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Abstract. We compute the limit of the colored Jones invariant of a prime link, which gives the first evidence
for Volume Conjecture of a link whose complement decomposes into two hyperbolic pieces

Introduction

In [3], Kashaev defined an invariant 〈K〉N ∈ C of a link K by using quantum dilogarithm
functions, and conjectured in [4] that

HYPERBOLIC VOLUME CONJECTURE. If K is a hyperbolic knot in S3,

lim
N→∞

2π

N
log |〈K〉N | = vol(S3 \ K) .

In [10], H. Murakami and J. Murakami proved that Kashaev’s invariant 〈K〉N is nothing

but the N-colored Jones polynomial of K evaluated at ω = exp 2π
√−1/N , and generalized

Kashaev’s conjecture to

VOLUME CONJECTURE. Let K be a link in S3 and JK(N; q) the N-colored Jones
polynomial of K . Then,

lim
N→∞

2π

N
log |JK(N; ω)| = v3 ‖S3 \ K‖ ,

where ‖S3 \ K‖ denotes the Gromov norm of S3 \ K and v3 is the volume of the ideal regular
tetrahedron in the 3-dimensional hyperbolic space.

Since the Gromov norm is equal to the sum of the volumes of the hyperbolic pieces
divided by v3 (see [2]), Volume Conjecture is a natural generalization of Hyperbolic Volume
Conjecture. The purpose of this paper is to show that Volume Conjecture holds for the 2-
component link L depicted in Figure 1, that is,
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FIGURE 1

MAIN THEOREM

lim
N→∞

2π

N
log JL(N; ω) = 6Λ(π/3) + 16Λ(π/4) ,

where Λ(θ) is the Lobachevsky function defined by

Λ(θ) = −
∫ θ

0
log |2 sin x|dx .

This is an important evidence for Volume Conjecture because L is prime and the com-
plement of L decomposes into the figure-eight knot complement, whose volume is 6Λ(π/3),
and the Borromean ring complement, whose volume is 16Λ(π/4) (see [11]). It should be
noted that Volume conjecture is proved for the figure-eight knot by Ekholm, for torus knots
by Kashaev and O. Tirkkonen [5], for Whitehead doubles of torus knots by H. Zheng [13], for
Whitehead chains by R. van der Veen [12], and for some cabled links by T. Le and A. Tran [7].
For the other results, see [9].

This paper is organized as follows. In Section 1, we compute the colored Jones poly-
nomial of L by using Masbaum’s method. Then, we investigate the asymptotic behavior of
the main part of JL(N; ω) in Sections 2 and prove Main Theorem in Section 3 under the
assumption N ≡ 1 mod 4 because the proofs for the other cases are quite similar.

The authors would like to thank the referee for valuable comments.

1. The colored Jones polynomial of L

We first review the results in [8]. Recall that the Kauffman bracket skein module of
S1 × [−1, 1], denoted by B, is the ring Z[q±1/4][z], where z represents S1 × {0} and zn
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FIGURE 2

represents the n parallel copies of z. If we put

Rn =
n−1∏
i=0

(z + q(2i+1)/2 + q−(2i+1)/2) ,(1)

then {Rn} form a basis of B. On the other hand, there is another basis {en} of B satisfying
e0 = 1, e1 = z and en = zen−1 − en−2 for n ≥ 2. In fact, en is the closure of the Jones-
Wenzl idempotent fn of the n-th Temperley-Lieb algebra Tn (see [6] for their definitions) and
JL(N; q) · {N}/{1} is obtained by cabling each component of L with eN−1 and by taking the
Kauffman bracket. Furthermore, we have

eN−1 =
N−1∑
n=0

(−1)N−1−n

{
N + n

N − 1 − n

}
Rn ,(2)

by [8, (47)], where {n} = qn/2 − q−n/2, {n}! = {n}{n − 1} · · · {2}{1} and{
m

n

}
= {m}!

{n}!{m − n}! .

LEMMA 1.1. For x, y ∈ B, we define φ(x, y) ∈ B by cabling the 2-component link
diagram in S1 × [−1, 1] depicted in Figure 2 with x, y. Then, we have

φ(eN−1, eN−1) =
N−1∑
m=0

N−1∑
n=m

(−1)m ({n}!)2
{

N + n

2n + 1

}2{2n + 1

n − m

}
e2m .

