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Abstract. Let Ek be the elliptic curve given by y2 = x3 −pkx , where p is a prime number and k ∈ {1, 2, 3}.
In this paper, we first give a necessary and sufficient condition for the rank ofEk(Q) to equal one or two, respectively,
and in the rank two case, explicitly describe independent points of free part of the Mordell-Weil group Ek(Q).
Secondly, we show several subfamilies of Ek whose integer points and ranks can be completely determined.

1. Introduction

Let Ek be the elliptic curve given by

Ek : y2 = x3 − pkx

with a prime number p and a positive integer k. It is well-known that the torsion subgroup
Ek(Q)tors of the Mordell-Weil group Ek(Q) is either Z/2Z ⊕ Z/2Z or Z/2Z depending on
whether k is even or not, respectively (cf. [9]). Our interest are in free part of the groupEk(Q)
and in integer points on the curve Ek .

Draziotis [4] and Walsh [16] have recently studied integer points on Ek (and the elliptic
curve y2 = x3 +pkx) very closely. For example, they showed thatE1 has at most four integer
points other than (0, 0) (see at the beginning of Section 4). Although they gave determination
of (the number of) integer points on Ek , it remains to be considered for what kind of p one
can completely determine the integer points on Ek for each k.

In consideration of free part of Ek(Q), we may assume that k ∈ {1, 2, 3}. It is easy
to check that rankEk(Q), the rank of Ek(Q), is 0, 1 or 2. Spearman [14] recently used
the method in [1, Chapter 7] or in [13, Chapter 3] to show that rankE1(Q) = 2 whenever

p = a4 + b4 for positive integers a, b. He, however, did not give any points of infinite order
on E1.

In this paper, we first give a necessary and sufficient condition for the rank of Ek(Q)
to equal one or two, respectively, and in the rank two case, explicitly describe independent
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points of free part of the groupEk(Q) (Main Theorem in Section 2). Secondly, we find several
subfamilies of Ek whose integer points and ranks can be completely determined (Theorems
1 to 7 in Sections 4 to 6). In the rank two case, we give two integer points on Ek which are
independent, using Main Theorem. In the rank one case, we give a generator, which is an
integer point, of Ek(Q)modulo the torsion subgroup Ek(Q)tors. This can be done because the
integer points on our subfamilies are completely determined (see Lemma 3).

The most fruitful result is for the curveE1 : y2 = x3 −px, which can have more integer

points than the others, even than any curve of the form y2 = x3 +pkx. This is the reason why

we consider the curve Ek not the curve y2 = x3 + pkx.

REMARK 1. Duquesne [6] recently investigated integer points on the elliptic curve

Ct : y2 = x3 − (t2 + 16)x

(with t2 +16 indivisible by an odd square) and the structure of the Mordell-Weil group Ct(Q).
More precisely, using the canonical height, he showed that if rankCt (Q) = 1, then Ct(Q) =
〈(0, 0), (−4, 2t)〉, and the integer points onCt are (0, 0) and (−4,±2t). Moreover, in the case

of t = 6k2 + 2k − 1 with an integer k, assuming rankCt (Q) = 2, he gave the generator of

Ct (Q) (and completely determined the integer points onQt : y2 = x4 − tx3 − 6x2 + tx + 1,

which is isomorphic to Ct over Q). Concerning this result, since t2 + 16 = (2k2 − 2k +
1)(18k2 + 30k + 17), the only corresponding cases to the main parts ( for E1 and E2) of our
results are t2 + 16 = 17 and 25. (cf. Le [11].)

2. Main Theorem

Let E be an elliptic curve defined by

E : y2 = x3 − nx

with n integer. Denote by Γ the group E(Q) of Q-rational points of E. Then, there exists a

homomorphism α : Γ → Q×/(Q×)2 defined by

α(P ) =


x mod (Q×)2 if P = (x, y) with x �= 0 ;
−n mod (Q×)2 if P = (0, 0) ;
1 mod (Q×)2 if P = O .

Let E be the elliptic curve given by

E : y2 = x3 + 4nx .

Denoting E(Q) by Γ , we can define a homomorphism α : Γ → Q×/(Q×)2 in the same way

as α. Then, examining the orders |α(Γ )| and
∣∣α(Γ )∣∣ reveals the rank r of Γ . In fact, we have

|α(Γ )| · ∣∣α(Γ )∣∣
4

= 2r , (1)
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which can be found in [13, Chapter 3]. As seen in [13, Chapter 3], one may choose a square-
free divisor of n as a representative of an element in α(Γ ). Moreover, a square-free divisor n′
of n, which equals neither 1 nor the square-free part of n, belongs to α(Γ ) if and only if the
equation

n′S4 − n

n′ T
4 = U2

has an integer solution (s, t, u) with s �= 0. Then, the point (n′s2/t2, n′su/t3) is in Γ . The

same is true for α(Γ ). These arguments seem to indicate how to find (independent) Q-rational
points of infinite order on an elliptic curve, which motivated us to assert the following.

