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On Stronger Versions of Brumer’s Conjecture

Masato KURIHARA

Keio University

Abstract. Let k be a totally real number field and L a CM-field such that L/k is finite and abelian. In this
paper, we study a stronger version of Brumer’s conjecture that the Stickelberger element times the annihilator of the
group of roots of unity in L is in the Fitting ideal of the ideal class group of L, and also study the dual version. We
mainly study the Teichmüller character component, and determine the Fitting ideal in a certain case. We will see that
these stronger versions hold in a certain case. It is known that the stronger version (SB) does not hold in general. We
will prove in this paper that the dual version (DSB) does not hold in general, either.

0. Introduction

0.1. In number theory, it is very important to know the Galois action on the ideal class
group of a number field. Concerning the Galois action, an interesting phenomenon is the
annihilation of the class group by some analytic element whose origin is the zeta functions in
some Galois group ring. Let k be a totally real number field, and L be a CM-field such that
L/k is finite and abelian. We fix an odd prime number p and consider the p-component AL
of the ideal class group ClL of L. Put RL = Zp[Gal(L/k)], and regardAL as an RL-module.

Let µp∞(L) be the group of roots of unity with order a power of p in L, and IL =
AnnRL(µp∞(L)) the annihilator ideal of µp∞(L) in RL. We denote by θL/k ∈ Q[Gal(L/k)]
the Stickelberger element, which is defined by the values of partial zeta functions (see §2.1).
Then by Deligne and Ribet [3] we know ILθL/k ⊂ RL. Brumer’s conjecture claims that
ILθL/k ⊂ AnnRL(AL). We consider the following property (SB) which is stronger than this;

(SB) ILθL/k ⊂ FittRL(AL)

where FittRL(AL) is the Fitting ideal of AL (see §2.2). Since FittRL(AL) ⊂ AnnRL(AL),
(SB) is certainly stronger than Brumer’s conjecture. The main result in the paper [12] by
Miura and the author implies that (SB) holds if k = Q. In the paper [7] by Greither and the
author, we showed that (SB) does not hold in general, and the dual version is more natural and
likely to hold. Let (AL)∨ be the Pontryagin dual ofAL with cogredient Galois action, namely
(σf )(x) = f (σx) for σ ∈ Gal(L/k), f ∈ (AL)∨ and x ∈ AL. Then the dual version means

(DSB) ILθL/k ⊂ FittRL((AL)
∨) .
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Our explicit example in [7] §3.2 does not satisfy (SB), but satisfies (DSB). In [6], Greither
proved a beautiful theorem that the equivariant Tamagawa number conjecture implies (DSB)
if µp∞(L) is cohomologically trivial. Concerning the exposition of Brumer’s conjecture and
the Fitting ideals, see Greither [4].

In this paper, we prove the existence of number fields for which neither (DSB) nor (SB)
holds (see Corollary 0.5). (Under the assumptions of Corollary 0.5, µp∞(L) is not cohomo-
logically trivial.)

We study the Iwasawa theoretic version of (DSB). Let L be as above and L∞/L be the
cyclotomic Zp-extension. We define

AL∞ = lim→ ALn

where Ln is the intermediate field such that [Ln : L] = pn for n > 0. Put ΛL∞ =
Zp[[Gal(L∞/k)]]. We study the Pontryagin dual (AL∞)

∨ which is a finitely generated tor-
sion ΛL∞-module. We define IL∞ = AnnΛL∞ (µp∞(L∞)) ⊂ ΛL∞ . By Deligne and Ribet
[3], there is a unique element θL∞/k in the total quotient ring ofΛL∞ , which is the “projective
limit" of θLn/k (more precisely, see §2.1).

We study the Iwasawa theoretic version

(IDSB) IL∞θL∞/k ⊂ FittΛL∞ ((AL∞)
∨)

of (DSB). Theorem A.5 in [11] implies that (IDSB) holds outside the Teichmüller character
component if we assume the Leopoldt conjecture and the vanishing of the Iwasawaµ-invariant
of L. In particular, if µp �⊂ L where µp is the group of p-th roots of unity, (IDSB) is true
under the above assumptions. In this paper, we mainly study the case µp ⊂ L.

We assume that L ∩ k∞ = k where k∞ is the cyclotomic Zp-extension of k. We denote
by Γ (L/k) the p-component of Gal(L/k), so Gal(L/k) = Γ (L/k) × ∆ for some abelian
group∆ with p � |#∆.

Suppose at first that Γ (L/k) � Z/pZ. If Γ (L/k) is cyclic, by Theorem 3, Proposition
4 in Greither [5] and Corollary A. 13 in [7], we know that (IDSB) holds, assuming the van-
ishing of the µ-invariant. Moreover, FittΛL∞ ((AL∞)

∨) is determined outside the component
of the Teichmüller character by Theorem 3 in Greither [5] and Corollary A. 13 in [7]. In this
paper, we determine the Teichmüller character component of the Fitting ideal in the case that
Γ (L/k) � Z/pZ.

Suppose thatµp ⊂ L. We denote byK the subfield ofL such thatΓ (L/k) = Gal(L/K),
so [K : k] is prime to p. Let ω be the Teichmüller character giving the action of Gal(K/k)
on µp. Since [K : k] is prime to p, AL∞ is decomposed into AL∞ =

⊕
χ A

χ
L∞ where χ runs

over all equivalence classes of Q
×
p -valued characters of Gal(K/k) (see §1.2). In particular,

we know that determining FittΛL∞ ((AL∞)
∨) is equivalent to determining FittΛχL∞

((A
χ
L∞)
∨)

for all characters χ of Gal(K/k) (for the definition of the χ-components AχL∞ , ΛχL∞ , see

§1.2). For any odd character χ such that χ �= ω, we know FittΛχL∞
((A

χ
L∞)
∨) is determined
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(see (2.3.2)). We study the ω-component. To do this, we may assume K = k(µp) (see §2.2).
We take a generator γ of Gal(L∞/L) = Gal(K∞/K). We denote the cyclotomic char-

acter by κ : Gal(L∞/k) −→ Z×p . The cyclotomic character of Gal(K∞/k) is also denoted

by κ . Suppose that Gal(L∞/K∞) is generated by σ . Then IL∞ is generated by γ − κ(γ ) and
σ − 1. In the following, we suppose that L0/k is a finite abelian p-extension (so L0 is also
totally real) and L = L0(µp). We will state our theorems without explaining all notations.

THEOREM 0.1. Suppose thatL0/k is a cyclic extension of degree p with L0∩k∞ = k.
We put L = L0(µp), and assume that the Iwasawa µ-invariant of L∞/L vanishes, namely
µ((AL∞)

∨) = 0. We denote by S the set of primes of k which are prime to p and which are
ramified in L.

(1) Suppose at first that S is not empty. Then we have

FittΛωL∞ ((A
ω
L∞)
∨)

=
(∑

l∈S

( ∏
l′ �=l
l′∈S

(
1, ν

(
1

1− κ(ϕl′)ϕ
−1
l′

)))(
1, ν

(
γ − κ(γ )

1− κ(ϕl)ϕ
−1
l

))
ϑL∞/k

)ω
.

Here, the right hand side is defined in (2.3.8); ν is the map defined in §2.1, ϕl is the Frobenius
of l in Gal(K∞/k), and ϑL∞/k is a modified Stickelberger element of Greither, which is
defined in (2.3.4), and which is described by using θL∞/k and θK∞/k (see (2.3.7)). In this
case, we have

IL∞θL∞/k � FittΛL∞ ((AL∞)
∨) .

(2) Suppose that S = φ, namely L/k is unramified outside p. Then we have

FittΛωL∞ ((A
ω
L∞)
∨) = (IL∞θL∞/k)ω .