PROOF. First of all, we have

φ(eN−1, eN−1) =
N−1∑
n=0

N−1∑
k=0

(−1)n+k

{
N + n

2n + 1

}{
N + k

2k + 1

}
φ(Rn,Rk)
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FIGURE 3

by (2), and φ(Rn,Rk) is a linear sum of φ(Rn, ej )’s with j ≤ k. Then, by [8, (26)],

φ(Rn, ej ) =
j∑

a=0

〈2a〉
〈j, j, 2a〉

j∑
b=0

〈2b〉
〈j, j, 2b〉Γ

j
a,b(Rn) ,(3)

where

〈2i〉 = {2i + 1}
{1} , 〈j, j, 2i〉 = (−1)j+i {j + i + 1}!{j − i}!({i}!)2

({j }!)2{2i}!
and Γ

j
a,b(x) ∈ B is defined by Figure 3, where the center circle in the dotted square is cabled

with x ∈ B, an edge colored i stands for i parallel strands, and a white box represents a
Jones-Wenzl idempotent. Since

Γ
j

a,b(z) = (−q(2b+1)/2 − q−(2b+1)/2)Γ
j

a,b(1)

(see [6, 9.6] for example), we have Γ
j
a,b(Rn) = 0 when b < n by (1), which implies

φ(Rn,Rk) = 0 if k < n. Since φ is symmetric, we have

φ(eN−1, eN−1) =
N−1∑
n=0

{
N + n

2n + 1

}2

φ(Rn,Rn) ,

where φ(Rn,Rn) = φ(Rn, en) because Rn − en is the sum of Rk’s with k < n by (2), and it
suffices to show

φ(Rn, en) =
n∑

m=0

(−1)m ({n}!)2
{

2n + 1

n − m

}
e2m .
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In fact, by (3) and by the observation above, we have

φ(Rn, en) =
n∑

m=0

n∑
k=0

〈2m〉
〈n, n, 2m〉

〈2k〉
〈n, n, 2k〉Γ n

m,k(Rn) =
n∑

m=0

〈2m〉
〈n, n, 2m〉Γ

n
m,n(Rn) ,

where

Γ n
m,n(Rn) = 〈e2n, Rn〉

〈e2n, 1〉 Γ n
m,n(1) = (−1)n{2n}! Γ n

m,n(1)

by [8, (5)] and

Γ n
m,n(1) = 〈2n〉

〈2m〉Γ
m
m,m(1) = {2n + 1}

{2m + 1}
({m}!)2

{2m}! e2m

by [6, 3.3] and [8, Lemma 3.1]. Consequently, φ(Rn, en) is equal to
n∑

m=0

(−1)n+m{2m + 1}({n}!)2{2m}!
{n − m}!{n + m}!({m}!)2

· (−1)n{2n}! · {2n + 1}
{2m + 1}

({m}!)2

{2m}! · e2m

=
n∑

m=0

(−1)m({n}!)2{2n + 1}!
{n + m + 1}!{n − m}! · e2m =

n∑
m=0

(−1)m ({n}!)2
{

2n + 1

n − m

}
e2m . �

Since the (2m + 1)-colored Jones polynomial of the figure-eight knot is given by

2m∑
l=0

{2m + 1 + l}!
{2m − l}!{2m + 1}

(see [8, (49)] for example), the colored Jones polynomial JL(N; q) of L is equal to

{1}
{N}

N−1∑
n=0

n∑
m=0

2m∑
l=0

Aq(n,m)Bq(m, l) = {1}
{N}

N−1∑
m=0

N−1∑
n=m

2m∑
l=0

Aq(n,m)Bq(m, l)

by Lemma 1.1, where we put

Aq(n,m) = (−1)m ({n}!)2
{

N + n

2n + 1

}2{2n + 1

n − m

}
, Bq(m, l) = {2m + 1 + l}!

{2m − l}!{1} .

From now on, we suppose N ≡ 1 mod 4 for simplicity, and put

T = N − 1

4
, m′ = 4T − m .

