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Abstract. Let G be a simple algebraic group over C. By taking the quasi-classical limit of the ring of differ-
ential operators on the corresponding quantized algebraic group at roots of 1 we obtain a Poisson manifold AG x K,
where AG is the subgroup of G x G consisting of the diagonal elements, and K is a certain subgroup of G x G. We
show that this Poisson structure coincides with the one introduced by Semenov-Tyan-Shansky geometrically in the
framework of Manin triples.

1. Introduction

In this paper we will explicitly compute the Poisson bracket of a certain Poisson manifold
arising from the ring of differential operators on a quantized algebraic group at roots of 1. This
result will be a foundation in the author’s recent works regarding the Beilinson-Bernstein type
localization theorem for representations of quantized enveloping algebras at roots of 1 (see
(161, [17]).

Let G be a simple algebraic group over C with Lie algebra g. Take Borel subgroups B+
and B~ of G such that H = BT N B~ is a maximal torus of G. Set N* = [B*, B¥]. We
define a subgroup K of G x G by

K={tx,t7'y)|treHxeN",ye N }CB"xB  CcGxG.

Let ¢ € C* be a primitive £-th root of 1, where £ is an odd positive integer satisfying cer-
tain conditions depending on g, and let U, be the De Concini-Kac type quantized enveloping
algebra of g at {. It is expected that there exists a certain correspondence between repre-
sentations of U; and modules over the ring Dp, of differential operators on the quantized
flag manifold B;. Since Dp, is closely related to the ring Dg, of differential operators on
the quantized algebraic group G, it is an important step in establishing the expected corre-
spondence to investigate the ring D¢, in detail. Note that D¢, is nothing but the Heisenberg
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double C[G;] ® U, of the Hopf algebras C[G,] and U,, where C[G,] is the coordinate al-
gebra of G,. We have natural central embeddings C[G] C C[G,], C[K] C U; of Hopf
algebras, and hence G and K become Poisson algebraic groups. By De Concini-Procesi [4]
and De Concini-Lyubashenko [3] these Poisson algebraic group structures of G and K turn
out to be the ones defined geometrically from the Manin triple (G x G, AG, K), where AG
is the subgroup of G x G consisting of diagonal elements. The aim of the present paper is
to give a description of the Poisson algebra structure of C[G] ® C[K] induced by the central
embedding

(1.1) CIG]1® C[K] C C[G;] ® U,

of algebras.

Let (a, m, [) be a Manin triple over C. Assume that we are given a connected algebraic
group A with Lie algebra a and connected closed subgroups M and L of A with Lie algebras
m and [ respectively. Then Semenov-Tyan-Shansky [13], [14] showed that A has a natural
structure of Poisson manifold. Hence by considering the pull-back with respect to the local
isomorphism M x L — A ((m,[) — ml) the manifold M x L also turns out to be a Poisson
manifold.

THEOREM 1.1. The Poisson structure of G x K induced from the central embedding
(1.1) coincides with the one defined geometrically from the Manin triple (G x G, AG, K).

As explained above, the coincidence of the two Poisson brackets
C[G x K] xC[G x K] — C[G x K]

is already known for the parts C[G] x C[G] — C[G] and C[K] x C[K] — C[K] by [4], [3].
Hence we will be only concerned with the mixed part of the Poisson bracket between C[G]
and C[K]. We point out that a closely related result in the case of ¢ = 1 for general Manin
triples already appeared in [14].

In [14] it is noted that the Poisson manifold L associated to a Manin triple (a, m, [) can
also be recovered as a Hamiltonian reduction with respect to the action of M on M x L. In
order to pass from D¢, to D, we need to consider Hamiltonian reduction for more general
situation. As a result we obtain the following.

PROPOSITION 1.2. The varieties
Y ={(N"g. (k1. k2) € (N'\G) x K | gkiky 'g~" € HNT),
Y, ={(Bg. (ki.ka) € (B"\G) x K | gkik;'g™" € tN™) (rteH)
turn out to be Poisson manifolds with respect to the Poisson tensors induced from that of

G x K. Moreover, the Poisson tensors of Y and Y, are non-degenerate. Hence they are
symplectic manifolds.

In fact the Poisson manifold arising from the Poisson structure of the center of Dp,

coincides with Y above (see [16]). The non-degeneracy of the Poisson tensor plays a crucial
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role in the argument of [16].

The contents of this paper is as follows. In Section 2 we recall the definition of the
Poisson structure due to Semenov-Tyan-Shansky, and show that the technique of the Hamil-
tonian reduction works for certain cases. The case of the typical Manin triple (g @ g, Ag, £)
is discussed in detail. In Section 3 we give a summary of some of the known results on quan-
tized enveloping algebras at roots of 1 due to Lusztig [9], De Concini-Kac [2], De Concini-
Lyubashenko [3], De Concini-Procesi [4], Gavarini [6]. In Section 4 we show that the Poisson
structure arising from the algebra of differential operators acting on quantized coordinate al-
gebra of G at roots of 1 coincides with the one coming from the typical Manin triple.

2. Poisson structures arising from Manin triples

2.1. Manin triples. We first recall standard facts on Poisson structures (see e.g., [5],
[4]). A commutative associative algebra R over C equipped with a bilinear map {, } : R x
R — 'R is called a Poisson algebra if it satisfies

(@ f{a,a}=0 (aeR),

(b) {a,{b,c}}+1{b,{c,a}}+{c,{a,b}} =0 (a,b,ceR),

() {a,bc}=bla,c}+{a,b}c (a,b,c eR).
A map F : R — R’ between Poisson algebras R, R’ is called a homomorphism of Pois-
son algebras if it is a homomorphism of associative algebras and satisfies F({a1, az}) =
{F(a1), F(ay)} for any ay, ay € R. The tensor product R ®c R’ of two Poisson algebras R,
R’ over C is equipped with a canonical Poisson algebra structure given by

(a1 ® b1)(a2 ® by) = aja; ® biby,
{a1 ® b1, a2 ® by} = {a1, a2} ® b1b2 + ara; ® {by, ba}

foray,ay € R, by, by € R'. A commutative Hopf algebra R over a field C equipped with a
bilinear map {, } : R x R — R is called a Poisson Hopf algebra if it is a Poisson algebra
and the comultiplication R — R ®c R is a homomorphism of Poisson algebras (in this case
the counit R — C and the antipode R — R become automatically a homomorphism and an
anti-homomorphism of Poisson algebras respectively).

For a smooth algebraic variety X over C let Oy (resp. Oy, 2x) be the sheaf of regular
functions (resp. vector fields, 1-forms). We denote the tangent and the cotangent bundles of X
by T X and T* X respectively. A smooth affine algebraic variety X over C is called a Poisson
variety if we are given a bilinear map {, } : C[X] x C[X] — C[X] so that C[X] is a Poisson
algebra. In this case {f, g}(x) for f, g € C[X] and x € X depends only on dfy, dg,, and
hence we have § € I'(X, /\2 O®yx) (called the Poisson tensor of the Poisson variety X) such
that

{f, 9} (x) = 0x(dfx,dgx) .

Consequently we also have the notion of Poisson variety which is not necessarily affine.
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Let S be a linear algebraic group over C with Lie algebra s. For a € s we define vector
fields Ry, L, € I'(S, Og) by

d
(Ra(fN(s) = Ef(exp(—ta)S)lﬁo (f€Os, s€S),

d
(La(f)(s) = Ef(s exp(ta))li=0  (f € Og, 5 €5).
For & € s* we also define 1-forms L¥, R; e I'(S, £25) by
(LE, La) = (RE, Ry) = (§,a) (a€s).

Fors € S we define {5 : § — S by £,(x) = sx.

A linear algebraic group S over C is called a Poisson algebraic group if we are given a
bilinear map {, } : C[S] x C[S] — C[S] so that C[S] is a Poisson Hopf algebra. Let § be
the Poisson tensor of S as a Poisson variety, and define ¢ : S — /\25 by (d€s)(e(s)) = &
for s € S. Here, we identify the tangent space (7'S); at the identity element 1 € S with s by
L, <> a (a € s). By differentiating ¢ at 1 we obtain a linear map s — /\2 s. It induces an
alternating bilinear map [, ] : §* x §* — s*. Then this [, ] gives a Lie algebra structure of
s*. Moreover, the following bracket product gives a Lie algebra structure of s @ s*:

[(a, ), (b, ¥)] = (la, b] + ¢b — Ya,ayr — by + [¢, ¥]).