We define the standard Iwasawa moduleXL∞ by

XL∞ = lim← ALn

where the limit is taken with respect to the norm maps. We consider the following property

(ISB) IL∞θL∞/k ⊂ FittΛL∞ (XL∞) .

In general, (ISB) does not hold (see [7] Theorem 1.1 and also §3.3). Suppose that L/k is as
in Theorem 0.1. Then we encounter a phenomenon that (IDSB) holds, but (ISB) does not.
We will explain in §3.3 that XL∞ is not isomorphic to (AL∞)

∨ as a Zp[Γ (L/k)]-module, in
general (see (3.3.1) and (3.3.2)).

0.2. We summarize here some affirmative results for (SB) and (DSB). As we mentioned
above, if we assume the µ-invariant of L∞/L vanishes and Γ (L/k) is cyclic, (IDSB) holds
by Theorem 3, Proposition 4 in Greither [5] and Corollary A. 13 in [7].

By the standard descent technique, we obtain the following results.
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COROLLARY 0.2. Suppose that L/k is a finite abelian extension such that Γ (L/k) is
cyclic and L ∩K∞ = K . We assume that the Iwasawa µ-invariant of L∞/L is zero.

(1) Suppose that n is sufficiently large such that all the primes above p of k are ramified
in the n-th layer Ln of the cyclotomic Zp-extension L∞/L. Then (DSB) holds for Ln/k.

(2) For any prime p of k above p, we assume at least one of the following;
(i) no prime above p splits in L/L+, or

(ii) p is ramified in L.
Then both (DB) and (DSB) hold for L/k.

This corollary will be proved in §3.4.

0.3. Next, we consider the case that Γ (L/k) is not cyclic, and will obtain negative
results for (IDSB) and (DSB). As in Theorem 0.1, we study the ω-component.

THEOREM 0.3. Suppose thatL0/k is a finite abelian p-extension such thatL0∩k∞ =
k and Gal(L0/k) is not cyclic. We put L = L0(µp), and assume that L/k is unramified
outside p. Then we have

(γ − κ(γ ))θL∞/k �∈ FittΛL∞ ((AL∞)
∨) .

In particular, (IDSB) does not hold, namely

IL∞θL∞/k �⊂ FittΛL∞ ((AL∞)
∨) .

REMARK 0.4. (1) There are many examples of (k, L) satisfying the conditions of
Theorem 0.3. For example, if dimFp Ak/pAk ≥ 2, there is an unramified extension L0/k

with non-cyclic Galois group of order a power of p, so L = L0(µp) satisfies the condition.
(We give an explicit example in Example 0.6 such that L0/k is ramified.)

(2) In the setting of Theorems 0.1 and 0.3, µp∞(L) is not cohomologically
trivial because Γ (L/k) = Gal(L0/k) acts on µp∞(L) trivially, which implies

Ĥ 0(Γ (L/k), µp∞(L)) �= 0.
(3) If k = Q, there is noL0 as in Theorem 0.1 (2) or Theorem 0.3. In fact, ifL0∩Q∞ =

Q and L0/Q is a finite abelian p-extension which is unramified outside p, we have L0 = Q.

COROLLARY 0.5. (1) Let L0/k be a finite abelian p-extension which is unramified
outside p such that L0 ∩ k∞ = k and Gal(L0/k) is not cyclic. Then, for sufficiently large n,
(DSB) does not hold for L0(µpn)/k.

(2) Suppose that L0 is as above. We denote by Pp,k∞ the set of primes of k∞ above p,
and assume that

#{P ∈ Pp,k∞ | P splits completely in k(µp∞) and ramified in L0(µp∞)} ≥ 2 .

Then, for sufficiently large n, neither (SB) nor (DSB) holds for L0(µpn)/k.

We will prove Theorems 0.1, 0.3 and Corollary 0.5 in §3.
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EXAMPLE 0.6. Let F1 be the minimal splitting field of x3 − 39x − 16 = 0. We

know
√

79 ∈ F1 and F1/Q(
√

79) is unramified everywhere. Let F2 be the minimal splitting

field of x3 − 6x − 3 = 0. We know
√

69 ∈ F2 and F2/Q(
√

69) is unramified outside 3
and ramified at the prime above 3. Let F2,∞/F2 be the cyclotomic Z3-extension. Since the

class number of Q(
√

69) is 1, the prime above 3 is totally ramified in F2,∞/Q(
√

69). We

put k = Q(
√

69,
√

79) and take p = 3. There are two primes p1, p2 of k above 3, and both
of them are totally ramified in k∞. We denote by P1 (resp. P2) the prime of k∞ above
p1 (resp. p2). Since p1 and p2 split in k(µ3) = k(

√−3) = k(
√−23), P1 and P2 split in

k∞(µ3). Put L0 = F1F2. So Gal(L0/k) � Z/3Z ⊕ Z/3Z. Since p1 and p2 are totally
ramified in F2,∞k/k, P1 and P2 are totally ramified in F2,∞k/k∞. Thus, L0/k satisfies all
the conditions of Corollary 0.5. Therefore, neither (SB) nor (DSB) holds for L = L0(µpn)

with n� 0. We can construct many examples in this way.

The author would like to thank heartily C. Greither for the discussion on the subjects in
this paper, and for his useful comments by which the author could improve Theorem 0.3. (In
the first draft, only the case Γ (L/k) = Z/pZ⊕ Z/pZ was studied in Theorem 0.3.)

NOTATION. Throughout this paper, we fix an odd prime number p. For any number
field F , we denote by AF the p-component of the ideal class group of F . The cyclotomic
Zp-extension of F is denoted by F∞, and we define AF∞ = lim→ AFn where Fn is the n-th

layer of F∞/F for n > 0. We denote by PF the set of all finite primes of F , and by Pp,F the
subset of PF consisting of primes above p. We define P ′F = PF \ Pp,F . For a groupG and a

G-module M , we denote by MG the G-invariant part of M (the maximal subgroup of M on
which G acts trivially), and by MG the G-coinvariant of M (the maximal quotient of M on
which G acts trivially).

1. Computation of some Tate cohomology groups

1.1. In this section we suppose that k is a totally real base field, and K and L are CM-
fields such that k ⊂ K ⊂ L and that L/k is a finite abelian extension. We assume that L/K
is a p-extension.

Put G = Gal(L/K). In this section we study the p-component AL of the ideal class
group of L, especially the minus part A−L on which the complex conjugation acts as −1.
Throughout this paper, for any moduleM on which the complex conjugation ρ acts, we define
the minus part M− by M− = {x ∈ M | ρ(x) = −x}. We compute the Tate cohomology

groups Ĥ q(G,A−L∞) = Ĥ q(G,AL∞)
− (cf. Serre [15] Chap. 8).

By Lemma 5.1 (2) in [10], we have an exact sequence

Ĥ 0(G,EL)
− −→ Ĥ 0

(
G,

∏
w∈PL

ELw

)−
−→ Ĥ−1(G,AL)

−
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−→ H 1(G,EL)
− −→ H 1

(
G,

∏
w∈PL

ELw

)−
−→ Ĥ 0(G,AL)

−

−→ H 2(G,EL)
− −→ H 2

(
G,

∏
w∈PL

ELw

)−

where EL (resp. ELw ) is the unit group of L (resp. of the local field Lw), and PL is the set of
all finite primes of L as in Notation. For each prime v ∈ PK , we denote by Gv the decompo-

sition subgroup of G at v. We know Ĥ q(G,
∏
w∈PL ELw) =

⊕
v∈PK Ĥ

q(Gv,ELw) where in

the right hand side we fix a prime w of L above v for v ∈ PK (note that Ĥ q(Gv,ELw) = 0

if v is unramified in L). More concretely, we have Ĥ 0(Gv,ELw) = Iv by local class field

theory where Iv is the inertia subgroup of G at v. Since H 1(Gv,L
×
w) = 0, from the exact

sequence 0 −→ ELw −→ L×w −→ Z −→ 0 we have H 1(Gv,ELw) = Z/evZ where ev is

the ramification index of v in L/K , and H 2(Gv,ELw) ⊂ Br(Kv)[p∞] where Br(Kv)[p∞] is
the subgroup of the Brauer group of Kv consisting of elements with order a power of p.

