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Abstract. The general hypergeometric functions of confluent type are studied. We establish a link between
the general hypergeometric functions defined by 1-dimensional integrals and those defined by multi-dimensional
integrals. The key point is to form an intermediate Wronskian determinant for the 1-dimensional ones and to rewrite
it into a multi-dimensional integral using the generalized Veronese map.

1. Introduction

For a positive integer N and a partition λ of N , the general hypergeometric function
(GHF, for short) was defined in [10] as a “Radon transform” of a character of the maximal
abelian subgroup Hλ of GLN(C) (see Sect. 2). In the case the partition is λ = (1, . . . , 1), the
GHF is also called the Aomoto-Gel’fand hypergeometric function, which is written as

F(z, α,C) =
∫

C

∏
1≤k<N

(z0k + z1kt1 + · · · + zrktr )
αkdt1 ∧ · · · ∧ dtr ,

where C is an r-cycle of the homology group with coefficients in the local system L of rank 1
defined by the multivalued function

∏
1≤k<N(z0k + z1kt1 + · · · + zrktr )

αk . In the case r = 1,

namely the Aomoto-Gelfand hypergeometric function is defined by 1-dimensional integral,
it is essentially the same as the classically known Appell-Lauricella hypergeometric function
F = FD(a, b1, . . . , bN−3, c; x):

F =
∑ (a)m1+···+mN−3(b1)m1 · · · (bN−3)mN−3

(c)m1+···+mN−3m1! · · · mN−3! x
m1
1 · · · xmN−3

N−3

= Γ (c)

Γ (a)Γ (c − a)

∫ ∞

1

N−3∏
k=1

(t − xk)
−bk · tb1+···+bN−3−c(t − 1)c−a−1dt (1.1)

which reduces further to the Gauss hypergeometric function in the case N = 4. It is known
that the Aomoto-Gelfand hypergeometric functions are solutions of holonomic systems on the

Received May 25, 2010; revised September 27, 2010
Mathematics Subject Classification: 53C45 (Primary), 33C80 (Secondary)
The author was supported by KAKENHI (B) 19340041.



508 HIRONOBU KIMURA

z-space with regular singularity. When λ �= (1, . . . , 1), GHFs give a natural generalization
of the classical hypergeometric functions of confluent type, say, confluent hypergeometric
function of Kummer, Bessel, Hermite and Airy functions (see [13] ).

The purpose of this paper is to establish a link between the general hypergeometric func-
tions defined by 1-dimensional integrals and those defined by multi-dimensional integrals.
For the case λ = (1, . . . , 1), the link mentioned above is studied by T. Terasoma. To make
clear the theme of this paper, we review briefly the result of [15].

Let S̄ be a complex affine line with the coordinate s and let x1 < x2 < · · · < xN−1 be

distinct real points on S̄. Given complex numbers α1, . . . , αN−1 satisfying Re αj > −1. For
each q (1 ≤ q ≤ N − 2), let ωq be the 1-form:

ωq = ωq(s) := U(s)sq−1ds, U(s) =
∏

1≤j<N

(s − xj )
αj .

Note that the polynomials in ωq are written as

s − xj = s
(−xj

1

)
, s = (1, s)

using the column vector
(−xj

1

)
, and hence they are specified by the matrix:

x =
(

1 −x1 . . . −xN−1

0 1 . . . 1

)
∈ Mat2,N (C). (1.2)

The form ωq(s) is single-valued in the lower half plane and is continued analytically to the

whole space S = S̄ \ {x1, . . . , xN−1} along any path starting from a point of lower half plane.
Let γp be the path in S joining the point xp to xp+1 on the real line �s = 0:

γp := {s ∈ S ; xp < s < xp+1} , 1 ≤ p ≤ N − 2 .

The branch of the multivalued function U(s) in the lower half plane is specified as follows.
We define the branch of (s − xj )

αj by assuming arg(s − xj ) = 0 on γj when s approaches
to a point on γj from the lower half plane. It amounts to fix the arguments of the functions
s − xj on γp as

arg(s − xj ) =
{

0 if 1 ≤ j ≤ p

−π if p + 1 ≤ j < N .

Now we can define the integrals:

apq(x) :=
∫

γp

ωq , 1 ≤ p, q ≤ N − 2 .
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Note that ap1(x) is the Appell-Lauricella’s hypergeometric function (1.1) if we restrict ap1(x)

on the subset xN−2 = 0, xN−1 = 1. We consider the intermediate Wronskian determinants
for these integrals, namely, for an index P = (p1, . . . , pr ), 1 ≤ p1 < · · · < pr ≤ N − 2, we
put

AP (x) := det

(∫
γpi

ωj

)
1≤i,j≤r

.

Let us relate this to Aomoto-Gel’fand hypergeometric function. To this end, let X ⊂
Mat2,N(C) be the set of real matrices x of the form (1.2) such that x1, . . . , xN−1 are all
distinct. Define the map Φ : X → Matr+1,N(C) by the correspondence

(
1 −x1 . . . −xN−1

0 1 . . . 1

)
	→




1 (−x1)
r . . . (−xN−1)

r

0 (−x1)
r−1 . . . (−xN−1)

r−1

...
...

