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The Adams Inequality on Weighted Morrey Spaces

Takeshi IIDA, Yasuo Komori-FURUYA and Enji SATO

Yamagata University, Tokai University, and Yamagata University

Abstract. We introduce new weight classes, and extend the Adams inequality to weighted Morrey spaces.
We also investigate the boundedness of the modified fractional integral operator from weighted Morrey spaces to
Lipschitz or BMO spaces.

1. Introduction

Hardy, Littlewood, and Sobolev proved the boundedness of the fractional integral opera-
tor Iα from Lp to Lq on Euclidean spaces, where 1/q = 1/p−α/n, 1 < p < n/α. Peetre [8]
studied the boundedness of Iα on classical Morrey spaces. Adams [1] showed the bounded-
ness of Iα on classical Morrey spaces whose result improved the Spanne and Peetre inequality
(see Chiarenza and Frasca [2]). In this paper, we will extend the Adams result to weighted
Morrey spaces. Komori and Shirai [4] proved the Spanne and Peetre inequality on weighted
Morrey spaces only for subcritical indices. We will introduce new weight classes and prove
the Adams inequality on weighted Morrey spaces. Furthermore we consider the bounded-
ness of the modified fractional integral operator from weighted Morrey spaces to Lipschitz or
BMO spaces.

This article is organized as follows. In Section 2 we define the ordinary fractional integral
operator, the weighted Morrey space, new weight classes, and recall some known results. In
Section 3 we will state the main result. In Section 4 we give some lemmas. In Section 5 we
prove these main results.

The following notation is used: Let Rn be the n-dimensional Euclidean space. For a set
E ⊂ Rn we denote the Lebesgue measure of E by |E|. We denote the characteristic function
of E by χE . We write a ball of radius R centered at x0 by B = B(x0, R) := {x; |x − x0| < R}
and aB := {x; |x − x0| < aR}, for any a > 0. We call a nonnegative locally integrable
function w on Rn a weight function. Also we write w(E) = ∫

E
w(x)dx. For 1 < p < ∞, p′

is the conjugate index if satisfies 1/p + 1/p′ = 1. The letter C shall always denote a positive
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constant which is independent of essential parameters and not necessarily the same at each
occurrence.

2. Definitions and known results

We define two fractional integral operators and weighted Morrey, Lipschitz and BMO
spaces.

DEFINITION 2.1 (Fracional integral operators). Let 0 < α < n. One define fractional

integral operator Iα and modified fractional integral operator Ĩα :

Iαf (x) :=
∫

Rn

f (y)

|x − y|n−α
dy ,

Ĩαf (x) :=
∫

Rn

(
1

|x − y|n−α
− 1

|y|n−α
χ{|y|≥1}(y)

)
f (y)dy .

Next we define weighted Morrey spaces.

DEFINITION 2.2 (Weighted Morrey spaces). Let 1 ≤ p < ∞ and 0 ≤ λ < 1. Sup-
pose that u and v are weight functions on Rn. We define weighted Morrey space Lp,λ(u, v):

Lp,λ(u, v) :=
{
f ∈ L1

loc(R
n) : ‖f ‖Lp,λ(u,v) < ∞

}
,

where

‖f ‖Lp,λ(u,v) := sup
B⊂Rn,B:ball

(
1

v(B)λ

∫
B

|f (x)|pu(x)dx

) 1
p

.

REMARK 1. When u = 1 and v = 1, weighted Morrey spaces are classical Morrey
spaces.

DEFINITION 2.3 (Lipschitz and BMO spaces). Let 0 ≤ ε < 1.

Lipε(Rn) :=
{
f ∈ L1

loc(R
n) : ‖f ‖Lipε(Rn) < ∞

}
,

where

‖f ‖Lipε(Rn) := sup
B⊂Rn,B:ball

inf
c∈C

1

|B|1+ ε
n

∫
B

|f (x) − c|dx .

We denote BMO(Rn) := Lip0(Rn).

Hardy, Littlewood and Sobolev(cf. Lu, Ding and Yan [5]) proved the boundedness of Iα

from Lp to Lq where 1
q

= 1
p

− α
n

. Adams [1] proved the boundedness on Morrey spaces.