Consider the cyclotomic Zp-extensionsK∞/K , L∞/L, and the n-th layers Kn, Ln. We
assume that L ∩K∞ = K . By the above descriptions, we have

lim→
⊕
v∈PKn

Ĥ 0(Gv,ELn,w ) = lim→
⊕
v∈PKn

H 2(Gv,ELn,w ) = 0 .

Suppose that wn+1 is a prime of Ln+1 and wn, vn+1, vn are the primes of Ln, Kn+1,

Kn below wn+1, respectively. Then the natural map H 1(Gvn,ELwn ) = Z/evnZ −→
H 1(Gvn+1, ELwn+1

) = Z/evn+1 Z is the multiplication by ewn+1,n which is the ramification

index of wn in Ln+1/Ln. Each prime above p is totally ramified in L∞/Ln for sufficiently
large n, and a prime v which is not above p is unramified in L∞/L. It follows that

lim→
⊕
v∈PKn

H 1(Gv,ELn,w ) =
⊕
v∈P ′K∞

Z/evZ

where P ′K∞ denotes the set of all finite primes of K∞ which are prime to p (as in Notation),

and ev is the ramification index of v in L∞/K∞. We define AL∞ = lim→ ALn as in Notation,

and EL∞ = lim→ ELn . Taking the direct limit of the above exact sequence, we obtain the

following lemma.

LEMMA 1.1. We have an exact sequence

0−→ Ĥ−1(G,AL∞)
− −→ H 1(G,EL∞)

− −→
( ⊕
v∈P ′K∞

Z/evZ
)−

−→ Ĥ 0(G,AL∞)
− −→ H 2(G,EL∞)

− −→ 0 .
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1.2. Now, we assume that [K : k] is prime to p. Hence Γ (L/k) = G in the termi-
nology of §0. The group ring Zp[Gal(K/k)] is a product of discrete valuation rings. More

explicitly, it is described as follows. For two Q
×
p -valued charactersχ1 and χ2 of Gal(K/k), we

say χ1 and χ2 are Qp-conjugate if σχ1 = χ2 for some σ ∈ Gal(Qp/Qp). For a Q
×
p -valued

character χ of Gal(K/k), we put Oχ = Zp[Imageχ]. We regard Oχ as a Zp[Gal(K/k)]
module by σ · x = χ(σ)x for any σ ∈ Gal(K/k). We have

(1.2.1) Zp[Gal(K/k)] =
⊕
χ

Oχ

where the sum is taken over the equivalence classes of Q
×
p -valued characters of Gal(K/k)

(we choose a character χ from each equivalence class).
For any Zp[Gal(K/k)]-module M , we define Mχ = M ⊗Zp[Gal(K/k)] Oχ . Note

that Mχ is a direct summand of M because (1.2.1) implies M = ⊕
χ M

χ . We put

ΛK∞ = Zp[[Gal(K∞/k)]] and ΛL∞ = Zp[[Gal(L∞/k)]]. Since Gal(K/k) is a direct
summand of Gal(L∞/k), anyΛL∞-moduleM is naturally a Zp[Gal(K/k)]-module andMχ

is defined. For such M , Mχ can be written as Mχ = M ⊗Zp [Gal(K/k)] Oχ = M ⊗ΛL∞
Oχ [[Gal(L∞/K)]]. In the same way, for a ΛK∞-module M , Mχ = M ⊗Zp [Gal(K/k)] Oχ =
M ⊗ΛK∞ Oχ [[Gal(K∞/K)]].

WhenK contains a primitivep-th root of unity, we denote byω the Teichmüller character
which gives the action on µp.

PROPOSITION 1.2. (1) Suppose that χ is an odd character such that χ �= ω. Then
we have

Ĥ−1(G,A
χ
L∞) = 0 and Ĥ 0(G,A

χ
L∞) =

( ⊕
v∈P ′K∞

Z/evZ
)χ

.

(2) Suppose that K = k(µp) and [L : K] = p. Let P ′k be the set of all finite primes of
k which are prime to p as in Notation, and put

S = {l ∈ P ′k | l is ramified in L/k} .
If S is not empty, we have

Ĥ−1(G,AωL∞) = 0 and Ĥ 0(G,AωL∞) = Coker

(
µp −→

⊕
L∈Sk∞

µp

)

where µp is the group of p-th roots of unity, the map is the diagonal map, and Sk∞ is the set
of primes of k∞ which are above S.

(3) Next, we assume K = k(µp) and L/K is a (general abelian) p-extension which is
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unramified outside p (namely, the set S defined above is empty). Then we have

Ĥ−1(G,AωL∞) � G∨(1) and Ĥ 0(G,AωL∞) �
( 2∧

G

)∨
(1)

where G∨, (
∧2

G)∨ are the Pontryagin duals of G,
∧2

G (the second exterior power of G),

and (1) is the Tate twist. In particular, Ĥ 0(G,AωL∞) = 0 if and only if G is cyclic.

PROOF. First of all, since Gal(K/k) acts on G trivially, we have Ĥ q(G,M)χ =
Ĥ q(G,Mχ) for any χ and any ΛL∞-moduleM .

(1) Since χ �= ω, we know (EL∞)
χ = 0. This implies that Hq(G,EL∞)

χ =
Hq(G, (EL∞)

χ ) = 0. Therefore, Lemma 1.1 implies the conclusion of (1).
(2) Since µp ⊂ K , we know (EL∞)

ω = µp∞ = Qp/Zp(1). Therefore, using G =
Z/pZ, we haveH 1(G,EL∞)

ω = H 1(G,Qp/Zp(1)) = µp and

H 2(G,EL∞)
ω = H 2(G,Qp/Zp)(1) = Ĥ 0(G,Qp/Zp)(1) = 0 .

Suppose that l is in S. Since l is unramified in K = k(µp), l ∈ S implies that the inertia
group of l in Gal(L/k) is of order divisible by p. Hence N(l) ≡ 1 (mod p) where N(l) is the
norm of l. This implies that l splits completely in K = k(µp). Let L be a prime of k∞ above

l, and let v be a prime of K∞ above L. Then v is ramified in L∞ and [L∞ : K∞] = p, so v
is totally ramified in L∞. Hence G = Gv (where Gv is the decomposition group of G at v).
Since l splits completely in K , L splits completely in K∞ and we have

( ⊕
v|L

H 1(Gv,Qp/Zp(1))
)ω
=

(⊕
v|L

µp

)ω
= µp .

It follows that (
⊕

v∈P ′K∞ H
1(Gv,EL∞,w ))

ω =⊕
L∈Sk∞ µp.

Therefore, the natural mapH 1(G,EL∞)
ω −→ (

⊕
v∈P ′K∞ H

1(Gv,EL∞,w ))
ω is the diag-

onal map µp −→⊕
L∈Sk∞ µp. In particular, it is injective because S �= φ. Thus, by Lemma

1.1 we obtain Ĥ−1(G,AωL∞) = 0, and Ĥ 0(G,AωL∞) = Coker(µp −→⊕
L∈Sk∞ µp).

