Tokyo J. Math. Vol. 2, No. 1, 1979

The Riemann-Hilbert Problem and its Application to Analytic Functions of Several Complex Variables

Michitake KITA

Sophia University

Introduction

In this paper we shall prove the local existence of holomorphic functions in an analytic cover (a ramified Riemann domain) $\pi: Y \rightarrow X$ by using a solution of the Riemann-Hilbert problem (see §6). The existence of such functions was earlier proved in 1958 by H. Grauert and R. Remmert [10] and in 1960 by R. Kawai [11] by different methods. We can consider the functions on Y as many-valued functions on X which may have the branch points along the critical locus D of the analytic cover $\pi: Y \rightarrow X$. We shall construct such many-valued functions on X from the solutions of the total differential equation (1.1) whose monodromy representation is the one associated with the analytic cover $\pi: Y \rightarrow X$ (see §5). For this purpose, in §3, using the results of P. Deligne [6], we solve the Riemann-Hilbert problem in the following situation; let X be a connected Stein manifold and let D be a divisor of X (not necessarily normal crossing). Suppose that a representation ρ of $\pi_1(X-D, x_0)$ in $\operatorname{GL}_q(C)$ is given. We shall construct a total differential equation (1.1) whose monodromy is the We can study in detail the case of dim X=2 than that of given ρ . dim $X \ge 3$, more precisely, when dim X=2, if $H^2(X, \mathbb{Z})=0$, we can solve the Riemann-Hilbert problem without apparent singularities (Theorem 3). As an application of Proposition 2 of §3, we shall give a remark to the Riemann-Hilbert problem in the restricted sense, when X is a two-dimen-This problem was treated by K. sional connected complex manifold. Aomoto [1] by different method when X is an n-dimensional complex projective space (see §4). In solving the Riemann-Hilbert problem, we do not use the existence of resolution of X satisfying the condition that the inverse image of D is normal crossing, but we use essentially the extension theorems of coherent analytic sheaves of J.-P. Serre [15] and Y.-T. Siu

Received May 24, 1978

Revised March 1, 1979

[16] (see §2).

§1. Preliminaries.

1.1. In what follows we assume that all manifolds under consideration are *paracompact*. Let X be a connected complex manifold and we fix a base point $x_0 \in X$. Suppose that γ_1 and γ_2 be closed curves in X starting from x_0 . Then we denote by $\gamma_1 \cdot \gamma_2$ the closed curve defined by

$$\gamma_1 \cdot \gamma_2(t) = \begin{cases} \gamma_2(2t) & \text{for } 0 \leq t \leq 1/2 \\ \gamma_1(2t-1) & \text{for } 1/2 \leq t \leq 1 \end{cases}.$$

The constant sheaf with coefficients in C^q is denoted by \underline{C}^q . In this paper, a locally constant sheaf \underline{V} on X of rank q means always the sheaf which is locally isomorphic to the constant sheaf \underline{C}^q . Let γ be a closed curve starting from x_0 ; i.e., let $\gamma: [0,1] \rightarrow X$ be a continuous map with $\gamma(0) = \gamma(1) = x_0$. Then $\gamma^*(\underline{V})$ is a locally constant sheaf on [0,1]; hence it is a constant sheaf. Thus there is a unique isomorphism between $\gamma^*(\underline{V})$ and the constant sheaf on [0,1] with coefficients in V_{x_0} . It follows that γ determines an isomorphism $\gamma_* \in \operatorname{GL}(\underline{V}_{x_0})$ and γ_* depends only on the homotopy class of γ . It is evident that $(\gamma_1 \cdot \gamma_2)_* = (\gamma_1)_* \cdot (\gamma_2)_*$. Hence one can determine a homomorphism $\rho: \pi_1(X, x_0) \rightarrow \operatorname{GL}(\underline{V}_{x_0})$ by $\rho(\gamma) = \gamma_*$.

