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On Stronger Versions of Brumer’s Conjecture

Masato KURIHARA

Keio University

Abstract. Let k be a totally real number field and L a CM-field such that L/k is finite and abelian. In this
paper, we study a stronger version of Brumer’s conjecture that the Stickelberger element times the annihilator of the
group of roots of unity in L is in the Fitting ideal of the ideal class group of L, and also study the dual version. We
mainly study the Teichmiiller character component, and determine the Fitting ideal in a certain case. We will see that
these stronger versions hold in a certain case. It is known that the stronger version (SB) does not hold in general. We
will prove in this paper that the dual version (DSB) does not hold in general, either.

0. Introduction

0.1. In number theory, it is very important to know the Galois action on the ideal class
group of a number field. Concerning the Galois action, an interesting phenomenon is the
annihilation of the class group by some analytic element whose origin is the zeta functions in
some Galois group ring. Let k be a totally real number field, and L be a CM-field such that
L/k is finite and abelian. We fix an odd prime number p and consider the p-component A,
of the ideal class group Cly of L. Put Ry, = Z,[Gal(L/k)], and regard Ay as an Ry -module.

Let ptpoe (L) be the group of roots of unity with order a power of p in L, and I} =
Anng; (p (L)) the annihilator ideal of w poo (L) in Ry. We denote by 6, /x € Q[Gal(L/k)]
the Stickelberger element, which is defined by the values of partial zeta functions (see §2.1).
Then by Deligne and Ribet [3] we know I.0;,r C Ry. Brumer’s conjecture claims that
1101/ C Anng, (AL). We consider the following property (SB) which is stronger than this;

(SB) 161k C Fittg, (AL)

where Fittg, (A) is the Fitting ideal of A; (see §2.2). Since Fittg, (AL) C Anng, (AL),
(SB) is certainly stronger than Brumer’s conjecture. The main result in the paper [12] by
Miura and the author implies that (SB) holds if £ = Q. In the paper [7] by Greither and the
author, we showed that (SB) does not hold in general, and the dual version is more natural and
likely to hold. Let (A7)" be the Pontryagin dual of A with cogredient Galois action, namely
(0f)(x) = f(ox)foro € Gal(L/k), f € (AL)Y and x € Ay. Then the dual version means

(DSB) 1161k C Fittg, ((AL)") .
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Our explicit example in [7] §3.2 does not satisfy (SB), but satisfies (DSB). In [6], Greither
proved a beautiful theorem that the equivariant Tamagawa number conjecture implies (DSB)
if ftpoo (L) is cohomologically trivial. Concerning the exposition of Brumer’s conjecture and
the Fitting ideals, see Greither [4].

In this paper, we prove the existence of number fields for which neither (DSB) nor (SB)
holds (see Corollary 0.5). (Under the assumptions of Corollary 0.5, 1t (L) is not cohomo-
logically trivial.)

We study the Iwasawa theoretic version of (DSB). Let L be as above and Ly, /L be the
cyclotomic Z ,-extension. We define

ALoo = lim AL,,
—

where L, is the intermediate field such that [L, : L] = p" forn > 0. Put Ay, =
Z,[[Gal(Lx/k)]]. We study the Pontryagin dual (A Ls,)" which is a finitely generated tor-
sion Ap-module. We define 11, = Anng,  (1p=(Loo)) C Ap,,. By Deligne and Ribet
[3], there is a unique element 67, in the total quotient ring of Ay, which is the “projective
limit" of 67,/ (more precisely, see §2.1).

We study the Iwasawa theoretic version

(IDSB) I1. 0. k CFitta,  ((AL)Y)

of (DSB). Theorem A.5 in [11] implies that (IDSB) holds outside the Teichmiiller character
component if we assume the Leopoldt conjecture and the vanishing of the Iwasawa p-invariant
of L. In particular, if u, ¢ L where i, is the group of p-th roots of unity, (IDSB) is true
under the above assumptions. In this paper, we mainly study the case u, C L.

We assume that L N koo = k where k is the cyclotomic Z,-extension of k. We denote
by I'(L/k) the p-component of Gal(L/k), so Gal(L/k) = I'(L/k) x A for some abelian
group A with p J#A.

Suppose at first that I"(L/k) >~ Z/pZ. If I'(L/k) is cyclic, by Theorem 3, Proposition
4 in Greither [5] and Corollary A. 13 in [7], we know that (IDSB) holds, assuming the van-
ishing of the p-invariant. Moreover, Fitt,,  ((A L)) is determined outside the component
of the Teichmiiller character by Theorem 3 in Greither [5] and Corollary A. 13 in [7]. In this
paper, we determine the Teichmiiller character component of the Fitting ideal in the case that
I'(L/k) ~Z/pZ.

Suppose that i, C L. We denote by K the subfield of L such that I"(L/k) = Gal(L/K),
so [K : k] is prime to p. Let w be the Teichmiiller character giving the action of Gal(K / k)
on [ p. Since [K : k] is prime to p, Ap, is decomposed into Ay = @X A)L(oo where x runs

over all equivalence classes of 6; -valued characters of Gal(K/k) (see §1.2). In particular,
we know that determining Fitt,, ((A L)) is equivalent to determining Fitt A% ((A{OO)V)

for all characters y of Gal(K/k) (for the definition of the x-components AXOO, A¥ | see

Loo?

§1.2). For any odd character x such that x # w, we know Fitt AL (( A{m)\/) is determined
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(see (2.3.2)). We study the w-component. To do this, we may assume K = k(up) (see §2.2).
We take a generator y of Gal(L /L) = Gal(Ks/K). We denote the cyclotomic char-
acter by « : Gal(Loo/k) —> Z;. The cyclotomic character of Gal(K /&) is also denoted
by «. Suppose that Gal(L~/K«o) is generated by o. Then Iy is generated by y — «(y) and
o — 1. In the following, we suppose that Lq/k is a finite abelian p-extension (so Lg is also
totally real) and L = Lo(p). We will state our theorems without explaining all notations.

THEOREM 0.1. Supposethat Lo/ k is a cyclic extension of degree p with LoNkeo = k.
We put L = Lo(up), and assume that the Iwasawa p-invariant of Loo/L vanishes, namely

w((AL)Y) = 0. We denote by S the set of primes of k which are prime to p and which are
ramified in L.