THEOREM A (Adams). Let 0 < α < n, 0 ≤ λ < 1, 1 < p < n(1−λ)
α

. If 1
q

=
1
p

− α
n(1−λ)

, then there exists a constant C > 0 such that

‖Iαf ‖Lq,λ(Rn) ≤ C ‖f ‖Lp,λ(Rn) . (1)
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When p ≥ n
α
(1 − λ), Spanne and Peetre(cf. Peetre [8]) proved the following.

THEOREM B (Spanne and Peetre). Let 0 < α < n and 0 ≤ λ < 1. If 0 ≤ ε =
n

(
α
n

− 1−λ
p

)
< 1, then there exists a constant C > 0 such that

∥∥Ĩαf
∥∥

Lipε(Rn)
≤ C‖f ‖Lp,λ(Rn) .

Let w be a non-negative function. We will recall the Muckenhoupt class.

DEFINITION 2.4. Let 1 < p < ∞ and 0 < λ < 1. We say w ∈ Ap(Rn) if

sup
B⊂Rn,B:ball

(
1

|B|
∫

B

w(x)dx

)(
1

|B|
∫

B

w(x)
− p′

p dx

) p

p′
< ∞ .

We say w ∈ A1(Rn) if there exists a constant C > 0 such that for every ball B ⊂ Rn

1

|B|
∫

B

w(x)dx ≤ C ess. inf
x∈B

w(x) .

We put A∞(Rn) := ⋃
p≥1 Ap(Rn). We say Ãp,λ(Rn) if

sup
B⊂Rn,B:ball

(
1

|B|
∫

B

w(x)dx

) λ
p

(
1

|B|
∫

B

w(x)
− λp′

p dx

) 1
p′

< ∞ .

REMARK 2. w ∈ Ãp,λ(Rn) if and only if w ∈ A1+ p−1
λ

(Rn).

DEFINITION 2.5. Let 1 < p, q < ∞. We say w ∈ Ap,q(Rn) if

sup
B⊂Rn,B:ball

(
1

|B|
∫

B

w(x)qdx

) 1
q

(
1

|B|
∫

B

w(x)−p′
dx

) 1
p′

< ∞ .

We say w ∈ Ap,∞(Rn) if

sup
B⊂Rn,B:ball

ess. sup
x∈B

w(x)

(
1

|B|
∫

B

w(x)−p′
dx

) 1
p′

< ∞ .

REMARK 3. w ∈ Ap,∞(Rn) if and only if w−p′ ∈ A1(Rn).

Muckenhoupt and Wheeden [7] proved the weighted boundedness of Iα .

THEOREM C (Muckenhoupt and Wheeden). Let 0 < α < n, 1 < p < n
α

and 1
q

=
1
p

− α
n

. If w ∈ Ap,q(Rn), then there exists a constant C > 0 such that

‖Iαf ‖Lq(wq) ≤ C‖f ‖Lp(wp) ,

that is,

(∫
Rn

|Iαf (x)|qw(x)qdx

) 1
q ≤ C

(∫
Rn

|f (x)|pw(x)pdx

) 1
p

.
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3. Main results

Our results are the following. Note that our results are true for λ = 0. We only treat
the weighted case of 0 < λ < 1, because the unweighted case of λ = 0 follows from the
weighted case (see Remark 4 (1) below). In the following we assume that 1 < p < ∞.

THEOREM 1. Let 0 < α < n, 0 < λ < 1 − α
n

and 1 < p < n
α
(1 − λ). Assume that

w ∈ Ãp,λ(Rn) . (2)

Then there exists a constant C > 0 such that

‖Iαf ‖Lq,λ(wλ,w) ≤ C ‖f ‖Lp,λ(wλ,w) ,

where

1

q
= 1

p
− α

n(1 − λ)
.

REMARK 4. (1) The condition 0 < λ < 1 − α
n

is necessary for n
α
(1 − λ) > 1. When

w = 1 in Theorem 1, we obtain Theorem A. When λ tends to 0, the result corresponds to the
Hardy, Littlewood and Sobolev theorem.