Note that Aq(n,m) ≡ 0 mod {N}2 if n < 2T and Bq(m, l) ≡ 0 mod {N}2 if l > 2m′ and
l > m − m′, and JL(N; q) is equal to

{1}
{N}


2T −1∑

m=0

4T∑
n=2T

2m∑
l=0

+
3T∑

m=2T

4T∑
n=m

2m′∑
l=0

+
4T∑

m=3T +1

4T∑
n=m

m−m′∑
l=0


Aq(n,m)Bq(m, l)
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FIGURE 4

FIGURE 5

modulo {N}/{1}. See the dark-gray regions in Figure 4.

Furthermore, there exists Ãq(n,m) ∈ Z[q±1/2] such that

Aq(n,m) = Ãq(n,m){N}/{1}
if n < m′, and there exists B̃q (m, l) ∈ Z[q±1/2] such that

Bq(m, l) = B̃q(m, l){N}/{1}
if l ≥ |m′ − m| or l > 2m′. See the gray regions in Figure 5. Therefore,

{1}
{N}

2T −1∑
m=T

m′−1∑
n=2T

2m∑
l=m′−m

Aq(n,m)Bq(m, l) ≡ 0 mod {N}/{1} ,

and JK(N; q) is equal to

{1}
{N}


T −1∑

m=0

m′−1∑
n=2T

2m∑
l=0

+
T −1∑
m=0

4T∑
n=m′

2m∑
l=0
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+
2T −1∑
m=T

m′−1∑
n=2T

m′−m−1∑
l=0

+
2T −1∑
m=T

4T∑
n=m′

m′−m−1∑
l=0

+
2T −1∑
m=T

4T∑
n=m′

2m∑
l=m′−m

+
3T∑

m=2T +1

4T∑
n=m

m−m′−1∑
l=0

+
3T∑

m=2T

4T∑
n=m

2m′∑
l=m−m′

+
4T∑

m=3T +1

4T∑
n=m

2m′∑
l=0

+
4T∑

m=3T +1

4T∑
n=m

m−m′∑
l=2m′+1


Aq(n,m)Bq(m, l)

= P(N; q) + Q(N; q) + R(N; q)

+ {1}
{N}


T −1∑

m=0

4T∑
n=m′

2m∑
l=0

+
2T −1∑
m=T

4T∑
n=m′

m′−m−1∑
l=0


Aq(n,m)Bq(m, l)

+ {1}
{N}


 T −1∑

m′=0

4T∑
n=(m′)′

2m′∑
l=0

+
2T −1∑
m′=T

4T∑
n=(m′)′

(m′)′−m′−1∑
l=0


Aq(n, (m′)′)Bq((m′)′, l)

modulo {N}/{1}, where

P(N; q) =

T −1∑

m=0

m′−1∑
n=2T

2m∑
l=0

+
2T −1∑
m=T

m′−1∑
n=2T

m′−m−1∑
l=0


 Ãq(n,m)Bq(m, l) ,

Q(N; q) =

2T −1∑

m=T

4T∑
n=m′

2m∑
l=m′−m

+
3T∑

m=2T

4T∑
n=m

2m′∑
l=m−m′


Aq(n,m)B̃q(m, l) ,

R(N; q) =
4T∑

m=3T +1

4T∑
n=m

m−m′∑
l=2m′+1

Aq(n,m)B̃q(m, l) .

If we put

Cq(n,m, l) = Aq(n,m)Bq(m, l) + Aq(n,m′)Bq(m′, l)

and

S(N; q) = {1}
{N}


T −1∑

m=0

4T∑
n=m′

2m∑
l=0

+
2T −1∑
m=T

4T∑
n=m′

m′−m−1∑
l=0


Cq(n,m, l) ,

we have

JL(N; q) ≡ P(N; q) + Q(N; q) + R(N; q) + S(N; q) mod {N}/{1} .(4)
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2. Asymptotics of Q(N; ω)

From now on, we suppose N is sufficiently large.

LEMMA 2.1. Suppose n is greater than or equal to m and m′. Then,

0 ≤ Aω(n,m) ≤ Aω(3T , 2T ) =
(∏3T

k=1 2 sin k
N

π
)6

N2
(∏2T

k=1 2 sin k
N

π
) (∏T

k=1 2 sin k
N

π
)2

.