(1) Suppose at first that S is not empty. Then we have
Fitt4o ((A7)")

(I (DO (g er)

U#1
'eS

Here, the right hand side is defined in (2.3.8); v is the map defined in §2.1, ¢y is the Frobenius
of lin Gal(Kxo/k), and Vi is a modified Stickelberger element of Greither, which is
defined in (2.3.4), and which is described by using 0/ and O/ (see (2.3.7)). In this
case, we have

I, 0.k S Fitta, ((AL,)Y).
(2)  Suppose that S = ¢, namely L/ k is unramified outside p. Then we have
FittA(Zm((A‘ZOO)V) = (I1 0L/ -
We define the standard Iwasawa module X; by

X, =limAy,
pa

where the limit is taken with respect to the norm maps. We consider the following property
(ISB) 11,0, k CFitta, (XL,)-

In general, (ISB) does not hold (see [7] Theorem 1.1 and also §3.3). Suppose that L/k is as
in Theorem 0.1. Then we encounter a phenomenon that (IDSB) holds, but (ISB) does not.
We will explain in §3.3 that X, is not isomorphic to (Az_ )" as a Z,[I'(L/k)]-module, in
general (see (3.3.1) and (3.3.2)).

0.2. 'We summarize here some affirmative results for (SB) and (DSB). As we mentioned
above, if we assume the p-invariant of L,/L vanishes and I"(L/k) is cyclic, (IDSB) holds
by Theorem 3, Proposition 4 in Greither [5] and Corollary A. 13 in [7].

By the standard descent technique, we obtain the following results.
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COROLLARY 0.2. Suppose that L/k is a finite abelian extension such that I' (L] k) is
cyclicand L N Koo = K. We assume that the Iwasawa p-invariant of Lo/ L is zero.

(1) Suppose that n is sufficiently large such that all the primes above p of k are ramified
in the n-th layer Ly of the cyclotomic Zp-extension Lo /L. Then (DSB) holds for L,/ k.

(2) For any prime p of k above p, we assume at least one of the following;

(i) no prime above  splits in L/L™, or

(i) P is ramified in L.

Then both (DB) and (DSB) hold for L/ k.

This corollary will be proved in §3.4.

0.3. Next, we consider the case that I"(L/k) is not cyclic, and will obtain negative
results for (IDSB) and (DSB). As in Theorem 0.1, we study the w-component.

THEOREM 0.3. Supposethat Lo/ k is a finite abelian p-extension such that LoNkso =
k and Gal(Lo/k) is not cyclic. We put L = Lo(up), and assume that L/k is unramified
outside p. Then we have

(v — k()01 k € Fitta,  ((AL,)Y).
In particular, IDSB) does not hold, namely
I, O,k € Fitta, ((AL,)Y).

REMARK 0.4. (1) There are many examples of (k, L) satisfying the conditions of
Theorem 0.3. For example, if dimg, Ax/pAr > 2, there is an unramified extension Lo/k
with non-cyclic Galois group of order a power of p, so L = Lo(u,) satisfies the condition.
(We give an explicit example in Example 0.6 such that Lo/ is ramified.)

(2) In the setting of Theorems 0.1 and 0.3, pp~(L) is not cohomologically
trivial because I'(L/k) = Gal(Lo/k) acts on ppe(L) trivially, which implies
A (L/k), pp (L)) # 0.

(3) Ifk = Q,thereisno Lgasin Theorem 0.1 (2) or Theorem 0.3. In fact, if LoNQs =
Q and Lo/Q is a finite abelian p-extension which is unramified outside p, we have Lo = Q.

COROLLARY 0.5. (1) Let Lo/k be a finite abelian p-extension which is unramified
outside p such that Lo N koo = k and Gal(Lo/ k) is not cyclic. Then, for sufficiently large n,
(DSB) does not hold for Lo(pn)/ k.

(2) Suppose that Ly is as above. We denote by Pp i, the set of primes of koo above p,
and assume that

#HP € Pp ko | B splits completely in k( poo) and ramified in Lo(upe)} > 2.
Then, for sufficiently large n, neither (SB) nor (DSB) holds for Lo(upn)/k.

We will prove Theorems 0.1, 0.3 and Corollary 0.5 in §3.
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EXAMPLE 0.6. Let Fy be the minimal splitting field of x> — 39x — 16 = 0. We
know /79 € Fy and F;/Q(~/79) is unramified everywhere. Let F> be the minimal splitting
field of x3 — 6x — 3 = 0. We know +/69 € F» and F>/Q(+/69) is unramified outside 3
and ramified at the prime above 3. Let F; o/ F2 be the cyclotomic Z3-extension. Since the
class number of Q(+/69) is 1, the prime above 3 is totally ramified in F3 o /Q(+/69). We
putk = Q(\/@, \/7_9) and take p = 3. There are two primes P, P> of k above 3, and both
of them are totally ramified in kso. We denote by P (resp. P»2) the prime of koo above
p1 (resp. P2). Since Py and Py split in k(u3) = k(v/—3) = k(v/—23), B and P, split in
koo(3). Put Lo = F1F>. So Gal(Lo/k) ~ Z/3Z & Z/3Z. Since P and P, are totally
ramified in F2 ook/k, 1 and P, are totally ramified in F2 ook/koo. Thus, Lo/ k satisfies all
the conditions of Corollary 0.5. Therefore, neither (SB) nor (DSB) holds for L = Lo(pn)
with n > 0. We can construct many examples in this way.

The author would like to thank heartily C. Greither for the discussion on the subjects in
this paper, and for his useful comments by which the author could improve Theorem 0.3. (In
the first draft, only the case I'(L/k) = Z/pZ & Z/ pZ was studied in Theorem 0.3.)

NOTATION. Throughout this paper, we fix an odd prime number p. For any number
field F, we denote by Ar the p-component of the ideal class group of F. The cyclotomic
Z,-extension of F is denoted by F, and we define Ap,, = lim Ag, where F), is the n-th

—

layer of Fio/F forn > 0. We denote by Pr the set of all finite primes of F, and by P, g the
subset of Pr consisting of primes above p. We define P. = Pr \ P, r. For a group G and a
G-module M, we denote by MC the G-invariant part of M (the maximal subgroup of M on
which G acts trivially), and by M the G-coinvariant of M (the maximal quotient of M on
which G acts trivially).

1. Computation of some Tate cohomology groups

1.1. In this section we suppose that k is a totally real base field, and K and L are CM-
fields such that k C K C L and that L/k is a finite abelian extension. We assume that L/K
is a p-extension.