MAIN THEOREM. Let n be a fourth-power-free integer greater than one with the
square-free part not equal to two. Let E be the elliptic curve given by

E : y2 = x3 − nx.

rankE(Q) denotes the rank of E over Q.

(i) If either the equation

−S4 + nT 4 = U2 (2)

has an integer solution (s1, t1, u1) or the equation

2S4 + 2nT 4 = U2 (3)

has an integer solution (s2, t2, u2) with

si , ti , ui ≥ 1 and gcd(si, ti ) = gcd(ti, ui) = gcd(ui, si ) = 1 (i = 1, 2) (4)

(which we call a primitive solution), then rankE(Q) ≥ 1. Moreover, if (2) has a
primitive solution, then

P =
(

− s2
1

t21

,
s1u1

t31

)
∈ E(Q)\E(Q)tors ;

if (3) has a primitive solution, then

Q =
(
u2

2

4s2
2 t

2
2

,
u2(u

2
2 − 4s4

2 )

8s3
2 t

3
2

)
∈ E(Q)\E(Q)tors .

(ii) If both of equations (2) and (3) have primitive solutions, then rankE(Q) ≥ 2, and
the points P andQ in (i) are independent modulo E(Q)tors.

(iii) If n = pk for a prime number p and k ∈ {1, 2, 3}, then rankE(Q) ≤ 2, and the
following hold:
• rankE(Q) = 1 if and only if exactly one of equations (2) and (3) has a primitive

solution.
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• rankE(Q) = 2 if and only if both of equations (2) and (3) have primitive solu-
tions.

PROOF. (i) If (2) has a primitive solution (s1, t1, u1), then the point P is in E(Q).
Since E(Q)tors 
 Z/2Z or Z/2Z × Z/2Z, we see from (4) that P is of infinite order. (cf. [9,
Theorem 5.2, p. 134])

If (3) has a primitive solution (s2, t2, u2), then the pointQ is inE(Q). If the y-coordinate
of Q equals zero, then (4) implies that u2 = 2, s2 = 1 and n = 1, which contradicts the
assumption. Therefore, Q is of infinite order.

(ii) Assume that both of the equations (2) and (3) have primitive solutions. It suffices to
show that the points P andQ are independent modulo E(Q)tors. The assertion for non-square
n follows from the argument in [13, Chapter 3]. Indeed, we have

Γ/2Γ 
 Γ/ψ(Γ )⊕ ψ(Γ )/2Γ 
 α(Γ )⊕ α(Γ )/α(Γ tors) ,

where Γ = E(Q), Γ = E(Q) and ψ : E → E is the isogeny whose kernel is {O,A} with

A = (0, 0). Putting Γ0 = Γ/Γtors, we obtain an isomorphism

Γ0/2Γ0 
 α(Γ )/α(Γtors)⊕ α(Γ )/α(Γ tors)

as Z/2Z-modules. Suppose now that n is non-square. Then, since α(P ) = −1 �= −n = α(A),
we have α(P ) ∈ α(Γ )\α(Γtors). Moreover, since the square-free part of n is not equal to two

by the assumption and α(Q) = 2 �= n = α(A), whereQ = (2s2
2/t

2
2 ,−2s2u2/t

3
2 ) is a point in

Γ , we have α(Q) ∈ α(Γ ) \ α(Γ tors). It follows from ψ(Q) = Q that P and Q give rise to
elements in generators for Γ0/2Γ0. Therefore, P andQ are independent modulo Γtors.