(2) We can obtain the Spanne and Peetre inequality on weighted Morrey spaces by
Theorem 1(see Chiarenza and Frasca [2]). We omit the details.

When p ≥ n
α
(1 − λ), we obtain the following. Let

ε = α − n(1 − λ)

p
. (3)

THEOREM 2. Let 0 < α < n, 0 ≤ λ < 1, n
α
(1 − λ) ≤ p < n

α
and 0 ≤ ε < 1. Assume

that

w
λ
p ∈ Ap,q(Rn) where

1

q
= 1

p
− α

n
. (4)

Then there exists a constant C > 0 such that∥∥Ĩαf
∥∥

Lipε(Rn)
≤ C ‖f ‖Lp,λ(wλ,w) .

Especially ∥∥Ĩαf
∥∥

BMO(Rn)
≤ C ‖f ‖Lp,λ(wλ,w) when p = n

α
(1 − λ) .

REMARK 5. In Theorem 1, the condition (2) is stronger than (4), since λq
p

< 1. How-

ever (2) can not be replaced with (4). Because the weight w which satisfies (4) may not be

locally integrable when λq
p

< 1.

Note that (2) and (4) are mutually equivalent when p = n
α
(1 − λ).
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THEOREM 3. Let 0 < α < n, 0 < λ < 1, p ≥ n
α

and 0 ≤ ε < 1. Assume that

w
λ
p ∈ A n

α ,∞(Rn) . (5)

Then there exists a constant C > 0 such that∥∥Ĩαf
∥∥

Lipε(Rn)
≤ C ‖f ‖Lp,λ(wλ,w) .

REMARK 6. The A n
α
,∞(Rn) condition can be regarded as limiting case of the

Ap,q(Rn) condition when p tends to n/α.

4. Some lemmas

The following two lemmas are important to prove Theorem 3.

LEMMA 4.1. Let 0 < α < n, 0 < λ < 1 and n
α

≤ p < ∞. If w
λ
p ∈ A n

α ,∞(Rn) then

w ∈ Ãp,λ(Rn) .

PROOF. Since p ≥ n
α

, by Hölder’s inequality and definition of A n
α ,∞(Rn), we have for

every ball B ⊂ Rn,
(

1

|B|
∫

B

w(x)dx

) λ
p

(
1

|B|
∫

B

w(x)
− λp′

p dx

) 1
p′

≤
(

1

|B|
∫

B

w(x)dx

) λ
p

(
1

|B|
∫

B

w(x)
− λ

p ( n
α )

′
dx

) 1

( n
α )

′

≤ ess. sup
x∈B

w(x)
λ
p

(
1

|B|
∫

B

w(x)
− λ

p ( n
α )

′
dx

) 1

( n
α )

′

≤ C .

�

LEMMA 4.2. Let 0 < α < n, 0 < λ < 1 and n
α

≤ p < ∞. If w
λ
p ∈ A n

α ,∞(Rn) then

there exist p0 < n
α

and a constant C > 0 such that for every ball B ⊂ Rn,

w
λ
p ∈ Ap0,q0(R

n) , (6)

(
1

|B|
∫

B

w(x)
− λq′

0
p dx

) 1
q′

0 ≤ C

(
1

|B|
∫

B

w(x)
− λp′

p dx

) 1
p′

, (7)

where 1
q0

= 1
p0

− α
n

.
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PROOF. Note that if p0 is near n
α

then q0 is large, that is, q ′
0 is near 1 and n−α

n
· p′

0 is

near 1. First we prove (6). Since w
− λ

p
( n
α
)′ ∈ A1(Rn), by the reverse Hölder inequality (cf.

Lu, Ding and Yan [5]) we can take p0 sufficiently near n
α

such that

(
1

|B|
∫

B

w(x)
− λp′

0
p dx

) 1
p′

0 =
(

1

|B|
∫

B

w(x)
− λ

p
( n
α
)′· n−α

n
·p′

0dx

) n
n−α

· 1
p′

0
· n−α

n

≤ C

(
1

|B|
∫

B

w(x)
− λ

p ·( n
α )′

dx

) n−α
n

= C

(
1

|B|
∫

B

w(x)
− λ

p ·( n
α )

′
dx

) 1

( n
α )

′
.