Put G = Gal(L/K). In this section we study the p-component A of the ideal class
group of L, especially the minus part A, on which the complex conjugation acts as —1.
Throughout this paper, for any module M on which the complex conjugation p acts, we define
the minus part M~ by M~ = {x € M | p(x) = —x}. We compute the Tate cohomology
groups H(G, Ay ) = H9(G, AL,))~ (cf. Serre [15] Chap. 8).

By Lemma 5.1 (2) in [10], we have an exact sequence
A%G, E)” — ﬁO(G, I1 EL) — H7Y(G, A~

we Pr,
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— HYG,Er)” — H1<G, I1 ELw> — H%G, AL~
we P,

— H*(G,EL)” — H2<G, I1 ELw>

wePp

where E; (resp. Ep,) is the unit group of L (resp. of the local field L,,), and Py, is the set of
all finite primes of L as in Notation. For each prime v € Px, we denote by G, the decompo-
sition subgroup of G at v. We know ﬁq(G, ]_[wePL Er,) =P ﬁq(GU, E,) where in

the right hand side we fix a prime w of L above v for v € Pk (note that ﬁq(Gv, Er,)=0

ve Pk

if v is unramified in L). More concretely, we have H %G, E L,) = I, by local class field
theory where [, is the inertia subgroup of G at v. Since H LaG,, L) = 0, from the exact
sequence 0 — Ez, —> L) —> Z —> 0 we have Hl(Gv, Ep,) = Z/ey,Z where ¢, is
the ramification index of v in L/K, and H2(G,, Er,) C Br(K,)[p®] where Br(K,)[p™] is
the subgroup of the Brauer group of K, consisting of elements with order a power of p.

Consider the cyclotomic Z,-extensions Koo/ K, Lo /L, and the n-th layers K,, L,. We
assume that L N Ko, = K. By the above descriptions, we have

lim @ HG,. EL,,) =lim P H*G,. EL,,) =0.

veE Pk, vePg,
Suppose that w4+ is a prime of L,4+; and wy,, v,4+1, v, are the primes of L,, K,t1,
K, below w41, respectively. Then the natural map Hl(Gvn, Ep,) = Z/ey,Z —>
H'(Gy,,,, EL,, ) = Z/ey,,,Z is the multiplication by ey,,,, which is the ramification

index of w, in L,4+1/L,. Each prime above p is totally ramified in Lo/L, for sufficiently
large n, and a prime v which is not above p is unramified in Lo /L. It follows that

lim P H'(Gv.EL,,)= P Z/eZ

ve Pk, veP,’(oo
where PI/(oo denotes the set of all finite primes of K, which are prime to p (as in Notation),
and e, is the ramification index of v in Lo/ Koo. We define Ay, = lim Ay, as in Notation,
—
and E; = lim E;,. Taking the direct limit of the above exact sequence, we obtain the
—

following lemma.

LEMMA 1.1. We have an exact sequence

0— A YG,AL)” — HY (G, EL )" — ( &y Z/eUZ)

’
UEPKoo

— H%G,AL,)” — H*(G,EL,)” — 0.
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1.2. Now, we assume that [K : k] is prime to p. Hence I'(L/k) = G in the termi-
nology of §0. The group ring Z,[Gal(K /k)] is a product of discrete valuation rings. More

explicitly, it is described as follows. For two 6; -valued characters x and x, of Gal(K / k), we

say x1 and x» are Q,-conjugate if o x; = x» for some o € Gal(ap/Qp). For a 6; -valued
character x of Gal(K/k), we put Oy = Z,[Image x]. We regard O, as a Z,[Gal(K/k)]
module by o - x = x(0)x for any o € Gal(K/k). We have

(1.2.1) Z,[Gal(K /k)] = €P 0,
X

where the sum is taken over the equivalence classes of 6; -valued characters of Gal(K /k)
(we choose a character x from each equivalence class).

For any Z,[Gal(K /k)]-module M, we define MX = M ®gz,[Gai(k/k)] Ox. Note
that MX is a direct summand of M because (1.2.1) implies M = @X MX. We put
Ak = Zpl[Gal(Koo/k)]] and Ap,, = Zp[[Gal(Loo/k)]]. Since Gal(K/k) is a direct
summand of Gal(L~/k), any Ap_-module M is naturally a Z,[Gal(K / k)]-module and M*
is defined. For such M, M* can be written as M* = M ®z,[Gal(k/k)] Ox = M Q4
O, [[Gal(Lx/K)]]. In the same way, for a Ak -module M, MX = M ®z,[Gal(K /)] 0, =
M ®ag,, OyxllGal(Koo/K)]I-

When K contains a primitive p-th root of unity, we denote by w the Teichmiiller character
which gives the action on fi .

PROPOSITION 1.2. (1) Suppose that x is an odd character such that x # w. Then
we have
be
A (G, A} _)=0 and H(G. A} )= ( D Z/evz) .
vePy
(2) Suppose that K = k() and [L : K] = p. Let P} be the set of all finite primes of
k which are prime to p as in Notation, and put
S ={l€ P, | is ramified in L/k}.
If S is not empty, we have
A7 NG, A? )=0 and H°(G,A%_ )= Coker (up — P M,,)
LSk

where 1), is the group of p-th roots of unity, the map is the diagonal map, and Sy, is the set
of primes of koo Which are above S.
(3) Next, we assume K = k(uup) and L/K is a (general abelian) p-extension which is
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unramified outside p (namely, the set S defined above is empty). Then we have

2 v
A NG, A? )~GY(1) and FIO(G,A‘ZN):(/\G) (1)

where GV, (/\2 G)" are the Pontryagin duals of G, /\2 G (the second exterior power of G),
and (1) is the Tate twist. In particular, HO(G, A‘;"oo) = 0 if and only if G is cyclic.

PROOF. First of all, since Gal(K/k) acts on G trivially, we have HY (G, )X =
H9(G, MX) for any x and any Ay -module M.

(1) Since x # w, we know (Ep )X = 0. This implies that HY(G, E; )* =
H1(G, (Er.)*) = 0. Therefore, Lemma 1.1 implies the conclusion of (1).

(2) Since up, C K, we know (Er )? = upe = Qp/Zy(1). Therefore, using G =
Z/pZ,wehave H' (G, E.)* = H'(G,Q,/Z,(1)) = 11, and

HX(G, EL ) = HXG,Q,/Z,)(1) = H*(G,Q,/Z,)(1) = 0.