Suppose next that n = n2
0 for some integer n0. We may assume that n0 is square-free

and n0 > 1. The proof for this case will proceed along the same lines as [5, Theorem 2].
Thus we will show that the points P,Q,P +Q are not in 2Γ modulo Γtors. Let A = (0, 0),
A1 = (n0, 0) and A2 = (−n0, 0) be the two torsion points in Γ . Denoting the x-coordinate
of a point R on E by x(R), we have the following:

x(P + A)= n

(
t1

s1

)2

, x(Q+ A) = − n

(
2s2t2
u2

)2

,

x(P +Q)= −
{
s1t1(u

2
2 − 4s4

2 )+ 2u1s2t2u2

4s2
1s

2
2 t

2
2 + t21u

2
2

}2

,

x(P +Q+ A)= n

{
s1t1(u

2
2 − 4s4

2)− 2u1s2t2u2

4nt21 s
2
2 t

2
2 − s2

1u
2
2

}2

,

x(P + A1)= −n0

(
u1

s2
1 + n0t

2
1

)2

, x(P + A2) = n0

(
u1

s2
1 − n0t

2
1

)2

,
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x(Q+ A1)= n0

(
s2

2 + n0t
2
2

s2
2 − n0t

2
2

)2

, x(Q+ A2) = − n0

(
s2

2 − n0t
2
2

s2
2 + n0t

2
2

)2

,

x(P +Q+ A1)= −n0

{
2u1(s

4
2 − n2

0t
4
2 )+ 4n0s1t1s2t2u2

4n0(s
2
1 − n0t

2
1 )s

2
2 t

2
2 − (s2

1 + n0t
2
1 )u

2
2

}2

,

x(P +Q+ A2)= n0

{
2u1(s

4
2 − n2

0t
4
2 )− 4n0s1t1s2t2u2

4n0(s
2
1 + n0t

2
1 )s

2
2 t

2
2 + (s2

1 − n0t
2
1 )u

2
2

}2

.

If a point R in Γ is in 2Γ , then α(R) = 1. Since n0 is square-free, we see that

P,Q + A,P +Q,P + A1, P + A2,Q + A1,Q+ A2, P +Q+ A1, P +Q+ A2 �∈ 2Γ .

If Q = ψ(Q) ∈ 2Γ , then α(Q) = 2 ∈ α(Γ tors) = {1, n}, which contradicts the assumption.
Hence Q �∈ 2Γ . In order to show P + A,P +Q+ A �∈ 2Γ , we need the following.

LEMMA 1 (cf. [9, Theorem 4.2, p. 85]). Let C be an elliptic curve over Q given by

C : y2 = (x − α)(x − β)(x − γ )

with α, β, γ in Q. For S = (x, y) ∈ C(Q), there exists a Q-rational point T = (x ′, y ′) on C
such that [2]T = S if and only if x − α, x − β and x − γ are all squares in Q.

If P + A ∈ 2E(Q), then Lemma 1 implies that

x(P + A)± n0 = n0(n0t
2
1 ± s2

1 )

s2
1

are squares in Q, which is impossible, since n0 is non-square and gcd(s1, n) = 1 by (4). If
P +Q+ A ∈ 2Γ , then Lemma 1 implies that

x(P +Q+ A)± n0 = n0
[
n0{s1t1(u2

2 − 4s4
2)− 2u1s2t2u2}2 ± (4n2

0t
2
1 s

2
2 t

2
2 − s2

1u
2
2)

2
]

(4n2
0t

2
1 s

2
2 t

2
2 − s2

1u
2
2)

2
(5)

are squares in Q. Since n0 is square-free and the bracket expressions in (5) are congruent to

±s4
1u

4
2 modulo n0, we have s1u2 ≡ 0 (mod n0), which contradicts n0 > 1 and gcd(s1, n) =

gcd(u2, n) = 1 by (4). Hence, P + A,P +Q+ A �∈ 2Γ .
Assume now that [k]P +[l]Q ∈ Γtors = {O,A,A1, A2} for some integers k and l. Since

we have seen that

P, Q, P + A, Q+ A, P + A1, P + A2, Q+ A1, Q+ A2, P +Q,

P +Q+ A, P +Q+ A1, P +Q+ A2 �∈ 2Γ ,

both k and l are even. Put k = 2k1 and l = 2l1. Since A,A1, A2 �∈ 2Γ , we have [2k1]P +
[2l1]Q = O , which implies that [k1]P + [l1]Q ∈ Γtors. In a similar fashion to the above,
we see that both k1 and l1 are even. Continuing this process, we come to the conclusion that
k = l = 0. This shows that P and Q are independent modulo Γtors.
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(iii) Since α(Γ ) ⊂ {±1,±p} and α(Γ ) ⊂ {1, 2, p, 2p}, it follows from (1) that
rankE(Q) ≤ 2.

Assume that n = p or p3. Then, since α(A) = −p and α(A) = p, we have α(Γ ) ⊃
{1,−p} and α(Γ ) ⊃ {1, p}. By the formula (1), rankΓ ≥ 1 if and only if either α(Γ ) � −1

or α(Γ ) � 2, which is equivalent to that either (2) or (3) has a primitive solution. Hence, the
statement on rankΓ = 1 holds. It is obvious from (1) that the statement on rankΓ = 2 also
holds.

