r)
i

[
�

r

]
qi

[r]!qiF �−ri K−r
i ⊗ F (r)i

)

∈ (qi − q−1
i )�(F �i ⊗ 1− (F �i ⊗ 1+ [�]!qiK−�

i ⊗ F (�)i ))+ I ⊗ J

= �(q� − q−�)
(
− (qi − q

−1
i )�[�]!qi

�(q� − q−�) K−�
i ⊗ F (�)i

)
+ I ⊗ J .
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Hence the assertion follows from

(qi − q−1
i )�[�]!qi

�(q� − q−�)
∣∣∣∣
q1/|Λ/Q|=ζ

= (αi , αi)

2
,

which is easily checked. The verification of (4.1) for ϕ = πUζ ((qi − q−1
i )�E�i K

−�
i ) is similar

and omitted.
Let us finally show (4.1) for ϕ = πUζ (K�λ). We need to show

{t ξ(p), ϕ} = −1

2
t ξ(LHλ(p))⊗ ϕ

for p ∈ C[G]. Take H ∈ CAζ such that πCζ (H) = t ξ(p). For z ∈ C× and ν ∈ Λ we set

(CAz )ν = {ϕ ∈ CAz | u · ϕ = χν(u)ϕ (u ∈ UL,0Az
)},

(Cz)ν = {ϕ ∈ Cz | u · ϕ = χν(u)ϕ (u ∈ UL,0z )}.
Then we have

t ξ(C[G]ν) ⊂ (Cζ )�ν = πCζ ((CAζ )�ν) (ν ∈ Λ) ,
and hence we may assume p ∈ C[G]ν and H ∈ (CAζ )�ν . For Φ = K�λ we have

Φ ⊗ 1−
∑
(Φ)

Φ(1) ⊗ ι(Φ(0)) = K�
λ ⊗ 1−K�

λ ⊗ ι(K�
λ) = −K�

λ ⊗ (ι(K�
λ)− 1) .

Hence for u ∈ ULAζ , v ∈ VAζ we have

〈{t ξ(p), ϕ}, πULζ (u)⊗ πVζ (v)〉

= πζ

(〈
H,u

(
〈Φ, v〉1 −

∑
(Φ)

〈Φ(1), v〉ι(Φ(0))
)〉/

�(q� − q−�)
)

= −πζ (〈K�λ, v〉〈H,u(ι(K�λ)− 1)〉/�(q� − q−�))
= −πζ (〈K�λ, v〉〈(ι(K�λ)− 1) ·H,u〉/�(q� − q−�))
= −πζ ((q�2(λ,ν) − 1)/�(q� − q−�)) πζ (〈K�λ, v〉)πζ (〈H,u〉)

= −�(λ, ν)
2�

〈ϕ, πVζ (v)〉〈t ξ(p), πU
L

ζ (u)〉

= −1

2
〈t ξ(LHλ(p))⊗ ϕ, πU

L

ζ (u)⊗ πVζ (v)〉 .

The proof of Theorem 4.4 is complete.
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