Suppose that [ is in S. Since [ is unramified in K = k(up), [ € S implies that the inertia
group of [ in Gal(L/k) is of order divisible by p. Hence N([) = 1 (mod p) where N([) is the
norm of [. This implies that [ splits completely in K = k(up). Let £ be a prime of k, above
[, and let v be a prime of K, above £. Then v is ramified in L and [Leo : Kool = p, SOV
is totally ramified in L. Hence G = G, (where G, is the decomposition group of G at v).
Since [ splits completely in K, £ splits completely in K, and we have

(D' Gnez,an) =(Dur) =n.
v| £

v| £
It follows that (@Uep;( HY Gy, Er,,))® = Bses,, o
Therefore, the natural map H(G, Ep ) — (@UEP,/( HYG,, Er,,))? is the diag-
onal map ., — @Eeskoo W p. In particular, it is injective because S # ¢. Thus, by Lemma

1.1 we obtain H~1(G, AY_) =0,and H%(G, AY_) = Coker(u, —> Dses 1)

(3) In this case, since @veP,/( Z/ey,Z = 0, using Lemma 1.1, we have
A (G, A? ) =H"(G.EL )" = H'(G.Q,/Z,(1)) = G"(1)
and
A%G.AY ) = H*(G, EL,)” = H*(G.Q,/Z,)(1).

Therefore, the next lemma implies the conclusion. This completes the proof of Proposition
1.2.
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LEMMA 1.3. Suppose that G is an abelian p-group. Then H*(G, Q,/Z)) is isomor-
phic to Hom(/\2 G,Qp/Zp). In particular, if G is not cyclic, we have H%(G, Q,/Z,) #0.

PROOF. In fact, by the duality Proposition 7.1 in Chap. VI in [1] (or the universal
coefficient sequence (cf. page 60 in Chap. IIT in [1])), we have

H?(G, Q,/Z,) 2 Hom(H(G,Z),Q,/Zy) .

Since G is abelian, we know Hy(G,Z) = /\2 G (Theorem 6.4 (iii) in Chap. V in [1]). This
completes the proof of Lemma 1.3.

2. Stickelberger elements and Fitting ideals

2.1. Letk be a totally real number field and L be a CM-field such that L /k is finite and
abelian. The Stickelberger element 6y /4 is defined by

b= Y, 000" €QIGal(L/k)]

oeGal(L/k)

where ¢(s,0) = > (Lky—g N(a)™* is the partial zeta function (a runs over integral ideals
which are prime to the discriminant of L/k).

Let Loo/L be the cyclotomic Z,-extension and A, = Z,[[Gal(L~/k)]]. We denote
by « : Gal(Loo/k) —> Z} the cyclotomic character. By Deligne and Ribet ([3]), we know
that there is a unique element 67/« in the total quotient ring of Ay satisfying the following
property. For any o € Gal(Lxo/k), (0 — k(0))0L,,/k is in Ar, and is a projective limit of
(0 —«k(0))0L,/k € Lp|Gal(L,/k)] for n > 0. We denote by

@2.1.1) R:iAL, — AL,

the ring homomorphism induced by k(o) = «(0)o for all o € Gal(Lx/k). Clearly, k is
bijective. We extend & to the total quotient ring of Ay .. Then & (61, /«) is a pseudo-measure
in the sense of Serre ([16]), and is the p-adic L-function of Deligne and Ribet.

Suppose that K is the intermediate field of L/k such that L/K is a p-extension and
[K : k] is prime to p. Put Ag = Z,[[Gal(Kx/k)]] and G = Gal(L/K). We assume that
L Nkeo = k. Then we have Ay, = Ak [G]. We regard A, as a Ak, -module by this
identification. We will use two maps ¢ and v. The ring homomorphism

C . ALO0 e AKoo
is defined by the restriction o +— ok, for o € Gal(Lso/k). The Ak -homomorphism
v:iAg, — Apy

is defined by o > X1, where for o0 € Gal(K«/k), T runs over all elements in Gal(L,/k)
such that c(t) = o. We have

2.1.2) v(x)y =v(xc(y)) forall x € Ag, andy e Ar_, .
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This implies
(2.1.3) v(x)v(y) = v(xc(v(y))) =I[L: K]v(xy) forall x,y e Ak, .

Let Q(Ap,,) (resp. Q(Ak,,)) be the total quotient ring of Ay (resp. Ak, ). We naturally
extend c to the ring homomorphismec : Q(Ar,) — Q(Ak,,). We canextend v to the Ag -
homomorphism v : Q(Ag, ) — O(AL,) suchthatv(c(x)) = Yyegox forx € Q(AL ).

We set
S={le P,g | [is unramified in K, and [ is ramified in L} .
We have
(2.1.4) COLosk) = (H(l - so(U)eKw/k

[eS

where ¢ = (m) is the Frobenius of [ in Gal(K~/k) (Lemma 2.1 in [10]).

2.2. For a commutative ring R and a finitely presented R-module M such that R™ i)
R" — M — 0 is exact, the Fitting ideal of M is defined to be the ideal of R generated by
all n x n minors of the matrix A y which corresponds to f. This ideal does not depend on the
choice of the exact sequence. We denote it by Fittg(M). We obtain Fittg (M) C Anng(M)
from the definition.

We consider Xz, = (Ar.)" and the minus part X[oo. As we mentioned in §1.2, we

have decomposition X, = y X Z‘w where x runs over the equivalence classes of 6;-
valued characters of Gal(K / k). From X Lo = &P y:0dd X, Z(OO, knowing Fitt4, (X, ;Oo) is equiv-
alent to knowing Fitt A% (X Z(m) for all odd characters x. We regard Ker y C Gal(K/k) as

a subgroup of Gal(L/k) and denote by L, (resp. K,) the subfield of L (resp. K) such
that Gal(L/L,) = Ker x (resp. Gal(K/K,) = Ker x). Since [Lo : Ly ool is prime to p,

Gal(Loo/L . . . ~ C e . .
(Loo/Lx2o) 56 an isomorphism. Therefore, X —> X7 is bijective. Since
Lo Loo Ly,

AL, —> A

we clearly have AY = A% | we obtain
Loo Lyso

).

H X S w1 X
FlttA{oo (XLoo) = FlttA{x,oc (XLx,oo

So we may assume K = K, when we study the x-component. In particular, we may assume
that the conductor of K /k is the same as that of x for the computation of the Fitting ideal of
X
Xp -
2.3. In this subsection, we further assume that [L : K] = p. We fix an odd character x
of Gal(K / k), and assume that the conductor of x is equal to the conductor of K/ k.