(3) In this case, since
⊕

v∈P ′K∞ Z/evZ = 0, using Lemma 1.1, we have

Ĥ−1(G,AωL∞) = H 1(G,EL∞)
ω = H 1(G,Qp/Zp(1)) = G∨(1)

and

Ĥ 0(G,AωL∞) = H 2(G,EL∞)
ω = H 2(G,Qp/Zp)(1) .

Therefore, the next lemma implies the conclusion. This completes the proof of Proposition
1.2.
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LEMMA 1.3. Suppose that G is an abelian p-group. Then H 2(G,Qp/Zp) is isomor-

phic to Hom(
∧2G,Qp/Zp). In particular, if G is not cyclic, we have H 2(G,Qp/Zp) �= 0.

PROOF. In fact, by the duality Proposition 7.1 in Chap. VI in [1] (or the universal
coefficient sequence (cf. page 60 in Chap. III in [1])), we have

H 2(G,Qp/Zp) � Hom(H2(G,Z),Qp/Zp) .

Since G is abelian, we know H2(G,Z) = ∧2
G (Theorem 6.4 (iii) in Chap. V in [1]). This

completes the proof of Lemma 1.3.

2. Stickelberger elements and Fitting ideals

2.1. Let k be a totally real number field and L be a CM-field such that L/k is finite and
abelian. The Stickelberger element θL/k is defined by

θL/k =
∑

σ∈Gal(L/k)

ζ(0, σ )σ−1 ∈ Q[Gal(L/k)]

where ζ(s, σ ) = ∑
(
L/k
a )=σ N(a)

−s is the partial zeta function (a runs over integral ideals

which are prime to the discriminant of L/k).
Let L∞/L be the cyclotomic Zp-extension and ΛL∞ = Zp[[Gal(L∞/k)]]. We denote

by κ : Gal(L∞/k) −→ Z×p the cyclotomic character. By Deligne and Ribet ([3]), we know

that there is a unique element θL∞/k in the total quotient ring ofΛL∞ satisfying the following
property. For any σ ∈ Gal(L∞/k), (σ − κ(σ))θL∞/k is in ΛL∞ and is a projective limit of
(σ − κ(σ))θLn/k ∈ Zp[Gal(Ln/k)] for n� 0. We denote by

(2.1.1) κ̃ : ΛL∞ −→ ΛL∞

the ring homomorphism induced by κ̃(σ ) = κ(σ)σ for all σ ∈ Gal(L∞/k). Clearly, κ̃ is
bijective. We extend κ̃ to the total quotient ring ofΛL∞ . Then κ̃(θL∞/k) is a pseudo-measure
in the sense of Serre ([16]), and is the p-adic L-function of Deligne and Ribet.

Suppose that K is the intermediate field of L/k such that L/K is a p-extension and
[K : k] is prime to p. Put ΛK∞ = Zp[[Gal(K∞/k)]] and G = Gal(L/K). We assume that
L ∩ k∞ = k. Then we have ΛL∞ = ΛK∞[G]. We regard ΛL∞ as a ΛK∞-module by this
identification. We will use two maps c and ν. The ring homomorphism

c : ΛL∞ −→ ΛK∞

is defined by the restriction σ �→ σ|K∞ for σ ∈ Gal(L∞/k). The ΛK∞-homomorphism

ν : ΛK∞ −→ ΛL∞

is defined by σ �→ Στ , where for σ ∈ Gal(K∞/k), τ runs over all elements in Gal(L∞/k)
such that c(τ ) = σ . We have

(2.1.2) ν(x)y = ν(xc(y)) for all x ∈ ΛK∞ and y ∈ ΛL∞ .
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This implies

(2.1.3) ν(x)ν(y) = ν(xc(ν(y))) = [L : K]ν(xy) for all x, y ∈ ΛK∞ .
Let Q(ΛL∞) (resp. Q(ΛK∞)) be the total quotient ring of ΛL∞ (resp. ΛK∞). We naturally
extend c to the ring homomorphism c : Q(ΛL∞) −→ Q(ΛK∞). We can extend ν to theΛK∞-
homomorphism ν : Q(ΛK∞) −→ Q(ΛL∞) such that ν(c(x)) = Σσ∈Gσx for x ∈ Q(ΛL∞).

We set

S = {l ∈ P ′k | l is unramified in K , and l is ramified in L} .
We have

(2.1.4) c(θL∞/k) =
( ∏

l∈S
(1− ϕ−1

l )

)
θK∞/k

where ϕl = ( l
K∞/k ) is the Frobenius of l in Gal(K∞/k) (Lemma 2.1 in [10]).

2.2. For a commutative ring R and a finitely presentedR-moduleM such that Rm
f−→

Rn −→ M −→ 0 is exact, the Fitting ideal of M is defined to be the ideal of R generated by
all n× n minors of the matrix Af which corresponds to f . This ideal does not depend on the
choice of the exact sequence. We denote it by FittR(M). We obtain FittR(M) ⊂ AnnR(M)
from the definition.

We consider XL∞ = (AL∞)
∨ and the minus part X−L∞ . As we mentioned in §1.2, we

have decomposition XL∞ =
⊕

χ X χ
L∞ where χ runs over the equivalence classes of Q

×
p -

valued characters of Gal(K/k). FromX−L∞ =
⊕

χ :odd X χ
L∞ , knowing FittΛL∞ (X−L∞) is equiv-

alent to knowing FittΛχL∞
(X χ

L∞) for all odd characters χ . We regard Kerχ ⊂ Gal(K/k) as

a subgroup of Gal(L/k) and denote by Lχ (resp. Kχ ) the subfield of L (resp. K) such
that Gal(L/Lχ ) = Kerχ (resp. Gal(K/Kχ) = Kerχ). Since [L∞ : Lχ,∞] is prime to p,

ALχ,∞
�−→ A

Gal(L∞/Lχ,∞)
L∞ is an isomorphism. Therefore, X χ

L∞
�−→ X χ

Lχ,∞ is bijective. Since

we clearly have ΛχL∞ = Λ
χ
Lχ,∞ , we obtain

FittΛχL∞
(X χ

L∞) = FittΛχLχ,∞
(X χ

Lχ,∞) .

So we may assume K = Kχ when we study the χ-component. In particular, we may assume
that the conductor of K/k is the same as that of χ for the computation of the Fitting ideal of
X χ
L∞ .

2.3. In this subsection, we further assume that [L : K] = p. We fix an odd character χ
of Gal(K/k), and assume that the conductor of χ is equal to the conductor of K/k.

1) Suppose that χ �= ω. We extend χ to the ring homomorphism Q(ΛL∞) −→
Q(Λ

χ
L∞) and the image of x ∈ Q(ΛL∞) is denoted by xχ ∈ Q(Λ

χ
L∞). We know
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θ
χ
K∞/k ∈ Λ

χ
K∞ and θχL∞/k ∈ Λ

χ
L∞ by Deligne and Ribet. Let S be as in §2.1. Following

the idea of Greither [5] (cf. Theorem 7 in [5]), we consider a fractional ideal (1, ν( 1
1−ϕ−1

l

)) of

ΛL∞ for l ∈ S, and define

(2.3.1) Θ =
( ∏

l∈S

(
1, ν

(
1

1− ϕ−1
l

)))
θL∞/k

which is a fractional ideal of ΛL∞ . Consider the χ-component Θχ . By (2.1.2), (2.1.3), and

(2.1.4), we obtain Θχ ⊂ ΛχL∞ , so Θχ is an ideal of ΛχL∞ . By Theorem 3 in Greither [5] and

Corollary A. 13 in [7], we have

(2.3.2) FittΛχL∞
(X χ

L∞) = FittΛχL∞
((A

χ
L∞)
∨) = Θχ .