...

0 1 . . . 1


 (1.3)

which is called Veronese map.

PROPOSITION 1.1 ([15]). For the index P = (1, 2, . . . , r), we have

AP (x) =
∫

DP

∏
1≤j<N

Lj (t, x)αj dt1 ∧ · · · ∧ dtr , (1.4)

where

Lj(t, x) := tΦ(x)j = (−xj )
r + t1(−xj )

r−1 + · · · + tr−1(−xj ) + tr ,

is the polynomial function of degree 1 in T -space of variables of t = (t1, . . . , tr ) defined by
the j -th column Φ(x)j of Φ(x) ∈ Matr+1,N(C) and DP is the bounded connected component
of TR \⋃1≤j<N {Lj (t, x) = 0} in real t-space TR := T ∩ R

r :

DP = {t ∈ TR ; (−1)P (j)Lj (t, x) > 0} ,

P (j) being defined by

P(j) := #{i ; pi < j } .

The right hand side of (1.4) is just the Aomoto-Gel’fand hypergeometric function re-
stricted to the image Φ(X) of X by the Veronese map.

Our aim is to extend this result to all the general hypergeometric functions of confluent
type.

This paper is organized as follows. In Section 2, we recall the definition of the GHF.
In Section 3, we fix notations for the twisted homology group and the twisted cohomology
group which are needed in the formulation of the main theorem. Next in Section 4 we define
the intermediate Wronskian for the GHF defined by 1-dimensional integral and state the main
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theorem (Theorem 4.2). In Section 5, we define the generalized Veronese map analogous to
the map Φ in (1.3). Finally we prove the main theorem in the last section.

2. General hypergeometric functions

In this section we review briefly the definition of the general hypergeometric functions.
Let N be a positive integer and λ = (n1, . . . , n�) be a partition of N. With the partition

λ, we associate the maximal abelian subgroup Hλ of GLN(C) of the form

Hλ = J (n1) × · · · × J (n�),

where

J (n) :=
{
h =

∑
0≤i<n

hiΛ
i ; hi ∈ C, h0 �= 0

}
⊂ GLn(C) ,

Λ = (δi+1,j )1≤i,j≤n being the shift matrix of size n. We sometimes denote an element
h ∈ J (n) as [h0, . . . , hn−1].

REMARK 2.1. 1. J (n) is the centralizer of an element

C(n, a) =




a 1
. . .

. . .

. . . 1
a


 ∈ GLn(C) .

2. An element a ∈ GLN(C) is called a regular element if the orbit O(a) of a by the
adjoint action is of maximum dimension. a is a regular element if and only if there
is a partition λ = (n1, . . . , n�) such that Jordan normal form of a is

a ∼ C(n1, a1) ⊕ · · · ⊕ C(n�, a�)

with distinct eigenvalues a1, . . . , a�. The centralizer of this Jordan normal form is
Hλ.

3. The Jordan group J (n) is isomorphic to the group of units of the quotient ring
C[X]/(Xn) by an obvious correspondence

h =
∑

0≤i<n

hiΛ
i 	→ h =

∑
0≤i<n

hiX
i

Let x = (x0, x1, x2, . . . ) be a sequence of variables and let θm(x) (m ≥ 0) be the
function defined by∑

0≤m<∞
θm(x)T m = log(x0 + x1T + x2T

2 + · · · ) (2.1)
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= log x0 + log

(
1 + x1

x0
T + x2

x0
T 2 + · · ·

)
. (2.2)

Here θ0(x) = log x0, and θm(x) (m ≥ 1) is a quasihomogeneous polynomial of
x1/x0, . . . , xm/x0 of weight m if the weight of xk/x0 is defined to be k which is written
explicitly as

θm(x) =
∑

(−1)k1+···+km−1 (k1 + · · · + km − 1)!
k1! · · · km!

(
x1

x0

)k1

· · ·
(

xm

x0

)km

,

where the sum is taken over the indices (k1, . . . , km) ∈ Z
m
≥0 such that k1 +2k2 +· · ·+mkm =

m.

LEMMA 2.2 ([6]). We have the isomorphism J (n) � C× × Cn−1 by the correspon-
dence

h =
∑

0≤i<n

hiΛ
i 	→ (h0, θ1(h), . . . , θn−1(h)) .

The following result is the consequence of the above lemma.

LEMMA 2.3. The character χn : J̃ (n) → C
× is given by

χn(h; α) = exp

( ∑
0≤i<n

αiθi(h)

)
= h

α0
0 exp

( ∑
1≤i<n

αiθi(h)

)
,

where α = (α0, . . . , an−1) are arbitrary complex constants.

Since Hλ is a product of J (nk), the character of H̃λ is the product of the characters χnk

of J̃ (nk).

PROPOSITION 2.4. A character χλ : H̃λ → C× is given, for some α =
(α(1), . . . , α(�)) ∈ CN, α(k) = (α

(k)
0 , α

(k)
1 , . . . , α

(k)
nk−1) ∈ Cnk , by

χλ(h; α) =
∏

1≤k≤�

χnk (h
(k); α(k)) =

∏
1≤k≤�

exp

( ∑
0≤i<nk

α
(k)
i θi(h

(k))

)
, (2.3)

where h = (h(1), . . . , h(�)) ∈ H̃λ, h
(k) ∈ J̃ (nk).

