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Introduction

In this paper we shall prove the local existence of holomorphic func-
tions in an analytic cover (a ramified Riemann domain) n: Y— X by
using a solution of the Riemann-Hilbert problem (see §6). The existence of
such functions was earlier proved in 1958 by H. Grauert and R. Remmert
[10] and in 1960 by R. Kawai [11] by different methods. We can consider
the functions on Y as many-valued functions on X which may have the
branch points along the critical locus D of the analytic cover =: ¥ — X.
We shall construct such many-valued functions on X from the solutions
of the total différential equation (1.1) whose monodromy representation
is the one associated with the analytic cover 7: Y — X (see §5). For this
purpose, in §3, using the results of P. Deligne [6], we solve the Riemann-
Hilbert problem in the following situation; let X be a connected Stein
manifold and let D be a divisor of X (not mecessarily mormal crossing).
Suppose that a representation o of n,(X—D, x,) in GL,(C) is given. We
shall construct a total differential equation (1.1) whose monodromy is the
given p. We can study in detail the case of dim X=2 than that of
dim X=8, more precisely, when dim X=2, if H*X, Z)=0, we can solve
the Riemann-Hilbert problem without apparent singularities (Theorem 3).
As an application of Proposition 2 of §3, we shall give a remark to the
Riemann-Hilbert problem in the restricted semse, when X is a two-dimen-
sional connected complex manifold. This problem was treated by K.
Aomoto [1] by different method when X is an n-dimensional complex
projective space (see §4). In solving the Riemann-Hilbert problem, we do
not use the existence of resolution of X satisfying the condition that the
inverse image of D is normal crossing, but we use essentially the extension
theorems of coherent analytic sheaves of J.-P. Serre [15] and Y.-T. Siu
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[16] (see §2).

§1. Preliminaries.

1.1. In what follows we assume that all manifolds under considera-
tion are paracompact. Let X be a connected complex manifold and we
fix a base point x,€ X. Suppose that v, and v, be closed curves in X
starting from x,. Then we denote by ~,-v, the closed curve defined
by

742t  for 0=st=<1/2

L Y(t) =
s ) {'71(2#,—1) for 1/2<t<1.

The constant sheaf with coefficients in C? is denoted by C?. In this paper,
a locally constant sheaf ¥V on X of rank g means always the sheaf which
is locally isomorphic to the constant sheaf C’. Let v be a closed curve
starting from «,; i.e., let ~7:[0,1]>X be a continuous map with
Y(0)=v(1)=x,. Then v*(V) is a locally constant sheaf on [0, 1]; hence it
is a constant sheaf. Thus there is a unique isomorphism between v*(V)
and the constant sheaf on [0, 1] with coefficients in V,. It follows that
v determines an isomorphism v,e€GL(V,) and v, depends only on the
homotopy class of v. It is evident that (v, 7,). =)« (7,).. Hence one
can determine a homomorphism p: (X, %,) —GL (V,,) by o(7)="..

Let V be as above. There exists a sufficiently fine open covering
X=Ujes U; such that V|,  is constant; hence there is an isomorphism
P;: C'— Vly;. Since @;'-@; is an isomorphism of constant sheaf C? on
U.NU;, there exists a matrix g,;€ GL,(C) for any U,NU;# @ such that

P(8)=Pi(&;), Wwhere ¢&,¢&;eC"

if and only if &,=g,;-&;. It is obvious that g,; satisfy the cocycle condi-
tions:

9ii*9in=9ga on UNU,NU+ 0 ;

hence there is determined a flat vector bundle E of rank g with the tran-
sition functions g,;. There is a simple relation between V and E, i.e.,
V is isomorphic to C(¥), where C(F) is the sheaf of germs of locally
constant sections of E. Thus we have seen that a flat vector bundle
determines a representation o of =,(X, 2,) in GL(V,). Let us consider
the converse. Suppose that a representation p of 7 (X, x,) in GL,(C) be
given. There is an open covering X=J;., U; such that each U; and
U;NU, are simply connected. We suppose z,€ U,, and choose a point
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®;€ U;. Since X is connected, there is a path 4 in X from z, to =z;.
For any e U,NU;, let d,;(x) be a path in U, from x, to x. If v is a
closed curve starting from z,, we denote by [v] the homotopy class of .
Write

95t =077 - dif(®) - dji(x) - 4]) for zeU,NT;.

Since each U; and U,;N U; are simply connected, g,; is constant on U;N U;.
It follows that

9 9in=0sx on UNU;NU,# 0 .

Hence {g,;} satisfies the cocycle conditions, and one can determine a flat
vector bundle E with the transition functions g,;. Let C(E)=1YV, and let
7v:[0,1]— X be a closed curve starting from x,, then there is an open
covering ([0, 1)< Uj.s; U; (if necessary, change the indices of {U,}) such
that U,NU,,,# @ for i=0, ---, m, where U,,,=U,. By the definition of
E, there is a frame ¢ =(¢{*, ---, ¢/') of E on U, such that, any section &
of E is identified with the collection of vectors {¢;} such that &=g,;-&;,
where &,=%(¢&, +--, &) and £=32_, &%l. Let &, be a local section of C(E)
on a neighborhood of x,. Using the frame ¢, we can identify the
vector space V, with the complex number space C?% hence we can
consider v, € GL(V,,) as a matrix A, € GL,(C). Then, by the definition
of v,, it follows that

Ah:go'm, *Omm—1® *** *GJro° &0
:p([/ald;;dmo/m])’ °c ’p([/l_ldl_oldm/o])fo
:p([v])Eo

because the closed curve (/;'d; )« (/T'dy'd,s) is homotopic to .
Hence we have that

V(e e ey e)=(e” -, e)o([7])

where 7v,(e{”, «--, el”) is a 1xq matrix (v.e{®, -, 7,.e) of q sections of
C(E) on U,. Thus we have that, given a representation p of w (X, x,)
i GL,(C), there exists a flat vector bundle E on X satisfying the con-
ditions that the action of m(X, x,) to C(E),, is identified with the given
© provided that we choose properly the basis of C(E),,

1.2. Let E be a holomorphic vector bundle of rank ¢ on X, and let
() be the sheaf of germs of holomorphic sections of E. We denote
by 2% the sheaf of germs of holomorphic p-forms on X. A holomorphic
connection / on F is a C-linear homomorphism
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V: OB)— 2% ® 7(E)
2x
which satisfies the Leibniz formula

V(fs)=dfQs+ fVs

for any local sections f of < and s of < (E). Given /, there is one
and only one C-linear homomorphism

V: Q@ P(BE)— 2% @ O (E)
ﬂx ”X
which satisfies the Leibniz formula
7(0R8)=d0Rs—O AV's

for any local sections 6 of 2% and s of ~°(&). Now let us consider the
composition :

K=Vor: TE)— % Q I(E) .

