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Abstract. We will derive the asymptotic expansions of the solutions U(x, t) to the heat equation with(Srr )′(Rd ), r ≥ 1/2, initial value, where
(Srr )′(Rd) is the dual space of the Gel’fand-Shilov space Srr (Rd). More-

over, we show that, when 1/2 ≤ r ≤ 1, these asymptotic expansions satisfy the strong asymptotic condition on

some circle DR = {t ∈ C | Re t−1 > R−1}. Therefore, we find that these asymptotic series for
(Srr )′ (Rd ) initial

value are Borel summable by means of A. D. Sokal’s result on the Borel summability. As an application, we show
the asymptotic expansions of the Weyl transform with Planck’s constant h̄ in some state, which are refinement of a
classical limit of the quantum mechanical expectation values expressed by the Weyl transform.

1. Introduction

In this paper, we investigate the asymptotic expansions of solutions to the heat equa-
tion with generalized functions initial value and its reconstruction. As a result, we obtain
the asymptotic expansions of solutions to the heat equation with initial value in the dual

spaces (Srr )′(Rd) of the Gel’fand-Shilov spaces, which are natural generalizations of the space

S ′(Rd) of Schwartz’s tempered distributions and we obtain that when 1/2 ≤ r ≤ 1, solutions
to the heat equation are reconstructed by means of Borel summability.

Let x = (x1, . . . , xd) ∈ Rd and

∆ = ∂2

∂x2
1

+ · · · + ∂2

∂x2
d

.

Then solutions U(x, t) of Cauchy’s problem to the heat equation
(
∂

∂t
−∆

)
U(x, t) = 0 , x ∈ Rd , t > 0 ,

U(x, 0) = u(x)

(1.1)
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are expressed by the following formal power series

U(x, t) =
∞∑
k=0

tk

k!∆
ku(x) (1.2)

for suitable initial values u. Let us define the heat kernel E(x, t) by

E(x, t) =
(

1√
4πt

)d
e−

x2
4t

for x ∈ Rd and t > 0. Then we can also express the solutions of (1.1) by

U(x, t) = (u ∗ E)(x, t) .
If an initial value u ∈ C∞(R) satisfies the following condition:

|u(2k)(x)| < Mk!
rk

and |u(2k+1)(x)| < Mk!
rk

, k = 0, 1, 2, . . . ,

for some constants M > 0 and r > 0, the solutions U = u ∗ E satisfies (1.2) uniformly

for (x, t) ∈ R × (0, r) (see Theorem 15.2 in [11]). If one considers u ∈ Cl(R) as an initial
function, one has the asymptotic expansions of solutions to the heat equation

U(x, t) ∼
l∑

k=0

tk

k!∆
ku(x)

for (x, t) ∈ R × (0,∞) (See: Proposition 2.13. in [1]).
Let u ∈ S ′(Rd) and U(x, t) = (u ∗E)(x, t). Then we have

U(x, t) −→ u as t −→ 0 + in S ′(Rd) , (1.3)

(see [6]).
In [13], K. Yoshino obtained the asymptotic expansions of U(x, t) with tempered distri-

butions initial value to analyze (1.3) more precisely below:

THEOREM 1. Let U(x, t) ∈ C∞(Rd × (0,∞)). Suppose that it satisfies(
∂

∂t
−∆

)
U(x, t) = 0 , in Rd × (0,∞)

and that the estimate

|U(x, t)| ≤ Ct−ν(1 + |x|)k , x ∈ Rd , 0 < t < 1

holds for some C > 0, ν ≥ 0 and k ≥ 0. Then there exists u ∈ S ′(Rd ) such that U = u ∗ E
and

U(x, t) ∼
∞∑
k=0

tk

k!∆
ku(x) .
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Namely, for any even N and ϕ ∈ S(Rd ),

lim
t→0+

∣∣∣∣ 〈U(·, t), ϕ〉 −
N
2∑
k=0

tk

k!
〈
∆ku, ϕ

〉 ∣∣∣∣t−N
2 = 0 .

In [3], C. Dong and T. Matsuzawa established a characterization of
(Srr )′ (Rd), where(Srr )′ (Rd ) is the dual space of the Gel’fand-Shilov space Srr (Rd). By using their result, we

can obtain the extension of Theorem 1 below.

THEOREM 2 ([3]). Assume u ∈ (Srr )′ (Rd), r ≥ 1/2. Then the function U(x, t) =
(u ∗ E)(x, t) is well defined as a C∞ function on Rd × (0,∞) and satisfies(

∂

∂t
−∆

)
U(x, t) = 0 , x ∈ Rd , t > 0 , (1.4)∫

Rd
U(x, t)ϕ(x)dx −→ 〈u, ϕ〉 , as t −→ 0 + for any ϕ ∈ Srr (Rd ) .

Moreover, we have the following result: (1) in the case r > 1/2, for every T > 0 and ε > 0,
there is a positive constant Cε such that

|U(x, t)| ≤ Cε exp[ε(|x| 1
r + (1/t)1/(2r−1))] , x ∈ Rd , 0 < t < T , (1.5)

and (2) in the case r = 1/2, for every t > 0 and ε > 0, there is a positive constant Cε,t such
that

|U(x, t)| ≤ Cε,t e
ε|x|2 , x ∈ Rd . (1.6)

Conversely every C∞-function U(x, t) defined in Rd × (0,∞) satisfying the conditions
(1.4) and (1.5) or (1.6) can be expressed in the form U(x, t) = (u ∗ E)(x, t) with an unique

element u ∈ (Srr )′ (Rd ).
The aim of our investigation is to show that Yoshino’s asymptotic expansion holds for

these extended classes of U = u∗E and to show the condition which the solutions to the heat
equation is reconstructed by Borel summability.

The following result is the main theorem of this paper:

THEOREM 3 (Main Theorem). (I) Each solution U = u ∗ E, u ∈ (Srr )′ (Rd) with

r ≥ 1/2, has the asymptotic expansion U(x, t) ∼∑∞
k=0

t k

k!∆
ku(x).