Let \underline{V} be as above. There exists a sufficiently fine open covering $X = \bigcup_{j \in J} U_j$ such that $\underline{V}|_{U_j}$ is constant; hence there is an isomorphism $\varphi_j: \underline{C}^q \to \underline{V}|_{U_j}$. Since $\varphi_i^{-1} \cdot \varphi_j$ is an isomorphism of constant sheaf \underline{C}^q on $U_i \cap U_j$, there exists a matrix $g_{ij} \in \operatorname{GL}_q(C)$ for any $U_i \cap U_j \neq \emptyset$ such that

$$\varphi_i(\xi_i) = \varphi_j(\xi_j)$$
, where $\xi_i, \xi_j \in \underline{C}^q$

if and only if $\xi_i = g_{ij} \cdot \xi_j$. It is obvious that g_{ij} satisfy the cocycle conditions:

$$g_{ij} \cdot g_{jk} = g_{ik}$$
 on $U_i \cap U_j \cap U_k \neq \emptyset$;

hence there is determined a flat vector bundle E of rank q with the transition functions g_{ij} . There is a simple relation between \underline{V} and E, i.e., \underline{V} is isomorphic to C(E), where C(E) is the sheaf of germs of locally constant sections of E. Thus we have seen that a flat vector bundle determines a representation ρ of $\pi_1(X, x_0)$ in $\operatorname{GL}(\underline{V}_{x_0})$. Let us consider the converse. Suppose that a representation ρ of $\pi_1(X, x_0)$ in $\operatorname{GL}_q(C)$ be given. There is an open covering $X = \bigcup_{j \in J} U_j$ such that each U_j and $U_j \cap U_k$ are simply connected. We suppose $x_0 \in U_0$, and choose a point

2

 $x_j \in U_j$. Since X is connected, there is a path ℓ_j in X from x_0 to x_j . For any $x \in U_i \cap U_j$, let $d_{ij}(x)$ be a path in U_i from x_i to x. If γ is a closed curve starting from x_0 , we denote by $[\gamma]$ the homotopy class of γ . Write

$$g_{ij}$$
: = $ho([\swarrow_i^{-1} \cdot d_{ij}^{-1}(x) \cdot d_{ji}(x) \cdot \measuredangle_j])$ for $x \in U_i \cap U_j$.

Since each U_j and $U_i \cap U_j$ are simply connected, g_{ij} is constant on $U_i \cap U_j$. It follows that

$$g_{ij} \cdot g_{jk} = g_{ik}$$
 on $U_i \cap U_j \cap U_k \neq \emptyset$

Hence $\{g_{ij}\}$ satisfies the cocycle conditions, and one can determine a flat vector bundle E with the transition functions g_{ij} . Let C(E) = V, and let $\gamma: [0, 1] \to X$ be a closed curve starting from x_0 , then there is an open covering $\gamma([0, 1]) \subset \bigcup_{j \in J} U_j$ (if necessary, change the indices of $\{U_i\}$) such that $U_i \cap U_{i+1} \neq \emptyset$ for $i=0, \cdots, m$, where $U_{m+1}=U_0$. By the definition of E, there is a frame $e^{(i)} = (e_1^{(i)}, \cdots, e_q^{(1)})$ of E on U_i such that, any section ξ of E is identified with the collection of vectors $\{\xi_i\}$ such that $\xi_i = g_{ij} \cdot \xi_j$, where $\xi_i = {}^t(\xi_i^1, \cdots, \xi_i^q)$ and $\xi = \sum_{\alpha=1}^q \xi_i^\alpha e_\alpha^{(i)}$. Let ξ_0 be a local section of C(E)on a neighborhood of x_0 . Using the frame $e^{(0)}$, we can identify the vector space V_{x_0} with the complex number space C^q ; hence we can consider $\gamma_* \in \operatorname{GL}(V_{x_0})$ as a matrix $A_{\gamma_*} \in \operatorname{GL}_q(C)$. Then, by the definition of γ_* , it follows that

$$egin{aligned} &A_{\gamma_{\star}}\!=\!g_{0m}\!\cdot g_{m,m-1}\!\cdot \cdots \cdot g_{10}\!\cdot \xi_{0}\ &=\!
ho([\swarrow_{0}^{-1}d_{0m}^{-1}d_{m0}\!\swarrow_{m}])\!\cdot \cdots \cdot
ho([\swarrow_{1}^{-1}d_{10}^{-1}d_{01}\!\swarrow_{0}])\xi_{0}\ &=\!
ho([\gamma])\xi_{0} \end{aligned}$$

because the closed curve $(\mathscr{L}_0^{-1}d_{0m}^{-1}d_{m0}\mathscr{L}_m)\cdots(\mathscr{L}_1^{-1}d_{10}^{-1}d_{01}\mathscr{L}_0)$ is homotopic to γ . Hence we have that

$$\gamma_*(e_1^{(0)}, \dots, e_q^{(0)}) = (e_1^{(0)}, \dots, e_q^{(0)}) \rho([\gamma])$$