PROOF. If q = ω, we have{
N + n

2n + 1

}
=

∏n
k=1{N + k}{N − k}

{N − 1}! ∏2n−4T
k=1 {N + k} = (−1)n({n}!)2

{N − 1}!{2n − 4T }! ,

{
2n + 1

n − m

}
=

∏2n−4T
k=1 {N + k}

{n − m}! ∏n−m′
k=1 {N + k} = (−1)n+m{2n − 4T }!

{n − m}!{n − m′}! ,

and {N − 1}! = ω−N(N−1)/4(ω − 1)(ω2 − 1) · · · (ωN−1 − 1) = N , and so

Aω(n,m) = (−1)n({n}!)6

({N − 1}!)2{2n − 4T }!{n − m}!{n − m′}!

=
(∏n

k=1 2 sin k
N

π
)6

N2
(∏2n−4T

k=1 2 sin k
N

π
) (∏n−m

k=1 2 sin k
N

π
) (∏n−m′

k=1 2 sin k
N

π
)

is positive because n , 2n − 4T , n − m, n − m′ ∈ [0, N). On the other hand,

Aω(n,m)

Aω(n,m − 1)
= {n − m + 1}

{n − m′} = − sin n−m+1
N

π

sin n+m+1
N

π

is equal to 1 if n = 4T , greater than 1 if n < 4T and m ≤ 2T , and less than 1 if n < 4T and
m > 2T , and so we have Aω(n,m) ≤ Aω(n, 2T ). Similarly,

Aω(n, 2T )

Aω(n − 1, 2T )
= 4 sin6 n

N
π

sin 2n
N

π sin 2n+1
N

π cos2 2n+1
2N

π

is greater than

4 sin6 2n+1
2N

π

sin2 2n+1
N

π cos2 2n+1
2N

π
= tan4 (2n + 1)π

2N
> 1

if 2T < n ≤ 3T , and is less than

4 sin4 n
N

π

sin2 2n+1
N

π
· sin2 n

N
π

cos2 2n+1
2N

π
≤ 4 sin6 3

4π

sin2( 3
2π + π

N
) cos2( 3

4π + π
2N

)
= 1

cos2 π
N

(1 + sin π
N

)
< 1
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if n > 3T because

d

dx

{
−2 sin2 x

sin(2x + π
N

)

}
= 4 sin π

N
sin(x + π

N
)

− sin2(2x + π
N

)
,

d

dx

{ − sin x

cos(x + π
2N

)

}
= − cos π

2N

cos2(x + π
2N

)

are negative if 3π/4 < x < 4T π/N . Consequently, we have

0 ≤ Aω(n,m) ≤ Aω(n, 2T ) ≤ Aω(3T , 2T ) . �

In what follows, for x ∈ R, �x
 denotes the integer part of x.

LEMMA 2.2. Suppose m − m′ ≤ l ≤ 2m and m′ − m ≤ l ≤ 2m′. Then,

0 ≤ B̃ω(m, l) ≤ B̃ω(2T , �5N/6
) =
�5N/6
∏

k=1

(
2 sin

kπ

N

)2

.

PROOF. By definition, B̃ω(m, l) is equal to

l+m−m′∏
k=1

{N + k}
l+m′−m∏

k=1

{N − k} = (−1)l+m−m′ {l + m − m′}!{l + m′ − m}!

=
l+m−m′∏

k=1

2 sin
kπ

N
·
l+m′−m∏

k=1

2 sin
kπ

N

and so B̃ω(m, l) ≥ 0 because l + m − m′, l + m′ − m ∈ [0, N). Then, we consider

B̃ω(m, l)

B̃ω(m − 1, l)
= {2m + l}{2m + 1 + l}

{2m − l}{2m − 1 − l} = sin 2m+l
N

π · sin 2m+1+l
N

π

sin 2m−l
N

π · sin 2m−1−l
N

π
(5)

which is equal to 1 if l = 2T .
If l > 2T , (5) is greater than 1 when m ≤ 2T and less than 1 when m > 2T . Therefore

we have

B̃ω(m, l) ≤ B̃ω(2T , l) = (−1)l({l}!)2,

and Lemma 2.2 is true in this case because

B̃ω(2T , l)