1) Suppose that x # w. We extend yx to the ring homomorphism Q(Ar,) —
Q(A{oo) and the image of x € Q(AL,) is denoted by xX € Q(A{OO). We know
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0%k € Ak, and 07 ,, € A7 by Deligne and Ribet. Let S be as in §2.1. Following
the idea of Greither [5] (cf. Theorem 7 in [5]), we consider a fractional ideal (1, v(l%)) of
—;

Ap,, for[ € §, and define

(2.3.1) O = (]_[ <1, V(l_;(p[_l>>>9Lw/k

[es

which is a fractional ideal of Ay . Consider the x-component ®X. By (2.1.2), (2.1.3), and
(2.1.4), we obtain ®X C AXOO, so ®X is an ideal of A{oo. By Theorem 3 in Greither [5] and
Corollary A. 13 in [7], we have

(2.3.2) Fitt (X)) = Fitt (A} )") = O

We will give another proof of (2.3.2) by the same method as the proof of Theorem 0.1 in
Remark 3.5.

2) Next, we suppose that x = w and there is a prime [ € P; which is ramified in L/K.
We assume K = k(up) (We may assume this as we explained in §2.2). Let S be as in §2.1.
Note that S is not empty by our assumption. Following Greither [5] (cf. page 753 in [5]), we
introduce a modified Stickelberger element ¥, (which corresponds to ¥y in [5] though
our element is slightly modified).

We put

: 1_K(¢[)¢r_l> < (1))
233 (L c(ioo(1)),
(2.33) ’ v<p [ (3

which is an element of the total quotient ring of Ay where ¢ is the Frobenius of [ in
Gal(K~/k). We define

(2.3.4) VLoo/k =010/ k -
Using the definition of ¥#7 /4 and (2.1.4), we have
(2.3.5) c@Lo/k) = (]_[(1 - fc(so[)so[‘l))GKoo/k :
=
LEMMA 2.1 (C. Greither ). If S is not empty, we have
(2.3.6) Viw/k € ALy -

PROOF. This corresponds to Proposition 9 in Greither [5]. We give here a proof by
computing ¥/« directly. Using (2.1.2) and (2.1.4), we compute

Mies( = c@0e; ) = [ies@ — ;D
p

2.3.7) Vig/k = V( QKOO/k) + 0L /k -
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As we explained in the proof of Proposition 1.2 (2), [ € S satisfies N(¢;) = 1 (mod p), so
k(@) = 1 (mod p). Therefore,

s —k@0e) = Ties — 97D
p

Let y be a generator of Gal(Loo/L). Since (y —k(y))0k o k € Ak, and (Y —k(¥)OLy/k €
Ap,, we obtain (y — k(y))0L/k € AL,. We have to show (y — k(y)PL/k € (¥ —
k(Y ALy

Let & be the automorphism of Q(Ay ) defined in (2.1.1), and 7, : A, — Z,
(resp. mg,, : Ak, —> Z)) be the augmentation map. Since K (J1, /) is a pseudo-measure
in the sense of Serre [16], it suffices to prove my  ((y — 1)k (D1 %)) = 0 (see [16] 1.14).
Using (2.3.5), we compute

GAK

00 *

Lo (v = DED L)) = Tk ((y - 1)%((]‘[(1 - x(w)wﬂ))e&o/k))

eS

=m(m<<]"[(1 - goﬂ))(y - 1>&<9Km/k)>

[eS
=0.

Note that we used S # ¢ to obtain the final equation. This completes the proof of Lemma
2.1.

Note that 1 — « (¢, !is divisible by ¥y —k(y) in Ak, . We consider a fractional ideal
(Lv((y —c()/(1 = k(@Dg; ). We define

1 Yy — k()
(2.38) SZ < (1’v< v )))(1")( . >>ﬁ = .
[%S: l_[ 1 - K(fﬂ[’)fﬂ[/l I —k(ppy, 1 et

U#l

I'eS
By (2.1.2), (2.1.3), (2.3.5) and (2.3.6), we obtain that
(2.3.9 ScCAL,,

namely, S is an ideal of Ay . We study the w-component S C A;’w. Our 8 coincides
with the ideal in Greither [5] Proposition 10.

LEMMA 2.2. Suppose that Iy, is the ideal of Ar, defined in §0. We have
(I1ooOLoo/i)” # S°.

PROOF. We put A = Z,[[Gal(ke/k)]]. Then A, = A[Gal(L/k)] and A‘Zoo ~
A[Gal(L/K)]. Let ¢ : Gal(L/K) —> ), be a faithful character (namely, a bijective homo-
morphism). This 1 induces a ring homomorphism A‘Zw = A[Gal(L/K)] —> Alup], which
we also denote by . By (2.3.7) and (2.3.8), we obtain

I/f(é’z)oo/k) = w(ﬁi’w/k) € Y(S?).
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On the other hand, concerning (/1 ..61../x)?, if o is a generator of Gal(L/K), we have
V(ULoOLoo/)) = (W(0) = Ly =NV OF 1) -

Since (Y (o) — 1,y —k(y)) # Alupl, we have 1//(92’00/k) & V(UL oOLs/k)?). Therefore,
Y ((ILsOLoo/k)”) # ¥ (S®), and we obtain the conclusion.

We will prove Fitt/\‘foo (Xp ) = Fittpo ((A7_)") = S (Theorem 0.1 (1)) in the next
section.

3) Finally, we suppose that x = w and L/K is unramified outside p. In other words,
we suppose S = ¢. We cannot define a good element ¥,/ in Ar in this case. We will
use 0 k. Let Ir be the ideal of A defined in §0. By Deligne and Ribet, we know
I, .0r../k C ALy,. We consider (I .0r.,/k)* whichis an ideal of A‘Zm. What we will prove
in the next section is

FittArZoo (XZ’OO) = FittArZoo ((A‘i’oo)v) = (I150L00/0)” -

3. Proof of Theorems

3.1. We go back to the general situation, and suppose that Lo/ k is a finite abelian p-
extension such that Lo N koo = k. We put K = k(up) and L = Lo(up) (we do not assume
[L : K] = p). We study XZ’OO = (A‘ZOO)V. Let Lo,o0 be the cyclotomic Z,-extension of
Lo, and let My /Lo,co (resp. Mg, /koo) be the maximal abelian pro-p extension of Lo, co
(resp. koo) Which is unramified outside p. By Washington [17] Proposition 13.32, we have
canonical isomorphisms X7 = (A‘ZOO)v ~ Gal(My, ., /Lo,00)(1) and XY = (A‘I‘éoo)v ~
Gal(My,, / ko) (1) (note that our action is cogredient).