Next we consider the “Radon transform” of the character χλ. As in the case of Aomoto-
Gelfand hypergeometric, we substitute polynomials of degree 1 in t = (t1, . . . , tr ) into the
character and integrate. We define the space of coefficients of these polynomials.

We sometimes identify a partition λ = (n1, . . . , n�) with the Yang diagram which is
obtained by arraying boxes, n1 boxes in the first row, n2 boxes in the second row, and so on.

See Figure. A sequence µ = (m1, . . . ,m�) ∈ Z
�
≥0 is called a subdiagram of λ if it satisfies
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FIGURE 1. Subdiagram (1,2,0,1) in (4,3,3,2)

0 ≤ mk ≤ nk (1 ≤ k ≤ �) and is denoted as µ ⊂ λ. The sum |µ| = m1 + · · · + m� is
called the weight of µ. See Figure 1. For a given z = (z(1), . . . , z(�)) ∈ Matr+1,N(C) with

z(k) = (z
(k)
0 , . . . , z

(k)
nk−1) and for any subdiagram µ ⊂ λ, |µ| = r + 1, we put

zµ = (z
(1)
0 , . . . , z

(1)
m1−1, . . . , z

(�)
0 , . . . , z

(�)
m�−1) ∈ Matr+1(C).

DEFINITION 2.5. The generic stratum Zr,λ ⊂ Matr+1,N(C) with respect to λ is de-
fined by

Zr,λ = {z ∈ Matr+1,N(C) ; det zµ �= 0 for any µ ⊂ λ, |µ| = r + 1} .

For the character χλ(· ; α) given in (2.3), we assume∑
1≤k≤�

α
(k)
0 = −r − 1 . (2.4)

Moreover we define a biholomorphic map

ι : Hλ →
∏

1≤k≤�

(
C

× × C
nk−1) ⊂ C

N

by

ι(h) = (h
(1)
0 , . . . , h

(1)
n1−1, . . . , h

(�)
0 , . . . , h

(�)
n�−1)

for h = ⊕
k[h(k)

0 , . . . , h
(k)
nk−1] ∈ Hλ. The map ι can be lifted to that from H̃λ to

∏
1≤k≤�

(
C̃××

Cnk−1
)
. This lift is also denoted by ι.

DEFINITION 2.6. The general hypergeometric function of type λ (GHF of type λ, for
short) is the function of z ∈ Zr,λ defined by

Fλ(z; α) =
∫

∆z

χ(ι−1(tz), α)dt1 ∧ · · · ∧ dtr , (2.5)
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where we assumed (2.4) and ∆z is an r-dimensional cycle in Cr \ ∪1≤k≤�{tz(k)
0 = 0} of the

homology group defined by the integrand χ(ι−1(tz), α) in Cr (see also Sect.3).

3. Twisted homology and cohomology

In this section, we explain about the twisted algebraic de Rham cohomology group and
twisted homology group associated with the GHF defined by 1-dimensional integral.

3.1. Algebraic de Rham cohomology. Let S̄ be a complex affine line with the co-

ordinates s. For a partition λ = (n1, . . . , n�) of N and z = (z(1), . . . , z(�)) ∈ Z1,λ, we

have the multivalued function U(s) = χλ(ι
−1(sz); α) appeared as an integrand of GHF de-

fined by 1-dimensional integral. U(s) has the singular locus D = {p(1), . . . , p(�)}, where

p(k) = {s ∈ S̄ ; sz(k)
0 = 0}. Here, we regard p(k) as ∞ when sz(k)

0 is a constant function of s.

Note that p(1), . . . , p(�) are distinct by virtue of the condition for z ∈ Z1,λ. We assume here

p(1) = ∞. Put S = S̄ \ D and define the rational 1-form ω on S by

ω := d log U(s) = d log χ(ι−1(sz); α),

where d denotes the exterior differentiation with respect to s. Note that if αnk−1 �= 0 for all k,

the divisor of ω is
∑

1≤k≤�(−nk)p
(k). Let Ω0(∗D) and Ω1(∗D) be the modules of rational

functions and rational 1-forms with poles at most on D. Let ∇ : Ω0(∗D) → Ω1(∗D) be the
twisted differentiation defined by

∇f = df + ω ∧ f , f ∈ Ω0(∗D) .

Since ∇ = U(s)−1 · d · U(s), we have ∇2 = U(s)−1 · d2 · U(s) = 0. Moreover we have
∇f ∈ Ω1(∗D) since ω is a rational form with poles on D. Thus we have the twisted algebraic
de Rham complex

(Ω•(∗D),∇) : 0 → Ω0(∗D)
∇−→ Ω1(∗D) → 0.

We define twisted algebraic de Rham cohomology by

Hi(Ω•(∗D),∇) := ker{∇ : Ωi(∗D) → Ωi+1(∗D)}/∇Ωi−1(∗D) , i = 0, 1 .