On the other hand, we have
(

1

|B|
∫

B

w(x)
λq0
p dx

) 1
q0 ≤ ess. sup

x∈B

w(x)
λ
p .

Therefore we obtain
(

1

|B|
∫

B

w(x)
− λp′

0
p dx

) 1
p′

0

(
1

|B|
∫

B

w(x)
λq0
p dx

) 1
q0

≤ C

(
1

|B|
∫

B

w(x)
− λ

p
·( n

α )
′
dx

) 1

( n
α )

′
ess. sup

x∈B

w(x)
λ
p

≤ C .

Next we prove (7). Since w
− λ

p ( n
α )′ ∈ A1(Rn), we have w

− λ
p ∈ A1(Rn). By the reverse

Hölder inequality we can take p0 slightly less than n
α

so that

(
1

|B|
∫

B

w(x)
− λ

p
q ′

0dx

) 1
q′

0 ≤ C

|B|
∫

B

w(x)
− λ

p dx ≤ C

(
1

|B|
∫

B

w(x)
− λp′

p dx

) 1
p′

.

Thus, Lemma 4.2 is proved. �

The following two lemmas are due to Adams [1]. Let Mµ be the fractional maximal
function

Mµf (x) := sup
B�x

1

|B|µ
∫

B

|f (y)| dy , 0 ≤ µ ≤ 1 .

LEMMA 4.3. Let 0 < α < n, 1 ≤ p <
n(1−λ)

α
and 0 ≤ λ < 1. Then there exists a

constant C > 0 such that

|Iαf (x)| ≤ C
(
M1+ λ−1

p
f (x)

) α
n
· p

1−λ M1f (x)1− α
n
· p

1−λ . (8)
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LEMMA 4.4. Suppose that 0 < α < n, x0 ∈ Rn, r > 0, B = B(x0, r) and x ∈ B.
Then the following inequality holds:

|Iαf∞(x)| ≤
∫ ∞

r

ρα−n

(∫
B(x,ρ)

|f (y)| dy

)
dρ

ρ
. (9)

where f∞(x) := f (x)χ(2B)c (x).

We derive the following pointwise inequality from Hölder’s inequality. This approach
has the advantage that can be also used in the weighted context:

LEMMA 4.5. If w ∈ Ãp,λ(Rn), then

M1+ λ−1
p

f (x) ≤ C ‖f ‖Lp,λ(wλ,w) .

PROOF. Let x ∈ Rn fix. for every B � x, we have the following:

1

|B|1+ λ−1
p

∫
B

|f (y)| dy = 1

|B|1+ λ−1
p

∫
B

|f (y)|w(y)
λ
p w(y)

− λ
p dx

≤ 1

|B|1+ λ−1
p

(∫
B

|f (y)|p w(y)λdy

) 1
p ·

(∫
B

w(y)
− λp′

p dy

) 1
p′

= 1

|B|1+ λ−1
p

(
1

w(B)λ

∫
B

|f (y)|p w(y)λdy

) 1
p · w(B)

λ
p · w

− λp′
p (B)

1
p′

≤ ‖f ‖Lp,λ(wλ,w)

(
1

|B|
∫

B

w(y)dy

) λ
p ·

(
1

|B|
∫

B

w(y)
− λp′

p dy

) 1
p′

≤ C ‖f ‖Lp,λ(wλ,w) .

�

5. Proof of main theorems

We will prove Theorem 1 by using two pointwise inequalities obtained in the previous
section.

PROOF OF THEOREM 1. For every x0 ∈ Rn and r > 0, let B = B(x0, r) and

f (x) = f (x)χ2B(x) + f (x)χ(2B)c (x) = f0(x) + f∞(x) .

First we estimate Iαf0. Because of Lemmas 4.3 and 4.5 we obtain

|Iαf0(x)| ≤ C ‖f ‖1− p
q

Lp,λ(wλ,w)
· M1f0(x)

p
q .