Here, s x s* 3 (a, ¢) — ap € s* and s* x 5 3 (¢, a) — @a € s are the coadjoint actions of
s and s* on s* and s respectively. In other words (s @ s*, s, s*) is a Manin triple with respect
to the symmetric bilinear form p on s @ s* given by p((a, ¢), (b, ¥)) = @(b) + ¥ (a). We
say that (a, m, [) is a Manin triple with respect to a symmetric bilinear form p on a if

(a) ais afinite-dimensional Lie algebra,

(b) p is a-invariant and non-degenerate,

(c) mand [ are subalgebras of a such that a = m @ [ as a vector space,

(d) p(m,m) =pd D) = {0}

Conversely, for each Manin triple we can associate a Poisson algebraic group by re-
versing the above process as follows. Let (a, m, [) be a Manin triple with respect to a bi-
linear form p on a and let M be a linear algebraic group with Lie algebra m. Denote by
Tm @ — m, m : a — [ the projections with respect to the direct sum decomposition
a = m@[. We sometimes identify m* and [* with [ and m respectively via the non-degenerate
bilinear form p|mx( : m X [ — C. Hence we have also a natural identification

2.1 F=meDEmelrF=Zldm=a.

For m € M we denote by Ad(m) : a — a the adjoint action. Then we have the following (see
e.g., [5], [4D.

PROPOSITION 2.1. The algebraic group M is endowed with a structure of Poisson
algebraic group whose Poisson tensor 8" is given by
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SM(LE, Ly) = p(rm(Ad(m)(§)), Ad(m)(n)) ¢, nel=m",
S (RE, Ry) = —p(mm(Ad(m™")(€)), Adm ™) (1)) (€, 1 € [ =m*)
form e M.

2.2. Semenov-Tyan-Shansky Poisson structure. Let (a, m, [) be a Manin triple over
C with respect to a bilinear form p on a. We assume that we are given a connected algebraic
group A and its closed connected subgroups M and L with Lie algebras a, m, [ respectively.
Define an alternating bilinear form w on a by

w(@+b,a +b)=p@,b)—pbad) (a,d emb b ecl).
Denote the adjoint action of A onaby Ad: A — GL(a).
PROPOSITION 2.2 (Semenov-Tyan-Shansky [13], [14]). The smooth affine variety A

is endowed with a structure of Poisson variety whose Poisson tensor 8 is given by

< 1
dq(LE, L}) = 5 (@(Ad(9)(E), Ad(g)(m) + @& m) (.7 € at,g€A).

Here, we identify a with a* via (2.1).
Note that we can rewrite § in terms of p as
84(RY. Ry = p(a, (—mm + Ad(g)m Ad(g™ ")) (b))
= p(a, (= Ad(9)mm Ad(g~ ) (1)),
8g(Ly, L}) = pla, (—mm + Ad(g™ ) Ad(9) (b))
= pa, (r— Ad(g™mm Ad(9) () (g€ A,a,b € q).
Consider the map
2.2) . MxL—->A ((ml)—ml).

Since @ is a local isomorphism, we obtain a Poisson structure of M x L whose Poisson
tensor 8 is the pull-back of § with respect to @. Let us give a concrete description of 8. By
Proposition 2.1 M is endowed with a structure of Poisson algebraic group. By the symmetry
of the notion of a Manin triple L is also a Poisson algebraic group whose Poisson tensor 8 is
given by

8P (LE, L) = p(ri(Ad(D)(£)), Ad() () (leLénem=1I),

Sf(RE.Ry) = —p(mi(Ad(™)(§), Ad(™H()) (e L.&nem=T1).
By a standard computation we have the following.

PROPOSITION 2.3. The Poisson tensor § is given by

S,y - (T*M)p & (T*L))) x (T*M),, & (T*L);) — C
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for (m,l) € M x L with

(2.3) S| (T My (10, = SN,
(2.4) S| T Lyx(T*Ly = OF ,
(2.5) Sy (Ly, RE) = p(a, &) (ael=m*tem=1[.

As noted in [14] the Poisson tensors & and § are non-degenerate at generic points, and
hence some open subsets of A and M x L turn out to be symplectic manifolds. We give below
the condition on the point of A and M x L so that the Poisson tensor is non-degenerate.

LEMMA 2.4. (i) Letg € A. Then 59 is non-degenerate if and only if
Ad(g)(D Nm = Ad(g)(m) N[ = {0}.
(ii) Let (m,l) € M x L. Then we have
dimrad 8¢, ;) = dim(IN Ad(ml)(m)) .
Especially, 8.1y is non-degenerate if and only if
Ad(m~ () N Ad()(m) = {0}.

PROOF. (i) Set F = —my + Ad(g)m; Ad(g™") : @ — a for simplicity. By definition
s g is non-degenerate if and only if F is an isomorphism.

Assume that F is an isomorphism. Since F is surjective, we must have a = m+Ad(g)(l)
by the definition of F. By dima = dimm + dim[ we have a = m & Ad(g)(l) and m N
Ad(g)() = 0. Then

Ker F = {a € a | 7m(a) = Ad(¢)m; Ad(g~ ) (@) = 0} = [N Ad(g)(m).
Hence the injectivity of F implies [ N Ad(g)(m) = {0}.
Assume Ad(¢)([) Nm = Ad(g)(m) N [ = {0}. By Ad(g)() Nm = {0} we have a =
m @ Ad(g)(). Then Ker F = I[N Ad(g)(m) = {0}. Hence F is an isomorphism.
(ii)) For g = ml we have
Ad(¢)(H) Nm = Ad(m)(Ad() (1) N Ad(m~ ) (m)) = Ad(m)(I N m) = {0}.
Hence by the proof of (i) we obtain
dimrad 8(,, x) = dim Ker (=7 + Ad(g) Ad(g™ "))
=dim([ N Ad(g)(m)).
O
COROLLARY 2.5. (i) The Poisson structure of A induces a symplectic structure of

the open subset

U={geA|Adg)(h)Nm=Ad(g)(m) N[={0}}
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of A
(i) The Poisson structure of M x L induces a symplectic structure of the open subset
U:={(m,]) e M x L|Adim~")() N Ad()(m) = {0}
of M x L.

2.3. A variant of Hamiltonian reduction. Let X be a Poisson variety with Poisson
tensor 6 and let S be a connected linear algebraic group acting on the algebraic variety X (we
do not assume that S preserves the Poisson structure of X). Assume also that we are given an
S-stable smooth subvariety ¥ of X on which S acts locally freely. Denote by s the Lie algebra

of S.
For y € Y the linear map

d
s3ar> 3, €(TY)y, @)= Ef(exp(—la)y)lmo

is injective by the assumption. Hence we may regard s C (TY), for y € Y. This gives an
embedding

YxsCTY C(TX|y)
of vector bundles on Y. Correspondingly, we have
TyEX C (Y x 5)t C (T*X|y)
where
(¥ x9)" = {v e (T*X|y) | (v, Y x5) =0},

and Ty X denotes the conormal bundle.

By restricting § € F(/\Z(TX)) to Y we obtain d|y € F(/\Z(Tle)). Fory € Y re-
stricting the anti-symmetric bilinear form (|y), on (T*X), to ((Y x 5)1-)}, we obtain an
anti-symmetric bilinear form Sy on ((Y x 5)J-)y. Then we have § € F(/\z((TX|Y)/(Y X 5))).

Denote the action of ¢ € S by ry : X — X. Then for y € Y the isomorphism
(drg)y : (TX)y — (T X)gy induces

drg)y : (TY)y - (TY)gy, (drg)y:s53ar Ad(g)(a) € s,
where s is identified with subspaces of (T'Y), and (T'Y)gy. In particular, S naturally acts on

C(NA((TXIY)/(Y x 9))).