PROPOSITION 3.1 ([8]). Suppose that the parameter α = (α(1), . . . α(�)) ∈ CN satis-
fies

α
(k)
nk−1 �= 0 if nk ≥ 2 and α

(k)
nk−1 /∈ Z if nk = 1 . (3.1)

Then we have
1. Hp(Ω•(∗D),∇) = 0 for p �= 1,

2. dimC H 1(Ω•(∗D),∇) = N − 2,

3. the 1-forms sq−1ds, 1 ≤ q ≤ N − 2, provide a basis of the vector space

H 1(Ω•(∗D),∇).
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3.2. Twisted homology. We consider the twisted homology groups associated with
the 1-dimensional integral (2.5). We assume that the parameters α satisfy the condition (3.1).

Note that the integrand of the general hypergeometric integral for z ∈ Z1 is written as

χ(ι−1(sz); α) =
∏

1≤k≤�

(
sz(k)

0

)α(k)
0 × eF(s)

where F(s) is the rational function of s:

F(s) =
∑

1≤k≤�

∑
1≤i<nk

α
(k)
i θi(sz(k)) .

Let L be the rank 1 local system of complex vector space on S whose local horizontal sections

are constant multiples of the multivalued function χ(ι−1(sz); α). Equivalence class of the lo-

cal system L is determined by the multivalued part
∏

1≤k≤�

(
sz(k)

0

)α(k)
0 . The rational function

F(s) carries an information of exponential growth and decay of the integrand. This informa-
tion is formulated as follows.

Let Ψ be the family of closed sets such that A ∈ Ψ if A satisfies the condition:

For any a ∈ R , A ∩ {s ∈ S; �F(s) ≥ a} is compact.

Then we can define the homology group of locally finite chains with coefficients in the local
system L and with the family of supports Ψ .

Consider an infinite sum c = ∑
σ aσ ⊗ σ , where σ is a singular p-simplex in S given

by a smooth map σ : ∆p → S from the standard p-simplex ∆p to S, and aσ is a horizontal
section of the local system on ∆p obtained by pulling back the local system L on S by the
map σ. We assume that the sum is locally finite and that supp c ∈ Ψ . We call such infinite
sum c a p-chain. With the obvious addition, the set of p-chains forms an abelian group which
is denoted by CΨ

p (S,L). We can define the boundary map ∂ : CΨ
p (S,L) → CΨ

p−1(S,L) as

usual and hence we have the chain complex (CΨ• (S,L), ∂). The p-th homology groups of the

chain complex is denoted by HΨ
p (S;L).

PROPOSITION 3.2. For χ(ι−1(sz); α) we assume the condition (3.1) on the parameter
α. Then we have

1. HΨ
p (S;L) = 0 if p �= 1

2. dimC HΨ
1 (S;L) = N − 2.

For [γ ] ∈ HΨ
1 (S;L) and [ϕ] ∈ H 1(Ω•(∗D),∇) with γ = ∑

σ aσ ⊗ σ, we define

〈[γ ], [ϕ]〉 =
∑
σ

∫
∆1

aσ · σ ∗ϕ .

We can see that the right hand side is independent of the choice of 1-cycle γ representing
the class [γ ] and of 1-form ϕ representing the cohomology class [ϕ]. Hence the pairing 〈 , 〉
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FIGURE 2. Cycles

defines a bilinear map HΨ
1 (S;L) × H 1(Ω•(∗D),∇) → C.

By Proposition 3.2, we can choose cycles γ1, . . . , γN−2 such that the homology classes
[γ1], . . . , [γN−2] form a basis of HΨ

1 (S;L). Since we don’t need the explicit form of a basis,
we simply give an example of a choice of a basis.

EXAMPLE 3.3. λ = (3, 3, 1). In this case dimC HΨ
1 (S;L) = 5. we assume the

stronger condition than (3.1):

α
(k)
0 /∈ Z (k = 0, 1, 2) , α

(k)
2 �= 0 (k = 0, 1)

Then we can take cycles γi (i = 1, . . . , 5) for a basis whose supports are drawn in the
Figure 2.

One more convention. Let [γ ] ∈ HΨ
1 (S;L) and assume that in the expression γ =∑

σ aσ ⊗ σ , aσ is a pull back of some branch of χ(ι−1(sz); α). In this case we write as

〈[γ ], [ϕ]〉 =
∫

γ

χ(ι−1(sz); α)ϕ

by abuse of notations.

4. Main theorem

In view of Proposition 3.1, we take z ∈ Z1,λ and put

ωq = ωq(s) := χ(ι−1(sz); α)sq−1ds , 1 ≤ q ≤ N − 2 .

They are multivalued 1-forms on S = S̄ \ D. Let γ1, . . . , γN−2 be cycles of the homology
group HΨ

1 (S;L) as in Subsection 3.2.
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DEFINITION 4.1. Let I, J be ordered subsets of {1, . . . , N − 2} of the cardinality
|I | = |J | = r, say, I = (i1, . . . , ir ), J = (j1, . . . , jr ), The determinant

AIJ = det

(∫
γip

ωjq

)
1≤p,q≤r

is called the Wronskian determinant of level r for the pair (I, J ).

For a technical reason, we assume that J satisfies j1 > · · · > jr . But this assumption
does not harm the generality of discussion.