Assume now that n = p2. Then, since α(A1) = p and α(A2) = −p, we have α(Γ ) =
{±1,±p}. By the formula (1), rankΓ ≥ 1 if and only if any of p, 2p and 2 is in α(Γ ), which
is equivalent to that any of the equations

pS4 + 4pT 4 =U2 , (6)

2pS4 + 2pT 4 =U2 (7)

and (3) has a primitive solution. If (6) has a primitive solution (s, t, u), then

−(2st)4 + p2
(
u

p

)4

= (s4 − 4t4)2 .

If (7) has a primitive solution (s, t, u), then

−(st)4 + p2
(
u

2p

)4

=
(
s4 − t4

2

)2

.

Hence, we see that if rankΓ ≥ 1, then either (2) or (3) has a primitive solution. Since the
converse is also true by (2), the statements follow from the formula (1). �

3. Preliminary lemmas

LEMMA 2. Let E : y2 = x3 + ax + b be an elliptic curve with a, b ∈ Z. Let P1, P2

be rational points on E such that P2 = [n]P1. If x(P2) ∈ Z, then x(P1) ∈ Z.

PROOF. See [6, Lemma 10.2] and [12, p. 275]. �

LEMMA 3. LetE : y2 = x3+ax+b be an elliptic curve with a, b ∈ Z, rankE(Q) = 1
and E(Q)tors ⊂ Z/2Z ⊕ Z/2Z. Denote by P1, . . . , Pl all the integer points on E. Suppose
that at least one of the Pi ’s is of infinite order, and that Pi+T �∈ 2E(Q) for any Pi �∈ E(Q)tors

and any T ∈ E(Q)tors. Then, E(Q)/E(Q)tors = 〈Pj 〉 for some j .

PROOF. Let E(Q)/E(Q)tors = 〈U〉 and let Pi �∈ E(Q)tors. Then, there exist a positive
integer m and T ∈ E(Q)tors such that Pi = [m]U + T . By assumption, we have [m]U =
Pi + T �∈ 2E(Q), that is, m is odd. Hence, we may also write Pi = [m](U + T ). It follows
from Lemma 2 that U + T = Pj for some j , and that E(Q)/E(Q)tors = 〈Pj 〉. �
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Now we show the following lemma, which gives us a necessary information about an
existence of the integer point R on E1 for a prime p of the form p = a2 + 4:

LEMMA 4. Let d be a square-free positive integer with d > 5. Consider the Diophan-
tine equation

x2 − dy4 = −1 . (8)

If d = s2 + 4, then equation (8) has only the positive integer solution x = s(s2 + 3)/2, y = t ,
where (s, t) is a positive integer solution to the Pell equation X2 − 2Y 2 = −1.

PROOF. Put d = a2 + 4. Then a+ √
d is the fundamental solution to the Pell equation

X2 − dY 2 = −4. Write ε = a + √
d

2
. Hence the fundamental solution to the Pell equation

X2 − dY 2 = −1 is given by

ε3 = u+ v
√
d with u = a(a2 + 3)/2 , v = (a2 + 1)/2 .

It follows from Theorem D of Chen and Voutier [2] that equation (8) has a positive integer

solution if and only if v = (a2 + 1)/2 = n2 for some positive integer n and so

a2 − 2n2 = −1 .

This completes the proof of Lemma 4. �

4. E1 : y2 = x3 − px

In this section, we consider the elliptic curve

E1 : y2 = x3 − px,

where p is an odd prime number.
Throughout the paper, an integer point (x, y) on an elliptic curve is defined to be positive

if y > 0. Note that a positive integer point onE1 is of infinite order, sinceE1(Q)tors= {O, A}
withA = (0, 0). Draziotis [4] and Walsh [16] showed thatE1 has at most four positive integer
points and that possible four positive integer points on E1 are given as follows:

(i) If p = a2 + b4, then P = (−b2, ab) ∈ E1(Q). Moreover, only if p = a4 + b4,

then two integer points P = (−b2, a2b) ∈ E1(Q) and P
′ = (−a2, ab2) ∈ E1(Q)

can arise.
(ii) If p = 2m2 −1 for some positive integerm, thenQ = (m2, m(m2 −1)) ∈ E1(Q).

(iii) If u2 − pv4 = −1 has positive integer solutions u, v, then R = (pv2, puv) ∈
E1(Q).