PROPOSITION 2.6. Assume that § is S-invariant and (T;‘X)/V C rad(gy) foranyy €
Y. Then the quotient space S\Y admits a natural structure of Poisson variety as follows. Let
@, ¥ be functions on S\Y, and let §, Y be the corresponding S-invariant functions on Y. Take

extensions @, g@ of ¢,V to X (not necessarily S-invariant). Then {, @}|y is S-invariant and
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does not depend on the choice of ¢, 1} We define {¢, ¥} to be the function corresponding to

(@, ¥y
Moreover, if we have (Ty X)y = rad(gy)for any y € Y, then the Poisson tensor of S\Y
is non-degenerate. Hence S\Y turns out to be a symplectic variety.

PROOF. For F € Ox,d € Ox, y € Y we have ((dF)y, 9) = (d(F))(y), and hence
Fly is S-invariant (resp. F|y is a locally constant function) if and only if dF|y € (¥ x s)*

(resp. dFly € Ty X).

Take ¢, ¥ and ¢, ¥, @, 1& as above. We first show that {¢, g@}|y does not depend on the
choice of ¢, . For that it is sufficient to show that {¢, /}|y = 0 if ¥ = 0. By dgly €
(Y x 5)1, difly € T;f X we have

(9, 1Y) = 8,((dD)y, (d¥)y) = 8,((d)y, (dV)y) =0
by the assumption.

Let us show that {@, @}Iy is S-invariant. For g € S, y € Y we have

(9, U1(gy) = 84y((dD) gy, (dV)gy) = 8y(d (@ org)y, d(W 0rg)y)
={porg, ¥ orgly)

by the S-invariance of §. Since @, ¥ are S-invariant, we have ¢ o rgly = ¢ and Vo rely = V.

Hence the independence of {¢, g@} |y on the choice of @, g@ implies

{porg, dorgdy) =, ¥H()

forge Sandy €Y.
The remaining assertions are now clear. O

Now we apply the above general result to our Poisson varieties M x L and A.

Assume that we are given a connected closed subgroup F of M. Let { be the Lie algebra
of Fandsetf- = {a € a | p(f,a) = 0}. The action F x A 5 (x,g) — xg € Aof Fon A
induces an injection

faar R, e(TA)y (geA).
Define a subbundle (A x f)* of T*A by
(AxPhg = (RE | c € F1) C (T*A),,
and set § = SI(AXWX(AXW.
LEMMA 2.7. Iff' Nlisa Lie subalgebra of |, then § is F-invariant.

PROOF. By definition <§g for g € A is given by

84(RX, RY) = ple, (—mtm + Ad(9)m Ad(g™ () (e, e fh).
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On the other hand for x € F, g € A the isomorphism (T*A), = (T*A),4 induced by the
action of x is given by
(T*A)g = (T*A)xg  (Rf — Ragey) -
Hence it is sufficient to show
P(AA(X)(c), Tm Ad(x)(c)) = p(c. Tm(c)) (x € F, ¢,/ e fh).

Since F is connected, this is equivalent to its infinitesimal counterpart

p(la, cl, tm(c)) + p(c, Tm(la, D) =0 (aef, ¢, ef).

Note that f- = m @ (f- N1). If c € m, then we have [a, c] € m and hence p([a, c], Tm(c)) =
p(c, tm([a, c']) = 0.If ¢’ € m, then

p(la, cl, tm(c)) + plc, wm(la, D) = p(a, cl. ) + ple, [a, D) =0
by the invariance of p. Hence we may assume that ¢, ¢’ € - N [. In this case we have
p(a, cl, mm(c) + plc, Tm(la, 1) = p(c, tm((a, ') = p(c, [a, D)
=—p(lc’.cl.a) e p(F- N L) =0.

By Proposition 2.6 and Lemma 2.7 we have the following.

PROPOSITION 2.8. Assume that - N Uis a Lie subalgebra of . Let V be an F -stable
smooth subvariety of A such that the action of F on V is locally free. Assume also that for
g € V we have

rad(8,) D (T3 A), .
Then F\V has a structure of Poisson variety whose Poisson bracket is defined as follows:
Let ¢, W be functions on F\V, and denote by §,  the corresponding F-stable functions on

V. Take extensions @, 1& of @, ¥ respectively to A. Then {§, 1}}|v is F-stable and dose not
depend on the choice of ¢, 1& We define {¢, ¥} to be the function on F\V corresponding to

{§, ¥}l

If, moreover,
rad(8,) = (T} A)

holds for any g € V, then the Poisson tensor of F\V is non-degenerate (hence F\V turns
out to be a symplectic variety).

2.4. A special case. Let G be a connected simple algebraic group over C, and let H
be its maximal torus. We take Borel subgroups Bt, B~ of G suchthat H = BT N B~, and
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set N = [Bi, Bi]. Denote the Lie algebras of G, H, Bi, N* by g, b, bi, nE. Define
subalgebras Ag and € of g @ g by
Ag={(a,a)|ac€ g},
t={h+x,—-h+y)|hehxen,yen},

and denote by AG, K the connected closed subgroups of G x G with Lie algebras Ag, £
respectively. In particular, AG = {(g,¢9) | ¢ € G}. We fix an invariant non-degenerate
symmetric bilinear form « : g x g — C, and define a bilinear form p : (g g) x (g g) - C
by

o((a,b), (@,b)) =«(a,a)—«kb,b).

Then (g @ g, Ag, £) is a Manin triple with respect to the bilinear form p.

By Proposition 2.2 (resp. Proposition 2.3) we have a Poisson structure of G x G (resp.
AG x K) with Poisson tensor 8 (resp. 8). Moreover, the Poisson structure of AG x K is the
pull-back of that of G x G with respect to

D:AGXK - GxG (((g,9), k1, k2)) — (gk1, gk2)) .
LEMMA 2.9.
Im® ={(g1.2) €GxG|g'ge NVHN}.
PROOF. We have
(gk) "N (gk2) =k'ko e NTHN.
Assume gl_lgz € NTHN~. Then for (k1, k») € K with kl_lkz = gl_lgz we have
(g1, ) = (gik; !, goks (ki ko) € Im & .
O

PROPOSITION 2.10. §((g,¢),(k;.ky)) I8 non-degenerate if and only if we have
gkiky'g~' e NFHN™,

PROOF. Note that
(2.6) dimrad(8((g,g),(k;,kp))) = dim(¥ N Ad(gk1, gk2)(Ag))

by Lemma 2.4. In general for (g1, g2) € G x G set d(g1, ¢2) := dim(¢ N Ad(g1, 92)(Ag)).
For (k1, ky) € K and (g, g) € AG we have

d((ki, k2)(g1, 92)(g, 9)) = d(qg1, 2)

and hence d (g1, ¢) is regarded as a functionon K\ (G x G)/AG. Denoteby W = Ng(H)/H
the Weyl group of G. A standard fact on simple algebraic groups tells us that for any (g1, g2) €
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G X G there exists some w € W and t € H such that K (g1, 2)AG > (tw, 1), where w is a
representative of w. By

d(tw, 1) = dim(¢ N Ad(1, 1)(Ag)) = dim(Ad((r, 1)) (®) N Ag),

Ad((r, D"H® ={(w th+ v 'x,—h+y) |hehxent, yen)}

we see easily that d(tw, 1) = O if and only if w = 1. The assertion follows from this
easily. O

COROLLARY 2.11. The Poisson structure of AG x K induces a symplectic structure
of the open subset

U :={((g. 9). (k1. k2)) € AG x K | gkik;'g™" e NVHN™}.

Set
Y ={((y, g9), (k1,k2)) € AG x K | gl<11<2_lg_1 €B }CUC AG x K,

Y=0¥)CGxG.
Then we have
2.7) Y={(91,9) €GxGlgig; €B™, g7 ' ¢p e NVHN™}.
Moreover, setting
Z=1{(g,b)eGxB |g-'b'ge Nt HN}
we have

(2.8) Y=Z (g.9) < (9,919, (9,57 9) < (9,b)).

Since Nt HN™ is an open subset of G, 7 is open in G x B™. In particular, 7 is a smooth
variety. Hence Y is also smooth. Define an action of N~ on G x G by

x(g1, @) = (xg1,x9) (x €N ,(91,0) €GXG).

Then Y is N~ -invariant. Moreover, (2.8) preserves the action of N, where the action of N~
on Z is given by
x(g,b) = (xg,xbx™") (xeN7,(g,b) € 2).
For C C G suchthat C 5 ¢ = N~ c € N7\G is an open embedding we have
{(9.0) € Z| ge N~ C}
= {(yc, yby_l) |lyeN ,ceC,be B_,c_lb_lc € N+HN_}
=N x{(c,b))eCxB |c b lce NTHNT},

and hence the action of N~ on Z is locally free. Hence we have the following.
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LEMMA 2.12. Y is a smooth variety, and the action of N~ on Y is locally free.
Set An~ = {(a,a) | a € n~}. We have obviously the following.