By simple computation, it follows that the correspondence s(x)—
K(8)(x) defines a holomorphic section of holomorphic vector bundle
Hom (E, N*T3QRQE)= A*T%Q End (E), where T% is the cotangent bundle
of X and End (E)= Hom (E, E), so we have Ke I'(X, 2% @,, & (End (E))).
This section K=K, is called the curvature tensor of the connection /.
A connection F is called integrable if its curvature tensor K, is zero.
Let e=(e,, -+, ¢,) be a holomorphic frame of E on a neighborhood U in

X. Then we define the connection matrix w=(w,;) associated with the
frame ¢ by setting

q
Ve,=>,wj;e; for 1=1,..-,¢q,
j=1

where w;; € I'(U, 2%). Note that

Kl(e,)= I (Zq, 0] ,-,-ei>

=1

Kii®e.‘i ’

1

q
=

where we have set
q
Kj=dw;+ kz_l W N\we; € I'(U, 2%) ,

i.e., in matrix notation K=dw+wAw, K=(K,;). Hence V is integrable
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if and only if the connection matrix @ satisfies the differential equation
dw+wAw=0. Using the frame ¢, we write a local section s in the form
8=>7_, u,e; then the relation /s=0 is equivalent to the total differential

equation
U, \ @y ccc Wi\ [Uy
d E -|- ce e E :0 .

U, Wqy **° Wqql \Uy

Hence, by the classical existence theorem of differential equations, if 7
is integrable, then the subsheaf Ker?” (of <”(E)) of local solutions of
Vs=0 is a locally constant sheaf of rank q. Conversely, let £ be a flat
vector bundle of rankq. Since &~(E)=C(E)®; 7%, we can define a C-
linear homomorphism 7: & (E)— 2% R, C(K) as follows: V(sQf): =dfRs
for any local sections s of C(E) and f of <. It is easy to check that
V is an integrable connection on E such that Ker 7 =C(E).

1.3. Let D be a normal crossing divisor of X, i.e., D is locally
defined by the equation {z,-.-2,=0}, where (2, ---, 2, is a local co-
ordinate system. Write X*=X—D. Suppose that E is a holomorphic
vector bundle on X and / is an integrable connection on FE|;.. Suppose
that there exists a local coordinate system (2, ---, 2,) in a neighborhood
U of a point xe D such that UND={z, --- 2,=0}. Then / is said to
have at most logarithmic pole along D, if the connection matrix (w;;)=w
associated with any frame has at most logarithmic pole along UN D, i.e.,
each w,; is written in the form

a)ij :zf‘{ av(dzy/zv) + 7] ’

where «, is holomorphic on U and 7 is a holomorphic 1-form on U.
Write UND=: Ui, C, where C,={z,=0}, then we write res, w,;: =a,|o,
and call res, ®,; the residue of w,; along C,. We set res, ®: =(res; w,;)
and call it the residue of the connection / along C,. Let D=\J D; be
the decomposition into irreducible components of D. It is shown that

resp, @ € I'(D,, <(End (E) lDt)®ﬂDi&Di)

where épi is the sheaf of germs of weakly holomorphic functions on D,
(see [5], p. 78).

1.4. Let D, E,V be as above. Let 4={z€ C||?|<1}. Let ¢:4— X be
an arbitrary holomorphic map such that ¢-'(D)={0}, and let ¢*/ and ¢*FE
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be the inverse of / and E by ¢ respectively. We say that / is regular
singular along D if the connection ¢*/ on ¢*E is regular singular at
2=0 in the usual sense of ordinary differential equation (see [6], p. 85).
Let

Y, Qn °cc ‘Qm Y,
(1.1) d |+ : ]=o0
Yq 'qu °cc Qqq Yq

be a total differential equation, where every £2,; has at most pole along
D. Suppose that (1.1) is completely integrable on X—D. D is said to
be the apparent singularity of (1.1) if, for every = e D, any solution of
(1.1) in a small simply-connected neighborhood of = is single-valued and
meromorphic there.

§2. Extension of flat vector bundles.

2.1. Let X be a connected complex manifold and let D be a divisor
of X. Let X*: =X—D and x,€ X*. Suppose that a representation p of
7w (X*, x,)—GL, (C) is given. We shall attempt to construct a completely
integrable total differential equation of the form (1.1) which satisfies the
following two conditions:

1) the equation (1.1) is regular singular along D, moreover there
exists a divisor A in X along which (1.1) may have apparent singularities.

We choose ¢ linearly independent solutions f,, ---, f, of (1.1) at z,¢ A
properly, and let v be any closed curve in X* starting from z, We
denote by v.[f,, + -+, f,] the result of analytic continuation of the function
element [f,, ---, f,] along the curve 7.

We require that

2) Yl ==, fd=1F - - -, fdo¥]) for any [v]em(X*, «,) .

For a given representation o of =,(X*, z,) in GL,(C), we shall call the
Riemann-Hilbert problem the problem of constructing the equation (1.1)
which satisfies the above two conditions.

As is constructed in 72°1 and %°2 of §1, there exist a flat vector
bundle E on X* associated with o, and a unique integrable holomorphic
connection / on E such that the sheaf of germs of local solutions of
Vs=0 coinsides with C(Z). For the pair (V, E), Y. Manin showed ([6],
p. 94) that E can be extended uniquely to a holomorphic vector bundle E,
on X—Sing (D), where Sing (D) means the singular locus of D, satisfying
the following two conditions: '



RIEMANN-HILBERT PROBLEM 7

(M.1) For any point x € D—Sing (D), there exists an open neighbor-
hood U of 2 in X—Sing (D) such that, for any holomorphic frame e=
(e, ++,e,) of E, on U, if we write

q
Ve,=>,wj;e; for i1=1,-.--,q,
=

then any ,; has at most logarithmic poles along DN U.

(M.2) Let w=(w,;) be a connection matrix. By n°3 of §1, we have
resw e I'(DN U, &(End (E)|,)®., 7). Suppose that DN U=UPr, C, be
the decomposition into irreducible components of DN U. Then, by the
simple computation (See [5], p. 79.), the eigenvalues «, ---, @, of the
matrix res;, @ are constant on C;. Then the following inequality must
be satisfied

0<Rea,<1 for =1, ---,q.

2.2. First we consider two-dimensional case. Write S=Sing (D).
In this case, S is at most countable discrete point set in X; hence for
any s,€ S, there exists an open neighborhood U of s, in X such that
SN U={s,}. By iteration of o-process centered at s,, we see that the
inverse image of DN U is normal crossing. Doing this procedure at every
point of S, we have the proper modification 7: X — X as follows:

1) X is a complex manifold,

2) 7 YD) is a normal crossing divisor in X,

3) 7: X—7%(S)— X—S8 is biholomorphic.
Since by 8), X—7%D) is biholomorphic to X—D, there exists a flat
vector bundle F on X—7z(D) such that 7, (7 (F))=c(E). By 2) and a
result of Y. Manin cited above, F' can be extended uniquely to a holomor-
phic vector bundle F, on X which satisfies (M.1) and (M.2). On the other
hand, E can be also extended uniquely to a holomorphic vector bundle
E, on X— S8 satisfying the conditions (M.1l) and (M.2). Considering that
X—77%(S) is biholomorphic to X—S and that the extension is uniquely
determined by the above two conditions, it follows easily that

(O (B [z-cm19)) = T (E)) .