We will give another proof of (2.3.2) by the same method as the proof of Theorem 0.1 in
Remark 3.5.

2) Next, we suppose that χ = ω and there is a prime l ∈ P ′k which is ramified in L/K .
We assume K = k(µp) (we may assume this as we explained in §2.2). Let S be as in §2.1.
Note that S is not empty by our assumption. Following Greither [5] (cf. page 753 in [5]), we
introduce a modified Stickelberger element ϑL∞/k (which corresponds to ΨS in [5] though
our element is slightly modified).

We put

(2.3.3) ξ = ν
(

1

p

∏
l∈S

1− κ(ϕl)ϕ
−1
l

1− ϕ−1
l

)
+

(
1− ν

(
1

p

))
,

which is an element of the total quotient ring of ΛL∞ where ϕl is the Frobenius of l in
Gal(K∞/k). We define

(2.3.4) ϑL∞/k = ξθL∞/k .
Using the definition of ϑL∞/k and (2.1.4), we have

(2.3.5) c(ϑL∞/k) =
( ∏

l∈S
(1− κ(ϕl)ϕ

−1
l )

)
θK∞/k .

LEMMA 2.1 (C. Greither ). If S is not empty, we have

(2.3.6) ϑL∞/k ∈ ΛL∞ .
PROOF. This corresponds to Proposition 9 in Greither [5]. We give here a proof by

computing ϑL∞/k directly. Using (2.1.2) and (2.1.4), we compute

(2.3.7) ϑL∞/k = ν
(∏

l∈S(1− κ(ϕl)ϕ
−1
l )−∏

l∈S(1− ϕ−1
l )

p
θK∞/k

)
+ θL∞/k .
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As we explained in the proof of Proposition 1.2 (2), l ∈ S satisfies N(ϕl) ≡ 1 (mod p), so
κ(ϕl) ≡ 1 (mod p). Therefore,

∏
l∈S(1− κ(ϕl)ϕ

−1
l )−∏

l∈S(1− ϕ−1
l )

p
∈ ΛK∞ .

Let γ be a generator of Gal(L∞/L). Since (γ −κ(γ ))θK∞/k ∈ ΛK∞ and (γ −κ(γ ))θL∞/k ∈
ΛL∞ , we obtain (γ − κ(γ ))ϑL∞/k ∈ ΛL∞ . We have to show (γ − κ(γ ))ϑL∞/k ∈ (γ −
κ(γ ))ΛL∞ .

Let κ̃ be the automorphism of Q(ΛL∞) defined in (2.1.1), and πL∞ : ΛL∞ −→ Zp
(resp. πK∞ : ΛK∞ −→ Zp) be the augmentation map. Since κ̃(ϑL∞/k) is a pseudo-measure
in the sense of Serre [16], it suffices to prove πL∞((γ − 1)κ̃(ϑL∞/k)) = 0 (see [16] 1.14).
Using (2.3.5), we compute

πL∞((γ − 1)κ̃(ϑL∞/k))= πK∞
(
(γ − 1)κ̃

(( ∏
l∈S
(1− κ(ϕl)ϕ

−1
l )

)
θK∞/k

))

= πK∞
(( ∏

l∈S
(1− ϕ−1

l )

)
(γ − 1)κ̃(θK∞/k)

)

= 0 .

Note that we used S �= φ to obtain the final equation. This completes the proof of Lemma
2.1.

Note that 1− κ(ϕl)ϕ
−1
l is divisible by γ − κ(γ ) in ΛK∞ . We consider a fractional ideal

(1, ν((γ − κ(γ ))/(1− κ(ϕl)ϕ
−1
l ))). We define

(2.3.8) S =
∑
l∈S

( ∏
l′ �=l
l′∈S

(
1, ν

(
1

1− κ(ϕl′)ϕ
−1
l′

)))(
1, ν

(
γ − κ(γ )

1− κ(ϕl)ϕ
−1
l

))
ϑL∞/k .

By (2.1.2), (2.1.3), (2.3.5) and (2.3.6), we obtain that

(2.3.9) S ⊂ ΛL∞ ,
namely, S is an ideal of ΛL∞ . We study the ω-component Sω ⊂ ΛωL∞ . Our Sω coincides

with the ideal in Greither [5] Proposition 10.

LEMMA 2.2. Suppose that IL∞ is the ideal of ΛL∞ defined in §0. We have
(IL∞θL∞/k)

ω �= Sω.

PROOF. We put Λ = Zp[[Gal(k∞/k)]]. Then ΛL∞ = Λ[Gal(L/k)] and ΛωL∞ �
Λ[Gal(L/K)]. Let ψ : Gal(L/K) −→ µp be a faithful character (namely, a bijective homo-
morphism). This ψ induces a ring homomorphismΛωL∞ = Λ[Gal(L/K)] −→ Λ[µp], which

we also denote by ψ . By (2.3.7) and (2.3.8), we obtain

ψ(θωL∞/k) = ψ(ϑωL∞/k) ∈ ψ(Sω) .
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On the other hand, concerning (IL∞θL∞/k)
ω, if σ is a generator of Gal(L/K), we have

ψ((IL∞θL∞/k)
ω) = (ψ(σ) − 1, γ − κ(γ ))ψ(θωL∞/k) .

Since (ψ(σ) − 1, γ − κ(γ )) �= Λ[µp], we have ψ(θωL∞/k) �∈ ψ((IL∞θL∞/k)ω). Therefore,

ψ((IL∞θL∞/k)
ω) �= ψ(Sω), and we obtain the conclusion.

We will prove FittΛωL∞ (X
ω
L∞) = FittΛωL∞ ((A

ω
L∞)
∨) = Sω (Theorem 0.1 (1)) in the next

section.
3) Finally, we suppose that χ = ω and L/K is unramified outside p. In other words,

we suppose S = φ. We cannot define a good element ϑL∞/k in ΛL∞ in this case. We will
use θL∞/k . Let IL∞ be the ideal of ΛL∞ defined in §0. By Deligne and Ribet, we know
IL∞θL∞/k ⊂ ΛL∞ . We consider (IL∞θL∞/k)

ω which is an ideal ofΛωL∞ . What we will prove

in the next section is

FittΛωL∞ (X
ω
L∞) = FittΛωL∞ ((A

ω
L∞)
∨) = (IL∞θL∞/k)ω .

3. Proof of Theorems

3.1. We go back to the general situation, and suppose that L0/k is a finite abelian p-
extension such that L0 ∩ k∞ = k. We put K = k(µp) and L = L0(µp) (we do not assume
[L : K] = p). We study Xω

L∞ = (AωL∞)
∨. Let L0,∞ be the cyclotomic Zp-extension of

L0, and let ML0,∞/L0,∞ (resp. Mk∞/k∞) be the maximal abelian pro-p extension of L0,∞
(resp. k∞) which is unramified outside p. By Washington [17] Proposition 13.32, we have
canonical isomorphisms Xω

L∞ = (AωL∞)
∨ � Gal(ML0,∞/L0,∞)(1) and Xω

K∞ = (AωK∞)
∨ �

Gal(Mk∞/k∞)(1) (note that our action is cogredient).
Using these isomorphisms, we obtain

LEMMA 3.1. Let L′0/k be the maximal subextension of L0/k which is unramified out-
side p. Put G = Gal(L/K) = Gal(L0/k). Then we have an exact sequence

0 −→ Ĥ 0(G,AωL∞)
∨ −→ (Xω

L∞)G
f−→ Xω

K∞ −→ Gal(L′0/k)(1) −→ 0 .