LEMMA 2.13. We have
(An)tne={(h,—h+y)|yen}.
In particular, (An™)* N € is a Lie subalgebra of .
For (g1, ) € Y we have
T(G x G)(g.g9) = {Ray,ap) | (a1,a2) € g® g},
T*(G % G)(gr.gn) = (REy oy | (u1.u2) € g 0},
(Riay.az)s Ry, upy) = (a1, ur) — k(az, uz) .
By (2.8) we have also
(TV) 9100 = (R, aa(gagryay | @ € 8 @ (R | b €67}

for (g1, ) € Y. By Lemma 2.12 the natural map n~ — (T?)(gl.,gz) is injective and is given
by

N3¢ Reo € (TY)(g.q) -
Hence under the identification n™ C (T?)(gl,gz) C T(G x G)(gq,,¢,) We have
() =(RY,, ) |1 —u2 € b7} = {RY, .\ lu€gveb),

(TY)(g.0) " =IR lyen}.

*
(Ad(g29; (). )

LEMMA 2.14. For (g1, g2) € Y we have

5 > 1
1ad(8(g;, go) | (n—yL x(n)L) = (TY) (g, 92))™ -

PROOF. Foru € g,v e€b” wehave R(, . € rad(g(gl’gz)|(n—)i><(n—)i) if and only if

S(QI,QZ)(RZ‘a’Hb), R(, u+v) =0foranya € g,b € b™. Setting
(—7ag + Ad(gr, @)me Ad(g; s g5 D, u +v) = (x, )
we have
5(91,92)(R2<a,a+b)’ R?u,u+v)) =k(a,x)—«k(a+b,y)=«(ax—y) —«b,y).

Hence R?u,wru) € rad(S(gl,gz)|(n_)ix(n_)¢) ifandonlyifx =y e n™. By (g1, 2) € P(AGx

K) wehave g ® g = Ag ® Ad(91, g2)(8). Therefore,

R?(u,u-i-v) € rad((S(QI ,92) | (n7)tx (n—)i)
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&= maglu,u+v)=(y,y) @y en’), meAd(g; ' g5 N, u+v)=0
= uen, Adlg", 9 ), u+v) € Ag
& uen , v :Ad(gzgl_l)(u) —u.

It follows that

3 — > 1
12d(3cg1.00 iy x0011) = 1R agcgugryin 14 €7 1= (TD0100) ™

By Proposition 2.8 and the above argument we obtain the following.

PROPOSITION 2.15. We have a natural Poisson structure of N~\Y whose Poisson
tensor is non-degenerate and defined as follows (hence N™\Y turns out to be a symplectic
variety) : Let @, ¥ be functions on N™\Y, and let §, ¥ be the corresponding N~ -invariant
functions on Y. Take extensions @, 1} of ¢, V¥ to G x G. Then {0, 1}}|y is N~ -invariant
and does not depend on the choice of , 1& We define {@, '} to be the function on N~\Y
corresponding to {@, lﬁ}lf,.

By considering the pull-back to Y via @ we also obtain the following.

PROPOSITION 2.16. Consider the action of N~ on Y given by

x((g9, 9), (k1. k2)) = ((xg, x9), (k1. k2))  (x € N7, ((g, 9), (k1,k2)) € ¥).

Then we have a natural Poisson structure of N~ \Y whose Poisson tensor is non-degenerate
and defined as follows (hence N~\Y turns out to be a symplectic variety): Let @, r be func-
tions on N~\Y, and let ¢, U be the corresponding N~ -invariant functions on Y. Take exten-
sions @, 1& of ¢, V¥ 10 AG x K. Then {0, lﬁ}ly is N~ -invariant and does not depend on the
choice of ¢, g@ We define {@, ¥} to be the function on N~\Y corresponding to {¢, g@}|y.

Note that
2.9) NT\Y 2 {(Ng. (ki.k2) € (N\G) x K | gkiky'g™" € B7).
Fix t € H and set
Y, ={((9.9). (ki.k2)) € AG x K | gkiky'g7" € IN"} CU C AG x K .
Then by a similar argument we have the following.

PROPOSITION 2.17. Consider the action of B~ on Y; given by

x((g, 9), (k1,k2)) = ((xg, xg), (k1, k2)) (x € B™, ((g, 9), (k1, k2)) € Y1) .

Then we have a natural Poisson structure of B~\Y; whose Poisson tensor is non-degenerate
and defined as follows (hence B™\Y; turns out to be a symplectic variety) : Let ¢, ¥ be
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functions on B~\Y;, and let §, ¥ be the corresponding B~ -invariant functions on Y;. Take
extensions @, 1} of ¢, ¥ to AG x K. Then {0, 1/}}|y, is B~ -invariant and does not depend on
the choice of ¢, g& We define {@, V} to be the function on B~ \Y; corresponding to {, g@}ly,.

Note that we have

(2.10) B™\Y; Z{(Byg, (ki,k2)) € (B"\G) x K | gkiky'g~' e tN~}.

3. Quantized enveloping algebras

3.1. Lie algebras. In the rest of this paper we will use the notation of Section 2.4. In
particular, g is a finite-dimensional simple Lie algebra over C, and G is a connected algebraic
group with Lie algebra g. We further assume that G is simply-connected and the symmetric
bilinear form

(3.1 G):p*xp*—=C

induced by « satisfies (8, 8)/2 = 1 for short roots 8. We denote by A C h*, O C b*, A C b*
and W C GL(b*) the set of roots, the root lattice Zae A Za, the weight lattice and the Weyl
group respectively. By our normalization of (3.1) we have

(A, Q) CZ, (A, A)C Z.

[A/Q]
For B € A we set
gp={xegllhx]=BH)x (heh}.

We choose a system of positive roots AT C §* so that n* = @Dpea+ 01p. Let {aidier,
{si}ier C W be the corresponding sets of simple roots and simple reflections respectively. Set

0" = Y 7o =P o
acAt iel

We denote the longest element of W by wq. Foreachi € I wetakee; € go;, fi € g—o;, hi €H
such that [e;, f;] = h; and «; (h;) = 2.
Define subalgebras £, £+, £~ of £ by
O ={(h,—h)|heb}, € ={x0xent}, € ={0y)|yen}.
Then we have £ = ¢+ @ 0 @ €. Fori € I set
Xi=(e,00 €T, yi=0,f)et, f=hi—h)et.
We denote by K°, K the connected closed subgroups of K with Lie algebras €, ¢+
tively.

respec-
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3.2. Quantized enveloping algebra of g. Forn € Z andm € Z>, we set

Mo

[n)y = ——— € ZI1, ™1, Dmlt = Imldm = 1], 20,010 € 2L, 071,

1] =

The quantized enveloping algebra U = U, (g) of g is an associative algebra over F =

C(q'/11/21y with identity element 1 generated by the elements K, (A € A), E;, F; (i € I)
satisfying the following defining relations:

(nlin =11 ---[n —m+ 11,/[m),! € Zl1,17'].

(3.2) Ko=1, K.K,=K, (€ A),
(3.3) KiEiK; ' =g E LeAiel),
(3.4) K FiK ' =g % F (AeA,iel,
K;i— K|
(3.5) EiFj — FiE; = §;;———— G,jel,
qgi — 4;
1—a;;
(3.6) Sy E T EED =0 Gjeli#j),
n=0
1—a;;
(3.7 Y 0 E TR E =0 Gjeli#)),
n=0

where g; = q©@*)/2 K; = Ky, , aij = 2(i, )/ (e, ;) fori, j € I, and
Ei(n) _ Ein/[n]qi! ’ Fi(n) - Fl-n/[n]%‘!

fori € I andn € Z>. Algebra homomorphisms A : U — U ® U,e : U — F and an
algebra anti-automorphism S : U — U are defined by:

(3.8) AKy) = K, ® K.,

AE)=E®1+K ®E, AF)=F®K '+1®F,
(3.9) e(Ky) =1, &(E)=eF)=0,
(3.10) S(Ky) =K, ', S(E)=-K'Ei, S(F)=-FK;,

and U is endowed with a Hopf algebra structure with the comultiplication A, the counit ¢ and
the antipode S.