On the other hand, since w ∈ Ãp,λ(Rn), by Hölder’s inequality we have wλ ∈ Ap(Rn). By
the weighted Lp boundedness of M1(cf. Lu, Ding and Yan [5]) and doubling condition on
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Ãp,λ(Rn) we obtain∫
B

|Iαf0(x)|q w(x)λdx

≤ C ‖f ‖q−p

Lp,λ(wλ,w)

∫
B

M1f0(x)pw(x)λdx

≤ C ‖f ‖q−p

Lp,λ(wλ,w)
·
(

1

w(2B)λ

∫
2B

|f (x)|p w(x)λdx

)
· w(2B)λ

≤ C ‖f ‖q

Lp,λ(wλ,w)
· w(B)λ .

Thus we have

‖Iαf0‖Lq,λ(wλ,w) ≤ C ‖f ‖Lp,λ(wλ,w) .

Next we estimate |Iαf∞(x)|. By Lemma 4.4, we have for x ∈ B

|Iαf∞(x)| ≤
∫ ∞

r

ρα−n

(∫
B(x,ρ)

|f (y)| dy

)
dρ

ρ
.

Moreover by the same method as the proof of Lemma 4.5, we have

∫
B(x,ρ)

|f (y)| dy ≤ C ‖f ‖Lp,λ(wλ,w) ρ
n( λ

p + 1
p′ ) .

Hence we obtain

|Iαf∞(x)| ≤ C ‖f ‖Lp,λ(wλ,w)

∫ ∞

r

ρ
α−n+n( λ

p + 1
p′ ) dρ

ρ

≤ C ‖f ‖Lp,λ(wλ,w) r
α+ nλ

p − n
p

≤ C |B| λ−1
q ‖f ‖Lp,λ(wλ,w) .

Therefore we have (
1

w(B)λ

∫
B

|Iαf∞(x)|q w(x)λdx

) 1
q

≤ C |B| λ−1
q · wλ(B)

1
q · w(B)

− λ
q ‖f ‖Lp,λ(wλ,w)

≤ C ‖f ‖Lp,λ(wλ,w) .

That is, we obtain the desired result. �

Theorems 2 and 3 are obtained from the following proposition.

PROPOSITION 1. Let 0 < α < n, 0 ≤ λ < 1 and n
α
(1 − λ) ≤ p. Assume that

w ∈ Ãp,λ(Rn) , (10)
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and there exists p0 such that 1 < p0 < n
α

, p0 ≤ p and

w
λ
p ∈ Ap0,q0(R

n) , (11)

sup
B⊂Rn,B:ball

(
1

|B|
∫

B

w(x)dx

) λ
p

(
1

|B|
∫

B

w(x)
− λq′

0
p dx

) 1
q′

0
< ∞ , (12)

where 1
q0

= 1
p0

− α
n
. Then there exists a constant C > 0 such that∥∥∥Ĩαf

∥∥∥
Lipε(Rn)

≤ C ‖f ‖Lp,λ(wλ,w) ,

where 0 ≤ ε = α − n(1−λ)
p

< 1.

Assuming this proposition temporarily, we shall prove Theorems 2 and 3. First we prove
Theorem 2.

PROOF OF THEOREM 2. Under the assumption of Theorem 2, we can take p0 = p in

Proposition 1. In fact, because w
λ
p ∈ Ap,q(Rn) and λq

p
> 1, we have w ∈ Ãp,λ(Rn). Since

p′/q ′ > 1, we have

sup
B⊂Rn,B:ball

(
1

|B|
∫

B

w(x)dx

) λ
p

(
1

|B|
∫

B

w(x)
− λ

p
q ′

dx

) 1
q′

< ∞ ,

by the Hölder inequality. Therefore w satisfies the conditions in Proposition 1. �

Next we prove Theorem 3.

PROOF OF THEOREM 3. We can apply Lemma 4.1 and Lemma 4.2 by the assumptions
of Theorem 3. Hence by Lemma 4.1 w satisfies (10), and by Lemma 4.2, we can find p0 which
satisfies (6) and (7). Therefore w satisfies (11). By (7) and (10), w satisfies (12). Therefore
by using Proposition 1, we obtain the desired result. �

Finally we prove Proposition 1.