By H. Grauert and R. Remmert ([9], p. 424) the direct image 7. (Z7(F)))
of ~7(F,) is a coherent analytic sheaf on X; hence Z7(F),) can be extended
to a coherent analytic sheaf 7. .((F),) on X. Let j: X—S—X be a
canonical injection. Since S is a two-codimensional analytic subset of X,
by a theorem of J.-P. Serre ([15], Th. 1), we have the direct image
1+«(7(8,)) is a coherent analytic sheaf on X. Since the locally free sheaf
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() is reflexive, we see that j.(7(H)) is reflexive ([15], Prop. 7). On
the other hand, Serre ([15], Remarques 2) stated, without proof, the
following:

PROPOSITION 1. Let A=C{z,, z,} be a two-dimensional 'r'egular analytic
local C-algebra and let M be a finitely generated A-module. If M 1is
reflexive, M is a free A-module.

Since Theorem 3 depends essentially on this fact, we shall give the
proof below;

ProOF. Let A=C{z, z,} be the ring of convergent power series of
two variables z, and 2, and let P(4) be the set of all prime ideals of
height equal to one, and for an A-module M we put

Z(M)={feAj3xe M, x+0 with fx=0}.

We denote by prof, M the homological codimension of M. Since M is
reflexive, we can consider M as a lattice of some finite dimensional K-
vector space with respect to A, where K is the quotient field of A, (see
[4], p. 50). So, there exist free A-submodule L, and L, of V such that
L,cMcL, and rg,L,=dim,; V. It follows that Z(M)={0}, and especially
2, ¢ Z(M); hence prof, M=1. If prof, M=1, we have prof, M/zM)=
prof ,M—1=0. By the definition of homological codimension, we see that
the maximal ideal m of A is contained in Z(M/z, M), especially z, € Z(M/z,.M).
So, there exists m, ¢ 2,M such that z,m,=z2m, where m,c M and m,+0.
Let p: =Az € P(A) and p,: =Az, e P(A). If we write n;: =m,/z, and n,: =
m,/z,, then we have n, € M,, and n,c M, where M, is the localization of
M With_ respect to the prime ideal p,. We can consider M as the subset
of V, and so M,CV for any pe P(A). Therefore we have that n,=n,=:
aecV. If pe P(A) is an ideal containing z,, then we have p=Az,, because
p is minimal and Az, is prime. The same situation holds for z,. So it
follows that if pe P(A) is not equal to p, and p,, then we have 2, ¢ p and
z,¢p. Hence a is contained in M, for any pec P(A). Since M is reflexive,
we have M=MN,cry M, by ([4], p. 50), and so «e M. Thus we have
m,=z,& € 2, M, which is a contradiction. Therefore we have prof,M=2.
Since dim, M=dim A=2 and since 2<prof,M<dim,M, we see that
prof, M=dim, M=2; hence M is a Cohen-Macaulay module of dim, M=2.
A being regular, we conclude that M is a free A-module (see for example
[8], p. 142). Q.E.D.

From Proposition 1, it follows that j,(<7(E)) is a locally free sheaf
on X. Hence we have the following:
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PROPOSITION 2. Let X be a connected two-dimensional complex
manifold and let D, X* and x,€ X* be as in n° 2.1. We assume that
a representation p of w(X* x,) in GL,(C) is given. If E is a flat
vector bundle on X—D=X* associated with o, then E can be uniquely
extended to a holomorphic vector bundle E, on X—Sing (D) satisfying (M.1)
and (M.2); moreover the direct image j.(Z(E,) is a locally free sheaf
on X.

2.3. We consider the general case of dim X=8. Let us recall the
definition of absolute gap-sheaves. Suppose that .& is a coherent analytic
sheaf on a complex manifold X. We define the sheaf 5°“ on X by the
following presheaf:

U——)lgnAead(U) F(U—A, ,_7) ’

where ,(U) is the directed set of all analytic subset of U of dim A=d.
We call .&°14 the d-th absolute gap-sheaf of &~ Let D=D,XxD,CC"*X
C*=C"(z,, * -+, #,) be a polydisc centered at the origin, where (2, - -, z,) 1s
the coordinate system of C*. Put V={ze D|z,_,=2,=0}, and let .5 be a
coherent analytic sheaf on D— V. TFor any te D,, we denote the analytic
restriction of & to the linear subspace {z€ C*|2,=t,, *+*, p_y=tu_s} DY

F(t): :-7—801)_,, (Cpv[(R =ty ==+, Zn—a—ba-2)Tpv) +
We use the following:

LEMMA 1 (Y.-T. Siu [16], p. 248). Let & be a coherent analytic
sheaf on D—V such that & " =. Suppose that F (t) can be extend-
ed to a coherent analytic sheaf on {t}x D, for any te D,. Then & can
be extended uniquely to a coherent amalytic sheaf Z on D=D,xD,

satisfying the condition F "=,
Using this lemma, we shall prove the following theorem.

THEOREM 1. Let X be a conmected complex manifold and let D be a
divisor of X. We assume that a representation O of w(X—D, X, TN
GLC) is given. Let E be the flat vector bundle associated with .
Then E can be extended to the unique vector bundle E, on X—Sing (D)
satisfying the conditions (M.1) and (M.2) in n°2.1. Moreover O (H,) can
be extended to a coheremt analytic sheaf on X, in particular j.(<(E))
18 coherent.

PROOF. Let S,=Sing (D), S,=Sing(S), +--, S,=8ing (S;_,) be a de-
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creasing sequence of analytic subset of X where dim S;=n, for 1=1, ---, k
and S, is smooth. Write .&#: = (¥#,). First we show the following:

LEMMA 2. The locally free sheaf #, on X—S, can be extended uni-
quely to a coherent analytic sheaf #, on X—S, satisfying F# *=_7,.

PROOF OF LEMMA 2. Let x,€8S,—S,, then x, is a smooth point of S,.
There exists a local coordinate system (z, ---, z,) is a small neighbor-
hood U of z, such that UNnS,=92, {s,=--- =2,,=0}NDNU={x,} and
UnsS,={z.,,= *+++ =2,}=0, where z,=(0, ---,0). Hence there exists a
small polydisc

d={ze U | |z|<e; t=1, ++-, n}

as follows:

1) Put 4'={(z,---,z._)||zl<e;, 1=1,---,n—1} and 4" ={z, € C||z,|<e,}
and let w: 4ND— 4’ be a holomorphic map induced by the natural projec-
tion: 4—4'. Then 7 is proper.

2) Write A1={(z1" ° % zn——z)l |zi| <&, 1=1,---, n—2} Azz{(zn—u zn) | lzz" <é&;,
i=n—1,n} and V={z2€4]|z2,,=2,=0}. Then 4NS,CV. Since &#, is
locally free on 4—V, we have & "= on 4—V by the definition of
absolute (n—2)-th gap-sheaves and Hartogs’ continuation theorem. Let
ted, and put D@#): =({t}x4,)ND. Since x is proper, we have D(t)&4,,
i.e., D(t) is a divisor of 4,. Suppose that f(x)=0 is a defining equation
of D in 4. Then, after some linear change of coordinate of (2, ---, 2,)
if necessary, (Write f(x) in the form of Weierstrass polynomial and
consider the discriminant of f(x).) it follows that

