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Abstract. We compute the limit of the colored Jones invariant of a prime link, which gives the first evidence
for Volume Conjecture of a link whose complement decomposes into two hyperbolic pieces

Introduction
In [3], Kashaev defined an invariant (K)y € C of alink K by using quantum dilogarithm
functions, and conjectured in [4] that

HYPERBOLIC VOLUME CONJECTURE. If K is a hyperbolic knot in S3,
lim 22 log [(K)y| = vol(s\ K)
m —— 10 = VO .
N—>oco N £ N v

In [10], H. Murakami and J. Murakami proved that Kashaev’s invariant (K ) is nothing
but the N-colored Jones polynomial of K evaluated at w = exp 2w +/—1/N, and generalized
Kashaev’s conjecture to

VOLUME CONJECTURE. Let K be a link in §3 and Jk (N; q) the N-colored Jones
polynomial of K. Then,

li il log |k (N; )] 1S3\ Kl
im =— lo cw)| = v ,
N—oo N g1k 3

where ||S3 \ K || denotes the Gromov norm of > \ K and v3 is the volume of the ideal regular
tetrahedron in the 3-dimensional hyperbolic space.

Since the Gromov norm is equal to the sum of the volumes of the hyperbolic pieces
divided by v3 (see [2]), Volume Conjecture is a natural generalization of Hyperbolic Volume
Conjecture. The purpose of this paper is to show that Volume Conjecture holds for the 2-
component link L depicted in Figure 1, that is,
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FIGURE 1

MAIN THEOREM

2
lim Wn log JL(N; w) = 6A(r/3) + 16 A(r/4),

N—o0o

where A(0) is the Lobachevsky function defined by
0
A@B) = —/ log|2sinx|dx .
0

This is an important evidence for Volume Conjecture because L is prime and the com-
plement of L decomposes into the figure-eight knot complement, whose volume is 6 A(7/3),
and the Borromean ring complement, whose volume is 16 A(;r/4) (see [11]). It should be
noted that Volume conjecture is proved for the figure-eight knot by Ekholm, for torus knots
by Kashaev and O. Tirkkonen [5], for Whitehead doubles of torus knots by H. Zheng [13], for
Whitehead chains by R. van der Veen [12], and for some cabled links by T. Le and A. Tran [7].
For the other results, see [9].

This paper is organized as follows. In Section 1, we compute the colored Jones poly-
nomial of L by using Masbaum’s method. Then, we investigate the asymptotic behavior of
the main part of Jz (N; ) in Sections 2 and prove Main Theorem in Section 3 under the
assumption N = 1 mod 4 because the proofs for the other cases are quite similar.

The authors would like to thank the referee for valuable comments.

1. The colored Jones polynomial of L

We first review the results in [8]. Recall that the Kauffman bracket skein module of
S! x [—1, 1], denoted by B, is the ring Z[qil/“][z], where z represents S x {0} and 7"
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FIGURE 2

represents the n parallel copies of z. If we put

n—1

(1) R, = H(Z 4 q@HD/2 4 —CiHD2)
i=0

then {R,} form a basis of B. On the other hand, there is another basis {e,} of B satisfying
eo =1,ey = zand e, = ze,—1 — ey,—p forn > 2. In fact, ¢, is the closure of the Jones-
Wenzl idempotent f;, of the n-th Temperley-Lieb algebra T, (see [6] for their definitions) and
JrL(N; q) - {N}/{1} is obtained by cabling each component of L with ey_1 and by taking the
Kauffman bracket. Furthermore, we have

N—1
N+n
2 = —1 N—1-n R, ,
2) en-1 ;0( ) {N_l_n} 0

by [8,(47)], where {n} = ¢"/* — q™"/2, {n}! = {n}{n — 1} - - - {2}{1} and

m} _ {m}!
{n T m —n)’

LEMMA 1.1. Forx,y € B, we define ¢(x,y) € B by cabling the 2-component link
diagram in S' x [—1, 1] depicted in Figure 2 with x, y. Then, we have

N—1N-1 5
N 2 1
T

o 2n + 1 n—m

PrROOEF. First of all, we have

N—1N-1
dlen—1,en—1) = Xz(j) k;)( 1) {zn+1sz+1 ¢ (R, Ry)
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2a

FIGURE 3

by (2), and ¢ (R,, Ry) is a linear sum of ¢ (R, e;)’s with j < k. Then, by [8, (26)],

J J
(2a) (2b) j
3 Rﬂs i) — .. E .. r Rn s
3) o( Ej) a§=:() {j, j,2a) pard {j, j,2b) a,h( )
where
{2i + 1) {+i4+ M —il(i})?