Denote by P, P
′
, Q, R the integer points on E1 defined by the above (i), (ii), (iii), respec-

tively. Whenever rational points P, Q in Main Theorem become integer points on E1, these
points coincide with the integer points P, Q on E1 in the above (i), (ii).
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We make some remarks on the integer pointsP, R onE1. In the case (i), Friedlander and
Iwaniec [7] showed that there are infinitely many primes of the form p = a2 + b4. Spearman

[14] has recently proved that if p = a4 + b4, then rankE1(Q) = 2. Spearman, however, did
not explicitly give independent points on E1.

In the case (iii), the Diophantine equation u2−pv4 = −1 has at most one positive integer
solution u, v for positive integer p > 2, which was solved completely by Chen and Voutier

[2]. If this solution exists, then (X, Y ) = (u, v2) must be the fundamental solution to the
Pell equationX2 −pY 2 = −1. It is worthy of stating that when p = 17 = 24 +1 = 2 ·32 −1,
E1 has exactly four positive integer points:

P = (−1, 4) , P
′ = (−4, 2) , Q = (9, 24) , R = (17, 68) .

Then rankE1(Q) = 2 and P, Q are generators modulo E1(Q)tors.
Now Main Theorem enables us to obtain Theorems from 1 to 5 concerning a generator

of E1(Q) in the rank one case and independent points on E1 in the rank two case.

4.1. A generator of E1(Q) with rankE1(Q) = 1. Using Main Theorem, we give
some examples where each of the integer points P, Q, R can be a generator modulo
E1(Q)tors.

THEOREM 1. Let p be a prime number such that p = (2t)2 + 1 for an odd t .
(1) The only positive integer points on E1 are given by P = (−1, 2t), R = (p, 2pt).
(2) rankE1(Q) = 1, and P is a generator modulo E1(Q)tors.

THEOREM 2. Let p be a prime number such that p = 2m2 − 1 for an even m.

(1) The only positive integer point on E1 is given by Q = (m2, m(m2 − 1)).
(2) rankE1(Q) = 1, andQ is a generator modulo E1(Q)tors.

THEOREM 3. Let p be a prime number such that p = s2 + 4 with s > 1, where (s, t)

is a positive integer solution to the Pell equation X2 − 2Y 2 = −1.
(1) The only positive integer point on E1 is given by R = (pv2, puv), where u =

s(s2 + 3)/2 and v = t .
(2) rankE1(Q) = 1, and R is a generator modulo E1(Q)tors.

PROOF OF THEOREM 1. Theorem 1 was proved by Hollier–Spearman–Yang [8] except
for the fact that P is a generator modulo E1(Q)tors. (cf. [8, Theorem 1.2]) It follows from
Main Theorem and Lemma 3 that P is a generator modulo E1(Q)tors.

PROOF OF THEOREM 2. (1) Note that p ≡ −1 mod 4, since p = 2m2 − 1 for an

evenm. E1 has neither of the integer pointsP,P
′
. Indeed, p cannot be written as p = a2+b4,

since p ≡ −1 mod 4. From p = 2m2 − 1, E1 has the integer point Q. E1 does not have

the integer point R. Indeed, the Diophantine equation x2 − py4 = −1 has no positive integer
solution x, y, since p ≡ −1 mod 4.
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(2) Since p ≡ −1 mod 4, the equation −S4 + pT 4 = U2 has no positive integer
solutions. From p = 2m2 − 1, the equation 2S4 + 2pT 4 = U2 has a solution (1, 1, 2m). It
follows from Main Theorem and Lemma 3 that rankE1(Q) = 1, andQ is a generator modulo
E1(Q)tors.

PROOF OF THEOREM 3. (1) Since p = s2 + 4 and s2 − 2t2 = −1, s cannot be a
square. Indeed, if s = m2 > 1, then m4 + 1 = 2t2 and so

t4 −m4 =
(
m4 − 1

2

)2

,

which has no positive integer solutions, since m > 1. Hence E1 has neither of the integer

points P, P
′
. Moreover, E1 does not have the integer point Q, since p ≡ 5 mod 8. By

Lemma 4, E1 has the integer point R.
(2) Note that E1 does not have the integer point P , but E1 has the following rational

point P :

R + A = P =
(

− 1

v2 ,
u

v3

)
.