1) f(, 2.y, 2,)=0 is a defining equation of D(¢),

2) either of(¢, 2,_,, 2.)/0%,_,#0 or of(t, z._,, 2,)/0%2,#0 at a smooth point
u of D(t). Thus (¢, u) is a smooth point of D if uw 18 a smooth point
of D). Put ({t}x4,)*: ={t} x 4,—Sing (D(t)). Then the sheaf F,(f) is
isomorphic to & (¥,|(yxsy-) Where E| |, x4, is the restriction of the
vector bundle E, to ({t} < 4,)*. Since E, is a flat vector bundle on X—D,
E\|txs,-p» 18 also a flat vector bundle. On the other hand, there is
a unique connection /' on E, satisfying (M.l), (M.2) and the condition
“KerV/=C(E,) on X—D”. So the integrable meromorphic connection
V' is induced on E |4 x4« for which (M.1), (M.2) and the condition
“Ker V'=C(E,|xs,-pwr) on {t}x 4,—D(t)” are satisfied. In fact, suppose
that w e D(t) is a smooth point of D(f). Then (¢, u) is a smooth point
of D; hence there is a small neighborhood N of (¢, u) in 4 such that
NNS,=@ and NN ({t} x 4,) N Sing (D(t))= @. For an arbitrary holomorphic
frame e=(e, -+, ¢,) of E, on N, we can write Ve,=> !, wje;. Let N'=
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NN ({t}x 4,) and let ¢’=¢| 4 be the restriction of the frame e to N’, which
is the frame of E,|, on N’. By the definition of /’, we see that /'e;=
i, (wj;i| y)e;. Thus w;;| 5 has at most logarithmic pole along N’ND(?),
and the eigenvalues «,, ---, @, of (res (w;;|y)) satisfy the inequality
0<Rea;<1 for i=1, ---,q. Hence the pair (&, |(sxs,+ V') satisfies the
conditions (M.1) and (M.2). Applying the Proposition 2 to E, |y xs,—nun
we see that .#,(t) can be extended to a coherent analytic sheaf on
{t} < 4,. Thus all the conditions of Lemma 1 are satisfied. So .#, can
be extended to a coherent analytic sheaf .#, on 4 satisfying F =
On the other hand, since this extension is unique by Lemma 1, we can
glue &, to get the coherent analytic sheaf &, on X—S,. Thus Lemma
2 is proved. Q.E.D.

LEMMA 3. Let ., be a coherent analytic sheaf on X—S,; constructed
inductively from 7, satisfying F# *=_#,. Then F#; can be extended
uniquely to a coherent analytic sheaf F,., on X—S,,, which satisfies
ﬁ'ﬁ;z]:%ﬂ.

PROOF OF LEMMA 3. Let x,€S;,—S;;,. As in Lemma 2, there exists
a local coordinate system (z,, -+, 2,) in a small neighborhood U of =z,
in X such that UNS,,,=@, {#,= -+ =2,,=0NUND={=x,} and S,N U=
{#p,41= +++ =2,=0}. Hence there exists a polydise 4 in U centered at
-z, such that z: 4ND— 4" is proper, where n, 4, and 4 are as in Lemma
2. Since dim S,=<n—2, we have that S,Nn4c{z,_,=2,=0}. Let ted4,
then ({t}x4,)ND=D(t) is a divisor of {¢{}x4,. In the same way as in
Lemma 2, we have that &, (t) is isomorphic to (E,|(sxs-nen) on
{t} x 4,— D(t) and that .&;(t) can be extended to a coherent analytic sheaf
7, satisfying F 2= . on 4. Gluing.#, at every point of S,—S;,,, .Z;
can be extended to a coherent analytic sheaf .&#,,, on X—8,,, satisfying
F N =F Q.E.D.

The proof of Theorem 1 is actually done by using Lemma 2 and
Lemma 3 inductively. This completes the proof of Theorem 1.

§3. The Riemann-Hilbert problem on Stein manifolds.

3.1. Let X be a connected Stein manifold and let D be a divisor of
X. Suppose that a representation o of #,(X—D, x,) in GL,(C) is given
where z, is a base point of X—D. Let E be the flat vector bundle
associated with o, and let E, be the unique vector bundle on X—Sing (D)
satisfying the conditions (M.1) and (M.2). By Theorem 1, Z7(E,) can be
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extended as a coherent analytic sheaf .# on X. Let D=J,.;D; be the
decomposition of D into its irreducible components and let x,€D,—
Sing (D). Then V={x,e X|ieI} is a discrete point set of X, and conse-
quently a zero-dimensional analytic subset of X. Let us take an element
pel'(X, #). We denote by my,, the maximal ideal of the local ring
Ox,:, at @©;, and let ¢, be the germ at x, defined by ®. Noting that
F o= (K., the quotient &, /m,, &, is isomorphic to C?. We will
denote by o(x;,) the residue class of P,,modmy , . #, in C* and o(x,) is
said to be the value of @ at «,.

LEMMA 4. There exists a global section @ e I'(X, ) which has the
prescribed value 1n F oMy, 0 F,,=C at every point x, e V.

PrOOF. Let _# be the coherent analytic sheaf of ideals defined by
V, then we have the exact sequence of sheaves

00— F — Pyt P/ F —0

where p is the natural projection. Making tensor product with &, we
have the exact sequence

&1
I Qo F — T @y F (x| F) @y F —0 .
Since Ker (p®1)=: .5 is coherent, and (Z%/ #) ®.,. 7 is isomorphic to
Lier (Fo /My, F,), Where 1L means disjoint union, we have the exact
sequence

00— % —F > AL (F oMy, 0 F2,)—0 .
By Theorem B of Oka-Cartan-Serre on Stein manifolds, we have
H'(X, 227)=0; hence I'(X, & )— l;c; (F, /My, F,) is surjective. This
is to be proved. Q.E.D.

Choose q linearly independent vectors in C(=7, /my, F#,) and apply
Lemma 4. Then there exist global sections @, ---, @, e I'(X, %) such
that the value o,(x)), -+, @,(x,) are linearly independent in C? at every
point x;€ V. Put X": =X—Sing (D). Since & |p=(E)), ®, can be con-
sidered as a global section of <~”(%,). Let Ul={U;} be a sufficiently fine open
covering of X’ and let {g;} be the transition functions of E, with respect
to 1, where g;, is GL, (C)-valued holomorphic function on U ;N U,. Then
a global section @, of E, is identified with collection {#.,;} where @, ;=
“Pi.is ==+, PL;) is C%-valued holomorphic function on U; such that ¢, =
951Pai o0 U;N Uy, and the values @,(x) € 7, /my,, F, (x,€ U, is identified
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with the value @, ;(x;,) of the holomorphic function @, ; on U;. The set
Vi=(Py,j ***, Pg,;) can be considered as a (g, g)-matrix-valued holo-
morphic function on U;. On the other hand, we have ¥;=g¢,; 7, on
U;NU,. So, putting +;: =det ¥;, we see that ;=(det g;)v in U;N U,.
Let G be the line bundle defined by the transition functions {det g;,},
i.e., G={det g5} € Z'(, £°%). Then we have +: ={;} € I'(X’, Z(R)). Since
the values o.(x;), +--, P,(x;) are linearly independent in C?, it follows
that +(x;)#0 at every point z,€ V; hence A’: ={xre X'|4(x)=0} defines
either a divisor or an empty set. Since X— X'=Sing (D) is an analytic
subset of X of codimension at least two at every point of Sing (D), the
closure A’ of A’ in X is a divisor of X by the continuation theorem of
Thullen [17]. Thus we have the following:

LEMMA 5. There exist a divisor A of X and q global sections
8, ++,8,el'(X', Z(E,)) of E, such that (s;, +++, 8,) 18 a frame of E, on
X'—A and such that D,z A for any irreducible component of D.