We define subalgebras U, UZ0. USO, y+ U~ of U by
(3.11) U= (K, |» e A),

(3.12) U0 = (K, Ej |AeA,iel),



64 TOSHIYUKI TANISAKI

(3.13) USO—(K,,F; |[reA,iel),
(3.14) Ut =(Ejliel),
(3.15) U =(F|iel.

The following result is standard.

PROPOSITION 3.1. (i) {Kj | A € A} is an F-basis of U°.
(i) The linear maps

U"U'@UY - U «UToU'@U™,
UteU’ > U2 «U'@Ut, U @U'-> U=« U'0U-
induced by the multiplication are all isomorphisms of vector spaces.
For y € O we set
UF ={x e U | KuxK; ' =q%"x (L e ).
We have Uiiy = {0} unless y € O, and
Ut= @ Ui,. dimUz, <oo (y e QM.
yeQt
For i € I we can define an algebra automorphism 7; of U by

Tz(Ku) = Ks,*u (n e A,

—ajj —k (—aij—k) k . . .
Ti(Ej) = Yilo DR ETYTUEER (el j#D,
! '] - . .
—FiKi (=1,
—ajj k (—aij—k) . . .
Ti(Fj) = S V) Al T (el j#i,
K 'E; (=1i).

For w € W we define an algebra automorphism Ty, of U by T\, = T;, - - - T;, where w =

in
Si, -+ -8, is a reduced expression. The automorphism 7, does not depend on the choice of a
reduced expression (see Lusztig [10]).

We fix a reduced expression

WO = Siy * - Siy
of wy, and set

B = siy -+ sy (@) (1 =k =N).
Then we have AT = (B¢ | 1 £k < N}.For1 £k < N set
(3.16) Eg =T - Ty (Ey), Fg =Ty Ty (Fy).
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Then {E;"A’IVE;;' | my,...,my = 0} (resp. {F;"NN---F/Z:‘ | my,...,my = 0})is an
F-basis of U™ (resp. U ™), called the PBW-basis (see Lusztig [9]). For | £k < N, m =0
we also set

(.17) Eg’ = Ep [Imlg, ), Fy" = Fj/Imlg,

where gg = ¢#P/2 for p € AT.
There exists a bilinear form

(3.18) U US S F,

called the Drinfeld paring, which is characterized by

(319  T@.yiy) =T (AW, y1 ® ) (e U, yi.y2 e UZY),
(3.20) T(x1x2. y) = (T ® T)(x2 ® x1, A(y)) (1. x2 € U=, y e U0,
(3.21) t(K;, Ky) = g~ *W (A, peA,
(3.22) (K5, F;) = t(E;, K3) =0 (heAd, iel),
(3.23) T(Ei, Fj) =8/ " —q) G, jel).

PROPOSITION 3.2 ([7], [8], [11]). We have

m m n n
t(Eﬂ[\’]v ---EﬁI‘KA, Fﬁ"’ ---FﬁllKM)

N

_ -1)/2 —1\—
= 4% [T S (0™ iy "~ (gp, — a5y ™™ .
k=1

3.3. Quantized coordinate algebra of G. We denote by C the subspace of U* =
Homg (U, F) spanned by the matrix coefficients of finite dimensional U-modules E such that
E=E. with Ex={veE|K,w=qg""v (Vue ).

reA

Then C is endowed with a structure of Hopf algebra via

(oY, u) = (p @ ¥, Au)) (p. ¥y €C, uel),
(1,u) = e(u) uel),
(A(p), u @ u') = (¢, uu’) (weC, u,u' €U,
e(p) = (o, 1), (pe0),
(S(@), u) = (¢, S)) (peC, uel),

where (, ) : C x U — F is the canonical paring. C is also endowed with a structure of
U-bimodule by

(u/<pu”, u) = (o, w’uu') (peC,u, W, u" el).
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The Hopf algebra C is a g-analogue of the coordinate algebra C[G] of G (see [9], [15]).
Set

(UH* = @5 Homg(Ux,. F) C Homg (U, F).
yeQ*

For A € A define an algebra homomorphism x; : U? — F by x5(K,) = ¢**). Under the
identification U~ ® U® ® Ut = U of vector spaces we have

(3.24) CcWwH*e (EBFm) ®UhH* cuU*.
AEA

3.4. Ring of differential operators. In general for a Hopf algebra H over C we use
the following notation for the comultiplication A : H — H ® H:

Au) = ZM(O) Quqay (ueH).
(u)

We have an F-algebra structure of D = C ®r U, called the Heisenberg double of C and
U (seee.g. [12]). It is given by

(@@ @u)=" ¢une)@uuu' (9,9 €C,uu el).
@

In our case the algebra D is an analogue of the ring of differential operators on G. We will
identify U and C with subalgebras of D by the embeddings U > u — 1 ® u € D and
C> ¢t ¢®1 e D respectively.

3.5. Quantized enveloping algebra of ¢. The quantized enveloping algebra V =
U, (®) of £ is an associative algebra over F with identity element 1 generated by the elements
Z) (A € A), X;,Y; (i €l) satistying the following defining relations:

(3.25) Zo=1, ZiZu=Zssn e,
(3.26) Z:X: 21 = g, LeAjiel),
(3.27) 2, Y2, = q* )y, LeAjiel),
(3.28) XY= Y;X; =0 G,jel),
1-a;;
(3.29) 3 = T XXM = 0 G jel, i]),
n=0
l—a,-_/-
(3.30) 3y Ty =0 G jel i+])),

n=0
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where
X" = X} /Inlgt, ¥ =¥/Inly!
i T qi-> i T T qi- -

We define subalgebras V0, V20 yS0 y+ y-of V by

(3.31) VO=1(Z, |reA),

(3.32) VE0 = (Z,,X; A€ Aiel),
(3.33) VE0—(Z,, Vi |reAiel),
(3.34) Vvt=(X;liel),

(3.35) Vo= liel).

Similarly to Proposition 3.1 we have the following.

PROPOSITION 3.3. (i) {Zj | » € A} is an F-basis of V°.
(i) The linear maps

VvV evieVvts v evtevlevT,
ViVl 5> v « Vi Vvt, Vv eVl Vv vigy-
induced by the multiplication are all isomorphisms of vector spaces.

Moreover, we have algebra isomorphisms

]go L yS0 L, =0

Yi = Fi, Z)— K_;),

120 v20 5 U0 (X, Ei, Zi— K.
We define a bilinear form
(3.36) oc:UxV —>F
by
0 (u4u0S (=), v-v400) = T (t+, )= (W_)T (o, 1= )T (=0 (v1), 1)
(s € U, up e U% vx € VE g e V).
The following result is a consequence of Gavarini [6, Theorem 6.2].

PROPOSITION 3.4. We have

o, )= @) AW),v®V) welU,v,v eV).

67

3.6. A-forms. We fix a subring A of F containing C[¢*!/14/2l]. We denote by U i

the Lusztig A-form of U, i.e., U If is the A-subalgebra of U generated by the elements

E™, F™ K, (el,m=0,1eA).
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Set
Lt /L + LO _ L 0
vkt =uvfnuE, uL'=uknu°,
L,20 L L,>0 L,=0 L L,<0
USS =uknutkE, U= =ubnut0.
L,20

L.< . .
Then U i, U j’o, Uy~ Uy =20 are endowed with structures of Hopf algebras over A via the

Hopf algebra structure of U, and the multiplication of U i induces isomorphisms
Uk~uy ouileurt~urteuileour,

L,20 L,0 L+ L+ L,0
~U Uyt ~Uurt U,

L0 L0 L,— . y;L.— L,0

of A-modules. Fix a subset Ag of A such that A9 — A/20Q is bijective. Then Ui‘*, Uy,

U If 0 are free A-modules with bases

{EgZN)...E/ng)|m1,...,mNzo}’
(FY - F™ [ my. oy 20},
K;
K A€ Ag,ni 20
{ AE[’%}' n= }
l

respectively, where

-1 —s s p—1
Ki:| ni—[ q; K; — q; Ki
= N (T )

m s+1 _ _—s—1
s=0 9 4g;