The equation 2S4 + 2pT 4 = U2 has no positive integer solutions, since p ≡ 5 mod 8. It
follows from Main Theorem and Lemma 3 that rankE1(Q) = 1, and R is a generator modulo
E1(Q)tors. �

4.2. Independent points on E1 with rankE1(Q) = 2. Walsh [17] extended Spear-
man’s theorem in [14] by showing that rankE1(Q) = 2 whenever there are at least two pos-
itive integer points on E1 , except possibly if there are exactly two positive integer points
on E1 with one of them being of type (i) above and the other being of type (iii) above.
Hollier–Spearman–Yang [8] also established that rankE1(Q) = 2 when p is a prime such
that p = a2 + 1 and a = 41t2 + 58t + 41 with t ( �= −1) integer.

Using Main Theorem, we show the following theorems:

THEOREM 4. Let p be a prime such that p = a4 + b4 > 17 for positive integers a, b.

(1) rankE1(Q) = 2, and P = (−b2, a2b) and P
′ = (−a2, ab2) are independent

modulo E1(Q)tors.

(2) (i) If b = 1, then the only positive integer points on E1 are given by P =
(−1, a2), P

′ = (−a2, a), R = (p, pa2).

(ii) If b = 2 and 97 < p < 1012, then the only positive integer points on E1 are

given by P = (−4, 2a2), P
′ = (−a2, 4a).

(iii) If b = a−1 and p < 1012, then the only positive integer points onE1 are given

by P = (−(a−1)2, a2(a−1)), P
′ = (−a2, a(a−1)2), Q = (m2, m(m2 −1)),

where m = a2 − a + 1.
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THEOREM 5. Let p be a prime such that p = a2 + 1 > 17 for positive integer a.
(1) Suppose that a = 2t , where (m, t) is a positive integer solution to the Pell equa-

tion X2 − 2Y 2 = 1.
(i) The only positive integer points on E1 are given by P = (−1, a), Q =
(m2, m(m2 − 1)), R = (p, pa).
(ii) rankE1(Q) = 2, and P, Q are independent modulo E1(Q)tors.

(2) Suppose that a = ct2 + 2dt + c, where (c, d) is a positive integer solution to the

Pell equation X2 − 2Y 2 = −1.
(i) If a ≡ 2 mod 9, then the only positive integer points on E1 are given by P =
(−1, a), R = (p, pa).

(ii) rankE1(Q) = 2, and P = (−1, a) andQ = ((dt2 + ct + d)2/t2, (dt2 + ct +
d)((dt2 + ct + d)2 − t4)/t3) are independent modulo E1(Q)tors.

PROOF OF THEOREM 4. (1) For any p of the form p = a4 +b4, the equation −S4 +
pT 4 = U2 has a solution (b, 1, a2) and the equation 2S4 + 2pT 4 = U2 has a solution

(a − b, 1, 2(a2 − ab + b2)). Hence these solutions yield two rational points

P = (−b2, a2b) , Q =
(

m2

(a − b)2
,
m(m2 − (a − b)4)

(a − b)3

)
(∗)

of infinite order onE1, wherem = a2 −ab+b2. Then the following important relation holds:

P
′ − P = Q,

where P
′ = (−a2, ab2). It follows from Main Theorem that rankE1(Q) = 2, and P and P

′

are independent modulo E1(Q)tors.

(2) (i) Since p = a4 + 1, E1 has the integer points P, P
′
, R. But E1 does not have

the integer pointQ. Indeed, if p = a4 + 1 = 2m2 − 1, then m2 − 8h4 = 1 with a = 2h > 2.

This implies that m± 1 = 2k4, m∓ 1 = 4l4 with h = kl > 1. Hence k4 − 2l4 = ±1 and so

l8 ± k4 =
(
k4 ± 1

2

)2

,

which has no solutions since kl > 1.
(ii) Since p = a4 + 24, E1 has the integer points P,P

′
. But E1 does not have the

integer points Q,R. Indeed, in view of (∗) and a − b > 2, Q is not an integer point. By

MAGMA, we checked that v is not a square in the range 17 < p < 1012, where (u, v) is the

fundamental solution to the Pell equation X2 − pY 2 = −1. Hence the Diophantine equation

x2−py4 = −1 has no positive integer solution x, y. (cf. Theorem D of Chen and Voutier [2].)
We therefore conclude that E1 does not have the integer point R in the range 17 < p < 1012.

(iii) Since p = a4 + (a− 1)4, E1 has the integer points P,P
′
,Q with m = a2 −a+ 1.

But E1 does not have the integer point R in the range 17 < p < 1012, since we checked that
v is not a square as above. �
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PROOF OF THEOREM 5. (1) (i) Since p = a2 + 1 = 2m2 − 1, E1 has the integer

pointsP,Q,R. ButE1 does not have the integer pointP
′
. Indeed, if P

′
exists, then a = (2n)2

for some integer n > 1 and so m2 − 8n4 = 1, which has no positive integer solutions with
n > 1 as in the proof of Theorem 4.