Let Si (1 ≤ i ≤ r) be r copies of affine line C and let si be the coordinates of the i-th
copy Si . Let T be the r-dimensional complex affine space with coordinates t = (t1, . . . , tr ).

Define a map φ : S1 × · · · × Sr → T by the correspondence s = (s1, . . . , sr ) 	→ t where the
i-th coordinate ti of the image of φ is the i-th elementary symmetric function of s:

t1 = s1 + s2 + · · · + sr , . . . , tr = s1s2 . . . sr .

Let µ = (µ1, . . . , µr) be a Young diagram and let σµ(s) be the Schur polynomial for µ:

σµ(s) =

∣∣∣∣∣∣∣∣∣∣

s
µ1+r−1
1 . . . s

µ1+r−1
r

s
µ2+r−2
1 . . . s

µ2+r−2
r

...
...

s
µr

1 . . . s
µr
r

∣∣∣∣∣∣∣∣∣∣
/
∣∣∣∣∣∣∣∣∣

sr−1
1 . . . sr−1

r

sr−2
1 . . . sr−2

r
...

...

1 . . . 1

∣∣∣∣∣∣∣∣∣
Since σµ(s) is a symmetric polynomial in s, it can be expressed as a polynomial of elementary
symmetric functions t1, . . . , tr of s1, . . . , sr . We denote this polynomial in t as Sµ(t). Now
the main theorem is stated as follows.

THEOREM 4.2. Let λ = (n1, . . . , n�) be a partition of N and let Φλ : Z1,λ → Zr,λ

be the generalized Veronese map defined in Section 5, Definition 5.5. Then for any indices
I = (i1, . . . , ir ) and J = (j1 > · · · > jr), we have

AIJ (z) =
∫

φ∗(γi1×···×γir )

χ(tΦλ(z); α)SY (t)dt1 ∧ · · · ∧ dtr ,

where Y is the Yang diagram corresponding to (j1 − r, j2 − r + 1, . . . , jr − 1).

COROLLARY 4.3. If we take J = (r, r−1, . . . , 1), then for any index I ⊂ {1, . . . , N−
2} of |I | = r , AIJ (z) gives the general hypergeometric function of type λ on the image
Φλ(Z1,λ) ⊂ Zr,λ.

5. Veronese map

We introduce the map Φλ : Z1,λ → Zr,λ which is used in the statement of Theorem 4.2.
First we treat the simple case λ = (n). Let V be the complex vector space of dim V = 2.
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Let R = C[T ]/(T n), where (T n) denote the ideal of C[T ] generated by T n. Put W :=
V ⊗C R. Then W is a free R-module of rank 2 as well as a left GLV (C)-module by the action
g · (v ⊗ h) = (gv) ⊗ h, where g ∈ GLV (C), v ∈ V and h ∈ R. The module W and the ring
R above are also denoted as Wn and Rn, respectively, when it is necessary to emphasize their
dependence on n.

Let Sr (W) be the symmetric tensor product of W as R-module. Since Sr(W) �
Sr(V ) ⊗C R, Sr(W) is a free R-module of rank r + 1. The symmetric tensor product Sr(W)

is endowed also with the structure of left GLV (C)-module induced from that for W.

DEFINITION 5.1. The (GLV (C), R)-equivariant map Φ : W → Sr(W) defined by

Φ(w) =
r︷ ︸︸ ︷

w ⊗ · · · ⊗ w is called the generalized Veronese map. Sometimes we write the map
Φ as Φn in order to emphasize the dependence on n.

Let us write down the Veronese map Φn in terms of coordinates. Let e0, e1 be a basis

of V by which we identify V with C2. Since W = V ⊗ Rn, using its C-basis ei ⊗ T j (i =
0, 1; 0 ≤ j < n) we can identify W with Mat2,n(C) as C-vector spaces by the correspondence

W � w =
∑
i=0,1

∑
0≤j<n

wij ei ⊗ T j 	→ (wij ) ∈ Mat2,n(C) .

Similarly we can identify Sr (W) with Matr+1,n(C) as C-vector spaces. For this we take a
basis e0, . . . , er of Sr (V ) defined by

ek = 1

k!(r − k)!
∑

i1+···+ir=k

ei1 ⊗ · · · ⊗ eir

and identify Sr(V ) with Cr+1. Hence using the basis ek ⊗ T j of Sr (W) � Sr(V ) ⊗ Rn, we
identify Sr(W) with Matr+1,n(C) by the correspondence

Sr(W) � z =
∑

0≤i≤r

∑
0≤j<n

zij ei ⊗ T j 	→ (zij ) ∈ Matr+1,n(C) .

For w ∈ W, we put

Φn(w) =
r times︷ ︸︸ ︷

w ⊗ · · · ⊗ w =
∑

0≤i≤r

∑
0≤j<n

ϕij (w)ei ⊗ T j .

It is easily seen that the explicit form of polynomials ϕij (w) is given by

ϕij (w) =
∑

w0j1 . . . w0jr−iw1jr−i+1 . . . w1jr ,

where the sum is taken over all the indices (j1, . . . , jr ) satisfying 0 ≤ jp < n and j1 + · · · +
jr = j. Therefore ϕij (w) are homogeneous polynomials of w ∈ Mat2,n(C) of degree r . Then
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the map

Mat2,n(C) � w 	→ (ϕij (w)) ∈ Matr+1,n(C)

gives the expression of the map Φn in terms of coordinates.