We denote by V4 the A-subalgebra of V generated by the elements
(m) (m) Zi . >
Xl' aYl‘ aZ)u m (lGI,mZO,AEA),

where Z; = Z,, fori € I and

-1 —5 s 7—1
z)_T4'Z4i-4Z

[m}: [[ 57— 55 mz0.
s=0 4i

Set
VE=vanvE V)=vanvo,
> <
vl =vanv, vl =vanvE0,
Then the multiplication of V4 induces isomorphisms

VaxVoeVvievizvieviev,,
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20 0 + + 0

Vo VAV V7oV,
<0 0 - - 0

Ve = Va®Vy >V, ®Vy

of A-modules, and we have

S =ue= Roh=upt. 2=k,
RO =ug= Sen =vkT, 2w =l
Set
(3.37) Usr={uecU|o@,Va) CA},
(3.38) Uf=U*NUs, UL=U"NUs,
(3.39) v =u2nuy. U =US0nu,.
Then we have
(3.40) Uf ={x eUT | t(x,Uy7) €A},
(3.41) Uy =1{yeU | t(ULT,y) €A},
(3.42) Us =Y AK;.
AEA

and the multiplication of U induces isomorphisms
Us~Uf @U® U, ,
20
U ~UeUf ~UfeUY,
<0 _ _
U ~UL®@Uy ~U, ® Uy

of A-modules.
Fori € I we set

(3.43) Ai=(qi—q7VEi, Bi=(q—q HF.
For 1 < k £ N we also set
(3.44) Apo=(ap —ap ) Ep. By = (ap — a5, ) Fpi-
By Proposition 3.2 we have the following.
LEMMA 3.5. {AZ’}:/V---AZ'I' | my,...,my = 0} (resp. {BZ’};"---BZ’I1 | mi,...,

my 2 0}) is an A-basis of U: (resp. U,). In particular, we have UiE - U[i’i, and
Ua C Uy.
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It follows that U, coincides with the A-form of U considered in De Concini-Procesi [4].
In particular, we have the following.

- 0+ y— 1720 1,50
PROPOSITION 3.6. (i) U, UL, U U Uy, Up are A-subalgebras of U.

.. 0 7,20 <0
(i) U, Uy Uy ,Upare Hopf algebras over A.

Lett:Up - U [f be the inclusion. We denote by

(3.45) op cUp x VA — AL
the bilinear form inducedby o : U x V — F.
We set
(3.46) Ca={p e C|{p.Ug) CAJ,
(3.47) DA =CAa®AUsrCD.

Then Cy is a Hopf algebra over A as well as a U i—bimodule, and D, is an A-subalgebra of
D. It easily follows that

(3.48) (EB ka> NHoms (U, A) = P A
AEA AEA
Hence by (3.24) we have
(3.49) Ca = ((Uﬁ*‘)* ® (EB Axk) ® (Uﬁ’*)*) NC C Homy (U, A),
reA

where (UL )% = Homy (UL*, A) N (UH)*.
3.7. Specialization. Forz € C* set
A.={f/g1f g€Clg™"/""PN, g2) #£0} CF,
and define an algebra homomorphism
w,: A, - C
by 7, (q'/14/2l) = 7. We set
UM =C®a Uy, Ve=C® Va., U;=CQa, Us,.
C,=CQ®a,Ca,, D, =CQqp, Dy,.

with respect to ,. Then UZL, U., C, are Hopf algebras over C, and V,, D, are C-algebras.
We denote by

Ut . gL L V. U .
T, 'UAZ_>UZ’ w, 2 Va, >V, 7w Ua, — U,
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C. D .
w, :Ca, > C;, w, :Dp, — Dy

. L,20 . L,20 20
the natural homomorphisms. We also define UZL’i, UZL’O, u,"=,U0;" 7, Vzi, VZO, V=,

<0 4 .0 20 S0 . . o .
Vo LU, Uy, Uy, U similarly. The bilinear form o, : Ua, x VAo, — A; induces a
bilinear form

(3.50) o,:U, xV,— C.
Set
Jo={veV,|oU,v)y=1{0}), J0=usnV.

LEMMA 3.7. J; is atwo-sided ideal of V;, and we have J, = V[ VZ+ JZO. In particular,
we have J, N VZ0 =V JO and J, N V=0 = v J0.

PROOF. By Proposition 3.4 J; is a two-sided ideal. Set V) = V,/V~ V;’ JZ0 . Since the
multiplication of V. induces an isomorphism V, >~ V. @ V" ® VZO, we have

V(oo VIeV)/ (Vv eVl ~v, @Vve /D).

Let o] : U; x V] — C be the bilinear form induced by o,. Then we see easily from the
definition of o and Proposition 3.2 that {v € V/ | o/(U;,v) = {0}} = {0}. Hence J; =
Vv, O

We define an algebra V, by V, = V./J,, and denote by &) : Vi, — V the canonical
homomorphism. Let o, : U, x V, — C be the bilinear form induced by (3.50). Denote the

> < — —t —>0 =<
images of VZO, Vzi, VZZO, VZ:O under V, — V, by VS, Vzi, VZZO, VZ:O respectively. Then the

multiplication of V, induces isomorphisms

= = =t =0
V.~V.®V,eV.,

—20 —+ _—0 =<0 — _—0

Ve VIRV, VI xV.eV,.

Let . € A. By abuse of notation we also denote by x; : UZL 0 C the algebra
homomorphism induced by x, : U — F. We see easily the following

LEMMA 3.8. {x, | A € A} is a linearly independent subset of(UZL’O)*.
LEMMA 3.9. The bilinear form o ; is perfect in the sense that

(3.51) uelU,, o,u,V,)={0 = u=0,

(3.52) veV,, o,(U,v)={0} = v=0.



72 TOSHIYUKI TANISAKI

PROOF. (3.52)is clear from the definition. We see easily from the definition of ¢ and
Proposition 3.2 that the proof of (3.51) is reduced to showing

uel?, o,u, V) ={0 = u=0.
This follows from Lemma 3.8 in view of

Ul=@PCk,. VI=UH°.

: =U;
reA
0
Set
0= 200 c Uk,
2=yt cul, oyt c vl
I =UF"ULTI? c UL,

The we have
(3.53) P ={ueU xuw) =0 (e A)}.

LEmMMA 3.10. IZO, IZEO’ Izgo, I, are Hopf ideals of UZL’O, UZL%O, UZLéO, UZL respec-
tively.

PROOF. From (3.53) we see easily that Iz0 is a Hopf ideal of UZL’O. It remains to show

10U c UFFI0. Using 29, 720 we see that this is equivalent to JOV* ¢ V=JO. This
follows from Lemma 3.7. O

We define a Hopf algebra UZL by UZL = UL/I., and denote by ﬁgﬂ UL — ﬁzL the

. . . L0 ;L+ ;,L.20
canonical homomorphism. Denote the images of U;"", U™, U,

—L,+ —=L,20 —L,<0

L,Z0

, U, under UL —

—L , —L,0 < .

U,byu, ,u,”,U,=,U, respectively. We also denote by
_20 —2=0 —L,20 <0 =<0 —L,<0

(3.54) jz Vo = U;T, g7 VI > U;T

the algebra isomorphisms induced by ]20 and JéO.
By (3.49) and Lemma 3.8 we have

(3.55) C.CUFH*® (@ CXA> ® U H* cWUh*,
reA
where (UZL’i)* = C ®a (Uﬁ’i)* C Homc(UZL’i, C). Hence the natural paring (, ) :

C, x UF — C descends to

(,):CZXUZL—>C,
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. . 2 A —L
by which the canonical map C; — (U)* is injective. Moreover, C, turns out to be a U, -
bimodule.

3.8. Specialization to 1. For an algebraic groups S over C with Lie algebra s we
will identify the coordinate algebra C[S] of S with a subspace of the dual space U (s)* of the
enveloping algebra U (s) by the canonical Hopf paring

(,):ClSI®U(s) — C
given by
(o, u) = (Lu(@)(1) (¢ € C[S],ucU(s)).
Here, U(s) > u +— L, € End¢c(C[S]) is the algebra homomorphism given by

d
(La(@))(9) = Ew(g exp(ta))li=0 (a €g,9€S,¢€C[S]).