(2i) = (j, J, 2i) = (=17 *

- {j1H*{2i}

and I’ aj »(x) € Bis defined by Figure 3, where the center circle in the dotted square is cabled

with x € B, an edge colored i stands for i parallel strands, and a white box represents a
Jones-Wenzl idempotent. Since

Faj’b(z) — (_q(2b+1)/2 _ q—(2b+l)/2)[ﬂa]’b(l)

(see [6,9.6] for example), we have Faj)b(R,,) = 0 when b < n by (1), which implies
¢ (Ry, Ry) = 0if k < n. Since ¢ is symmetric, we have

N—1 2
N +
Plen—1,en—1) = Z {Zn—i—’;} ¢ (R, Ry),
n=0

where ¢ (R,,, R,) = ¢(R,, en) because R, — e, is the sum of Ry’s with k < n by (2), and it
suffices to show

" 2n 4+ 1
Ry, en) = 2(—1)’” ({n})? { " }ezm .

n
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In fact, by (3) and by the observation above, we have

(2k) o (2m)
¢ (Rn, en) = ,;n; (n,n, 2m (n,n, 2k) mk(R) ’;)ﬁ m"(R)
where
Ry = 2 B0 by a1
( 2!’17 1)
y [8,(5)] and
_ {2n + 1} ((m}1H?
mn(l) 2m) m m( )= m 2m)! €2m
by [6,3.3] and [8, Lemma 3.1]. Consequently, ¢ (R,, e,,) is equal to
(=D 2m 4+ 1} ({n}) 2m)! R (2n + 1} ({m})?
> (=D 2n) s - em
{n —m}!{n + m}!({m}!)? {2m + 1} {2m}!

m=0

= (ED"ny)H2n 4+ 1) e ” 2n+1
_2 b+ i —p = 2D mh? { —m}ez’”' -

m=0
Since the (2m + 1)-colored Jones polynomial of the figure-eight knot is given by

2m

{2m +1+1}!
X(; {2m — I}'{2m + 1}

(see [8,(49)] for example), the colored Jones polynomial Jz (N; g) of L is equal to

N—-1N-12m

{1} Z ZZA (n,m)By(m,l) = {{]1,}} Z ZZAq(n,m)Bq(m,l)

n=0 m=0 [=0 m=0n=m [=0

by Lemma 1.1, where we put

2
+n} {Zn—i—l} B, (m l):{2m+1+l}!'
2n + 1 {2m — 1}1{1}

Ag(n,m) = (=1)" ({n})? {

From now on, we suppose N = 1 mod 4 for simplicity, and put

N -1

Note that A, (n, m) = 0 mod {N}? if n < 2T and B,(m,l) = 0 mod {N}?if | > 2m’ and
I >m—m',and Jp(N; q) is equal to

(n 2T—1 4T 2m 3T 4T 2m’ 4T AT m—m'

LT DIDIDID 30 3 LID DD Db 3Y PRABET RN

m=0 n=2T [=0 m=2Tn=m =0 m=3T+1n=m [=0



542 MAYUKO YAMAZAKI AND YOSHIYUKI YOKOTA

— o/ _.
i l_27’? l:;—mfm

n=m " l=2m ¢

FIGURE 4

l:m’—m‘“ l=2m’

l=m—m’'

FIGURE 5

modulo {N}/{1}. See the dark-gray regions in Figure 4.
Furthermore, there exists Aq(n, m) € Z[qil/ 2] such that

Aq(n,m) = Ag(n, m){N}/{1}
if n < m’, and there exists éq (m,l) e Z[qil/z] such that
By(m. 1) = By(m, D{N}/{1)
if] > |m’" —m|orl > 2m’. See the gray regions in Figure 5. Therefore,