(II) Let 1/2 ≤ r ≤ 1. For any ϕ ∈ Srr (Rd), the asymptotic expansions

〈U(·, t), ϕ〉 ∼
∞∑
k=0

tk

k!
〈
∆ku, ϕ

〉
, u ∈ (Srr )′ (Rd ) ,
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are Borel summable on DR = {t ∈ C | Re t−1 > R−1} for some R > 0 and 〈U(·, t), ϕ〉 are
expressed by

〈U(·, t), ϕ〉 = 1

t

∫ ∞

0
e−ζ/t fB(ζ )dζ

in DR , where fB is the Borel transform of the series
∑∞
k=0

t k

k!
〈
∆ku, ϕ

〉
.

Especially, we also show that the asymptotic expansions

U(x, t) ∼
∞∑
k=0

tk

k!∆
ku(x)

are convergent series when r = 1/2.
As an antecedent result about this investigation, K. Yoshino and Y. Oka obtained the

similar asymptotic expansions of U = u ∗ E in the cases that u is in (S1)
′(Rd ), the space

of the distributions with the exponential growth [13], u is in (S1
1 )

′(Rd), the space of Fourier-

hyperfunctions and u is in A′(K), the space of hyperfunctions with a compact support [14].
As an application on the asymptotic expansions of the solutions to the heat equation

on phase space, we give the asymptotic expansions on the classical limit of the quantum

mechanical expectation values by the Weyl transform with symbol in
(Srr )′ (R2d). The Weyl

transform was introduced by H. Weyl for quantization from classical mechanics to quantum
mechanics (see [7], [8], [10], [12] and etc).

The plan of the paper is as follows. In the next section, we introduce the definition and
some properties for the spaces (Srr )′(Rd) of the dual of Gel’fand-Shilov spaces. In section
3, we show that we can obtain the asymptotic expansions of solutions to the heat equation
with these spaces initial value. In section 4, at first we define the Borel summable and the
strong asymptotic condition and introduce A. D. Sokal’s result on Watson’s theorem. As
a result, we give the condition for (Srr )′(Rd) which the solutions to the heat equation are
reconstructed by the Borel summability. We also show that when r = 1/2, the asymptotic
expansions of solutions to the heat equation are convergent series. In section 5, we introduce
the definition and some properties of the Weyl transform and give the asymptotic expansions
on the classical limit of the quantum mechanical expectation values by the Weyl transform

with symbol in
(Srr )′ (R2d).

2. The Gel’fand-Shilov space Srr and its dual space (Srr )′

First of all, we give some notations. We use a multi-index α ∈ Zd+, namely, α =
(α1, . . . , αd ), where αi ∈ Z and αi ≥ 0. So, for x ∈ Rd , xα = x

α1
1 · · · xαdd and

∂αx = ∂
α1
x1 · · · ∂αdxd , where ∂

αj
xj = ( ∂

∂xj

)αj .

The Gel’fand-Shilov space Srr (Rd) is defined as follows (see [4]):
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DEFINITION 1. Let A,B ∈ (0,∞)d . For r = (r1, . . . , rd ) and ri ≥ 0, 1 ≤ i ≤ d , we

define the space Sr,Br,A (Rd) by

Sr,Br,A (Rd) = {ϕ ∈ C∞(Rd ) | For any δ > 1 and ρ > 1, there exists some constant

Cδ,ρ > 0 such that |xk∂qx ϕ(x)| ≤ Cδ,ρ(δA)
k(ρB)qkkrqqr , x ∈ Rd, k, q ∈ Zd+},

where

(δA)k = (δA1)
k1 · · · (δAd)kd ,

(ρB)q = (ρB1)
q1 · · · (ρBd)qd .

The space Sr,Br,A (Rd) is a Fréchet space with the semi-norms

‖ϕ‖δ,ρ = sup
x∈Rd

k,q∈Zd+

|xk∂qx ϕ(x)|
(δA)k(ρB)qkkrqqr

.

The space Srr (Rd ) is given by the inductive limit

Srr (Rd) = lim−→
A,B→∞

Sr,Br,A (Rd) .

J. Chung, S. -Y. Chung and D. Kim characterized the Gel’fand-Shilov space via the
Fourier transform as follows (see [2]):

PROPOSITION 1. Let r ≥ 1/2. The following statements are equivalent.
(i) ϕ ∈ Srr (Rd ),

(ii) sup
x∈Rd

|ϕ(x)|eε|x|
1
r
< ∞ and sup

ξ∈Rd
|ϕ̂(ξ)|eη|ξ |

1
r
< ∞ , for some ε, η > 0.

We can easily give the example of the element of Srr (R) by Proposition 1 as follows:

EXAMPLE 1. (i) The Gaussian function e−x2
is in S1/2

1/2 (R), since its Fourier trans-

form is

F(e−x2
)(ξ) = e−

1
4 ξ

2
.

(ii) The function
1

cosh x
is in S1

1 (R), since its Fourier transform is

F
(

1

cosh x

)
(ξ) = π

cosh π
2 ξ
.

(iii) We define the Hermite functions {hn(x)}n=0,1,2,... on R by

hn(x) = (2nn!)− 1
2π− 1

4 (−1)ne
x2
2 ∂nx e

−x2
.
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The Fourier transform of the Hermite function hn(x) is (−i)nhn(ξ). Hence we find that

|hn(x)| ≤ Ce−1/2x2
and |ĥn(ξ)| ≤ C′e−1/2ξ2

.

Therefore the Hermite function is a element of the S1/2
1/2 (R).