We see easily that J; is generated by the elements nlv (Z,) — 1 € Vy for A € A. From
this we see easily the following.

LEMMA 3.11. (i) We have an isomorphism V1 = U (¥) of algebras satisfying

T (X)) < xi, 7w (X)) <y,

ﬁY([i’}) g (:1) =tt, - 1)t —m+1)/m!.

(il) We have an isomorphism ﬁlL = U(g) of Hopf algebras satisfying

_yL _ /L
TV(E) < e, TO(F) < fi

ﬁ?L([I;l}> A <}IZ> =hithi —1)---(hi —m+1)/m!.

In the rest of this paper we will occasionally identify V, and UIL with U (¥) and U (g)
respectively.

From the identification UIL = U(g) we have the following.
LEMMA 3.12. The canonical paring
(,):C1 x UlL - C
induces an isomorphism
(3.56) CI = CIGI(C U = [T
of Hopf algebras.
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In [4] De Concini-Procesi proved an isomorphism
(3.57) U; = C[K]

of Poisson Hopf algebras. They established (3.57) by giving a correspondence between gener-
ators of both sides and proving the compatibility after a lengthy calculation. Later Gavarini [6]
gave a more natural approach to the isomorphism (3.57) using the Drinfeld paring. Namely
we have the following.

PROPOSITION 3.13 (Gavarini [6]). The bilinear formo 1 : Uy X V| — C induces a
Hopf algebra isomorphism

(3.58) T:U — CIKI(CU®* ~V)).
The enveloping algebra U (¢7) has the direct sum decomposition
U = @ U,
BeQ*
where
U(t)1p, = {x € UES) | [(h, —h), x] = B()x (h € b))
for B € Q7 (note that we have an isomorphism § > h < (h, —h) € £9). Then we have
CIK*] = P WE )rp)* CUEH".
peQ*

Moreover, we have

CIK’l =@ Cin c U™,
reA

where %5 : U(t%) — C is the algebra homomorphism given by x;.(k, —h) = A(h) (h € b).
The isomorphism

K" x K™ x K>~ K (g4 9-. 90) < 9+9-90)
of algebraic varieties induced by the product of the group K gives an identification
(3.59) CIKT1® C[K™]1® C[K"] ~ C[K]

of vector spaces. On the other hand the multiplication of the algebra U (£) induces an identi-
fication

UEH QUE ) QUE) ~ U(t).
Then the canonical embedding C[K] C U (¥)* is given by
CIK1=~CIKTI®CIK 1@ CIK 1 c UM @ UE)* ® U(")*



MANIN TRIPLES AND QUANTUM GROUPS 75

CWUENHRUE)RUE))* =U®)*.
Fori € I we definea; € C[K~] C U(¢7)*, b; € C[KT] C U(t+)* by
(@i, UET)-p) =0 (B#a), {a,yi)=-1,
(bi, UEE) =0 (B#aw), (bi,xi)=1.

We identify C[K*], C[K"] with subalgebras of C[K] via (3.59), and regard a;, b;, x» (i €
I, A € A) as elements of C[K]. By the above argument we see easily the following.

LEMMA 3.14. Under the identification (3.58) we have

7 (Ai) < ai, 7] (B) < bif—a, 7 (K)o (el red).

Let¢ : Uy — UIL be the homomorphism induced by the inclusion ¢ : Uy, — U ﬁl. By
Lemma 3.5 we see easily the following.

LEMMA 3.15. Forx € Uy we have 11(x) = e(x)1.

From this we obtain the following easily.

LEMMA 3.16. D is a commutative algebra. In particular, it is identified as an alge-
bra with the coordinate algebra C[G] ® C[K] of G x K.

3.9. Specialization to roots of 1. From now on, we fix an integer ¢ > 1 satisfying
(a) £isodd,
(b) £is prime to 3 if g is of type G2,
(c) fisprimeto|A/Q],
and a primitive ¢-th root ¢ € C of 1. Note that 7; : A — C sends g to ¢!4/€!, which is also
a primitive £-th root of 1 by our assumption (c).

REMARK 3.17. Denote by Ug[fil/m/g\] the De Concini-Kac C[g*!/14/€l]-form of

U (see [2]). Namely Ug[{;il/m/gw] is the C[gT!/14/Ql]-subalgebra of U generated by
{Kw, Ei, F; | » € A,i € I}. Then we have Uy ~ C ®cy,+1/14/0]] Ug[fﬂ/wgu with re-
spect to ¢ /14/@1 1 ¢,

We denote by E:U gL - U IL Lusztig’s Frobenius morphism (see [9]). Namely, £ is an

algebra homomorphism given by
vl (/0
- EST) (E]n)
3.60 AUt Emy = |
(3.60) E(m, (E;™)) 0 @ fn).

Ut g0/
3.61 2 Ut gy 1T T ()
o R {0 € fn),
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(o (TK; nUL([Ki}> m)
(3.62) g<n§’ ([mD> ={"" \Lmye
0 @ fm).
(3.63) Exl k) =l (K (e ).

It is a Hopf algebra homomorphism. Moreover, for any 8 € AT we have

UL - (n/t)
3.64 Z Ut gy = [T (Bgt ) (Elm)
(3.64) Enl (EgY)) {0 “im.
Ul (n/0)
3.65 ErUt (FMyy — U (F,g ) | n)
o s {0 (€ fn).

LEMMA 3.18. We have £(I;) C I;.

PROOEF. It is sufficient to show S(Ig) C I?. Forz € C*, m = (mj)ic] € leo’ and

v € Ag set
L K;
Kmv(2) = JTZU (KU l_[ [ﬂ;}) € UZL’O.
iel
Any element u of U ZL’O is uniquely written as a finite sum

U=y cnvKny(@ (cmy€C).

m,v

Then we have u € Iz0 if and only if

Ao
> emvg™Y [( % )} —0 (Vied).
v mi 1, 1g1na70—;
Hence it is sufficient to show that
A, o
(3.66) > g [( % )} =0 (VreA)
m,v mi qi 1q1/14/01=¢
implies
\2
(3.67) > com (“"“i )> —0 (YueA.
m,v ml

Indeed (3.67) follows by setting A = £ in (3.66). O
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We denote by
—L =L
(3.68) §:U, = U (=U@)

the Hopf algebra homomorphism induced by &. By Lusztig [9] we have the following.

PROPOSITION 3.19. There exists a unique linear map

(3.69) 'e:Cy (= C[G]) - C;
satisfying
(3.70) (E(@),v) = (9, 6() (peC, ve UgL-)-

It is an injective Hopf algebra homomorphism whose image is contained in the center of C¢.

LEMMA 3.20. There exists an algebra homomorphism

3.71) n:Ve— Vi

such that
1) = O ETE ) eV,
1) = GO ETE ) we V.

PROOF. It is sufficient to show that the linear map 7 : V; — V| defined by
_<0,_ _<0 _20, _ _20
n(w-vsg) = 77 ) ET; NG ) THETE W)
— —>
for v e V., vxy € VQ?O is an algebra homomorphism. This follows easily from
V.. V;1=0. O
By Gavarini [6, Theorem 7.9] we have the following.

PROPOSITION 3.21. There exists a unique linear map

(3.72) 'n:U — Uy
satisfying
(3.73) 6;(’n(u), v)=01(u,nw) wmelU, ve V;).

It is an injective Hopf algebra homomorphism whose image is contained in the center of U;.
Moreover, for any B € AT we have

‘NG (Ap)) =7 (Ap) ., 'n(x{(Bp)) = (Bf).
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Lett : Up — U? be the homomorphisms induced by ¢ : Uy — U?. We see easily the
following.

LEMMA 3.22. (i) Forx € Uy we have §(1;(x)) = &(x)1.
(i) Fory € Uy we have 1;('n(y)) = e(y)1.

PROPOSITION 3.23. The image of the linear map
"6 ®'n: Di(=C1® U1 — Di(=C; @ Up)

is contained in the center of Dy. In particular,'§ ® 'n is an algebra homomorphism.