3.2. Let / be the unique connection on E, satisfying (M.1) and (M.2)
such that Ker/=C(¥) on X—D. Let s, ---,8,el'(X', (H)) be as
above. We write /s, on X’—A in the form:

Ps,=3, 2;8; for i=1,---,q.
J=1

By (M.1) 2,; has at most logarithmic pole along (X’'—A)ND.
LEMMA 6. Q,; is a meromorphic form on X for i, j=1, ---, q.

ProOF. Let xe€ (A—D)N X’; then one can find a small open neigh-
borhood U of X such that there is a holomorphic frame e=(e, ---, ¢,)
of E,on U and that UND=g. We can write 8,=3%_, h,;e; where h,; €
I'U, ©&y). Then the matrix h: =(h,;;) is non-singular at every point of
U—-(ANU). We write Ve,=>!_, w;e; for i=1, ---,q, where w;, is a
holomorphic one-form on U. Then we have

l

Vs, V(zq‘, h,,-e,-)

Jj=1
g

S dhoe;+ 3 bt
3% (aho+3) hawae; -

=1

I

I

On the other hand, on U—(UNA), we have
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q q q
Poc=3} 258:= 33 (3, Quihus)es ;
=1 =1 \k=1
hence, on U— (UNA), we obtain
q -
dh‘,--l-?;‘{ ha@n=3} Quhy; for i, 5=1,---,q.

The above equation can be written in the matrix notation,
dh+h-w=:2-h ,

or

3.1) t2=(dh)-h*+h-'w-h™* on U—(UNA).

Since ~A~* has at most pole along UNA, so has 2, i.e., £2,; is a mero-
morphic one-form on X—Sing (D)U(AND). We know by Lemma 5
codim (AND)=2 and codim (Sing (D))=2, so 2,; 18 extended to a mero-
morphic one-form on X by the continuation theorem of Lewvi. Q.E.D.

Let 2,; and s,, -++, 8, € (X', ©(£,)) be as above and let u=X7_, y;s,
be a local section of <7(H,) around x€ X—(AUD). From the relation
q q
Vu=‘2=‘{ (dy;—kjg{ Q{jyj)st ’

it follows that w is a horizontal section of V if and only if u=37_,y.s,
satisfies the total differential equation

Y -Qn M Qm Y
(3.2) dl |+ : ]=0.
Y, ‘qu e ‘Qqq Y,

Since Ker 7 =C(E) on X—D and (s, - -+, 8,) is a frame of E, on X—(AU D),
we see that the equation (3.2) is completely integrable on X— (AU D).
Let .&” be the sheaf of germs of local solutions of (8.2); then it follows
that &7 is locally constant sheaf on X— (A U D) and that .5 is isomorphic
to C(F) on X—(AUD) by the map

W) e & — 3, vs, e C(E) .

LEMMA 7. The total differential equation (8.2) has a regular singu-
larity along AU D; moreover A is the apparent singularity of (3.2).

PrROOF. Let x € A—D; then we can find a small neighborhood U of
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2 in X such that there is a holomorphic frame e¢=(e, -+, ¢,) of E,on U
and that UNnD=@. If we write Ve,=37%, w;e; and take a horizontal
section w=>{_, u;e; of V¥ on U, then we have

OZVu:Zq <du1;+zq a),;_.;u:;)ei ’
i=1 j=1
that is,

(3’3) dut—l—zq: w,,juj:O fOl' ":21, ey, q.
j=1

If we write u=>2_, v,8, and s,=>%_, h,;e;, then we have w,=>%, h;¥;.
This can be written as

u=*‘h-y or y=‘h~‘-u,

where w="(u,, *++, u,), Yy="4, *++, ¥,) and h=(h;;). Thus we have, in
matrix notation,

dy+R2y=dCh ) +'h'du+2h'u
= Hdu+ (Ch-2-*h'—(dh)'h")u}
='h~(du+ wu) (by (3.1))
=0.

It follows that +f u is a local solution of (3.3) on U, then y='h~'u 18 a
solution of (8.2) on U—(ANU). Since (3.3) is completely integrable on
U, this means that A is the apparent singularity of equation (3.2). It
follows from the condition (M.1) that 2 has at most logarithmic pole
along Z: =(D-—Sing (D))—A; hence the equation (3.2) has a regular
singularity along Z. From Lemma 5, we see that A does not contain
any irreducible component of D. So by a result of P. Deligne ([6], p.
85), D is the regular singularity of the equation (3.2). Q.E.D.

Considering the proof of Lemma 5, we suppose that A does not
contain the base point x,€ X—D. Take q linearly independent solutions
Ji(x), -, f(x) of (8.2) at x,. For a closed curve v in X—(AUD) starting
from z,, we have (See §2.1.) ,

7*[f1; "';fq]:[fn ""fq]#([’y]) ’

where [v]en,(X—(AUD), z,) and p([v]) € GL,(C). p is called the mono-
dromy representation of the equation (3.2). Let j: X—(AUD)—X—D
be the canonical injection and let j,: 7 (X—(AUD), x,)—7,(X—D, xz,) be
the induced surjective homomorphism. Since A is the apparent singularity
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of (3.2), p is naturally extended to a homomorphism
p: n(X—D, x,)—> GL, (C)
such that ffoj, =g and that
Valfo ooy fd=11 o, FIEAYD  for [v]em(X—D, x,) .

Since the monodromy representation of (38.2) is, by the definition, the
same as that of the locally constant sheaf . and since & is isomorphic
to C(E) on X—(AU D), we see that fi=p, choosing the independent solu-
tions of (8.2) properly. Thus we have the following:

THEOREM 2. Let X be a Stein manifold and let D be a divisor of
X. Suppose that a representation p of n,(X—D, x,) in GL, (C) 18 given.
Then we can construct a total differential equation (3.2) as follows:

1) there exists a divisor A of X such that A does nmot contain any
irreducible component of D.

2) the equation (8.2) is completely integrable on X—(AUD); more-
over A is the apparent singularity of (3.2).

8) the monodromy representation of (3.2) coinsides with the given
representation p.

3.3. On two-dimensional Stein manifold X, we could solve, by
Proposition 2, the Riemann-Hilbert problem without apparent singularity
under some topological condition on X. Let E, E, and p be as above
and let j: X—Sing(D)— X be the canonical injection. Then by Proposi-
tion 2, we have that j.(c(H)) is a locally free sheaf on X; so one has
7(ZE))=(GF) for a certain holomorphic vector bundle G on X. By a
result of A. Andreotti and T. Frankel [2], X is of the same homotopy
type as a two-dimensional CW-complex. So from a theorem of F.
Peterson [18], it follows that a continuous complex vector bundle F' on
X of rank q is trivial if and only if the first Chern class c,(F') of F
18 equal to zero. Thus, by the Oka principle (H. Grauert [7]), j.(Z(E)))
18 a free sheaf if and only if ¢,(G)=0. So, we can find a global frame
$=(s, *++, 8, of G on X. Hence, if we write I's,=>_, 2;:3;, the equation
(8.2) has the regular singularity only along D and does not have the
apparent singularity. Thus we obtain the following:

PROPOSITION 3. Let X be a connected two-dimensional Stein manifold
and let D, E, E,, and p be as above. Then we oblain j.((E))=(G)
for a certain holomorphic vector bundle G on X. If ¢,(G)=0, then we
can construct a completely integrable total differemtial equation (3.2)
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which 18 regular singular along D and does mot have the apparent
singularity, and furthermore whose monodromy representation coincides
with the given p. :

By Proposition 8, it follows easily the following theorem.