Let a ∈ (0,∞)d be a = r
(
eA

1
r

)−1 = r1
(
eA

1
r1
1

)−1 · · · rd
(
eA

1
rd

d

)−1
. For any a,B ∈

(0,∞)d , we define the space Sr,Br,a (Rd) by

Sr,Br,a (Rd) = {ϕ ∈ C∞(Rd ) | For any δ > 1 and ρ > 1, there exists some constsnt Cδ,ρ >

0 such that|∂qx ϕ(x)| ≤ Cδ,ρ(ρB)
qqqre−aδ |x|

1
r
, x ∈ Rd, q ∈ Zd+},

where aδ = r
(
e(δA)

1
r

)−1
and

‖ϕ‖rδ,ρ = sup
x∈Rd

β∈Zd+

|∂βx ϕ(x)|
(ρB)βββre−aδ |x|

1
r

.

Since Sr,Br,A (Rd) is isomorphic to Sr,Br,a (Rd ) (see [4]), we mainly deal with Sr,Br,a (Rd).
PROPOSITION 2 ([4]). The following properties are known:
(i) Srr (Rd) ≡ {0} for 0 ≤ r < 1/2,

(ii) Ŝr,Br,A (Rd) = Sr,Ar,B (Rd ), where we denote the image of Fourier transform of

Sr,Br,A (Rd) by Ŝr,Br,A (Rd).

DEFINITION 2. We denote by (Srr )′(Rd) the dual space of the Gel’fand-Shilov space

Srr (Rd ).
As a remark, it is known that U(x, t) has the following properties (see for example [3]).

PROPOSITION 3. Let r ≥ 1/2. If ϕ ∈ Sr,Br,a (Rd), then we have

U(x, t) ≡
∫

Rd
E(x − y, t)ϕ(y)dy ∈ Srr (Rdx) , t > 0 , (r > 1/2)

or

U(x, t) ≡
∫

Rd
E(x − y, t)ϕ(y)dy ∈ S1/2

1/2 (R
d
x) , 0 < t <

1

8ai
, 1 ≤ i ≤ d .

Moreover we have

U(x, t) → ϕ in Srr (Rd) as t → 0 + .
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PROPOSITION 4. Let u ∈ (Srr )′ (Rd), r ≥ 1/2 and U(x, t) = (u ∗ E)(x, t) =〈
uy,E(x − y, t)

〉
. Then for any ϕ ∈ Srr (Rd), we have

lim
t→0+

∫
Rd
U(x, t)ϕ(x)dx = 〈u, ϕ〉 .

3. The proof of (I) of Theorem 3

At first, we show the following proposition:

PROPOSITION 5. Let ϕ ∈ Sr,Br,a (Rd), r ≥ 1/2. Then we have for any δ, ρ > 1 there
exists Cδ,ρ > 0 such that

‖∂αϕ‖rδ,erρ ≤ Cδ,ρ(ρB̃e
2r/rr)|α|(α!)r

for any α ∈ Zd+, where B̃ = max{B1, . . . , Bd }.
PROOF. We only show our assertion as d = 1 to avoid the confusion of the notation.

Let ϕ ∈ Sr,Br,a (R). Then by the definition of Sr,Br,a (R), for any q ∈ Z+,

|∂qx ϕ(x)| ≤ Cδ,ρ(ρB)
qqqre−aδ |x|1/r .

Put ψ(x) = ∂nx ϕ(x). then we have

|∂qx ψ(x)| = |∂q+nx ϕ(x)| ≤ Cδ,ρ(ρB)
q+n(q + n)(q+n)re−aδ |x|1/r

= Cδ,ρ(ρB)
q+nqqrenr (q + n)nre−aδ |x|1/r . (3.1)

If we put

f (x) = (x + n)nr

λx+n
, x > 0 , n = 0, 1, 2, . . . ,

for any λ > 1, since f (x) ≤
(nr
e

)nr
(logλ)−nr , we obtain the following estimate:

(q + n)nr ≤
(nr
e

)nr
(logλ)−nrλq+n .

Then we have

(3.1) ≤ Cδ,ρ(λρB)
qqqr(ρB)n(nr)nr

(
λ

(logλ)r

)n
.

Let us take the lower bound for λ on
λ

(logλ)r
; we obtain that

er

rr
= inf
λ>1

λ

(logλ)r
. By Stirling’s

formula, we have

|∂q+nx ϕ(x)|eaδ|x|1/r
(erρB)qqqr

≤ Cδ,ρ(ρB)
n(e2nr/rrn)(n!)r .
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Therefore we obtain

‖∂nϕ‖rδ,er ρ ≤ Cδ,ρ(ρBe
2r/rr )n(n!)r . �

We need the following Lemma 1 for the proof of (I) of Theorem 3.

LEMMA 1. Let ϕ be in Sr,Br,a (Rd ) for r ≥ 1/2 and a,B ∈ (0,∞)d . Moreover t satisfies
0 < t < 1/(8aδi), i = 1, . . . , d . Then for N = 0, 1, 2, . . . ,∫

Rd
e−z2

zα

{∫ 1

0
(1 − θ)N∂αy ϕ(y + √

4tzθ)dθ

}
dz, α ∈ Zd+

is in Sr,Br,cra(Rd ), where cr = (cr1, . . . , crd ) and cri = (2max{1/ri−1,0})−1.

PROOF. Let ϕ ∈ Sr,Br,a (Rd ), r ≥ 1/2. Then for any δ, ρ > 1 and N = 0, 1, 2, . . . ,∣∣∣∣∣∂βy
∫

Rd
e−z2

zα

{∫ 1

0
(1 − θ)N∂αy ϕ(y + √

4tzθ)dθ

}
dz

∣∣∣∣∣ ecraδ |y|1/r
(erρB)βββr

≤
∫

Rd
e−z2 |z|α

{∫ 1

0
|1 − θ |N |∂β+α

y ϕ(y + √
4tzθ)|

(erρB)βββr
dθ

}
dzecraδ |y|1/r

(3.2)

for any α, β ∈ Zd+. By Proposition 5, we have

|∂β+α
y ϕ(y + √

4tzθ)|
(erρB)βββr

≤ Cδ,ρ(ρB̃e
2r/rr)|α|(α!)re−aδ |y+

√
4tzθ |1/r .