PROOF. The cokernel of the natural map Gal(ML0,∞/L0,∞) −→ Gal(Mk∞/k∞) is

Gal((L′0)∞/k∞) = Gal(L′0/k). Therefore, the cokernel of f is Gal(L′0/k)(1).
For n > 0, we regard ALn as the Galois group of the maximal unramified abelian p-

extension of Ln, and AKn similarly. Then the norm map is the restriction map, so AωLn −→
AωKn is surjective because Gal(K/k) acts onAωLn via ω and acts on Gal(Ln/Kn) trivially. This

implies that the norm map AωL∞ −→ AωK∞ is surjective. Therefore, NGAωL∞ coincides with

the image of the natural map AωK∞ −→ AωL∞ where NG = Σσ∈Gσ . This implies that

AωK∞ −→ (AωL∞)
G −→ Ĥ 0(G,AωL∞) −→ 0

is exact. Taking the dual, we obtain the kernel of f .
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3.2. We first prove Theorem 0.1. Suppose that [L : K] = [L0 : k] = p, so G =
Gal(L/K) is of order p. Put Λ = Zp[[Gal(k∞/k)]]. Then Xω

L∞ is a ΛωL∞ = Λ[G]-module.

Let ψ : G −→ Q
×
p be a faithful character. We extend ψ to the ring homomorphism

ψ : ΛωL∞ = Λ[G] −→ Λ[µp]
as in the proof of Lemma 2.2. For anyΛωL∞-moduleM , we defineMψ to beM ⊗ΛωL∞ Λ[µp]
where Λ[µp] is regarded as a ΛωL∞-module via ψ .

We have to prepare three more lemmas.

LEMMA 3.2. LetM be aΛ[G]-module such thatM is a free Zp-module of finite rank.

We regardMψ as a Zp[µp]-module. If Ĥ 0(G,M) = (Z/pZ)⊕r , the maximal Zp[µp]-torsion

submodule of Mψ is isomorphic to (Z/pZ)⊕r .

PROOF. This is well-known. We knowM is isomorphic to Zp[G]⊕a⊕Zp[µp]⊕b⊕Z⊕cp
as a Zp[G]-module. Then Ĥ 0(G,M) = (Z/pZ)⊕r implies c = r . We knowMψ = M⊗Λ[G]
Λ[µp] = M ⊗Zp [G] Zp[µp] � Zp[µp]⊕(a+b) ⊕ (Z/pZ)⊕c . Therefore, the Zp[µp]-torsion

submodule is (Z/pZ)⊕c .

Suppose that G is generated by σ , and consider two homomorphisms c : Λ[G] −→ Λ

which is induced by σ �→ 1, and ψ : Λ[G] −→ Λ[µp] which is as above.

LEMMA 3.3. Let I and J be two ideals of Λ[G]. We assume that c(I) = c(J ) and
ψ(I) = ψ(J ). Furthermore, we assume one of the following.

i) c(I) is a principal ideal generated by a non-zero element g ∈ Λ, whose µ invariant
is zero.

ii) ψ(I) is a principal ideal generated by a non-zero element h ∈ Λ[µp], whose µ
invariant is zero.

Then we have I = J .

PROOF. We first assume i). Let x be an element of I . We will show x ∈ J . Put

Φ =∑p−1
i=0 σ

i . The kernel of ψ : Λ[G] −→ Λ[µp] is generated by Φ. Since ψ(I) = ψ(J ),
we can write x = y + Φz for some y ∈ J and z ∈ Λ[G]. We have c(x) = c(y) + pc(z).
Therefore, c(I) = c(J ) = (g) implies that g divides pc(z). This shows that g divides c(z)
because we assumed the µ-invariant of g is zero. Therefore, using c(I) = c(J ), we can write
z = u+(σ−1)v for some u ∈ J and v ∈ Λ[G]. We have x = y+Φu becauseΦ(σ−1) = 0.
This shows that x ∈ J . Hence I ⊂ J . The other inclusion J ⊂ I is obtained by the same
method, so we have I = J .

Suppose ii) is satisfied, and x ∈ I . Using c(I) = c(J ), we can write x = y + (σ − 1)z
for some y ∈ J and z ∈ Λ[G]. Now, ψ(x) = ψ(y) + (ζp − 1)ψ(z) where ζp = ψ(σ) is
a primitive p-th root of unity. Therefore, h divides ψ(z). So we can write z = u + Φv for
some u ∈ J and v ∈ Λ[G]. This implies that x = y + (σ − 1)u ∈ J . Thus, I ⊂ J . The other
inclusion is proved in the same way, and we have I = J .
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LEMMA 3.4. LetR be the ring of integers of a finite extension of Qp, andA = R[[T ]].
Suppose that

0 −→ M1 −→ M2 −→ M3 −→ 0

is an exact sequence of finitely generated torsion A-modules, and that M3 contains no non-
trivial finite submodule. Then we have

FittA(M2) = FittA(M1) charA(M3)

where charA(M3) is the characteristic ideal ofM3.

PROOF. (cf. also [2] Lemma 3.) By [19] Proposition 2.1, M3 has a free resolution of
the form 0 −→ Am −→ Am −→ M3 −→ 0. Therefore, we have FittA(M3) = charA(M3),
and we can apply Theorem 22 in Chapter 3 of Northcott [14] to obtain

FittA(M2)= FittA(M1) FittA(M3)

= FittA(M1) charA(M3) .

PROOF OF THEOREM 0.1 (1). Suppose that S �= φ. By Lemma 3.1, we have an exact
sequence

0 −→ Ĥ 0(G,AωL∞)
∨ −→ (Xω

L∞)G −→ Xω
K∞ −→ 0

of Λ-modules because L′0 = k in this case. By Iwasawa [8] Theorem 18, Xω
K∞ contains no

nontrivial finite submodule. Therefore, using Lemma 3.4 and the Iwasawa main conjecture
proved by Wiles [18], we have

(3.2.1)
FittΛ((Xω

L∞)G) = FittΛ(Ĥ 0(G,AωL∞)
∨) charΛ(Xω

K∞)

= FittΛ(Ĥ 0(G,AωL∞)
∨)((γ − κ(γ ))θωK∞/k) .

We will compute FittΛ(Ĥ 0(G,AωL∞)
∨). Since Ĥ 0(G,AωL∞) is finite, we know

FittΛ(Ĥ 0(G,AωL∞)
∨) = FittΛ(Ĥ 0(G,AωL∞)) by [13] Appendix Proposition 3. Suppose

that S = {l1, . . . , lr }. For l ∈ S, we put αl = (1 − κ(ϕl)ϕ
−1
l )ω, βl = αl/(γ − κ(γ )) ∈

ΛωK∞ = Λ. By Proposition 1.2 (2), Ĥ 0(G,AωL∞) is isomorphic to Coker(Z/pZ
j−→⊕r

i=1Λ
ω
K∞/(p, αli )) where the map j is defined by j (1) = (βl1, . . . , βlr ). Therefore, a

relation matrix of Ĥ 0(G,AωL∞) is
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


p 0 . . . 0
αl1 0 . . . 0
0 p . . . 0
0 αl2 . . . 0
. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 . . . p

0 0 . . . αlr

βl1 βl2 . . . βlr




.

This shows that FittΛ(Ĥ 0(G,AωL∞)) is generated by the elements of the form

i) pr−#T ∏
l∈T αl (where T ⊂ S and T �= φ),

ii) pr−1−#T βl

∏
l′∈T αl′ (where l ∈ S and T ⊂ S \ {l}), and

iii) pr .
Since an element of the form i) is a multiple of some element of the form ii), we only

need ii) and iii). We have

FittΛ(Ĥ 0(G,AωL∞)) =
∑
l∈S

( ∏
l′ �=l
l′∈S

(αl′ , p)

)
(βl, p).