THEOREM 3. Let X be a conmected two-dimensional Stein manifold.
If H¥(X, Z)=0, then for any divisor and representation p of n(X—D, x,)
in GL,(C), we can always find a solution without apparent singularity
to the Riemann-Hilbert problem.

REMARK. In the case of Theorem 3, let 2=(2,;) be the connection
matrix of the equation (8.2). From the construction of the equation (3.2),
we see that each Q,; is a meromorphic form with generically logarithmic
poles along D. This notion was introduced by K. Saito [14].

§4. A remark to a work of K. Aomoto [1]——The Riemann-Hilbert
problem in the restricted sense on two-dimensional manifolds.

4.1. Let X be a connected two-dimensional complex manifold and
let D be a divisor of X. Let p be a representation of the group
7 (X—D, z,) in GL, (C). Suppose that o(x,(X—D, x,)) i3 contained in a
maximal unipotent subgroup U(q) of Gqu(C); g{hat is, N(q) is a sub-

group conjugate to the closed subgroup ( . e GL, (C); in GL, (C).
0 1

Let o be a representation of x,(X—D, z,) in 1i(g). After K. Aomoto [1],

we shall call the Riemann-Hilbert problem im the restricted semse the

‘problem of constructing the total differential equation (3.2) which is

regular singular along D and has the above given monodromy p.

Let E be the flat vector bundle associated with o where p is a
representation of 7,(X—D, z,) in 1l(g). By a result to P. Deligne ([6],
p. 91), E can be extended to a holomorphic vector bundle E, on X—
Sing (D) such that, choosing a sufficiently fine open covering B={V};.,
of X—Sing (D), the transition functions f;, of E, are 1(g)-valued holo-
morphic functions on V;NV, for any j,keJ. From Proposition 2 of
§2, it follows that j.(<”(H) is a locally free sheaf on X where j: X—
Sing (D)— X is the canonical injection. Let E be the holomorphic vector
bundle on X corresponding to j.(<(&)). Then by the same argument
as above (See [6], p. 91.), choosing a sufficiently fine suitable open cover-
ing W={W;} of X, we have that the transition functions g; are 1(q)-
valued holomorphic functions on each W;N W,.
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4.2, Now we shall prepare the following elementary

LEMMA 8. Let X be as above and let V be a holomorphic wvector
bundle with the structure group 1(q). If H X, %)=0, then the vector
bundle V i3 holomorphically trivial.

PrROOF. Without loss of gfinerality, we can suppose that 1U(g) is

1

the following subgroup ( . e GL, (C); of GL,(C). We proceed by
0 1

the induction on the rank of vector bundles. When g=1, there is nothing

to prove. We suppose that Lemma 8 is true for all holomorphic vector

bundle with structure group U(m) of rank less than q. Choosing a

sufficiently fine Stein covering W={W,};.,, We may suppose that the

transition functions {f;.} of V are 1(q)-valued holomorphic functions on

W;N W, and they satisfy the cocycle conditions

Jufa=Ffa on W.NW;NW,;
that is, {f;} e Z'(W, N(g)). If we write each f;. in the following form

1] axn
f )'k=(— )
0] g »
where {a;}e C'(BW, &%) and {g,.} € C(W, U(g—1)), the above cocycle con-
ditions can be rewritten in the following form:

{atjgjk +a;=ayu
9:i95t =9

By the hypothesis of induction, there exists a zero cochain {g,}¢
C'(W, N(g—1)) such that g;,=g;9:* on W;N W,. On the other hand,
putting @;;=a,;g;, we have that

G979+ 8505 =8ugi’ ;

hence, using the equation g;7'g;,=gz', we conclude that {d;} satisfies the
cocycle conditions

a;+a=a, on W.NW;NW,.

Since {d;.} € Z'(W, &%) and HYW, &%)=0, there is a 0-cochain {a,)}e
C(BW, ~% ') which satisfies the equation

a,-,,=a,-—a,, -
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1
fi=<—“
0

When we put

a;

) on W;,
9; -

by a simple computation, we see that
l]|a; 1 ' —ay'gr!
firfit= )
0]g; 0 | g%t
( 1| @9 ) ( 1 I @ )
0 9ir 0 I g

=f ik o
Hence it follows that the vector bundle V with transition functions {Fie}
is holomorphically trivial on X. ' Q.E.D.

Now let us return to the situation of n° 4.1, and let the notations
be as above. Since £ is the holomorphic vector bundle on X with struc-
ture group 1(¢), by Lemma 8 we conclude that £ is holomorphically
trivial provided that H'(X, ~4)=0. Thus we obtain the following:

THEOREM 4 (K. Aomoto, [1]). Let X be a connected two-dimensional
complex manifold. If HYX, %) =0, then for any divisor D and any
representation o of w(X—D,x,) in a maximal unipotent subgroup NU(q)
of GL,(C), we can always find a solution to the Riemann-Hilbert pro-
blem in the restricted semse without apparent singularity.

COROLLARY. If X 48 a compact two-dimensional Kdihler manifold
such that the first Betti number is zero; i.e., H\(X, C)=0, then we can
always find a solution to the Riemann-Hilbert problem in the restricted
sense without apparent simgularity for any divisor and any represen-
tation o of w(X—D, x,) in Ulq).

REMARK. In the case of Theorem 4 and its Corollary, let 2=(£2,;)
be the connection matrix of the equation (3.2). By the same reason as
the Remark to Theorem 3, we see that 2, is a meromorphic form with
gemerically logarithmic poles along D.

§5. Analytic covers and the associated monodromy.

5.1. Let us recall the definition of analytic covers and holomorphic
functions on them. Let Y be a locally compact Hausdorff space and let
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X be a complex manifold. An analytic cover is a triple (Y, w, X) (later
on we will write this in the form 7#: Y— X) such that

1) =« is a proper continuous map of Y onto X with discrete fibers.

2) There are a divisor D of X and a positive integer ¢ such that
7 is a g-sheeted topological covering map from Y—zn"'(D) onto X—D.

3) Y—n YD) is dense in Y.

4) For any point yen (D) and any connected open neighborhood
U of y, there exists an open neighborhood U’c U such that U'—=z=(D)N U’
is connected.