So we have

(3.2) ≤ Cδ,ρ(ρB̃e
2r/rr)|α|(α!)r

∫
Rd
e−z2 |z|α

×
{∫ 1

0
|1 − θ |Ne−aδ |y+

√
4tzθ |1/r dθ

}
ecraδ |y|1/r dz .

(3.3)

Let cri = (2max{1/ri−1,0})−1. For 1 ≤ i ≤ d , we have

cri |yi|1/ri − |√4tziθ |1/ri ≤ |yi +
√

4tziθ |1/ri .
Hence we obtain

e−aδi |yi+
√

4tzi θ |1/ri ecri aδi |yi |1/ri ≤ e−aδi (cri |yi |1/ri−|√4tzi θ |1/ri )ecri aδ i |yi |1/ri

≤ eaδi |
√

4tzi |1/ri .

So we have

(3.3) ≤ C′
δ,ρ(ρB̃e

2r/rr)|α|(α!)r
∫

Rd
e−z2 |z|αeaδ|

√
4tz| 1

r
dz . (3.4)
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Since 0 < t < 1/(8aδi), i = 1, . . . , d , from the assumption of Lemma 1, the above integral
converges for any r ≥ 1/2. Therefore as r > 1/2, we obtain for a sufficient small t ,

(3.4) ≤ C′
δ,ρ(ρB̃e

2r/rr)|α|(α!)r
∫

Rd
e−z2 |z|αeaδ|z|

1
r
dz

≤ C′′
δ,ρ,a,r (ρB̃e

2r/rr)|α|(α!)r
∫

Rd
e−

z2
2 |z|αdz

≤ C′′′
δ,ρ,a,r,d(

√
2ρB̃e2r/rr)|α|(α!)rΓ (1/2(α + 1)) .

(3.5)

Since Γ (1/2(α + 1)) ≤ πd/2(α!)1/2, we have

(3.5) ≤ C′′′′
δ,ρ,a,r,d(

√
2ρB̃e2r/rr)|α|(α!)r+1/2 .

On the other hand, as r = 1/2, since 0 < t < 1/(8aδi), i = 1, . . . , d , we obtain

(3.4) ≤ C′
δ,ρ(

√
2ρB̃e)|α|(α!)r

∫
Rd
e−z2|z|αeaδ |

√
4tz|2dz

≤ C′
δ,ρ(

√
2ρB̃e)|α|(α!)r

∫
Rd
e−1/2z2|z|αdz

≤ C′′
δ,ρ,a,d(2ρB̃e)

|α|(α!)1/2Γ (1/2(α + 1)) .

This completes the proof of Lemma 1. �

THE PROOF OF (I) OF THEOREM 3. From the assumption of Theorem 2, there exists

u ∈ (Srr )′(Rd), r ≥ 1/2, such that U(x, t) = (u ∗E)(x, t). For any ϕ ∈ Srr (Rd), r ≥ 1/2,

〈U(·, t), ϕ〉 =
〈
uy,

(
1√
4πt

)d ∫
Rd
e−

|x−y|2
4t ϕ(x)dx

〉

=
〈
uy,

∫
Rd
π− d

2 e−z2
ϕ(y + √

4tz)dz

〉
,

where z = x − y√
4t

. Since

∫
Rd
e−z2

zαdz =
d∏
i=1

∫
R
e−z2

i z
αi
i dzi =


d∏
i=1

Γ (1/2(αi + 1)) , αi : even,

0, αi : odd ,

we have by Taylor’s formula,∫
Rd
π− d

2 e−z2
ϕ(y + √

4tz)dz

=
∫

Rd
π− d

2 e−z2
{ ∑

|α|≤N

(
√

4t)|α|

α! zα∂αy ϕ(y)
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+ (
√

4t)N+1
∑

|α|=N+1

(N + 1)zα

α!
∫ 1

0
(1 − θ)N∂αy ϕ(y + √

4tzθ)dθ

}
dz

= π− d
2
∑

|α|≤N

(
√

4t)|α|

α! ∂αy ϕ(y)

∫
Rd
e−z2

zαdz

+ π− d
2 (

√
4t)N+1

∑
|α|=N+1

(N + 1)

α!
∫

Rd
e−z2

zα

{∫ 1

0
(1 − θ)N∂αy ϕ(y + √

4tzθ)dθ

}
dz

=
N
2∑
k=0

tk

k!∆
kϕ(y)+ π− d

2 (
√

4t)N+1
∑

|α|=N+1

(N + 1)

α!
∫

Rd
e−z2

zα

×
{∫ 1

0
(1 − θ)N∂αy ϕ(y + √

4tzθ)dθ

}
dz ,

where ∆ = ∂2
y1

+ · · · + ∂2
yd

. So we have the following equality:

∣∣∣∣∣∣∣〈U(·, t), ϕ〉 −
〈 N

2∑
k=0

tk

k!∆
kuy, ϕ

〉∣∣∣∣∣∣∣ t−
N
2

=
∣∣∣∣〈uy , π− d

2 (
√

4t)N+1
∑

|α|=N+1

(N + 1)

α!
∫

Rd
e−z2

zα

×
{∫ 1

0
(1 − θ)N∂αy ϕ(y + √

4tzθ)dθ

}
dz

〉∣∣∣∣t−N
2 .

(3.6)

We obtain the following estimate by the continuity of u, Lemma 1 and (3.6): For any
a,B ∈ (0,∞)d ,

(3.6) ≤ Ca,B,δ,ρ,dQ
N+1{(N + 1)!}(r−1/2)t

N+1
2 t−

N
2

= Ca,B,δ,ρ,dQ
N+1{(N + 1)!}(r−1/2)t

1
2 → 0 ,

for some constantQ > 0 as t → 0+. This completes the proof of (I) of Theorem 3.
By the proof of (I) of Theorem 3, we obtain the following results: �

THEOREM 4. Let T > 0 and U(x, t) = (u ∗ E)(x, t), u ∈ (Srr )′ (Rd ) with r ≥ 1/2.
Then we obtain the following estimate for 0 < t < T :

(i) For any ϕ ∈ Sr,Br,a (Rd ), r > 1/2, we have for any a,B ∈ (0,∞)d and δ, ρ > 1,
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there exists Ca,B,d > 0 and ‖ · ‖rδ,ρ such that∣∣∣∣∣∣〈U(·, t), ϕ〉 −
N/2∑
k=0

tk

k!
〈
∆ku, ϕ

〉∣∣∣∣∣∣
≤ Ca,B,d‖ϕ‖rδ,ρ(2

√
2ρB̃e2r+1/rr )N+1{(N + 1)!}(r−1/2)t

N+1
2 .