B̃ω(2T , l − 1)
= −{l}2 =

(
2 sin

lπ

N

)2

is greater than 1 if 2T < l ≤ �5N/6
 and less than 1 if �5N/6
 < l ≤ 4T .
If l < 2T , (5) is less than 1 when m ≤ 2T and greater than 1 when m > 2T . Therefore

we have

B̃ω(m, l) ≤ B̃ω(2T ± �l/2
, l) = (−1)l±2�l/2
{l + 2�l/2
}!{l − 2�l/2
}! .
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Since the right hand side is bounded by (−1)l{2l}! and

(−1)l{2l}!
(−1)l−1{2(l − 1)}! = −{2l}{2l − 1} = 2 sin

2lπ

N
· 2 sin

(2l − 1)π

N

is greater than 1 if �N/12
 < l ≤ �5N/12
 and less than 1 otherwise, we have

B̃ω(m, l) ≤ (−1)�5N/12
{2�5N/12
}! ≤ |{�5N/6
}!| .
Since

|{�5N/6
}!| = {2T }!
�5N/6
∏
k=2T +1

2 sin
kπ

N
= √

N

�5N/6
∏
k=2T +1

2 sin
kπ

N
> 1 ,

we have

B̃ω(m, l) ≤ |{�5N/6
}!| < (−1)�5N/6
({�5N/6
}!)2 = B̃ω(2T , �5N/6
),
and Lemma 2.2 is true in this case. This completes the proof. �

The following is the main result of this section.

PROPOSITION 2.3.

log Q(N; ω) = N

2π
(6Λ(π/3) + 16Λ(π/4)) + O(log N) ,

where O(log N) stands for a term bounded by a constant times log N .

PROOF. By Lemmas 2.1 and 2.2, Q(N,ω) consists of at most N3 positive terms and

the largest term is Aω(3T , 2T )B̃ω(2T , �5N/6
). Therefore we have

Aω(3T , 2T )B̃ω(2T , �5N/6
) ≤ Q(N; ω) ≤ N3Aω(3T , 2T )B̃ω(2T , �5N/6
) ,

and so

log Q(N; ω) = log Aω(3T , 2T ) + log B̃ω(2T , �5N/6
) + O(log N)

=

6

3T∑
k=1

−
2T∑
k=1

−2
T∑

k=1

+2
�5N/6
∑

k=1


 log

(
2 sin

kπ

N

)
+ O(log N) .

Since
n∑

k=1

log

∣∣∣∣2 sin
kπ

N

∣∣∣∣ = − N

2π
· 2Λ(nπ/N) + O(log N)(6)

(see [1, Lemma 4.1] for example), log Q(N; ω) is equal to

N

2π
(−12Λ(3π/4) + 2Λ(π/2) + 4Λ(π/4) − 4Λ(5π/6)) + O(log N) .
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Then, by using the famous identities

Λ(−θ) = −Λ(θ), Λ(π + θ) = Λ(θ), Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2) ,

we can observe −12Λ(3π/4) + 2Λ(π/2) + 4Λ(π/4) = 16Λ(π/4) and

−4Λ(5π/6) = 4Λ(π/6) = 2(Λ(π/3) − 2Λ(2π/3)) = 6Λ(π/3) . �

3. Proof of Main Theorem

In this section, we show the absolute values of P(N; ω), R(N; ω) and S(N; ω) are much
smaller than Q(N; ω), and complete the proof of Main Theorem.

3.1. Asymptotics of S(N; ω)

LEMMA 3.1. Suppose m < 2T , n ≥ m′, l ≤ 2m and l < m′ − m. Then,

Cq(n,m, l) ≡ Aq(n,m)Bq(m, l) · fq(n,m, l) · {N}
{N/2} mod

{N}2

{N/2}2 ,

where

fq(n,m, l) = −
n−m∑

k=n−m′+1

{k + N/2}
{k} + {N/2}

2m+1+l∑
k=2m+1−l

{2(N − k)}
{N − k}{k} .

PROOF. It suffices to show that{
2n + 1

n − m

} {2m + 1 + l}!
{2m − l}!{1} +

{
2n + 1

n − m′

} {2m′ + 1 + l}!
{2m′ − l}!{1}

≡
{

2n + 1

n − m

} {2m + 1 + l}!
{2m − l}!{1} · fq(n,m, l) · {N}

{N/2} mod
{N}2

{N/2}2
.