(ii) Since p = a2 + 1 = 2m2 − 1, the equations −S4 +pT 4 = U2 and 2S4 + 2pT 4 =
U2 have solutions (1, 1, a) and (1, 1, 2m), respectively. It follows from Main Theorem that
rankE1(Q) = 2, and P andQ are independent modulo E1(Q)tors.

(2) (i) Since p = a2 + 1, E1 has the integer points P,R. But E1 has neither of the

integer points P
′
,Q. Indeed, if P

′
exists, then a must be a square, which contradicts a ≡ 2

mod 9. If Q exists, then a2 + 1 = 2m2 − 1, which contradicts a ≡ 2 mod 9.
(ii) Since p = a2 + 1, the equation −S4 + pT 4 = U2 has a solution (1, 1, a). In view

of c2 − 2d2 = −1, the following identity holds:

(ct2 + 2dt + c)2 + 1 + t4 = 2(dt2 + ct + d)2 .

Hence the equation 2S4 + 2pT 4 = U2 has a solution (t, 1, 2(dt2 + ct + d)). It follows from
Main Theorem that rankE1(Q) = 2, and the rational points P, Q are independent modulo
E1(Q)tors. �

5. E2 : y2 = x3 − p2x

In this section, we consider the elliptic curve

E2 : y2 = x3 − p2x ,

where p is an odd prime number. The elliptic curveE2 is known to be related to the congruent
number problem (cf. Koblitz [10]).

By Draziotis [4] and Walsh [16], we see that E2 has at most two positive integer points
and that possible two positive integer points on E2 are given as follows:

(i) If p2 = a2 + b4, then P = (−b2, ab) ∈ E2(Q).
(ii) If p2 = 2m2−1 for some positive integerm, thenQ = (m2, m(m2−1)) ∈ E2(Q).

We make some remarks on the integer points P, Q on E2. In the case (i), the prime p can be
written as

p = u4 + 6u2v2 + v4 ,

where u, v are positive integers such that (u, v) = 1 and u �≡ v mod 2. Hence p ≡ 1
mod 8. In the case (ii), the prime p can be obtained from

(1 + √
2)n = p +m

√
2 with n odd > 1

Note that p ≡ ±1 mod 8, since
( 2
p

) = 1.

Now we show the following theorem concerning E2 similar to Theorem 2 concerning
E1.
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THEOREM 6. Let p be a prime number such that p2 = 2m2 −1 with p ≡ −1 mod 8.

(1) The only positive integer point on E2 is given by Q = (m2, m(m2 − 1)).
(2) rankE2(Q) = 1 andQ is a generator modulo E(Q)tors.

PROOF. (1) Since p ≡ −1 mod 8, E2 does not have the integer point P on E2.

From p2 = 2m2 − 1, E2 has the integer point Q = (m2, m(m2 − 1)) in the above (ii).

(2) Since p ≡ −1 mod 8, the equation −S4 + p2T 4 = U2 has no positive integer

solutions. From p2 = 2m2 − 1, the equation 2S4 + 2p2T 4 = U2 has a solution (1, 1, 2m). It
follows from Main Theorem and Lemma 3 that rankE2(Q) = 1, andQ is a generator modulo
E2(Q)tors. �

Unlike E1, it is difficult to give a number of examples where the integer points P, Q on
E2 are generators modulo E2(Q)tors. By the above remarks, we see that both of the integer
points P, Q on E2 exist if and only if

(u4 + 6u2v2 + v4)2 + 1 = 2m2 , u4 + 6u2v2 + v4 is prime . (9)

If v = 1, 2, 3, then equation (9) can be easily solved. In fact, we show the following:

PROPOSITION 1. Let p be a prime number such that p = u4 + 6u2v2 + v4 with
v = 1, 2, 3.

(1) If both of the integer points P, Q onE2 exist, then v = 1, u = 2, or v = 2, u = 1,
and m = 29 and p = 41.

(2) When p = 41, the only positive integer points on E2 are given by P =
(−9, 120), Q = (841, 24360). Then rankE2(Q) = 2 and P, Q are genera-
tors modulo E2(Q)tors.