Using these isomorphisms, we obtain

LEMMA 3.1. Let L(/k be the maximal subextension of Lo/k which is unramified out-
side p. Put G = Gal(L/K) = Gal(Lo/k). Then we have an exact sequence

0— HY%G.A? )Y — (X7 ) N X —> Gal(Ly/k)(1) — 0.

PROOF. The cokernel of the natural map Gal(ML, . /Lo.cc) —> Gal(My,,/keo) is
Gal((LE))oo/koo) = Gal(L{/ k). Therefore, the cokernel of f is Gal(L/k)(1).

Forn > 0, we regard Ay, as the Galois group of the maximal unramified abelian p-
extension of L,, and Ak, similarly. Then the norm map is the restriction map, so A7 —>

A%’n is surjective because Gal(K / k) acts on A‘i’n via w and acts on Gal(L, /K},) trivially. This
implies that the norm map A7 ~—> A% _ is surjective. Therefore, NG A7  coincides with

the image of the natural map A“Iéw — A‘Zw where Ng = X,;cco. This implies that
AY  — (A7 )9 — HG,A?_ ) — 0

is exact. Taking the dual, we obtain the kernel of f.
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3.2. We first prove Theorem 0.1. Suppose that [L : K] = [Lo : k] = p,s0o G =
Gal(L/K) is of order p. Put A = Z,[[Gal(k/k)]]. Then Xl‘j’w isa A‘I'joo = A[G]-module.

Lety : G — 6; be a faithful character. We extend v to the ring homomorphism
VA7 = AIG] — Alup]

as in the proof of Lemma 2.2. For any A‘zm-module M, we define My tobe M ®@ o Alup]

where A[pp] is regarded as a A‘Zoo -module via .
We have to prepare three more lemmas.

LEMMA 3.2. Let M be a A[G]-module such that M is a free Z,-module of finite rank.
We regard My, as a Z,[ 1 pl-module. UﬁO(G, M) = (Z/pZ)®", the maximal Z [ pl-torsion
submodule of My, is isomorphic to (Z/pZ)®".

PROOF. This is well-known. We know M is isomorphic to Z,[G]1®*@Z,, [/,Lp]@b@Z%c
as a Z,[G]-module. Then I-AIO(G, M) = (Z/pZ)®" implies ¢ = r. We know My = M Q416
Alppl = M ®z,16) Zplpp] =~ Z,[1p]®tD) @ (Z/pZ)®°. Therefore, the Z,[11,]-torsion
submodule is (Z/ pZ)®°.

Suppose that G is generated by o, and consider two homomorphisms ¢ : A[G] — A
which is induced by o — 1, and ¥ : A[G] —> A[u] which is as above.

LEMMA 3.3. Let I and J be two ideals of A[G]). We assume that c(I) = c(J) and
v (1) = Yy (J). Furthermore, we assume one of the following.

1) c¢(I) is a principal ideal generated by a non-zero element g € A, whose | invariant
is zero.

ii) (1) is a principal ideal generated by a non-zero element h € Alup], whose
invariant is zero.

Then we have I = J.

PROOF. We first assume i). Let x be an element of /. We will show x € J. Put
® = Z;:ol o'. The kernel of y : A[G] —> A[p ] is generated by ®. Since ¥(1) = ¥ (J),
we can write x = y 4+ @z for some y € J and z € A[G]. We have c(x) = c(y) + pc(2).
Therefore, c(I) = c(J) = (g) implies that g divides pc(z). This shows that g divides c(z)
because we assumed the p-invariant of g is zero. Therefore, using c(I) = c(J), we can write
z=u+(oc—1)vforsomeu € Jandv € A[G]. We have x = y+ @u because (o —1) = 0.
This shows that x € J. Hence I C J. The other inclusion J C [ is obtained by the same
method, so we have [ = J.

Suppose ii) is satisfied, and x € I. Using ¢(I) = c¢(J), wecan writex = y + (0 — 1)z
for some y € J and z € A[G]. Now, ¥ (x) = ¥ (y) + (¢ — DY (z) where {, = ¥ (o) is
a primitive p-th root of unity. Therefore, & divides ¥ (z). So we can write z = u + ®v for
some u € J and v € A[G]. This implies thatx = y 4+ (6 — )u € J. Thus, I C J. The other
inclusion is proved in the same way, and we have I = J.
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LEMMA 3.4. Let R be the ring of integers of a finite extension of Qp, and A = R[[T]].
Suppose that

00— M| — My — M3z — 0

is an exact sequence of finitely generated torsion A-modules, and that M3 contains no non-
trivial finite submodule. Then we have

Fitt4 (M) = Fitt4 (M) char (M3)
where char s (M3) is the characteristic ideal of M3.
PROOF. (cf. also [2] Lemma 3.) By [19] Proposition 2.1, M3 has a free resolution of

the form 0 — A" — A™ — M3 —> 0. Therefore, we have Fitt4 (M3) = char (M3),
and we can apply Theorem 22 in Chapter 3 of Northcott [14] to obtain

Fitt 4 (M») = Fitt4 (M) Fitt4 (M3)
= Fitt4 (M) charsq (M3) .

PROOF OF THEOREM 0.1 (1). Suppose that § # ¢. By Lemma 3.1, we have an exact
sequence

0— HY%G.A? )Y — (X )6 — Xg_ — 0

of A-modules because L() = k in this case. By Iwasawa [8] Theorem 18, X I‘é’w contains no
nontrivial finite submodule. Therefore, using Lemma 3.4 and the Iwasawa main conjecture
proved by Wiles [18], we have

Fitta (X)) = Fitta(H(G, A? )Y) chara (X )
(3.2.1) R
= Fitts(A%(G, AY ))((y — k()L 1) -

We will compute FittA(I:IO(G, A‘I‘joo)v). Since ﬁO(G, A‘Zw) is finite, we know
FittA(I-AIO(G, A‘zm)v) = FittA(I:IO(G, A‘Zoo)) by [13] Appendix Proposition 3. Suppose
that § = {[1,....[;}. For[ € S, we putay = (1 — k(@) )® B = a/(y — k(1)) €
A“[ém = A. By Proposition 1.2 (2), I:IO(G, A‘Zw) is isomorphic to Coker(Z/pZ N
@le A“[ém/(p,oz[i)) where the map j is defined by j(1) = (By,,..., B, ). Therefore, a

relation matrix of I:IO(G, Az’w) is
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p 0 0
ap 0 0
0 p 0
0 o, 0
o 0 ... p
0 0 el o,
Bu Bn - By

This shows that Fitt 4 (ﬁ oG, A‘i’w)) is generated by the elements of the form
) p " [y o (Where T C Sand T # ¢),
i) p B [yeray (where [€ Sand T C S\ {1}), and
i) p’.
Since an element of the form i) is a multiple of some element of the form ii), we only
need ii) and iii). We have

Fitt4 (H%(G, A7 ) = Z < H(a[/, P))(,Bra p).