(ii) For any ϕ ∈ S1/2,B
1/2,a (R

d ), we have for any a,B ∈ (0,∞)d and δ, ρ > 1, there

exists Ca,B,d > 0 and ‖ · ‖1/2
δ,ρ such that∣∣∣∣∣∣〈U(·, t), ϕ〉 −

N/2∑
k=0

tk

k!
〈
∆ku, ϕ

〉∣∣∣∣∣∣ ≤ Ca,B,d‖ϕ‖1/2
δ,ρ (4ρB̃e

2)N+1t
N+1

2 .

Especially if we take ϕ in a bounded set B of Srr (Rd), r ≥ 1/2, then we have for
0 < t < T , ∣∣∣∣∣∣〈U(·, t), ϕ〉 −

N/2∑
k=0

tk

k!
〈
∆ku, ϕ

〉∣∣∣∣∣∣ ≤ ChN+1{(N + 1)!}(r−1/2)t
N+1

2

for some constantC > 0 and h > 0, independent of ϕ. In fact, B is included in some inductive

space Sr,Br,a (Rd) and the differential operators are bounded in the space Sr,Br,a (Rd).

4. Borel summability

At first, we define the Borel summable as follows (see [9]):

DEFINITION 3. We say that the formal power series
∑∞
n=0 ant

n is Borel summable if

(i) fB(ζ ) =
∞∑
n=0

anζ
n

n! converges in some circle {ζ ∈ C | |ζ | < δ},

(ii) fB(ζ ) has an analytic continuation to a neighborhood of the positive real axis and

(iii)
1

t

∫ ∞

0
e−

ζ
t fB(ζ )dζ converges for some t �= 0.

fB(ζ ) is called the Borel transform of the series
∑∞
n=0 ant

n.

DEFINITION 4. Let f be analytic in the circle DR = {t ∈ C | Re t−1 > R−1} for
some R > 0 and satisfy the following condition:

f (t) =
N∑
n=0

ant
n + RN(t) ,

|RN(t)| ≤ CσN+1(N + 1)!|t|N+1 (4.1)
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for some constants C > 0 and σ > 0 uniformly in N and in t ∈ DR . Then we say that f (t)
satisfies the strong asymptotic condition (4.1) on DR .

On the Borel summability, Sokal’s result is known as follows (see [9]):

THEOREM 5. Suppose that f (t) satisfies the strong asymptotic condition (4.1) onDR .
Then the Borel transform fB(ζ ) = ∑∞

n=0
an
n! ζ

n converges for |ζ | < 1/σ and has an analytic
continuation to the striplike region Sσ = {ζ ∈ C | dist (t,R+) < 1/σ }, satisfying the bound

|fB(ζ )| ≤ Ke|ζ |/R (4.2)

uniformly in every Sσ ′ with σ ′ > σ . Furthermore, f can be represented by absolutely con-
vergent integral

f (t) = 1

t

∫ ∞

0
e−ζ/t fB(ζ )dζ (4.3)

for any t ∈ DR .
Conversely, if fB(ζ ) is a holomorphic in Sσ ′′ (σ ′′ ≤ σ) and satisfies (4.2), then the func-

tion f (t) defined by (4.3) is a holomorphic in DR and satisfies a strong asymptotic condition
(4.1) uniformly in every DR′ with R′ < R.

In the previous section, we obtain the asymptotic expansions of U(x, t) with u ∈
(Srr )′(Rd ), r ≥ 1/2, initial value as follows:

〈U(·, t), ϕ〉 ∼
∞∑
n=0

tn

n!
〈
∆nu, ϕ

〉
for any ϕ ∈ Srr (Rd ). Here we put

an = 〈∆nu, ϕ〉
n!

and we consider the asymptotic series

〈U(·, t), ϕ〉 ∼
∞∑
n=0

ant
n . (4.4)

At first, we obtain the following estimate for Sr,Br,a (Rd).
PROPOSITION 6. Let ϕ ∈ Sr,Br,a (Rd), r ≥ 1/2. Then for any δ, ρ > 1, there exists

Cδ,ρ > 0 such that

‖∆nϕ‖rδ,er ρ ≤ Cδ,ρ(2d
1/2ρB̃e2r/rr)2n(n!)2r ,

where B̃ = max{B1, . . . , Bd }.
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PROOF. When d = 1, by Proposition 5, for any δ, ρ > 1, there exists Cδ,ρ > 0 such
that

‖∂2nϕ(x)‖rδ,erρ ≤ Cδ,ρ(ρBe
2r/rr)2n{(2n)!}r .

From the Stirling’s formula, we have

(2n)! ∼ √
2π(2n)2n+1/2e−2n

= 22n+1/2 1√
2π
n−1/2(

√
2πnn+1/2e−n)2

∼ 22n+1/2 1√
2π
n−1/2(n!)2 .

Hence we obtain

‖∂2nϕ(x)‖rδ,erρ ≤ C′
δ,ρ(2ρBe

2r/rr)2n(n!)2r . (4.5)

For a higher dimension, by B̃ = max{B1, . . . , Bd } and (4.5),

‖∆nϕ‖rδ,er ρ ≤ C′′
δ,ρ(2d

1/2ρB̃e2r/rr )2n(n!)2r . �

Now we find that the asymptotic expansions (4.4) satisfy the strong asymptotic condition
for 1/2 ≤ r ≤ 1 as follows:

THEOREM 6. Let 1/2 ≤ r ≤ 1. If U(x, t) satisfies the assumption of Theorem 2, then

for any ϕ ∈ Srr (Rd), the asymptotic expansion

〈U(·, t), ϕ〉 ∼
∞∑
k=0

tk

k!
〈
∆ku, ϕ

〉
, u ∈ (Srr )′ (Rd )

satisfies the strong asymptotic condition onD{Ã2θ/(4e2)}, Ã = min{A1, . . . , Ad} and 0 < θ <

1.