D is called the critical locus of analytic cover w: Y—X and q is
called the sheet number of it. There is a unique complex structure on
Y—7z"(D) such that n: Y—7n"(D)— X—D is a locally biholomorphic map;
hence, Y—n"(D) will be regarded as the complex manifold with this
structure. We recall the definition of complex analytic space in the sense
of Behnke-Stein [3]. Let #: Y— X be an analytic cover, and let U be an
open set in Y. A continuous complex-valued function f(y) on U is, by
definition, holomorphic on U if the restriction of f(y) to U—-UnN=zn"*(D)
is holomorphic in the usual sense on the open subset U— UNxz~(D) of the
complex manifold Y—z"(D). Let & be the sheaf of germs of holomorphic
functions on Y; then it follows that (Y, &) is a C-local ringed space.
Let W be a Hausdorff space. A C-local ringed space (W, &%) is, by
definition, a complex analytic space in the sense of Behnke-Stein (komplexe
a-Raum in [10]) if there exists an open covering W=|J U; such that
(Uiy Tly,) is isomorphic to a ringed space (Y, &%) as above, where Y
is an analytic cover. As is noted in Introduction, H. Grauert and R.
Remmert [10] and R. Kawai [11] proved that (W, &) is a normal com-
plex analytic space in the sense of Cartan-Serre [5]. Our aim is fo prove
this theorem by using the Riemann-Hilbert problem. For this purpose,
we shall study the relation between holomorphic functions on Y and
representation of 7,(X—D, x,) where #: Y—X and D are as above and
x, is a base point of X—D.

For later applications, we list the following standard result about
holomorphic functions on analytic covers. Let (Y, &%) be as above,

where 7: Y— X is an analytic cover and we denote by £, the stalk of
7y at ye Y.

LEMMA 9 ([10], p. 264). Suppose that x€ D is a smooth point of D,
and let = (x)={y,, -+, ¥:}. Then Jy,, is a regular C-local algebra for
1=1, ---,t. Let Y':=Y—7n"'(Sing (D)). Then (Y, T%|y) is a complex
manifold which contains Y—n"'(D) as the open submanifold.
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LEMMA 10 ([10], p. 266). Let w: Y—X be as above and let q be
the sheet number of Y. Let f(y) be a continuous functions on Y. f(y)
18 holomorphic on Y if and only if there is a monic polynomial

(5.1) WO(Z;2)=2Z"4+a,(X) 2+ -+ +a,(x)
such that o(f(x); x)=0 on Y, where a,(x) is holomorphic on X.

LEMMA 11 ([10], p. 267). Let A be an analytic subset of Y, and
J(y) be a holomorphic function on Y—A. Suppose that, for every point
Yy € A, there exists an open meighborhood U of x such that f(y) is bound-
ed on U—(UNA). Then f(y) can be extended umiquely to a holomorphic
SJunction on Y.

5.2. Let 7: Y— X be an analytic cover with critical locus D whose
sheet number is q. By the definition of complex analytic spaces in the
sense of Behnke-Stein, the problem is local, i.e., we can assume X to be a
polydise in C*, and it is sufficient to show the existence of a holomorphic
function f(y) separating arbitrary two points in n~'(x,), x,€ X—D.

In fact, let »: Y—XXC be a holomorphic map defined by o(y)=
(#(Y), f(y)). Since f(y) is holomorphic on Y, there is, by Lemma 9, a
monic polynomial (5.1) such that w(f(y); x)=0 on Y. Putting S: =@(Y),
it follows that S is a hypersurface in XxC defined by S={(x, 2) ¢
XX C|w(z, £)=0}. Let & be the sheaf of germs of weakly holomorphic
functions on S and 4(x) be the discriminant of the polynomial w(Z; x).
It is obvious that Dc{xe X|4(x)=0}. Let p: S— X be the projection
induced by the one to the first component Xx C— X. Since f(y) separates
the values of 77'(x,), we see that A: ={x e X|4(x)=0}<X; hence 4 is a
divisor of X. It is evident that

P: Y- (A)—S—p7'(4)

is biholomorphic map. Take a point s,€ p~'(4) and let N be a small
neighborhood of s,. If g(s) is a holomorphic function in N— (NN p~'(4))
on which g(s) is bounded, then by Lemma 10 ¢*(g) is holomorphic on
some components of 77'(p(N)). Applying the argument to the inverse
map 7, we conclude that the direct image @.(<%) is isomorphic to <.
By the normalization theorem of Oka [12], there exists a normal complex
analytic space S and a proper holomorphic map 7:S—S such that
t.(5)=. By the above facts and (4) of the definition of analytic
covers, we have (Y, &%) =(S, «%); this was to be proved.
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Later on, we suppose that X is a polydisc in C*. We write Y*: =
Y—7n'(D) and X*: =X—D. By the definition of the complex structure
of Y*, we can consider a holomorphic function g(¥) on Y* as a many-
valued holomorphic function on X*. Using this fact, we obtain the
relation between holomorphic functions on Y* and representations of
7w (X*, x,). We state this in detail. Let n7'(x))={y,, ---, ¥,} and fix this
numbering. Since 7: Y*— X* is a finite unramified covering and since
X* is a Stein manifold, it follows that Y* is a Stein manifold. Hence
there exists a holomorphic function g(y) on Y* such that g(y,)=+¢ for
1=1, ---,q. If we choose a sufficiently small polydise Uc X* centered
at x,, we can speak of the branches of g(y) on U. Thus let g,(x) be the
branch of g(y) on U such that g,(x,)=t. It follows that g,(z,) can be
continued analytically on X*, but, in general, it is not single-valued.
Consider the vector-valued function g(x)=(g,(x), +--, g,(x)) on U. g(x)
can be continued analytically on X*; hence it is a many-valued function
on X*. We shall show that g(x) gives a representation of x,(X*, x,); let
v be a closed curve in X* starting from =z, Since zn: Y*—X* is a

topological covering, there are the paths <, starting from y, such that

7(v,)=7. Let us denote by «;,,, the end point of v,; then (’Y (i)’ o v (Q(Q
%k 9 ] 3

is a permutation of ¢ letters {1, ---,q}. It follows that the result of
analytic continuation of g,(x) along v is identified with that of g(y) along
v, if we consider g,(x) as the function element of g(y) at y,; hence we
have the function element of g(y) at x; . Thus we obtain that the
result of analytic continuation of g,x) along v is the element g, ., (x).
Let S, be the symmetric group of ¢ letters {1, ---,q} and let e,=
o, -- -,';1ﬂ,1 «++,0) i=1, ---, g be the standard basis of C°. We denote by
j: S,—GL, (C) the following standard faithful representation; for o€ S,,

. q q
.7(0')<§{ uie‘>=§ Uils (i) 5

thus we have

1 if k=o()

] ] h fd
J@)=(aw) where ay 10 otherwise .

Let v be a closed curve in X* starting from z,, and as above we denote
by 7@ =, ***, 9r.y) the result of analytic continuation of g=
(g, *-+, g, along v. It follows that

(Gruws =y g?"(q)):(gl; SRR BT/ (4 )
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it we write o(D=3((y,dy, 11 )

LEMMA 12. Let p: 7w /(X*, 2,)—GL,(C) be as above. Then p is a
finite representation of w, (X*, x,).

PrROOF. Let v, and v, be closed curves in X* starting from z,, We
have :

(gu °tcy gq)p(['71]'[72])=('71"72)*(gn Ty gq)
=(7)x((gs, =+, 9)OU7:D)
= (gu Tty gq)P([’Yl])P(['YZ]) ’

hence we obtain

oD = o@n Do - Q.E.D.

We call p the monodromy representation associated with the analytic
cover w:Y—X. Note that, by the definition of the permutation

1 y * %, q > . . .
(,7*(1), e (@) © is determined by the topological property of the

analytic cover.