REMARK 5.2. When n = 1, the map Φ is given in terms of coordinates by

t (w0, w1) 	→ t (wr
0, w

r−1
0 w1, . . . , w0w

r−1
1 , wr

1)

and induces the map P1 → Pr which coincides with the Veronese embedding in the usual
sense.

REMARK 5.3. The Veronese map Φn : Mat2,n(C) → Mat3,n(C) is written as follows.

Define a symmetric bilinear map ϕ : C2 × C2 → C3 by

ϕ(u, v) = 1

2


 2u0v0

u0v1 + u1v0

2u1v1


 , u =

(
u0

u1

)
, v =

(
v0

v1

)
.

Then, for z = (z0, . . . , zn−1) ∈ Mat2,n(C),

Φn(z) = (ϕ(z0, z0), ϕ(z0, z1) + ϕ(z1, z0), . . . , ϕ(z0, zn)

+ ϕ(z1, zn−1) + · · · + ϕ(zn−1, z1) + ϕ(zn, z0)) .

We give a proposition which will be used in the proof of Lemma 6.1. Take z =
(z0, . . . , zn−1) ∈ Mat2,n(C) and define the polynomials lk(s) in s by

lk(s) := (1, s)zk = z0k + sz1k , 0 ≤ k < n .

Let s1, . . . , sr be r copies of the variable s and let ti be the i-th elementary symmetric function
of s1, . . . , sr . The following proposition follows from the definition of the Veronese map
Φ = Φn.

PROPOSITION 5.4. Let Lk(t), 0 ≤ k < n, be the linear form of t = (1, t1, . . . , tr )

defined by

Lk(t) = tΦ(z)k ,

where Φ(z)k is the k-th column vector of the Veronese image Φ(z). Then we have the identity∑
0≤k<n

Lk(t)T
k ≡

∏
1≤i≤r

{l0(si ) + l1(si )T + · · · + ln−1(si)T
n−1} mod (T n) .

Let λ = (n1, . . . , n�) be the partition of N as in the preceding sections. Put Wλ =
Wn1 ⊕ · · · ⊕ Wn� and Rλ = Rn1 × · · · × Rn� , where Wn = V ⊗ Rn. Then Wλ is considered
as a left GLV (C)-module as well as an Rλ-module.



WRONSKIAN DETERMINANT FORMULAS 519

DEFINITION 5.5. Define the map

Φλ : Wλ → ⊕iS
r (Wni )

by (
w(1), . . . , w(�)

) 	→ (
Φn1(w

(1)), . . . , Φn� (w
(�))
)
.

This is called the Veronese map of type λ.

Expressing the map Φλ in terms of coordinates, we get the map Mat2,N(C) →
Matr+1,N(C). We also denote it by Φλ. Let R×

n denote the group of units in Rn and let

R×
λ := R×

n1
× · · · × R×

n�
be the group of units in Rλ. R×

λ acts on Wλ. In terms of the co-
ordinates this action is interpreted as the action of Hλ = J (n1) × · · · × J (n�) on Mat2,N(C),
Cf. Remark 2.1.

PROPOSITION 5.6. The map Φλ takes generic stratum Z1,λ into Zr,λ : Φλ : Z1,λ →
Zr,λ.

Let ρ : GL2(C) → GLr+1(C) denote the homomorphism which represents the action of
GLV (C) on Sr(W) as the action of GL2(C) on Matr+1,N(C).

To prove the proposition we first show the following lemma.

LEMMA 5.7. The generic stratum Zr,λ is preserved by the action of GLr+1(C) and
Hλ. In particular it is preserved by the action of ρ(GL2(C)).

PROOF. It is clear that the generic stratum Zr,λ is preserved by the left multiplication of
g ∈ GLr+1(C) because we have det(gzµ) = det g · det zµ for any subdiagram µ ⊂ λ, |µ| =
r + 1 (see §2 for this notation). To see that Zr,λ is invariant by the action of Hλ, it will be

sufficient to notice that for h = (h(1), . . . , h(�)) ∈ Hλ we have

span
〈
z
(k)
0 , . . . , z(k)

p

〉 = span
〈
(z(k)h(k))0, . . . , (z

(k)h(k))p
〉

for any 0 ≤ p < nk, which is easily seen by writing down z(k)h(k) explicitly. �

Let Ip be the set of multi-indices I = (i1, . . . ir ) satisfying 0 ≤ i1 ≤ · · · ≤ ir and
|I | := i1 + · · · + ir = p. Put I = ⋃

0≤p≤r Ip. In I we consider the lexicographic order,

namely, for I = (i1, . . . ir ) and J = (j1, . . . jr ) in I we define I < J if there exists 1 ≤ s ≤ r

such that i1 = j1, . . . , is−1 = js−1 and is < js. In each Ip there is the maximum element

(

r−p︷ ︸︸ ︷
0, . . . , 0,

p︷ ︸︸ ︷
1, . . . , 1) which we denote by Ip. For I ∈ I we put

z⊗I = zi1 ⊗ · · · ⊗ zir

and denote its symmetrization by S(z⊗I ):

S(z⊗I ) = 1

r!
∑

σ∈Sr

ziσ(1)
⊗ · · · ⊗ ziσ(r)

.
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LEMMA 5.8. Let z = (z0, . . . , zn−1) ∈ Mat2,n(C) such that det(z0, z1) �= 0 and let
Φ(z) = (Φ(z)0, . . . , Φ(z)n−1) ∈ Matr+1,n(C). Then for any 0 ≤ p < n we have

span〈Φ(z)0, . . . , Φ(z)p〉 = span〈S(z⊗I0 ), . . . ,S(z⊗Ip )〉 .