2T—1m'—1  2m

Z Z Z Ag(n,m)By(m,l) =0 mod {N}/{1},

m=T n=2T l=m'—m

[t}
V)

and Jx (N; g) is equal to

T—1m'—1 2m T—1 4T 2m

A DIDIDRDISIPY

m=0n=2T [=0 m=0n=m’ [=0
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2T—1m'—1 m'—m—1 2T—1 4T m'—m—1 2T—1 4T 2m

APIPHDIRDIDNDIRPIPID

m=T n=2T =0 m=T n=m’' m=T n=m'l=m'—m
3T AT m—m'—1 3T AT 2w/
U PP RS IPIDD
m=2T+1n=m [=0 m=2T n=m |=m—m’
4T AT 2m’ 4T

+ Z ZZ+ Z Z Z Ay(n,m)By(m, 1)

m=3T+1n=m [=0 m=3T+1n=m[=2m’'+1
=P(N;q)+ Q(N;q) + R(N; q)

T—1 4T 2m 2T—1 4T m'—m—1
{1}

S1 3P0 30 3 Db 3 ENAETREN)

m=0n=m' [=0 m=T n=m’

(1) — AT 2m’  2T—1 4T (m')—m’

70} Y Y YLy Y Z Aq(n, (n'Y) By ((n') 1)

m'=0n=m’) I=0 m'=T n=(m’)’

modulo {N}/{1}, where

T—1m'—1 2m 2T—1m'—1 m'—m—1

P(N;q) = DI Z Ag(n,m)By(m, 1),
m=0n=2T =0 m=T n=2T [=0
2T—1 4T 2m 37 4T 2m’

oy =2 > X+ > Y |AmmBym D),

m=T n=m'l=m'—m  m=2T n=m |=m—m’

AT
R(N;q) = Z Z Z Ag(n, m)By(m,1).

m=3T+1n=m [=2m’+1

If we put
Cy(n,m,l) = Ayg(n,m)By;(m,[) + Ay(n, m/)Bq(m,a D
and
T—1 4T 2m 2T—1 4T m'—m—1
SOEE1 13 3h3D 35 9l o) XN
m=0n=m’ [=0 m=T n=m’'
we have

“4) JL(N;q) = P(N;q)+ Q(N;q) + R(N;q)+ S(N; g) mod {N}/{1}.
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2. Asymptotics of Q(N; w)
From now on, we suppose N is sufficiently large.

LEMMA 2.1. Suppose n is greater than or equal to m and m'. Then,

(]_[ 2 sin 4 71)6
(Hk | 2sin n) (]_[k | 2sin % n)2

0=<Ay(n,m) <A,(3T,2T) =

PROOF. If g = w, we have

{N—i—n}_ [N +k{N =k} (=D)"({n))?

2n+1] (N — 1) 2n4TIN 1 k) N —1{2n — 4T
{Zn—i—l}_ i 4T{N+k} (=" 2n — 4T
n—m _{n—m}zl‘[k:1 IN+k) (n—mMn—m'} "

and (N — 1)1 = 0 NV=D/4 @ — 1)(@? = 1)--- (@¥~1 = 1) = N, and so
(=D"({n}1H°
(N — 1})2(2n — 4T }{n — m}!{n — m’}!
([T, 25in &7)°
N2 (]_[,%’;_]” 2sin %n) (TTxZ) 2sin &) (]_[Z;q"/ 2sin %n)

is positive because n,2n — 4T, n — m, n —m’ € [0, N). On the other hand,

Aw(n’ m) =

Ao(,m)  {n—m+1}  sin"tly

Aplnym =1~ {n—m'} — sin iy

isequalto 1 if n = 4T, greater than 1 if n < 4T and m < 2T, and less than 1 if n < 4T and
m > 2T, and so we have A, (n, m) < A, (n, 2T). Similarly,

Ap(n,2T) 4sin® L

_ T . 2n 2n+1 2 2n+1
Ap(n —1,2T)  sin o sin 5= cos? Zi=m

is greater than

4sin® 2ty _ ot Gt DT
sin? 218l 7 o2 20kl o an 2N g
N 2N
if 2T < n < 3T, and is less than
4 n 2 n 063
4 sin el sin N 4 sin 37 1

. <
-2 2n+1 2 2n+1 — in2(3 b4 23 T 2 T
sin® == cost Tmmw sin“ (37 + ) cos* (37 + _21\/) cos” & (1 + sin N)
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if n > 3T because

d —2sin® x . 4sin g sin(x + %) d —sinx B —cos 7%

dx |sin@x+ %) [ —sin?2x + Ty T dx [cos(x + Fy) —cos2(x + %)

are negative if 37/4 < x < 4T /N. Consequently, we have

0<Ay(n,m) <Ay(n,2T) < A,(3T,2T). U

In what follows, for x € R, |x| denotes the integer part of x.