REMARK. Let o be as above, and let E be the flat vector bundle
associated with p. We can show that 7,(Cy.)=C(E), where Cy. is a C-
valued constant sheaf on Y™*. '

5.3. Conversely, we consider a many-valued holomorphic function
h(x)=(h,(x), * -+, h(x)) on X* satisfying v« (h(@)=h(x)p(7]) for any closed
curve 7 in X* starting from z,.

LEMMA 13. Let 71,(90) be as above and suppose that Y* 18 commected.
Write h(y): =h,(x(y)) in a small polydisc in Y* centered at y,. Then
h(y) can be continued analytically along any path in Y* starting from
y,; moreover it determines a single-valued holomorphic function h(y) on
Y* whose function element at y, coincides with h,(w(y)) for i=1, -+, q.

PROOF. Let - be any path in Y* starting from y,, and let /' ==n(s).
Since h,(x) can be continued analytically along the curve /’, it is evident
that so is h(y); hence h(y) determines a many-valued holomorphic func-
tion %(y) on Y*. Suppose that k(y) is not single-valued. Then there
exists a closed curve v in Y* such that the result of analytic continua-
tion of h(y) along 7 is not equal to the element h(y). Let m#(y)=<', and
let v, be a path in Y* starting from y, and satisfying =(v,)=7'. Note
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that <, is not always closed and that v,=v. As in n° 4.2, let g(y) be
a holomorphic function on Y* satisfying g(y,)=1 for 4=1, ---, q. Since
g(y) is single-valued on Y*, we have that v,(g,, -+, 9.)=(gs *, ***, *).
Hence, by 7.(@=do(7']), we can write po([7’]) in the form

1,0,---,0
0 *
0

Thus we have that

1’ 0’ ...’0
’Y:k(hn *t % hq)z(hn **y h‘q)(o * )

0

i.e., Y%(h)=h,. This means that the result of analytic continuation of
h(y) along v is equal to A(y). This is a contradiction. Since Y* is con-
nected, there exists a path from y, to y,. Let v, be the path in Y*
starting from y, such that z(v,)==n(v)=7'. Note that vy=v, and 7. (9.)=9..
Hence, in the same way as above, we see

k oo o X

* (1 is the (%, 1)-element).

0
|0
olr'D=|,

0

By 7;(ﬁ)=i{p(['7']), we obtain v.(h,)=h,; this means that the result of
analytic continuation of h(y) along 7 is equal to the element & (7(¥)).
Q.E.D.

Let %(y) be a single-valued holomorphic function on Y* as in Lemma
12. Suppose that #(y) is locally bounded at every point of 7~*(D’) where
D': =D—Sing (D). Let Y": = Y—z*(Sing (D)) and X": = X—Sing (D); then
7: Y'— X’ is an analytic cover. From Lemma 10, it follows that &(y)
can be extended to the unique holomorphic function on Y’, which is
denoted by the same letter #. By Lemma 9, we obtain the monic
polynomial

(7 x0)=2Z"+a,(x) 27+ <+« +a,x),

where a,(x) is holomorphic on X—Sing (D) and w(h(y); x)=0 on Y’. Since
codim (Sing (D))=2, by Hartogs’ continuation theorem, a,x) can be ex-
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tended to the unique holomorphic function on X, which is denoted by
@, (x). From the equality @(a(y); x)=0 on Y’ (where @=3}_,d,(x)Z*%), it
follows that %(y) is locally bounded at any point of z~'(Sing (D)); hence
by Lemma 10, %(y) can be extended to the unique holomorphic function
on Y. Thus we obtain the following:

PROPOSITION 4. Let w: Y—X be an analytic cover and let
o: 7 (X—D, 2,)— GL, (C) be the monodromy representation associated with
the analytic cover. Suppose that there exists a many-valued holomorphic
Sfunction i_i(x)=(h1(m), «oe, ho(x)) on X* such that

1) 7v«(h)=ho(7v]) for any [v]ern(X—D,x,)
and that
2)  hx,)#hi(x,) for any 1+#7].

Let h(y) be the single-valued function on Y—n~*(D) defined in Lemma
13. If h(y) is locally bounded at every point of m~*(D—Sing (D)), then
h(y) can be extended to the unique holomorphic function on Y. Hence
we can construct the holomorphic function on Y which 18 desired at the
beginning of n° 4.2.

§6. Existence of holomorphic functions on analytic covers and
the Riemann-Hilbert problem.

Let 7: Y— X be an analytic cover where X is a polydise in C*, and
let ¢ be the sheet number of Y. Let X*, X’ etc. be as before. We
shall solve the problem proposed at »° 5.1. Since the problem is local,
we can suppose that the critical locus D of the analytic cover Y has
finite irreducible components: D=, D; and that Y—z"*(D) is connected
by (4) of the definition of analytic cover (see n° 5.1). Let o: 7 (X—D, 2,)—
GL, (C) be the monodromy representation associated with Y. Since X
is a Stein manifold, there exists, by Theorem 2, a total differential
equation (3.2) as follows:

1) there is a divisor A of X such that xz,¢ A, D,ZA and (3.2) is
regular singular along AU D; moreover A is the apparent singularity of
(3.2).

2) If we choose properly, ¢ linearly independent solutions f;, ---, f,
of (3.2) at x, we have that

7*[f1’ %y fq]:[fn M) fq]p([fy])
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for any closed curve v in X—D starting from «z,.

Put f(x)="(f1u(®), * - -, fou(2)), and we define g;(x): =(f(x), « -, f1,(2));
thus we have

7+(95)=g;0(7]) for any [v] en(X—D, x,) .

Since f,, ---, f, are linearly independent, so are g, ---, 9.; hence there
are constants ¢,e C(¢=1, .-, q) such that, putting A: =>4, ¢.0,, We have
h(x)=(1,2, ---, q) and 7,(k)=hp([7]) for any [v] € 7(X~D, x,). By Lemma
12, there exists a holomorphic function kA(y) on Y* such that A(y)=1
for i=1, ---, q. Since the equation (3.2) is regular singular along AyUD
and since #n: Y'— X’ is a finite covering by a result of P. Deligne (IR
p. 64-65 and p. 85), h(y) has at most pole along Y'Nr'(AUD). By
shrinking X slightly, if necessary, we can suppose that the number of
irreducible components of A is finite; A=J!_, 4,. Since the Cousin’s
second problem has always a solution on X, we can write 4, and D; in
the form A,={a,(x)=0} and D;={d;(x)=0} for :=1, --.,1 and j=1, ---, m,
where a; and d; are holomorphic on X. Since 4(y) has at most pole along
Y'nz7'(AU D), there are positive integers g, and v; such that c(z(y))h(y)
is holomorphic on Y’ when we write ¢(x)=I]., (a.(x))* TI ™, (d;(x))*s; hence
by Proposition 4, c¢(z(¥))k(y) can be extended to the unique holomorphic
function H(y) on Y. Since ¢(x,)#0, we have H(y,)=H(y;) for any i+7.
Hence we have the following:

THEOREM 5. Let w: Y— X be an analytic cover whose ceritical locus
18 D, where X s a polydisc in C". Let x,€ X—D. Suppose that
p: (X —D, x,)— GL, (C) 18 the monodromy representation associated with
the analytic cover Y. Then, using a solution of the Riemanmn-Hilbert
problem for the representation p, by shrinking Y slightly if mecessary,
we can construct a holomorphic function g(y) on Y which separates
arbitrary two points in w'(x,).
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