Now we prepare three lemmas for the proof of Theorem 6. To avoid the confusion of the
notation, we deal with only one dimensional case.

LEMMA 2. Let t = p + iq , p > 0 and 0 < θ < 1. Then we have the following
estimate; ∣∣∣∂kξ e−θtξ2

∣∣∣ ≤ C(2e)k
( |t|2
θp

)k/2
kk/2

for some constant C > 0.

PROOF. For t > 0, we have

∂kξ e
−θtξ2 =

∫
R

1√
4πθt

e−
x2
4θt (−ix)ke−ixξdx
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= 1√
π
(−i(√4θt))k

∫
R
e−z2

zke−i(
√

4θtz)ξ dz

= 1√
π
(−i(√4θt))k

∫
R
e−(x+iy)2(x + iy)ke−i(

√
4θt(x+iy))ξdz

= 1√
π
(−i(√4θt))key

2
e
√

4θtξy
k∑
l=0

(
k

l

)
(iy)k−l

∫
R
e−x2−2ixyxle−i

√
4θtxξ dx

= 1√
π
(−i(√4θt))ke(y+

√
θtξ)2−θtξ2

k∑
l=0

(
k

l

)
(iy)k−l

∫
R
e−x2−2ixyxle−i

√
4θtxξdx ,

where we put z = x√
4θt

and shift the integral line R to R + iy y > 0. Therefore, letting

y = −√
θtξ , we obtain

∂kξ e
−θtξ2 = 1√

π
(−i(√4θt))ke−θtξ2

k∑
l=0

(
k

l

)
(−i√θtξ)k−l

∫
R
e−x2

xldx . (4.6)

The both hand side of this equality (4.6) are holomorphic functions on {Re t > 0}. Hence
(4.6) holds on {Re t > 0}. If we put t = p + iq , p > 0, we have∣∣∣∂kξ e−θtξ2

∣∣∣ ≤ 1√
π

∣∣∣√4θt
∣∣∣k e−θpξ2

k∑
l=0

(
k

l

) ∣∣∣√θtξ ∣∣∣k−l ∫
R
e−x2 |x|ldx . (4.7)

Since ξk−le−θpξ2 ≤
(
k−l
2θp

)(k−l)/2
(k ≥ l) and

∫
R e

−x2|x|ldx = Γ
(
l+1

2

)
≤

Cll/2el(1/2)l/2
√
π for some constant C > 0, we obtain

(4.7) ≤ Cek|t|k/2kk/2
k∑
l=0

(
k

l

)( |t|
θp

)(k−l)/2

= Cek|t|k/2kk/2
(

1 +
√

|t|
θp

)k

= Cek|t|k/2kk/2
( |t|
θp

)k/2 (√
θp

|t| + 1

)k

≤ C(2e)k
( |t|2
θp

)k/2
kk/2 .

Therefore we obtain the following estimate:∣∣∣∂kξ e−θtξ2
∣∣∣ ≤ C(2e)k

( |t|2
θp

)k/2
kk/2
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for some constant C > 0. �

LEMMA 3. Let r ≥ 1/2. If ϕ ∈ Sr,Br,A (R), then we have the following estimate. For any

δ, ρ > 1, there exists Cδ,ρ > 0 such that

|∂βξ F−1(∆mϕ)(ξ)| ≤ Cδ,ρ(e
rδA)βββre−ber ρ |ξ |1/rQm+1{(m+ 1)!}2r , β ∈ Z+

for some Q > 0, where F−1 is the inverse Fourier transform.

PROOF. Let ϕ ∈ Sr,Br,A (R). Then we have for any δ, ρ > 1,

|ξα∂βξ F−1(∆m+1ϕ)(ξ)| ≤
∣∣∣∣ 1

2π

∫
R
(∆m+1ϕ)(x)(ix)β

(
1

i
∂x

)α
eix·ξdx

∣∣∣∣
≤
∣∣∣∣ (−1)αiβ−α

2π

∫
R
xβ∂αx (∆

m+1ϕ)(x)eix·ξdx
∣∣∣∣

≤
∫

R

∣∣∣xβ∂α+2(m+1)
x ϕ(x)

∣∣∣ dx
=
∫

R
(1 + |x|2) 1

1 + |x|2
∣∣∣xβ∂α+2(m+1)

x ϕ(x)

∣∣∣ dx
=
∫

R

{∣∣∣xβ∂α+2(m+1)
x ϕ(x)

∣∣∣+ ∣∣∣xβ+2∂α+2(m+1)
x ϕ(x)

∣∣∣} 1

1 + |x|2 dx

≤ Cδ,ρ(δA)
β(ρB)(α+2(m+1))ββr (α + 2(m+ 1))(α+2(m+1))r

+ C′
δ,ρ(δA)

β+2(ρB)α+2(m+1)(β + 2)(β+2)r(α + 2(m+ 1))(α+2(m+1))r

(4.8)

for any α, β ∈ Z+. Since

(β + 2)(β+2)r ≤ (2e)2r (er)βββr

and

(α + 2(m+ 1))(α+2(m+1))r ≤ (2e)2(m+1)r(er)αααr (m+ 1)2(m+1)r

(in detail, see the proof of Proposition 5), we obtain by Stirling’s formula,

(4.8) ≤ C′′
δ,ρ(e

rδA)β(erρB)αββrααr {(ρB)2(2e)2r}m+1(m+ 1)2(m+1)r

≤ C′′
δ,ρ(e

rδA)β(erρB)αββrααr {(ρB)2(2e2)2r}m+1{(m+ 1)!}2r .