In fact, by using the identities

{N + k} = −{k} + {k + N/2} · {N}
{N/2} , {2N − k} = −{k} + {2(N − k)}

{N − k} · {N} ,

we can observe that{
2n + 1

n − m

}
− (−1)n−m

{
2n − 4T

n − m

}
1 − {N}

{N/2}
2n−4T∑

k=n−m′+1

{k + N/2}
{k}


 ,

{
2n + 1

n − m′

}
− (−1)n−m′

{
2n − 4T

n − m′

}
1 − {N}

{N/2}
2n−4T∑

k=n−m+1

{k + N/2}
{k}


 ,

{2m′ + 1 + l}!
{2m′ − l}!{1} − (−1)2l+1 {2m + 1 + l}!

{2m − l}!{1}


1 − {N}

2m+1+l∑
k=2m+1−l

{2(N − k)}
{N − k}{k}



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are divisible by {N}2/{N/2}2 and that{
2n + 1

n − m

} {2m + 1 + l}!
{2m − l}!{1} +

{
2n + 1

n − m′

} {2m′ + 1 + l}!
{2m′ − l}!{1}

≡
{

2n − 4T

n − m

} {2m + 1 + l}!
{2m − l}!{1} · (−1)n−mfq(n,m, l) · {N}

{N/2} mod
{N}2

{N/2}2

≡
{

2n + 1

n − m

} {2m + 1 + l}!
{2m − l}!{1} · fq(n,m, l) · {N}

{N/2} mod
{N}2

{N/2}2 . �

LEMMA 3.2. Suppose

|n − 3T | + 2|m − 2T | ≥ T .

Then, there exists α > 0, which is independent of n,m and N , such that

log Aω(n,m) ≤ N

2π
(U(3π/4, π/2) − α) + O(log N) ,

where U(ν,µ) = 2Λ(2ν) + 2Λ(ν − µ) + 2Λ(ν + µ) − 12Λ(ν).

PROOF. From the proof of Lemma 2.1, it suffices to show when

|n − 3T | + 2|m − 2T | = T .

By (6), this is enough to show U(3π/4, π/2) − U(ν,µ) > 0 if

|ν − 3π/4| + 2|µ − π/2| = π/4

because

log Aω(n,m) = N

2π
· U(nπ/N,mπ/N) + O(log N) .

In fact, as in Lemma 2.1,

∂U(ν,µ)

∂µ
= log

sin(µ − ν)

sin(µ + ν)

is positive if µ < π/2 and negative if µ > π/2, and

∂U(ν, π/2)

∂ν
= log

4 sin6 ν

sin2 2ν · sin2(ν − π/2)

is positive if ν < 3π/4 and negative if ν > 3π/4. Therefore,

U(3π/4, π/2) − U(ν,µ) =
∫ π/2

µ

∂U(ν, x)

∂x
dx +

∫ 3π/4

ν

∂U(y, π/2)

∂y
dy > 0 . �

LEMMA 3.3. Suppose l ≤ 2m and l < m′ − m. Then, (−1)lBω(m, l) > 0 and

log{(−1)lBω(m, l)} ≤ N

2π
· V (π/4, π/3) + O(log N) ,
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where V (µ, λ) = 2Λ(2µ − λ) − 2Λ(2µ + λ). In particular, if

2|m − T | + |l − 2T | ≥ T ,

there exists β > 0, which is independent of m, l and N , such that

log{(−1)lBω(m, l)} ≤ N

2π
(V (π/4, π/3) − β) + O(log N) .