[eS 41
I'eS

Thus, it follows from (3.2.1) that

c(Fitta)(X{)) = Fitta (X2 )g) = Y ( [T p)) B )Y — k@)L i

(€S Ul
I'eS

On the other hand, using the definition of S (see (2.3.8)), we have

-5 (1102))02) (1)

[eS ['#( [eS
I'eS
=y ( [T, p)) B PIY =k (PDOR_ i -
€S " r#
I'eS

Therefore, we obtain c(Fitts[g) (XZ’OO)) = c(89).
By Proposition 1.2 (2), we have ﬁO(G, Xz’w)) = I-}_I(G, A‘I'joo))v = 0. Therefore, by
Lemma 3.2, (X z’w)w contains no nontrivial finite submodule. Hence we have

Fittar.,1 (X7 )y) = charag, ) (X7 )y) = (W OF 1))

by the main conjecture proved by Wiles [18]. Since it is easy to see ¥ (S®) = (I//(Qz)oo/k)),
we obtain v (Fitt 5[] (X If”oo)) = ¥ (8%). Therefore, the conditions of Lemma 3.3 are satisfied
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(the condition ii) is satisfied), and we obtain
FittA[G](XZ)OO) =S,

Next, we will prove I 0. /x € FittALOo (XrL). Wetake a € I . Itis easy to

=

see w(aQZ’oo/k) € ¥ (S8®) and c(a@l‘j’w/k) € ¢(8®) from the above descriptions of ¥ (S®)
and c(5%) (cf. also (2.1.4)). By the same argument as the proof of Lemma 3.3, we have
a@fw/k € 8. We saw in Lemma 2.2 that (/1 01.,/x)” # S®, so we obtain (I .01 /k)* <

Fitta, (X7 ). If x is odd and x # w, we have 6] ,, € Fitta, (X[ )by (2.3.2). If x
is even, sz/k = 0. Therefore, we obtain I 0 /k C FittALoo (XL). This completes the
proof of Theorem 0.1 (1). U

PROOF OF THEOREM 0.1 (2). We prove this statement by the same strategy as the
proof of Theorem 0.1 (1). By Proposition 1.2 (3) and Lemma 3.1, we have an exact sequence

0— (X2 )g —> Xg_ —> Z/pL —> 0.

Since X,‘é’m contains no nontrivial finite submodule ([8] Theorem 18), (Xz)oo)G also has this
property. Therefore, Fitt A((XZ’OO)(;) = char A((Xi”oo)g) ([19] Proposition 2.1), and

Fitta(X{)g) = chara ((Xf’)g) = chara (X2, ) = (v — k()L ;)

by the Iwasawa main conjecture [18]. Since ¢((J1,.0L./0)*) = (¥ — K()/))@%m/k), we
obtain

c(Fitta[6) (X[ ) = Fitta (X )6) = (UL OLoo/)”) -
Next, we consider (Xz“oo),p. It follows from Proposition 1.2 (3) that
A%G, xp )=H"G, Ay )V ~Z/pL.
Therefore, Lemma 3.2 implies that the maximal finite torsion submodule of (XZ’OO),# is of
order p. Thus, we have an exact sequence
0—Z/pL — (X )y — M — 0

of A[up]-modules where M = (XZ’OO)I/, / ((XZ)OO)II/)IWS contains no nontrivial finite submod-
ule. Using Lemma 3.4 and the main conjecture [18], we compute

Fittag.,1 (X )y) = Fitta,1(Z/ pZ) char apy, 1 (M)
= Fitta[y,1(Z/ pZ) char ) (X )y)
=& — Ly —kNVOEL 0
where ¢, = (o) which is a primitive p-th root of unity. On the other hand, it is clear that

Y ((ULeOLoo/K)?) = (&p— 1,y — K(]/))I/f(ez)oo/k). This shows that

Y (FittaiG1 (X7 ) = Fittap, 1 (X7 )y) = ¥ (L OLo/i)®) -



424 MASATO KURIHARA
Therefore, Fitt4[g) (X;j)oo)) = (IL,.0L., 1) by Lemma 3.3 (now the condition i) is satisfied).
This completes the proof of Theorem 0.1. O

REMARK 3.5. We can prove (2.3.2) directly by the same method as above. In this
Remark 3.5 we put A = A)I(%o and G = Gal(L/K). Then A{w = A[G]. We use two maps
c,vasin §2.1. For x # w, we use an exact sequence

X
0—> ( &y Z/evZ) — (X Vg — Xf_—0,
vEP[/<Oo

which is obtained from Proposition 1.2 (1). Recall that § = {[ € P,; | [is unramified in K,
and [ is ramified in L}. We put

- fesia()-

where (ﬁ) is the Frobenius of [ in Gal(K / k). We can compute

Fitt 4 (( &y Z/eUZ)X) = ]_[(p, )

vePy [eSy

where o = (1 — gor_l)x. If [ € S\ Sy, o is aunit of A. So []cs(p,ap) = ]_[[€SX (p, ap).
Therefore, using Lemma 3.4 and the main conjecture [18], we have

Fitta (X7 )G) = (H(P’ O4)>91X<oo/k :

[eS

On the other hand, by the definition (2.3.1) of ®,
p
(€S [ [eS [€Sy

Therefore, we have ¢ (Fitt[g) (Xz(oo)) = ¢(OX).