Therefore for any δ, ρ > 1, there exists C′′′
δ,ρ > 0 such that

|∂βξ F−1(∆mϕ)(ξ)| ≤ C′′′
δ,ρ(e

rδA)βββre−ber ρ |ξ |1/rQm+1{(m+ 1)!}2r ,

where berρ = r/(e(erρB)1/r) and Q = (ρB)2(2e2)2r . �
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LEMMA 4. Let ϕ ∈ Sr,Br,A (R), r ≥ 1/2 and t in D{A2θ/(4e2)} = {Re t−1 >

(A2θ/(4e2))−1}, 0 < θ < 1. Then we have

e−θtξ2F−1(∆m+1ϕ)(ξ)

in Sr,Ar,b (R), r ≥ 1/2, where b appears in Lemma 3. Especially, we obtain the following

estimate;

‖e−θtξ2F−1(∆m+1ϕ)‖r2erδ,er ρ ≤ Cδ,ρQ
m+1{(m+ 1)!}2r

for some constant Cδ,ρ > 0 andQ > 0. Q is independent of t and m.

PROOF. For any ϕ ∈ Sr,Br,A (Rξ ), r ≥ 1/2 and t > 0, we find that

e−θtξ2F−1(∆m+1ϕ)(ξ)

is a holomorphic on {Re t > 0}. Therefore by Lemma 2 and Lemma 3, we obtain∣∣∣∂βξ e−θtξ2F−1(∆m+1ϕ)(ξ)

∣∣∣ ≤ β∑
k=0

(
β

k

) ∣∣∣∂kξ e−θtξ2
∣∣∣ ∣∣∣∂β−k

ξ F−1(∆m+1ϕ)(ξ)

∣∣∣
≤ Cδ,ρ

β∑
k=0

(
β

k

)
(2e)kkk/2

( |t|2
θp

)k/2
(erδA)β−k

× (β − k)(β−k)re−berρ |ξ |1/rQm+1{(m+ 1)!}2r

(4.9)

for some constantQ > 0.

Since
(

4e2|t |2
θp

)1/2
< A for t = p + iq , we have

(4.9) ≤ Cδ,ρ(2erδA)βββre−ber ρ |ξ |
1/r
Qm+1{(m+ 1)!}2r . �

THE PROOF OF THEOREM 6. From the assumption, there exists u ∈ (Srr )′ (R), 1/2 ≤
r ≤ 1, such that U(x, t) = (u ∗ E)(x, t). For any ϕ ∈ Srr (R), 1/2 ≤ r ≤ 1, we have for
t > 0,

〈U(x, t), ϕ〉 =
〈
F−1FU(x, t), ϕ

〉
=
〈
Û(ξ, t),F−1ϕ(ξ)

〉
=
〈
û(ξ)e−tξ2

,F−1ϕ(ξ)
〉

=
〈
û(ξ), e−tξ2F−1ϕ(ξ)

〉
.
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By the Taylor’s formula, we obtain that for t > 0,

〈U(x, t), ϕ〉 −
〈
u(x),

m∑
n=0

tn

n!∆
nϕ(x)

〉

=
〈
û(ξ),

tm+1

m!
∫ 1

0
(1 − θ)m(−θξ2)m+1e−θtξ2

dθF−1ϕ(ξ)

〉

=
〈
û(ξ),

tm+1

m!
∫ 1

0
(1 − θ)mθm+1e−θtξ2

dθF−1(∆m+1ϕ)(ξ)

〉
= Rm(t) .

(4.10)

Since the both hand side of (4.10) is holomorphic on {Re t > 0}, the equality (4.10)
holds on {Re t > 0}.

Therefore by the continuity of û and Lemma 4, we obtain the following estimate for
Rm(t) on D{A2θ/(4e2)};

|Rm(t)| ≤ C

∥∥∥∥∥ tm+1

m!
∫ 1

0
(1 − θ)me−θtξ2

dθF−1(∆m+1ϕ)(ξ)

∥∥∥∥∥
r

2erδ,erρ

≤ C′Qm+1|t|m+1{(m+ 1)!}(2r−1)

for some constants C′ > 0 and Q > 0 uniformly on m and t . �

As a remark, the last inequality is also formed as r > 1 by Lemma 4.
By Theorem 5 and Theorem 6, we obtain the following result ((II) of Main Theorem):

COROLLARY 1. Let 1/2 ≤ r ≤ 1. For any ϕ ∈ Srr (Rd), the asymptotic expansion

〈U(·, t), ϕ〉 ∼
∞∑
k=0

tk

k!
〈
∆ku, ϕ

〉
, u ∈ (Srr )′ (Rd) ,

is Borel summable on D{Ã2θ/(4e2)} and 〈U(·, t), ϕ〉 is expressed by

〈U(·, t), ϕ〉 = 1

t

∫ ∞

0
e−ζ/t fB(ζ )dζ

in D{Ã2θ/(4e2)}, where fB is the Borel transform of the series
∑∞
k=0

t k

k!
〈
∆ku, ϕ

〉
.

On the other hand, by Proposition 6, we also find that the asymptotic series converges
for r = 1/2 as follows:

PROPOSITION 7. Let u ∈
(
S1/2

1/2

)′
(Rd ). For any ϕ ∈ S1/2

1/2 (R
d), the asymptotic series

〈U(·, t), ϕ〉 ∼∑∞
k=0

t k

k!
〈
∆ku, ϕ

〉
converges if |t| < 1

(2d1/2eρB̃)2
.
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For example, let u be the Dirac delta function and ϕ = e−x2
. Then by replacing θt in

(4.6) to 1, we have

ak =
〈
∆kδ, e−x2

〉
=
〈
δ,∆ke−x2

〉
=
〈
δ,

1√
π

22ke−x2
2k∑
l=0

xl
∫

R
e−y2

y2k−ldy
〉

= (−1)k√
π
Γ

(
k + 1

2

)
.

= (−1)k2k(2k − 1)!! .
So we have

ak/k! = (−4)k
(2k − 1)!!
(2k)!!