PROOF. If l ≤ 2m and l < m′ − m,

(−1)lBω(m, l) = (−1)l
{2m + 1 + l}!
{2m − l}!{1} =

∏2m+1+l
k=1 2 sin k

N
π

2 sin π
N

∏2m−l
k=1 2 sin k

N
π

is positive and

log{(−1)lBω(m, l)} = N

2π
· V (mπ/N, lπ/N) + O(log N)

by (6). Then, the proof of Lemma 3.3 is similar to that of Lemma 3.2 because

∂V (µ, λ)

∂µ
= 2 log

sin(2µ + λ)

sin(2µ − λ)

is positive if µ < π/4 and negative if µ > π/4, and

∂V (π/4, λ)

∂λ
= 2 log{4 sin(π/2 − λ) sin(π/2 + λ)}

is positive if λ < π/3 and negative if λ > π/3. �

PROPOSITION 3.4. There exists ε > 0, which is independent of N , such that

log |S(N; ω)| ≤ N

2π
(U(3π/4, π/2) + V (π/4, π/3) − ε) + O(log N)

PROOF. By Lemma 3.1, S(N; ω) is equal to
T −1∑

m=0

4T∑
n=m′

2m∑
l=0

+
2T −1∑
m=T

4T∑
n=m′

m′−m−1∑
l=0


 Aω(n,m)Bω(m, l)eO(log N) .

On the other hand, by Lemmas 3.2 and 3.3,

log {Aω(n,m)|Bω(m, l)|} ≤ N

2π
(U(3π/4, π/2) + V (π/4, π/3) − α) + O(log N)

if m < 3T/2 and

log {Aω(n,m)|Bω(m, l)|} ≤ N

2π
(U(3π/4, π/2) + V (π/4, π/3) − β) + O(log N)

if m ≥ 3T/2. This completes the proof. �
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3.2. Asymptotics of P(N; ω). Suppose 2T ≤ n < m′. Then,

1

{N}
{

2n + 1

n − m

}
= {N − 1}! ∏2n−4T

k=1 {N + k}
{n − m}!{n + m + 1}! = {N − 1}!{2n − 4T }!

{n − m}!{n + m + 1}! ,

and so

(−1)n+mÃω(n,m)

{1} = (−1)n({n}!)6

{N − 1}!{2n − 4T }!{n − m}!{n + m + 1}!

=
(∏n

k=1 2 sin k
N

π
)6

N
(∏2n−4T

k=1 2 sin k
N

π
) (∏n−m

k=1 2 sin k
N

π
) (∏n+m+1

k=1 2 sin k
N

π
)

is positive. On the other hand, as in Lemma 2.1, we can show

(−1)n+mÃω(n,m)

{1} ≤ −Ãω(n, 4T − n − 1)

{1} = 2 sin
(2n + 2)π

N
· Aω(n, 4T − n)

{1} .

Therefore, by Lemmas 3.2 and 3.3, we have

PROPOSITION 3.5

log |P(N; ω)| ≤ N

2π
(U(3π/4, π/2) + V (π/4, π/3) − α) + O(log N) .

3.3. Asymptotics of R(N; ω). Suppose 2m′ < l ≤ m − m′. Then, B̃ω(m, l) is equal
to

−2
l−2m′−1∏

k=1

{2N + k}
l+2m′+1∏

k=1

{2N − k} = (−1)l+12
l−2m′−1∏

k=1

2 sin
kπ

N
·
l+2m′+1∏

k=1

2 sin
kπ

N
,

and so (−1)l+1B̃ω(m, l) is positive. Furthermore, as in Lemmas 2.2 and 3.3, we can show

log{(−1)l+1B̃ω(m, l)} ≤ N

2π
· V (π, 5π/6) + O(log N) .

Therefore, by Lemma 3.2, we have

PROPOSITION 3.6

log |R(N; ω)| ≤ N

2π
(U(3π/4, π/2) + V (π, 5π/6) − α) + O(log N) .

3.4. Proof of Main Theorem. First of all, by (4),

log JL(N; ω) = log Q(N; ω) + log

{
1 + P(N; ω)

Q(N; ω)
+ R(N; ω)

Q(N; ω)
+ S(N; ω)

Q(N; ω)

}
.

On the other hand,

lim
N→∞

P(N; ω)

Q(N; ω)
= lim

N→∞
R(N; ω)

Q(N; ω)
= lim

N→∞
S(N; ω)

Q(N; ω)
= 0
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by Propositions 2.3, 3.4, 3.5 and 3.6 because

V (π/4, π/3) = 6Λ(π/3) = V (π, 5π/6) .

Consequently, by Proposition 2.3 again,

lim
N→∞

2π

N
log JL(N; ω) = lim

N→∞
2π

N
log Q(N; ω) = 6Λ(π/3) + 16Λ(π/4) . �
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