Thus, it follows from (3.2.1) that

c(FittΛ[G](Xω
L∞)) = FittΛ((Xω

L∞)G) =
∑
l∈S

( ∏
l′ �=l
l′∈S

(αl′ , p)

)
(βl, p)(γ − κ(γ ))θωK∞/k .

On the other hand, using the definition of S (see (2.3.8)), we have

c(Sω)=
∑
l∈S

( ∏
l′ �=l
l′∈S

(
1,
p

αl′

))(
1,
p

βl

)( ∏
l∈S
αl

)
θωK∞/k

=
∑
l∈S

( ∏
l′ �=l
l′∈S

(αl′ , p)

)
(βl, p)(γ − κ(γ ))θωK∞/k .

Therefore, we obtain c(FittΛ[G](Xω
L∞)) = c(Sω).

By Proposition 1.2 (2), we have Ĥ 0(G,Xω
L∞)) = Ĥ−1(G,AωL∞))

∨ = 0. Therefore, by

Lemma 3.2, (Xω
L∞)ψ contains no nontrivial finite submodule. Hence we have

FittΛ[µp]((Xω
L∞)ψ ) = charΛ[µp ]((Xω

L∞)ψ) = (ψ(θωL∞/k))
by the main conjecture proved by Wiles [18]. Since it is easy to see ψ(Sω) = (ψ(θωL∞/k)),
we obtain ψ(FittΛ[G](Xω

L∞)) = ψ(Sω). Therefore, the conditions of Lemma 3.3 are satisfied
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(the condition ii) is satisfied), and we obtain

FittΛ[G](Xω
L∞) = Sω .

Next, we will prove IL∞θL∞/k � FittΛL∞ (XL∞). We take a ∈ IL∞ . It is easy to
see ψ(aθωL∞/k) ∈ ψ(Sω) and c(aθωL∞/k) ∈ c(Sω) from the above descriptions of ψ(Sω)
and c(Sω) (cf. also (2.1.4)). By the same argument as the proof of Lemma 3.3, we have
aθωL∞/k ∈ Sω. We saw in Lemma 2.2 that (IL∞θL∞/k)

ω �= Sω, so we obtain (IL∞θL∞/k)
ω �

FittΛL∞ (Xω
L∞). If χ is odd and χ �= ω, we have θχL∞/k ∈ FittΛL∞ (X χ

L∞) by (2.3.2). If χ

is even, θχL∞/k = 0. Therefore, we obtain IL∞θL∞/k � FittΛL∞ (XL∞). This completes the

proof of Theorem 0.1 (1). �

PROOF OF THEOREM 0.1 (2). We prove this statement by the same strategy as the
proof of Theorem 0.1 (1). By Proposition 1.2 (3) and Lemma 3.1, we have an exact sequence

0 −→ (Xω
L∞)G −→ Xω

K∞ −→ Z/pZ −→ 0 .

Since Xω
K∞ contains no nontrivial finite submodule ([8] Theorem 18), (Xω

L∞)G also has this

property. Therefore, FittΛ((Xω
L∞)G) = charΛ((Xω

L∞)G) ([19] Proposition 2.1), and

FittΛ((Xω
L∞)G) = charΛ((Xω

L∞)G) = charΛ(Xω
K∞) = ((γ − κ(γ ))θωK∞/k)

by the Iwasawa main conjecture [18]. Since c((IL∞θL∞/k)
ω) = ((γ − κ(γ ))θωK∞/k), we

obtain

c(FittΛ[G](Xω
L∞)) = FittΛ((Xω

L∞)G) = c((IL∞θL∞/k)ω) .
Next, we consider (Xω

L∞)ψ . It follows from Proposition 1.2 (3) that

Ĥ 0(G,Xω
L∞) = Ĥ−1(G,AωL∞)

∨ � Z/pZ .

Therefore, Lemma 3.2 implies that the maximal finite torsion submodule of (Xω
L∞)ψ is of

order p. Thus, we have an exact sequence

0 −→ Z/pZ −→ (Xω
L∞)ψ −→ M −→ 0

of Λ[µp]-modules where M = (Xω
L∞)ψ/((Xω

L∞)ψ )tors contains no nontrivial finite submod-

ule. Using Lemma 3.4 and the main conjecture [18], we compute

FittΛ[µp ]((Xω
L∞)ψ)= FittΛ[µp ](Z/pZ) charΛ[µp ](M)

= FittΛ[µp ](Z/pZ) charΛ[µp ]((Xω
L∞)ψ)

= (ζp − 1, γ − κ(γ ))ψ(θωL∞/k)
where ζp = ψ(σ) which is a primitive p-th root of unity. On the other hand, it is clear that
ψ((IL∞θL∞/k)

ω) = (ζp − 1, γ − κ(γ ))ψ(θωL∞/k). This shows that

ψ(FittΛ[G](Xω
L∞)) = FittΛ[µp ]((Xω

L∞)ψ) = ψ((IL∞θL∞/k)ω) .
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Therefore, FittΛ[G](Xω
L∞)) = (IL∞θL∞/k)ω by Lemma 3.3 (now the condition i) is satisfied).

This completes the proof of Theorem 0.1. �

REMARK 3.5. We can prove (2.3.2) directly by the same method as above. In this
Remark 3.5 we put Λ = ΛχK∞ and G = Gal(L/K). Then ΛχL∞ = Λ[G]. We use two maps

c, ν as in §2.1. For χ �= ω, we use an exact sequence

0 −→
( ⊕
v∈P ′K∞

Z/evZ
)χ
−→ (X χ

L∞)G −→ X χ
K∞ −→ 0 ,

which is obtained from Proposition 1.2 (1). Recall that S = {l ∈ P ′k | l is unramified in K ,
and l is ramified in L}. We put

Sχ =
{

l ∈ S | χ
((

l

K/k

))
= 1

}

where ( l
K/k

) is the Frobenius of l in Gal(K/k). We can compute

FittΛ

(( ⊕
v∈P ′K∞

Z/evZ
)χ)

=
∏
l∈Sχ

(p, α′l)

where α′l = (1 − ϕ−1
l )χ . If l ∈ S \ Sχ , α′l is a unit of Λ. So

∏
l∈S(p, α

′
l) =

∏
l∈Sχ (p, α

′
l).

Therefore, using Lemma 3.4 and the main conjecture [18], we have

FittΛ((Xω
L∞)G) =

( ∏
l∈S
(p, α′l)

)
θ
χ
K∞/k .

On the other hand, by the definition (2.3.1) of Θ ,

c(Θχ) =
( ∏

l∈S

(
1,
p

α′l

))( ∏
l∈S
α′l

)
θ
χ
K∞/k =

( ∏
l∈Sχ

(p, α′l)
)
θ
χ
K∞/k .

Therefore, we have c(FittΛ[G](X χ
L∞)) = c(Θχ).

Next, ψ(FittΛ[G](X χ
L∞)) = (ψ(θ

χ
L∞/k)) = ψ(Θχ) can be easily checked. Therefore, by

Lemma 3.3 (the condition ii) is satisfied), we obtain

FittΛ[G](X χ
L∞) = Θχ .

3.3. In this subsection, we compare XL∞ with the standard Iwasawa module. For a
number field L, the standard Iwasawa module XL∞ is defined by

XL∞ = lim← ALn .