PROOF. Lety € Cyandx € U;. Foru € Uf we have

D e (x) - 'E@) whxay = Y (&), wig (x0))xq)
(x) (x)

= g, £ (x)))x) = (9, E@)x = ('&(p), u)x ,
(x)

and hence x'£(p) = "&(p)x in D;. It follows that ‘£(¢) is contained in the center for any
¢ e (.
Let y € Uy. For ¢ € C; we have

(NP =Y (ko) - W'nba) =Y eGop¥ nlay) =¥ (nk),
) )

and hence "77(y) is contained in the center for any y € Uj. O

4. Poisson structure arising from quantized enveloping algebras

The following result is well-known (see [4]).

PROPOSITION 4.1. Let B be a commutative algebra over C. We assume that we are
given h € B such that B/hB = C.

Let R be a (not necessarily commutative) B-algebra such that i : R — R is injective.
Then the center Z(R/hR) of R/AR is endowed with a structure of Poisson algebra by

o bibs — bab o
(b1, ba) = (%) (b1, by € R, b1, br € Z(R/IR)).

Assume moreover that R is a Hopf algebra and that there exists a Hopf subalgebra H
of R/W'R such that H C Z(R/AR) and {H, H} C H. Then H is naturally a Poisson Hopf
algebra.
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We will apply this fact to the situation B = A;, i = £(¢* — ¢7%, and R =
Ca;- Ua,. Dy, . Note that we have A; /€(q* — g~9)A; = Cby
Kerm, = Ac(q"/1V/0 - ¢) = Act(q" —q79).
The cases R = Ca,, Ua, is already known. Namely, we have the following.

THEOREM 4.2 ([3]). The Hopf subalgebralm'& of Z(Cy) is closed under the Poisson
bracket given in Proposition 4.1. Moreover, the isomorphism Im'§ = C[G] is that of Poisson
Hopf algebras, where the Poisson Hopf algebra structure of C[G] is the one for CIAG] =
C[G] attached to the Manin triple (g ® g, Ag, ).

THEOREM 4.3 ([4], [6]). The Hopf subalgebra Im'n of Z(U;) is closed under the
Poisson bracket given in Proposition 4.1. Moreover, the isomorphism Im'n = C[K] is that of
Poisson Hopf algebras, where the Poisson Hopf algebra structure of C[K] is the one attached
to the Manin triple (g @ g, ¢, Ag).

In the rest of this paper we will deal with the case where R = Dj, . The following is the
main result of this paper.

THEOREM 4.4. The subalgebra Im('é ® 'n) of Z(Dy) is closed under the Poisson
bracket given in Proposition 4.1. Moreover, under the identification

Im('é ® 'n) = C[G] ® C[K] = C[AG] ® C[K]

this Poisson algebra structure coincides with the one attached to the Manin triple (g @
g, Ag, ©) as in Proposition 2.3.

Set
J =Kerowl") c UL .
I={xeUa |(x.Va)Cllg"—q HA}.
LEMMA 4.5. Leth € Im(‘€) and ¢ € Im('n). Take p € C[G] and @ € Ua, such that
h="&(p)and ¢ = JTCU (D) respectively. Assume

PRI—) D1 ®uUP0) €l =g )Y WX, +I®JT C U ®UY,
(?) r

with ¥, € Ua,» Xr € Uﬁ{. Then we have
_ 7L
{hoo} =) "E(Eom! X)) - p)@x W)
r

with respect to the Poisson structure of Z(Dy) given in Proposition 4.1.
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PROOF. Take H € CA; such that h = JTCC(H). Foru € Uﬁ{, v € Vj, we see easily
that
_yl _
(th, @}, 7 (W) @7/ (v)
= (<H, u((®,v)1 = Y (D). v)1(P))/Eg" — q“)>.
(P)
Write

¢®1—Z(p(1)®t((p(0))—f(q _q_Z)Zl]/ ® X, +Z‘-‘Y®YS‘7
(®)

where &5 € 7, Yy € J. Then we have

(h o). 7w ® T ()

(Es,v)
= Z 7 (W, v ((H, uX;)) + ;n; (W)’”“H’ uY;))

=S @), 7 T Tl (X))

+Z (ﬁ)(h,ﬁf%uﬁg%m).
By h = &(p) we have
7wl Tl (X)) = (p. € 0T )W) (E 0T (X))
= (o7 )X) - p. 0TV )W) =<§<(§oﬁ§f DX p) 7Y W)
Similarly, we have
7l Tl V) = (- Eoml W) E 0T )(Y) =
Now the assertion is clear. O

Now let us show Theorem 4.4. By Theorem 4.2 and Theorem 4.3 it is sufficient to show
that for & € Im(*€), ¢ € Im('n) our Poisson bracket {h, ¢} defined above coincides with the
one coming from the Manin triple. In order to avoid confusion we denote by {, }’ the Poisson
bracket of C[G] ® C[K] coming from the Manin triple. We need to show

4.1 {h. o} ={h, ¢} (Vh € Im(§))

for any ¢ € Im("n). If (4.1) holds for ¢ € Im('n), we have
4.2) {(fioy=1{f9) (Vfelm(&®n)
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by
{hr, @} = {h, 3¢ + h{¥, o} = {h, oYy + h{y, ¢} = {hy, )

for h € Im("§), ¥ € Im("n). Hence for each ¢ € Im('n) (4.1) is equivalent to (4.2). Then
it follows from the definition of the Poisson algebra that (4.1) for ¢ = @1, ¢ = @ imply
those for ¢ = @192, ¢ = {@1, ¢2}. Therefore it is sufficient to show (4.1) in the cases where ¢
belongs to a generator system of the Poisson algebra Im('). By [4] the Poisson algebra C[K ]
is generated by the elements of the form x;, a;, b; for A € A,i € I. Under the isomorphism
C[K] = Im('n) of Poisson algebras we have

Ko < wf (Kp) (L€ 4),
i f—a; < 7 ((qi —q; V' E[K Gel),
bif—a < 7 ((qi —q; ) F) (el.

Hence we have only to show (4.1) in the cases
o=n(Kn), e=ngi—q VEK™), ¢=ng—q ")F)

forhe A,iel.
For bases { X} and {Y;-} of g and ¢ respectively such that p ((X,, X;), Ys) = 8,5 we have

th,@} =Y Lx,(WRy,(9) (h € CIG], ¢ € CIK].

From this we can easily deduce

1
4.3) h, 30} = =3 L, ) s (e,
(4.4) {h, ai)%—ai}/ =- (@i, o) Le, (h))?—a,- (iel),
(4.5) hobiza) = =220 L 3, GeD,

where H) € his givenby «(H,, H) = A(H) (H €b).
Let us show (4.1) for = 7/ ((qi — g7 FY). For @ = (q; — g ") F! we have

PR1— Z D1) @ L(D(0))
(P)
¢
=i — 47 (Ff ®1-3 q"" H il F{ KT ® Ff”)
r=0 qi

€@i—g HF 1—(Fol+[,K ‘9 F")Y+T0J

A .—1 14 Al
— 0 —q"ﬁ(—%lé‘e@ﬂ“)) iT®.
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Hence the assertion follows from

(qi —q; D1e)y, (i)
gt —qa7 o= 2

which s easily checked. The verification of (4.1) for ¢ = 7 (i — ¢; ) E{ K; ") is similar
and omitted.
Let us finally show (4.1) for ¢ = nCU(K“). We need to show

1
{'&(p), 9} = _Etg(LH;L(P)) ¢
for p € C[G]. Take H € Ca, such that nf(H) =!&(p). Forz € C* and v € A we set
(Ca)v =1l € Ca, |19 = xue e UL,
(Cov={peC.lu-¢=x,we ueU-}
Then we have
'£(CIG1Y) C (Co)ew =7 (Cade) (v € A),
and hence we may assume p € C[G], and H € (Ca,)ev. For @ = Ky we have
PR1— Z D1y uUP) =K @1 - Ki@uK))=—-K ® WK —1).
(@)

Hence for u € Ui{, v E VAc we have

4, o) 7V W @7 W)

= 7, (<H u((qs, )l = (D). v)t(fp(o)))>/€(qe - q—3)>
@)

= —71c (Ko, v) (H, u(e(Kgp) — 1) /0(q" —q7*)
= —1: ((Kea, ) ((W(Kep) — 1) - Hyu)/0(g" — q75)

=~ ¢V = D/eq" — g7 7 (Ken, o)) ((H, 1))

L)

Y
1

= (L () @ 0. T W) @F (1),

The proof of Theorem 4.4 is complete.

(.7} ) (EP). 7Y W)
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