PROOF OF PROPOSITION 1. For every x0 ∈ Rn and r > 0, let B = B(x0, r) and

f (x) = f (x)χ2B(x) + f (x)χ(2B)c (x) = f0(x) + f∞(x) ,

c0 := −
∫

|y|≥1

f0(y)

|y|n−α
dy ,

c1 := Ĩα(f∞)(x0) ,

c := c0 + c1 .

We obtain the pointwise inequality:

∣∣Ĩαf (x) − c
∣∣ ≤ |Iαf0(x)| +

∫
Rn

∣∣∣∣ 1

|x − y|n−α
− 1

|x0 − y|n−α

∣∣∣∣ |f∞(y)| dy = I + II .
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First we estimate I . Note that by the condition (10) w satisfies the doubling condition.

Since w
λ
p ∈ Ap0,q0(R

n), by Theorem C and (12), we have∫
B

Idx =
∫

B

|Iαf0(x)| dx

≤
(∫

B

|Iαf0(x)|q0 w(x)
λ
p
q0dx

) 1
q0

(∫
B

w(x)
− λ

p
q ′

0dx

) 1
q′

0

≤ C

(∫
2B

|f (x)|p0 w(x)
λ
p p0dx

) 1
p0

( ∫
B

w(x)
− λq′

0
p dx

) 1
q′

0

≤ C

(∫
2B

|f (x)|p w(x)λdx

) 1
p

w
− λq′

0
p (B)

1
q′

0 · |B| 1
p0

− 1
p

≤ C ‖f ‖Lp,λ(wλ,w) · w(B)
λ
p · w

− λq′
0

p (B)

1
q′

0 · |B| 1
p0

− 1
p

≤ C ‖f ‖Lp,λ(wλ,w) |B|1+ ε
n .

Next we estimate II . Let x ∈ B. By the condition (10) we have

II ≤ C

∞∑
k=1

∫
2kr≤|x0−y|<2k+1r

|x − x0|
|x0 − y|n−α+1

|f (y)| dy

≤ C

∞∑
k=1

r

(2kr)n−α+1

∫
2k+1B

|f (y)| dy

≤ C

∞∑
k=1

r

(2kr)n−α+1

(∫
2k+1B

|f (y)|p w(y)λdy

) 1
p ·

(∫
2k+1B

w(y)
− λp′

p dy

) 1
p′

= C

∞∑
k=1

r

(2kr)n−α+1

(
1

w(2k+1B)λ

∫
2k+1B

|f (y)|p w(y)λdy

) 1
p

× w(2k+1B)
λ
p · w

− λp′
p (2k+1B)

1
p′

≤ C

∞∑
k=0

r

(2k+1r)n−α+1
‖f ‖Lp,λ(wλ,w) ·

∣∣∣2k+1B

∣∣∣
λ
p + 1

p′

×
(

1∣∣2k+1B
∣∣
∫

2k+1B

w(y)dy

) λ
p

·
(

1∣∣2k+1B
∣∣
∫

2k+1B

w(y)
− λp′

p dy

) 1
p′

≤ C ‖f ‖Lp,λ(wλ,w) |B| α
n
−1+ λ

p
+1− 1

p

∞∑
k=1

2
−kn

(
1− α

n + 1
n − λ

p −1+ 1
p

)

≤ C |B| ε
n ‖f ‖Lp,λ(wλ,w) ,
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since −α
n

+ 1
n

− λ
p

+ 1
p

> 0. Thus we have

∥∥Ĩαf
∥∥

Lipε(Rn)
≤ C sup

B⊂Rn,B:ball

1

|B|1+ ε
n

∫
B

∣∣Ĩαf (x) − c
∣∣dx

≤ C sup
B⊂Rn,B:ball

1

|B|1+ ε
n

(∫
B

Idx +
∫

B

IIdx

)

≤ C ‖f ‖Lp,λ(wλ,w) .

This is the desired result. �
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