In this subsection 3.3, we consider the case G = Gal(L/K) is cyclic of order p.
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For simplicity, we only consider the case that K = k(µp) and L/k is unramified out-
side p for the ω-component (the general case can be treated by the same method). We as-
sume µ(XωK∞) = 0. We use the same notation as §1.1. We put a = dimFp Coker(µp −→⊕

v∈PKn Iv)
ω where Iv is the inertia group of v inG = Gal(L∞/K∞) and the map is induced

by the reciprocity map of local class field theory. Using the argument in §1.1, we have

Ĥ−1(G,XωL∞) = Coker

(
µp −→

⊕
v∈PKn

Iv

)ω

(cf. also Proposition 5.2 in [10]). Hence dimFp Ĥ
−1(G,XωL∞) = a. We can also get

dimFp Ĥ
0(G,XωL∞) = a + 1. This together with Kida’s formula implies that

(3.3.1) XωL∞ � Zp[G]λ−a−1 ⊕ (Zp[G]/NG)a ⊕ Za+1
p

(cf. Iwasawa [9] §9) as Zp[G]-modules where λ is the λ-invariant of XωK∞ .

On the other hand, by Proposition 1.2 (3) we have

Ĥ−1(G,Xω
L∞) = 0 and Ĥ 0(G,Xω

L∞) � Z/pZ .

This shows that

(3.3.2) Xω
L∞ � Zp[G]λ−1 ⊕ Zp .

Therefore, if a > 0, Xω
L∞ is not isomorphic to XωL∞ as a G-module.

We further remark that (ISB) does not hold if a > 0 (note that (IDSB) always holds by
Theorem 0.1). This can be proved by the same method as Theorem 1.1 in [7]. Suppose that
a > 0. Then the natural map (XωL∞)G −→ XωK∞ has non-trivial kernel by Proposition 5.2 in

[10]. This together with Lemma 3.4 implies that

FittΛωK∞ ((X
ω
L∞)G) � FittΛωK∞ (X

ω
K∞) .

Since the main conjecture implies FittΛωK∞ (X
ω
K∞) = charΛωK∞ (X

ω
K∞) = ((γ − κ(γ ))θωK∞/k),

we have

(γ − κ(γ ))θωK∞/k �∈ FittΛωK∞ ((X
ω
L∞)G) = c(FittΛωL∞ (X

ω
L∞))

where c : ΛωL∞ −→ ΛωK∞ is the natural map. Since L∞/K∞ is unramified outside p,

we know c((γ − κ(γ ))θωL∞/k) = (γ − κ(γ ))θωK∞/k. It follows that (γ − κ(γ ))θωL∞/k) �∈
FittΛωL∞ (X

ω
L∞). Namely, (ISB) does not hold.

3.4. In this subsection, we prove Corollary 0.2. We will first prove (1). By [17] Propo-
sition 13.26, A−Ln −→ A−L∞ is injective. This implies that

FittRLn ((X−L∞)Gal(L∞/Ln)) ⊂ FittRLn ((A
−
Ln
)∨) .
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Since (IDSB) holds, we have

cL∞/Ln(IL∞θL∞/k)
− ⊂ FittRLn ((A

−
Ln
)∨) .

On the other hand, by our assumption that all the primes of k above p are ramified in Ln,
we have cL∞/Ln(IL∞θL∞/k) = ILnθLn/k where cL∞/Ln is the natural restriction map. Since

ILnθLn/k is in the minus part of RLn (namely, (ILnθLn/k)
+ = 0), we get (DSB) for Ln/k.

Next, we will prove (2). As we have seen above,

cL∞/L(IL∞θL∞/k)
− ⊂ FittRL((A

−
L)
∨)

holds. We have

cL∞/L(aθL∞/k) =
∏
p∈T

(1− ϕ−1
p )cL∞/L(a)θL/k

for a ∈ IL∞ where T is the set of primes of k which are ramified in L∞ and unramified in
L. By our assumption (i) and (ii), if p is in T , the primes above p do not split in L/L+.

Therefore, (1− ϕ−1
p )− is a unit, and

∏
p∈T (1− ϕ−1

p )− is a unit. Since cL∞/L(IL∞) = IL, we
obtain (DSB). On the other hand, since Γ (L/k) is cyclic, we know

FittRL(A
−
L) = FittRL((A

−
L)
∨) .

This implies that (SB) is also true.

3.5. In this subsection, we study the case that Γ (L/k) is not cyclic, and will prove
Theorem 0.3 and Corollary 0.5.

PROOF OF THEOREM 0.3. Put K = k(µp), G = Gal(L/K) = Gal(L0/k), and
Λ = ΛωK∞ . Then ΛωL∞ = Λ[G]. Let c be the restriction map in §2.1. Proposition 1.2 (3)

implies that

Ĥ 0(G,Xω
L∞) = Ĥ−1(G,AωL∞)

∨ =
( 2∧

G

)
(1) .

It follows from Lemma 3.1 that

0 −→
( 2∧

G

)
(1) −→ (Xω

L∞)G
f−→ Xω

K∞ −→ G(1) −→ 0

is exact. By our assumption on G, we have
∧2

G �= 0. Since Xω
K∞ does not contain a

nontrivial finite submodule, neither does Imagef . Therefore, by Lemma 3.4 and the main
conjecture [18], we obtain

FittΛ((Xω
L∞)G)= FittΛ

(( 2∧
G

)
(1)

)
charΛ(Imagef )

⊂ (p, γ − 1) charΛ(Imagef )
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= (p, γ − 1) charΛ(Xω
K∞)

= (p, γ − 1)(γ − κ(γ ))θωK∞/k .
If (γ − κ(γ ))θωL∞/k was in FittΛL∞ (Xω

L∞), c((γ − κ(γ ))θωL∞/k) = (γ − κ(γ ))θωK∞/k would

be in

c(FittΛL∞ (Xω
L∞)) = FittΛ((Xω

L∞)G) ⊂ (p, γ − 1)(γ − κ(γ ))θωK∞/k .
But this is impossible. Therefore, (γ − κ(γ ))θωL∞/k is not in FittΛL∞ (Xω

L∞). Thus, we have

obtained (γ − κ(γ ))θL∞/k �∈ FittΛL∞ (XL∞).
PROOF OF COROLLARY 0.5. The statement (1) follows from Theorem 0.3 and Theo-

rem 2.1 in [7].
Next, we will prove (2). We consider XL∞ = lim← ALn and XK∞ = lim← AKn . By

Corollary 5.3 in [10], we have an exact sequence

Zp(1) −→
( ⊕
v|p

Iv(L∞/K∞)
)ω
−→ (XωL∞)Gal(L∞/K∞) −→ XωK∞ −→ 0

where v runs over all primes of K∞ above p and Iv(L∞/K∞) is the inertia group of
Gal(L∞/K∞) at v. Put

P = {P ∈ Pp,k∞ | P splits completely in k∞(µp) and ramified in L0(µp∞)} .
We have ( ⊕

v|p
Iv(L∞/K∞)

)ω
�

⊕
P∈P

IP(L0,∞/k∞)

where IP(L0,∞/k∞) is the inertia group of Gal(L0,∞/k∞) at P. We put N =
Coker(Zp(1) −→⊕

P∈P IP(L0,∞/k∞)). By our assumption #P ≥ 2, we have N �= 0.

We apply Lemma 3.4 to the exact sequence

0 −→ N −→ (XωL∞)Gal(L∞/K∞) −→ XωK∞ −→ 0

to obtain

FittΛ((XωL∞)G) = FittΛ(N)(γ − κ(γ ))θωK∞/k
(using the main conjecture). Since c(θL∞/k) = θK∞/k and FittΛ(N) �= Λ, we have

(γ − κ(γ ))θωL∞/k �∈ FittΛL∞ (X
ω
L∞)

by the same argument as the proof of Theorem 0.3. By Theorem 2.1 in [7], for sufficiently
large n, we have

(γ − κ(γ ))θL0(µpn )/k �∈ FittRL0(µpn )
(AL0(µpn)) .
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This completes the proof of Corollary 0.5.
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