LEMMA 2.2. Supposem —m’ <l <2mandm’ —m <1 <2m’. Then,

) i [SN/6) o\ 2
0 < By(m,l) < B,(2T, |5N/6]) = ]_[ <2$in—> )
N
k=1
PROOF. By definition, B, (m, [) is equal to
l+m—m’ l+m'—m
]_[ (N + k) ]_[ (N =k} = (=D 4 m—m W +m' —m)!
k=1 k=1
[+m—m’ kn [+m'—m kn
= l_[ 2SIIIW- Q,SII’IW
k=1 k=1

and so B, (m, 1) > Obecause | +m —m’, | +m’ —m € [0, N). Then, we consider
2m+1+1
mN T

Bu(m,))  (2m+02m+1+1)  sin 27 - sin
Bo(m—1,0)  {2m —=1{2m — 11}~ sin 2=l . sin 2051=L 7

*)

which is equal to 1 if / = 2T.
Ifl > 2T, (5) is greater than 1 when m < 2T and less than 1 when m > 2T. Therefore
we have

By,(m,1) < B,QT, 1) = (=) ({1})?,
and Lemma 2.2 is true in this case because
B, (2T, 1 Ir\?
_BoCQLD <2 sin i)
B,(Q2T,1 —1) N

is greater than 1 if 27 <[ < |SN/6] and less than 1 if [SN/6] <[ < 4T.
Ifl < 2T, (5)1is less than 1 when m < 2T and greater than 1 when m > 2T . Therefore
we have

By(m, 1) < B,2T £ [1/2],1) = (= 1)!F2U2 1 421172301 —211/2))!.
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Since the right hand side is bounded by (— D21} and

—1! )
(Hl) e o 1) = 2 x| @i-bn
(=120 - DY ¥

is greater than 1 if [N/12] <[ < [5N/12] and less than 1 otherwise, we have

By(m, 1) < (~1)BN02 5N /12)) < [{I5SN/6])!] .

Since
15N/6) kot L5N/6) bor
{5N/6]}| = (2T }! ]_[ 2sinW=«/N ]_[ ZSinW>1,

k=2T+1 k=2T+1
we have
Bo(m, 1) < [{ISN/6])1] < (=D)PYI({ISN/61})* = B, (2T, [SN/6)),
and Lemma 2.2 is true in this case. This completes the proof. (I

The following is the main result of this section.

PROPOSITION 2.3.
N
log O(N; w) = o (6A(T/3) + 16A(/4)) + O(log N) ,

where O (log N) stands for a term bounded by a constant times log N.
PROOF. By Lemmas 2.1 and 2.2, Q(N, w) consists of at most N3 positive terms and
the largest term is A, (3T, 2T) B, (2T, |SN/6]). Therefore we have
Aw(3T,2T)B, (2T, |5N/6]) < Q(N; w) < N>A,(3T,2T)B,(2T, |5N/6]),
and so
log O(N; w) =1log A, (3T, 2T) + log B, (2T, |5N/6]) + O(log N)

3T 2T T I5N/6]

=[(6> -> 2> +2 > 10g<25in%>+0(logN).

k=1 k=1 k=1 k=1
Since

6) > log

k=1

ok N
2sin—|=——-2Amn/N)+ O(ogN)
N 2

(see [1,Lemma 4.1] for example), log Q(N; ) is equal to

% (—12A(37/4) + 2A(/2) + 4A(/4) — 4A(57/6)) + O(log N) .
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Then, by using the famous identities
A(=0) = —A@®), A(r +0) = A®B), AQ20) =2A0)+2A0 +1/2),
we can observe —12A(37/4) + 2A(m/2) + 4A(m/4) = 16 A(/4) and
—4A(5T/6) = 4A(1/6) = 2(A(r/3) — 2A(2m/3)) = 6A(1/3). 0

3. Proof of Main Theorem

In this section, we show the absolute values of P(N; w), R(N; w) and S(N; w) are much
smaller than Q(N; w), and complete the proof of Main Theorem.