PROOF. When v = 1, we can reduce equation (9) to finding all integer points on the
elliptic curve

Y 2 = X(X2 − 32X + 260),

where X = 2(u2 + 3)2 and Y = 4m(u2 + 3). By MAGMA, we see that all integer points on
the above elliptic curve are given by

(0, 0), (2, 20), (5, 25), (10, 20), (13, 13), (16, 8), (18, 12), (20, 20), (26, 52),
(45, 195), (52, 260), (98, 812), (130, 1300), (250, 3700), (4160, 267280)

and its Mordell-Weil rank is equal to 2. Hence all integer solutions of equation (9) with v = 1
are given by u = 2, m = 29, p = 41. When p = 41, we see that E2 has only the above
integer points and rankE2(Q) = 2 and P, Q are generators modulo E2(Q)tors.

Similarly, when v = 2, 3, we can reduce equation (9) to finding all integer points on the
elliptic curve

Y 2 = X(X2 − 32v4X + (4 + 256v8)) ,
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where X = 2(u2 + 3v2)2 and Y = 4m(u2 + 3v2). Note that when v = 2, 3, its Mordell-Weil
rank is equal to 3, 1, respectively. All integer points on the above elliptic curves yield only
the solution v = 2, u = 1, m = 29 and so p = 41. �

6. Ek : y2 = x3 − pkx with k ≥ 3

In this section, we consider the elliptic curve

Ek : y2 = x3 − pkx with k ≥ 3 ,

where p is an odd prime number.
By Draziotis [4] and Walsh [16], we see that E3 has at most three positive integer points

and that possible three positive integer points on E3 are given as follows:

(i) If p3 = a2 + b4, then P = (−b2, ab) ∈ E3(Q).
(ii) If p3 = 2m2 − 1 for some positive integer m, then Q = (m2, m(m2 − 1)) ∈

E3(Q).
(iii) If u2 − p3v4 = −1 has positive integer solutions u, v, then R = (pv2, puv) ∈

E3(Q).
We make some remarks on the integer points P, Q, R on E3. In the case (i), the prime p can
be parametrized as in Theorem 14.4.2 of Cohen [3], pp. 475–477. In the case (ii), the only
solution of the equation is given by p = 23, m = 78 and so Q = (6084, 474474). When
p = 23, E3 has only the integer points with nonnegative y-coordinates, A = (0, 0), Q =
(6084, 474474), andQ is a generator modulo E3(Q)tors. In the case (iii), the equation has no
positive integer solutions u, v under Ankeny-Artin-Chowla conjecture (AAC), which states
that if p ≡ 1 mod 4 is prime, and (t + u

√
p)/2 is the fundamental unit of the real quadratic

field Q(
√
p), then u �≡ 0 mod p. It is verified that AAC conjecture is true for all primes

p < 1011. (cf. [15].)
On the other hand, when k > 3,Ek does not have corresponding integer points P, Q, R.

Indeed, the Diophantine equations

pk = a2 + b4 , pk = 2m2 − 1 , u2 − pkv4 = −1 with k > 3

have no solutions respectively, by assuming AAC conjecture to the third equation. (cf. Walsh
[16], p. 1287, p. 1288, p. 1294, p. 1295, p. 1301.)

Now we show the following theorem concerning E3 similar to Theorem 1 concerning
E1.

THEOREM 7. Let p be a prime number such that p3 = a2 + b4 with p ≡ 5 mod 8.
Suppose that AAC conjecture is true.

(1) The only positive integer point on E3 is given by P = (−b2, ab).

(2) rankE3(Q) = 1 and P is a generator modulo E3(Q)tors.
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PROOF. (1) From p3 = a2 + b4, E3 has the integer point P . Since p ≡ 5 mod 8,

E3 does not have the integer pointQ. Indeed, otherwise
( 2
p

) = 1, which is impossible.

(2) From p3 = a2 + b4, the equation −S4 + p3T 4 = U2 has a solution (b, 1, a).

Since p ≡ 5 mod 8, the equation 2S4 + 2p3T 4 = U2 has no positive integer solutions. It
follows from Main Theorem and Lemma 3 that rankE3(Q) = 1 and P is a generator modulo
E3(Q)tors. �

REMARK 2. Several values of p, a, b satisfying the conditions of Theorem 7 are
given in the table below. (cf. Theorem 14.4.2 of Cohen [3], pp. 475–477.)

p a b

13 46 3
3498013 4631366566 67977

2268369373 108009260191126 1558089
2216593502653 2939897808856374166 1224439983

98010612150013 967129818036549973606 8858388591
10856414397166909 1088361569846456822875798 555212674575
28444712011720861 4755630851617686832575766 794593078695
36496032277056733 6731547875445229849014166 1347557334903
43927985163483901 8893244812064458871002726 1543556147055

168760260431980669 67164028008877260098008678 4145358872655
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