PROOF. We prove by induction on p. When p = 0, we have Φ(z)0 = S(z⊗I0) and the
assertion is trivial. Suppose that the assertion holds for the indices up to p − 1. It is enough
to show

span〈S(z⊗I0 ), . . . ,S(z⊗Ip−1),Φ(z)p〉 = span〈S(z⊗I0 ), . . . ,S(z⊗Ip )〉 . (5.1)

By the definition of Φ(z)p we have

Φ(z)p =
∑
I∈Ip

cIS(z⊗I )

for some constants cI . For I ∈ Ip such that I < Ip, there is an index iq ∈ I such that 2 ≤ iq .

Since z0 and z1 are linearly independent, ziq is a linear combination of them. Then S(z⊗I )

can be written as a linear combination of S(z⊗I0), . . . ,S(z⊗Ip−1). This proves the assertion
(5.1) and the lemma. �

The following is the consequence of Lemma 5.8.

LEMMA 5.9. For z = (z(1), . . . , z(�)) ∈ Z1,λ with z(k) = (z
(k)
0 , . . . , z

(k)
nk−1), put ζ =

(ζ (1), . . . , ζ (�)) ∈ Z1,λ with ζ (k) = (z
(k)
0 , z

(k)
1 , 0, . . . , 0). Then Φλ(z) ∈ Zr,λ if and only if

Φλ(ζ ) ∈ Zr,λ.

LEMMA 5.10 ([8]). Let z ∈ Z1,λ. Then there exist g ∈ GL2(C) and h ∈ Hλ such that

x = (x(1), . . . , x(�)) := gzh ∈ Z1,λ has the form

x(k) =
(

x
(k)
0 x

(k)
1 . . . x

(k)
nk−1

1 0 . . . 0

)
(5.2)

Note that for x in Lemma 5.10, we have

x ∈ Z1,λ ⇐⇒ x
(1)
1 . . . x

(�)
1

∏
i<j

(x
(i)
0 − x

(j)

0 ) �= 0 .

In view of Lemmas 5.7, 5.9 and 5.10, to prove Proposition 5.6, it is sufficient to show
that Φλ(x) ∈ Zr,λ for x ∈ Z1,λ having the form (5.2) and satisfying

x
(k)
2 = · · · = x

(k)
nk−1 = 0 , 1 ≤ k ≤ � . (5.3)

Put

f (v) = t (vr , vr−1, . . . , 1) . (5.4)
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Then Φλ(x) = (
Φn1(x

(1)), . . . , Φn� (x
(�))
)

is written as

Φnk (x
(k)) = (

f (x
(k)
0 ), x

(k)
1 (Df )(x

(k)
0 ), . . . , (x

(k)
1 )nk−1(Dnk−1f )(x

(k)
0 )

)
,

where D is the differentiation with respect to v.

LEMMA 5.11. Take a subdiagram µ = (m1, . . . ,m�) of λ with |µ| = r + 1. Then

det(Φλ(x))µ = Cµ(x
(1)
1 )m1(m1−1)/2 . . . (x

(�)
1 )m�(m�−1)/2

∏
1≤i<j≤�

(
x

(i)
0 − x

(j)

0

)mimj ,

where

Cµ =
∏

1≤k≤�

(−1)mk(mk−1)/2

∏
0≤q<mk

(
r + 1 −∑

1≤i≤k mi + q
)!{

mk(r + 1 −∑
1≤i≤k mi)

}! . (5.5)

PROOF. Define the polynomial F(u) of u = (u1, . . . , u�) by

F(u) := det(F (1), . . . , F (�)) ,

where F (k)is defined by

F (k) = (
f (uk), (Df )(uk), . . . , (D

mk−1f )(uk)
)
.

It is to be shown that

F(u) = Cµ

∏
1≤i<j≤�

(ui − uj )
mimj . (5.6)

For an index I = (i0, . . . , imk−1) such that 0 ≤ i0 ≤ · · · ≤ imk−1, we put

DI F (k) := (
(Di0f )(uk), (D

i1+1f )(uk), . . . , (D
imk−1+mk−1f )(uk)

)
.