3.1. Asymptotics of S(N; w)

LEMMA 3.1. Supposem <2T,n >m’',l <2mandl < m’' — m. Then,

Co(n,m, 1) = Ag(n,m)By(m, 1) - f,(n,m,1) - {N} mo {N}?
eI T A R I T N2 N/2P
where
n—m 2m—+1+1
{k + N/2} {2(N — k)}
Ja(n,m, 1) = — == L (N/2) el o5
4 kz,g; G kzz;:lfl (N — k}{k)

PROOF. It suffices to show that
{2}1—1— 1}{2m+ 1+ 1} {Zn—i— 1}{2m/+ 14}

n—m)j {2m —I}{1} n—m'} {2m’ — I}{1}
2n+1)2m+ 1+ 1} (N} {N)?
E{ }—'fq(n,m,l)- mo 5 -
n—m) {2m —I}{1} {N/2} {N/2}
In fact, by using the identities

{N} 2N - b}
N +k}=—{k k+N/2} o ——, 2N —k} = —{k} + ————— - {N},
{N +k} {k} +{k+ N/2} N2 { } {k} + N _h {N}

we can observe that

2n—4T
{Zn—i—l}_(_l)nm{Zn—élT} (1_ ) {k+N/2}),
n—m n—m {N/2} P {k}

—m’+1
2n—4T
{2n+1/}_(_1)n_m/{2n—4/T} | — {N} Z {k+ N/2} ’
n—m n—m {N/2} Pl {k}

@m0 2m 1) (1 o 2m+zl+l {2(N—k)})

2m' — 11} 2m — 1!{1} = AN = k) k)
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are divisible by {N}2/{N/2}? and that
{2n+ 1}{2m+ 1+1}! {2n+ 1}{2m/+ 1+

n—m| 2m -1} " |n—m'| 2m — {1}
_[2n—4T) 2m+1+1}! e {N} {N}?
:{ n—m } m iy N el Dy med ne e

2
E{Z”“}M.fqm,m,”.ﬂ mod V7
n—m| 2m— i1} (N/2) (N/2)2

LEMMA 3.2. Suppose
In =3T|+2im—-2T|>T.

Then, there exists a > 0, which is independent of n, m and N, such that
N
log A, (n, m) < o UQ@Bn/4,7/2) —a) + O(ogN),
T

where U (v, 1) =2AQ2v) +2A0W — ) +2A0W + 1) — 12A(v).
PROOF. From the proof of Lemma 2.1, it suffices to show when
[n —3T|+2lm—-2T|=T.
By (6), this is enough to show U (37 /4, 7/2) — U (v, n) > 0if
lv—=3n/4|+2|u —n/2| =7 /4

because
N
log A,(n,m) = el Umrn/N,mrn/N)+ O(ogN).
T

In fact, as in Lemma 2.1,

AU (v, w) o sin(it — v)
I g sin(u + v)

is positive if 4 < 7/2 and negative if u > 7/2, and

U (v, w/2) 4sin® v
- 4. = 10g ) )
v sin” 2v - sin“(v — 7/2)

is positive if v < 37 /4 and negative if v > 37 /4. Therefore,

/2 BU(v,x)d +/3”/4 BU(y,n/Z)d
o7 SO gy
v dy

UQ@Br/4,7/2) — U(v, u):/ > 0.

“ ax

LEMMA 3.3. Supposel <2mandl < m’' — m. Then, (=D)!'B,(m,1) > 0 and

log{(=1Y! Bo(m. )} < % V(/4,7/3) + O(log N)
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where V(u,A) =2AQ2u — A) —2AQu + A). In particular, if
2lm —T|+ |l =2T| > T,
there exists B > 0, which is independent of m,l and N, such that

N
log{(—1)! B,(m, )} < 5 (V@/4,7/3) = p)+ O(logN).