Therefore we find that
∑∞
k=0

t k

k!
〈
∆kδ, e−x2 〉

converges and

∞∑
k=0

tk

k!
〈
∆kδ, e−x2

〉
=

∞∑
k=0

(2k − 1)!!
(2k)!! (−4t)k = 1√

1 + 4t

if |t| < 1/4.

5. The solutions to the heat equation on phase space and Weyl transform

On the quantization from classical mechanics, H. Weyl introduced the following operator

(see [8], [10]): For any F ∈ S(R2d ),

[W(F )ϕ](ξ) =
∫∫

R2d
F (x, y)[π(x, y)ϕ](ξ)dxdy, ϕ ∈ L2(Rd ) ,

where [π(x, y)ϕ](ξ) = ei(x·ξ+ 1
2 x·y)ϕ(ξ+y). We call this transformW(F ) the Weyl transform

with symbol F . It is known that if the symbol F ∈ L2, then W(F ) is L2-bounded (see [8],
[10]). The Weyl transform W(F ) is also expressed by using the matrix element of π : For any

ϕ, ψ ∈ L2(Rd ),

(W(F )ϕ,ψ) =
∫∫

R2d
F (x, y)(π(x, y)ϕ,ψ)dxdy

= (2π)d
∫∫

R2d
F (x, y)V (ϕ,ψ)(x, y)dxdy ,
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where V (ϕ,ψ)(x, y) is the Fourier-Wigner transform of ϕ and ψ defined by

V (ϕ,ψ)(x, y) = (2π)−d
∫

Rd
eix·pϕ

(
p + y

2

)
ψ

(
p − y

2

)
dp .

The Fourier-Wigner transform has the following property (see for example [5], [7]):

PROPOSITION 8. Let ϕ,ψ ∈ Srr (Rd), r ≥ 1
2 . Then V (ϕ,ψ) ∈ Srr (R2d).

We define the Weyl transform with symbol T ∈ (Srr )′(R2d) by

〈W(T )ϕ,ψ〉 = (2π)d
〈
T , V (ϕ,ψ)

〉
, ϕ,ψ ∈ Srr (Rd) .

It follows from Proposition 8 that this definition is well defined. The Weyl transform W(T )

has the following property (see [7]):

PROPOSITION 9. Let r ≥ 1/2. Then the map W from S(R2d) to the space of bounded

operators on L2(Rd) extends uniquely to a bijection from (Srr )′(R2d), r ≥ 1/2, to the space

of continuous linear maps from Srr (Rd) to (Srr )′(Rd).
We consider the heat equations on phase space:(

∂

∂h̄
−∆x,y

)
U(x, y, h̄) = 0, x, y ∈ Rd ,

where h̄ > 0 is the Plank’s constant. In this setting the Fourier-Wigner transform and the
Weyl transform are given by

Vh̄(ϕ,ψ)(x, y) =
(

1

2πh̄

)d ∫
Rd
e
ip·x
h̄ ϕ

(
p + y

2

)
ψ

(
p − y

2

)
dp

and for any Fh̄ ∈ (Srr )′ (R2d), r ≥ 1/2,〈Wh̄(Fh̄)ϕ,ψ
〉 = (2πh̄)d

〈
Fh̄, Vh̄(ϕ,ψ)

〉
, ϕ,ψ ∈ Srr (Rd) .

As a remark, as h̄ = 1, the operator W1(F1) coincides with the normal Weyl transform
W(F ). Moreover for any h̄ > 0, Proposition 8 and Proposition 9 hold.

Especially, we deal with the operator W̃h̄(F ) defined by for any F ∈ (Srr )′ (R2d), r ≥
1/2, 〈W̃h̄(F )ϕ,ψ

〉 = 〈Wh̄(Fh̄)ϕ,ψ
〉 = (2πh̄)d

〈
(8πh̄)−dF, Vh̄(ϕ,ψ)

〉
, ϕ,ψ ∈ Srr (Rd) .

PROPOSITION 10. Let F(ξ, η) ∈ (Srr )′ (R2d), r ≥ 1/2 and ϕ(p) = ψ(p) =
(4πh̄)−d/4e−

1
2h̄ p

2
(p ∈ Rd). Then we have〈W̃h̄(F (x − ·, y − ·))ϕ,ψ 〉 → 4−dF in

(Srr )′ (R2d) as h̄ → 0 + . (5.1)
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PROOF. From the assumption, we have

Vh̄(ϕ,ψ)(ξ, η) = (4πh̄)−d/2 (2πh̄)−d
∫

Rd
e
ip·ξ
h̄ e−1/2h̄(2p2+ η2

2 )dp

= (4πh̄)−d/2e−
η2

4h̄ (2π)−d
∫

Rd
eiξ ·se−h̄s2

ds

= (4πh̄)−d e−
ξ2+η2

4h̄ .

Therefore we obtain that

Vh̄(ϕ,ψ)(ξ, η) = E(ξ, η, h̄) .

By Proposition 4, we have for any f ∈ Srr (R2d),〈〈
(W̃h̄(F (x − ·, y − ·))ϕ,ψ 〉, f 〉 = 〈(2πh̄)d 〈(8πh̄)−d (F (x − ·, y − ·), Vh̄(ϕ,ψ)

〉
, f
〉

= 〈4−dF ∗ E, f 〉
→ 4−d 〈F, f 〉 in (Srr )′ (R2d)

as h → 0+. �

We have the following asymptotic expansions more strictly than (5.1):

THEOREM 7. Let F(ξ, η) ∈ (Srr )′ (R2d), r ≥ 1/2 and ϕ(p) = ψ(p) =
(4πh̄)−d/4e−

1
2h̄ p

2
(p ∈ Rd). Then we have

〈W̃h̄(F (x − ξ, y − η))ϕ,ψ
〉 ∼ 4−d

∞∑
n=0

h̄n

n!∆
nF .

PROOF. We immediately obtain this result from (I) of Theorem 3. �
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