Next, W(FittA[G](XZ(OO)) = (w(QZOO/k)) = ¥ (OX) can be easily checked. Therefore, by
Lemma 3.3 (the condition ii) is satisfied), we obtain

FittA[G](XZ(oo) =L,

3.3. In this subsection, we compare X7 with the standard Iwasawa module. For a
number field L, the standard Iwasawa module X  is defined by

XLoo = lim AL" .
<~

In this subsection 3.3, we consider the case G = Gal(L/K) is cyclic of order p.
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For simplicity, we only consider the case that K = k(i p) and L/k is unramified out-
side p for the w-component (the general case can be treated by the same method). We as-
sume u(X‘I‘éoo) = 0. We use the same notation as §1.1. We put @ = dimg, Coker(u, —>

@UGPK,, I,,)® where I, is the inertia group of v in G = Gal(L /K ) and the map is induced

by the reciprocity map of local class field theory. Using the argument in §1.1, we have

w
A7'(G, X¢_) = Coker <,L,, — ED Iv)

UEP]("

(cf. also Proposition 5.2 in [10]). Hence dime I-}’l(G, X‘i’w) = a. We can also get
dimg, HO(G, X 7.,) = a+ 1. This together with Kida’s formula implies that
(3.3.1) XP ~Z,[GI""" & (Z,[G]/No)* & Z5F'

(cf. Iwasawa [9] §9) as Z,[ G]-modules where A is the A-invariant of X %oo.
On the other hand, by Proposition 1.2 (3) we have

A NG, X )=0 and HG,XP )~1Z/pL.
This shows that
(3.3.2) XP ~Z,[G ' ®Z,.

Therefore, if a > 0, X Z’oo is not isomorphic to X ‘i’w as a G-module.

We further remark that (ISB) does not hold if a > 0 (note that (IDSB) always holds by
Theorem 0.1). This can be proved by the same method as Theorem 1.1 in [7]. Suppose that
a > 0. Then the natural map (X foo)g — X %oo has non-trivial kernel by Proposition 5.2 in
[10]. This together with Lemma 3.4 implies that

FittAaIé ((X‘L"OO)(;) C FittAcI% (X}’oo) .
Since the main conjecture implies FittAaIé (X‘;éoo) = charArIu( (X‘;éoo) =y — K()/))@%m/k),
we have
(v = k(P)OL_ i & Fittay (X7 _)6) = c(Fittgy (X7))

where ¢ : A‘Zw — A‘I‘éw is the natural map. Since L /Koo is unramified outside p,

we know c¢((y — k()07 ) = (v —k(¥)O - It follows that (y —«(¥)O; ) ¢
Fitt A9 (X ‘Zoo). Namely, (ISB) does not hold.

3.4. In this subsection, we prove Corollary 0.2. We will first prove (1). By [17] Propo-
sition 13.26, A, — AL is injective. This implies that

Fittg,, (X, )Gal(Lo/Ly)) C Fittr,, (AL )Y).
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Since (IDSB) holds, we have
CLoo/Ly(ULooOLoo/k)~ C Fittg, ((AZ”)V) .

On the other hand, by our assumption that all the primes of k above p are ramified in L,
we have cr /1, (ILooOLoo/k) = 11,01,/ Where ¢/, is the natural restriction map. Since
11,01,k is in the minus part of Ry, (namely, (I, OLn/k)Jr = 0), we get (DSB) for L, /k.
Next, we will prove (2). As we have seen above,
CLoo/LULoOLk)~ C Fittr, (A1)
holds. We have

CLoo/r(@0L) = [ (1 = 0p erLosL(@)brs
peT

fora € I, where T is the set of primes of k which are ramified in Lo, and unramified in
L. By our assumption (i) and (ii), if p is in T, the primes above P do not split in L/L*.
Therefore, (1 — gop_l)_ is a unit, and HpeT(l — (pp_l)_ isaunit. Since cr /1 (IL,,) = I, we
obtain (DSB). On the other hand, since I"(L/k) is cyclic, we know

Fittg, (A;) = Fittg, (A})").
This implies that (SB) is also true.

3.5. In this subsection, we study the case that I"(L/k) is not cyclic, and will prove
Theorem 0.3 and Corollary 0.5.

PROOF OF THEOREM 0.3. Put K = k(up), G = Gal(L/K) = Gal(Lo/k), and
A= A“Iém. Then A‘Zoo = A[G]. Let ¢ be the restriction map in §2.1. Proposition 1.2 (3)
implies that

2
A%G, X )=H (G, A} )V = </\ G>(1).

It follows from Lemma 3.1 that
. f
0— (/\G)(l) — (Xz)oo)c — Xl‘é’w — G(1) — 0

is exact. By our assumption on G, we have /\2 G # 0. Since X I‘é’w does not contain a
nontrivial finite submodule, neither does Image f. Therefore, by Lemma 3.4 and the main
conjecture [18], we obtain

2

Fitta (X)) = Fitt << A\ G)(l)) char  (Image f)

C (p,y — 1) chary (Image f)
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=(p,y — l)charA(X,‘é’m)
=Py =D —cNOK_ k-
If (y — K()/))Gi“oo/k was in Fitts, (XZ’OO), c((y — K(y))OZ’m/k) =(y — K(}/))G?oo/k would
be in
c(Fitta,  (Xp)) = Fitta(X?_)6) C (p.y — Dy —k()OL_ i
But this is impossible. Therefore, (y — K(y))OZ’oo/k is not in Fitty, (Xz’m). Thus, we have
obtained (y — k (¥))0L,/k & Fitta, (XLy,)-

PROOF OF COROLLARY 0.5. The statement (1) follows from Theorem 0.3 and Theo-
rem 2.1 in [7].
Next, we will prove (2). We consider X;,, = lim A7, and Xk, = lim Ag,. By
<~ <«

Corollary 5.3 in [10], we have an exact sequence
w
Z,(1) — (EBIU(Lw/Koa) —> (XP )Gal(Loo/Kn) —> X%, —> 0
vlp

where v runs over all primes of Ky, above p and I,(L~/K) is the inertia group of
Gal(Lso/Ko) at v. Put

P ={B € Py, | B splits completely in koo (14 p) and ramified in Lo(upoe)} .
We have
w
(EBIU(LOO/KOO)> ~ P Iy (Lo.co/ koo)
v|p PBeP

where Ig3(Lo,co/koo) is the inertia group of Gal(Lo,co/keo) at PB.  We put N =
Coker(Z,(1) — 69‘1367’ Iy (Lo,00/ koo)). By our assumption #P > 2, we have N # 0.
We apply Lemma 3.4 to the exact sequence

00— N — (Xci)oo)Gal(Loo/Koo) — X%m — 0
to obtain
Fitta (XY_)6) = Fitta(N) (¥ — k(")I0L_ ¢
(using the main conjecture). Since c¢(01,,/x) = Ok« and Fitt4(N) # A, we have
(v — K NOY i & Fitta, (X))

by the same argument as the proof of Theorem 0.3. By Theorem 2.1 in [7], for sufficiently
large n, we have

(Y = kWDOLoum)/k & FittRLO(Mpn)(ALO(upn)) .
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This completes the proof of Corollary 0.5.
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