PROOF. Ifl <2mand! <m’ —m,

2m+1+1 ~ -
(= 1)B (m, ) = (— 1)1{2m+1+l}| Hk’ii’_-i_ ZSln%n

{2m — 131} ZSin%]—[i'z]_ZZSinﬁ

N

is positive and
log{(—=1)! B, (m, )} = N -V(mm/N,In/N)+ O(logN)

by (6). Then, the proof of Lemma 3.3 is similar to that of Lemma 3.2 because
aV(u, A) sin(2u + A)
M 9 lgg — T
o Esinu—n)
is positive if 4 < 7/4 and negative if u > 7 /4, and
AV (/4 1)
o

is positive if A < /3 and negative if A > /3.

= 2log{4sin(mwr/2 — A) sin(;w /2 + 1)}

PROPOSITION 3.4. There exists € > 0, which is independent of N, such that

log |S(N; w)| < % UQ@Br/4,7/2) +V(w/4,7/3) —¢e) + O(logN)

PrROOF. By Lemma 3.1, S(N; w) is equal to

T—1 4T 2m 2T—1 4T m'—m—1

Z Z Z-i— Z Z Z Aw(n,m)Bw(m,l)eO(logN),

m=0n=m’' I=0 m=T n=m’

On the other hand, by Lemmas 3.2 and 3.3,

log {Aw(n, m)|By(m, |} = % (UQBn/4,7m/2) + V(/4,7/3) —a) + O(log N)

if m <3T/2and

log (A (1, m)| Bu(m, D]} < % (UG /4, 7/2) + V (/4. 7/3) — B) + O(log N)

if m > 3T /2. This completes the proof.

549
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3.2. Asymptotics of P(N; w). Suppose 2T <n < m’. Then,

1 {2n+1}_{zv—1}! e TIN k) (N = 120 — 4T

{N}|n—m m—mMn+m+1}!  {m—mln+m+1}°
and so
()" Ay (n,m) (—1)"({n}°
{1} TN — 1120 — 4T n — m)!{n +m + 1}!

— (szl 2sin %n)6

2n—4T ~ .k n—mn . k n+m+1 sk
N( ) ZSmNﬂ)( it 2sin &) (Hk=1 2s1nﬁn)

is positive. On the other hand, as in Lemma 2.1, we can show

(=)™ Ay, m) _ —Ap(n. AT —n—1) _ 5 iy 21 AT Au(n, 4T —n)
{1} - {1} N (1}
Therefore, by Lemmas 3.2 and 3.3, we have

PROPOSITION 3.5

log |P(N; w)| < % (U@Bn/4,7/2) + V(/4,7/3) — ) + O(log N)..

3.3. Asymptotics of R(N; w). Suppose 2m’ <1 < m —m'. Then, B, (m, 1) is equal

to
1—2m'—1 14+2m’+1 1—2m'—1 ko 14+2m’+1 ot
-2 2N +k 2N —k} = (=1)/t12 2 sin — - 2sin — ,
H{+}H{ b= (=1) E sin — E sin —

and so (—1)l+1§w (m, ) is positive. Furthermore, as in Lemmas 2.2 and 3.3, we can show

- N
log{(—1)!*™' B,,(m, )} < 2+ V(. 57/6) + O(logN) .
b4
Therefore, by Lemma 3.2, we have

PROPOSITION 3.6

log |R(N; w)| < % U@Br/4,7/2)+ V(w,57/6) —a) + O(log N) .

3.4. Proof of Main Theorem. First of all, by (4),

log JL(N; w) =log Q(N; w) +10g{1 n P(N;w) = R(N;w) S(N: ) } .

O(N;w) QWNN;w) Q(N;w)
On the other hand,

P(N; ) . R(N; w) . S(N; )
— " = lim —— = lim ———— =0
N—oo Q(N;w) N—oo Q(N;w) N—oo Q(N;w)
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by Propositions 2.3, 3.4, 3.5 and 3.6 because

V(/4,7/3) = 6A(/3) = V(x,57/6).

Consequently, by Proposition 2.3 again,

[1]
(2]
[3]
[4]
[5]
[6]

[7]
[8]

[91
[10]
(1]

[12]
[13]

2 2
lim =% log Ji (N; @) = lim —% log Q(N: @) = 6A(/3) + 16A(x/4). O
N—oo N N—>oo N
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