It is easily seen from the explicit form of F (k) that F(u) is of degree at most mk(r + 1 − mk)

as a polynomial of uk. To show (5.6), first we consider F as a polynomial of u1 regarding
u2, . . . , u� as constants. m times differentiation with respect to u1 yields(

∂/∂u1
)m

F =
∑

I=(i0,...,im1−1),|I |=m

det(DIF (1), F (2), . . . , F (�)) . (5.7)

Evaluate (∂/∂u1)
mF at u1 = uk. The term det(DIF (1), F (2), . . . , F (�)) in the right hand side

of (5.7) vanishes at u1 = uk if the index I satisfies i0 < mk. And this condition holds for all
terms if m < m1mk. This implies that F has the factor

∏
2≤k≤�(u1 −uk)

m1mk as a polynomial
of u1. We do the same thing for F by considering now u2 as a variable and u1, u3, . . . , u� as
constants and we can see that F has also a factor

∏
3≤k≤�(u2 − uk)

m2mk . Proceeding in the
same manner and noting that F is of degree less that mk(r + 1 − mk) in uk, we conclude that
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F is written in the form (5.6), where the constant Cµ is yet to be determined. To determine
the constant Cµ, consider the differential operator

P =
∏

1≤k≤�

(
∂/∂uk

)mk(mk+1+···+m�)

and apply it to the both sides of (5.6). Then the left hand side of (5.6) becomes

P · F(u) = det
(
DI(1)

F (1), . . . ,DI(�)

F (�)
)

(5.8)

=
∏

1≤k≤�

(−1)mk(mk+1)/2
∏

0≤q<mk

(
r + 1 −

∑
1≤i≤k

mi + q

)
!,

where

I (k) =
(

r + 1 −
∑

1≤i≤k

mi, . . . , r + 1 −
∑

1≤i≤k

mi

)
.

This is seen by writing down explicitly the matrix DI(k)
F (k). On the other hand, the right hand

side is

P · Cµ

∏
1≤i<j≤�

(ui − uj )
mimj = Cµ

∏
1≤k≤�

{mk(mk+1 + · · · + m�)}!.

Equating the left and right hand sides, we get (5.5). �

6. Proof of the main theorem

We prove Theorem 4.2 only for I = {1, . . . , r} and J = {j1, . . . , jr } such that j1 >

· · · > jr in order to avoid the cumbersome complexity of notation. In the expression of AIJ

we denote the variable of integration on γi by si . We put si = (1, si). Then we have

AIJ = det

(∫
γi

ωjk

)
(6.1)

=
∑

σ∈Sr

sgn(σ )

∫
γ1

ωjσ(1)

∫
γ2

ωjσ(2)
· · ·
∫

γr

ωjσ(r)

=
∫

γ1×···×γr

∏
i

χ(ι−1(si z); α)
∑

σ∈Sr

sgn(σ )s
jσ(1)−1
1 . . . s

jσ(r)−1
r ds1 ∧ · · · ∧ dsr

=
∫

γ1×···×γr

∏
i

χ(ι−1(si z); α)

∣∣∣∣∣∣∣∣
s
j1−1
1 . . . s

j1−1
r

...
...

s
jr−1
1 . . . s

jr−1
r

∣∣∣∣∣∣∣∣ ds1 ∧ · · · ∧ dsr .

The first term in the integrand is calculated as
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LEMMA 6.1. We have∏
i

χ(ι−1(si z); α) = χ(ι−1(tΦλ(z)); α) , (6.2)

where ti is the i-th elementary symmetric function of (s1, . . . , sr ) and we put t =
(1, t1, . . . , tr ).

PROOF. Since χ is a character of H̃λ, we have

∏
i

χ(ι−1(si z); α) = χ

(∏
i

ι−1(si z); α

)
.

On the other hand∏
i

ι−1(siz) =
⊕

1≤k≤�

∏
i

(
si z

(k)
0 + si z

(k)
1 Λk + · · · + si z

(k)
nk−1Λ

nk−1
k

)
(6.3)

=
⊕

1≤k≤�

ι−1(tΦnk(z
(k)))

= ι−1(tΦλ(z)) ,

where Λk = (δi+1,j )0≤i,j<nk . Here we used Proposition 5.4. Thus we have (6.2). �

The following lemma can be shown by easy computation. See also [15].

LEMMA 6.2. We have

∂(t1, . . . , tr )

∂(s1, . . . , sr )
=

∣∣∣∣∣∣∣∣∣

sr−1
1 . . . sr−1

r
...

...

s1 . . . sr

1 . . . 1

∣∣∣∣∣∣∣∣∣
It follows from Lemmas 6.1 and 6.2, the right hand side of (6.1) can be written as

AIJ =
∫

φ∗(γ1×···×γr )

∏
i

χ(ι−1(si z); α) (6.4)

×

∣∣∣∣∣∣∣∣
s
j1−1
1 . . . s

j1−1
r

...
...

s
jr−1
1 . . . s

jr−1
r

∣∣∣∣∣∣∣∣
/
∣∣∣∣∣∣∣∣∣

sr−1
1 . . . sr−1

r
...

...

s1 . . . sr

1 . . . 1

∣∣∣∣∣∣∣∣∣
dt1 ∧ · · · ∧ dtr

=
∫

φ∗(γ1×···×γr )

χ(ι−1(tΦλ(z)); α)SY (t)dt1 ∧ · · · ∧ dtr ,

for the Young diagram Y = (j1 − r, j2 − r + 1, . . . , jr − 1). Thus we have completed the
proof of the main theorem. �
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