where $\gamma_*(e_1^{(0)}, \dots, e_q^{(0)})$ is a $1 \times q$ matrix $(\gamma_*e_1^{(0)}, \dots, \gamma_*e_q^{(0)})$ of q sections of C(E) on U_0 . Thus we have that, given a representation ρ of $\pi_1(X, x_0)$ in $\operatorname{GL}_q(C)$, there exists a flat vector bundle E on X satisfying the conditions that the action of $\pi_1(X, x_0)$ to $C(E)_{x_0}$ is identified with the given ρ provided that we choose properly the basis of $C(E)_{x_0}$.

1.2. Let E be a holomorphic vector bundle of rank q on X, and let $\mathcal{O}(E)$ be the sheaf of germs of holomorphic sections of E. We denote by Ω_X^p the sheaf of germs of holomorphic p-forms on X. A holomorphic connection V on E is a C-linear homomorphism

$$\nabla: \mathscr{O}(E) \longrightarrow \Omega^{1}_{X} \bigotimes_{\mathscr{O}_{X}} \mathscr{O}(E)$$

which satisfies the Leibniz formula

$$V(fs) = df \otimes s + f \nabla s$$

for any local sections f of \mathcal{O}_x and s of $\mathcal{O}(E)$. Given V, there is one and only one *C*-linear homomorphism

$$\widehat{\mathcal{V}}: \, \mathcal{Q}^{\scriptscriptstyle 1}_{{\scriptscriptstyle X}} \bigotimes_{\mathscr{O}_{{\scriptscriptstyle X}}} \mathscr{O}(E) \longrightarrow \mathcal{Q}^{\scriptscriptstyle 2}_{{\scriptscriptstyle X}} \bigotimes_{\mathscr{O}_{{\scriptscriptstyle X}}} \mathscr{O}(E)$$

which satisfies the Leibniz formula

$$\widehat{\mathcal{V}}(\theta \otimes s) = d\theta \otimes s - \theta \wedge \mathcal{V}s$$

for any local sections θ of Ω^1_X and s of $\mathscr{O}(E)$. Now let us consider the composition

$$K = \widehat{V} \circ V \colon \mathscr{O}(E) \longrightarrow \mathscr{Q}_{X}^{2} \bigotimes_{\mathscr{O}_{X}} \mathscr{O}(E) .$$

By simple computation, it follows that the correspondence $s(x) \rightarrow K(s)(x)$ defines a holomorphic section of holomorphic vector bundle Hom $(E, \wedge^2 T_X^* \otimes E) \cong \wedge^2 T_X^* \otimes \text{End}(E)$, where T_X^* is the cotangent bundle of X and End (E) = Hom(E, E), so we have $K \in \Gamma(X, \Omega_X^2 \bigotimes_{\mathscr{O}_X} \mathscr{O}(\text{End}(E)))$. This section $K = K_F$ is called the curvature tensor of the connection \mathcal{V} . A connection \mathcal{V} is called *integrable* if its curvature tensor K_F is zero. Let $e = (e_1, \dots, e_q)$ be a holomorphic frame of E on a neighborhood U in X. Then we define the connection matrix $\omega = (\omega_{ij})$ associated with the frame e by setting

$$\nabla e_i = \sum_{j=1}^q \omega_{ji} e_j$$
 for $i=1, \cdots, q$,

where $\omega_{ji} \in \Gamma(U, \Omega_X^1)$. Note that

$$K(e_i) = \widehat{\mathcal{V}}\left(\sum_{j=1}^q \omega_{ji} e_i\right)$$

 $= \sum_{j=1}^q K_{ji} \otimes e_j,$

where we have set

$$K_{ij} = d\omega_{ij} + \sum_{k=1}^{q} \omega_{ik} \wedge \omega_{kj} \in \Gamma(U, \Omega_X^2)$$
 ,

i.e., in matrix notation $K = d\omega + \omega \wedge \omega$, $K = (K_{ij})$. Hence ∇ is integrable

if and only if the connection matrix ω satisfies the differential equation $d\omega + \omega \wedge \omega = 0$. Using the frame *e*, we write a local section *s* in the form $s = \sum_{i=1}^{q} u_i e_i$; then the relation $\nabla s = 0$ is equivalent to the total differential equation

$$d \begin{pmatrix} u_1 \\ \vdots \\ u_q \end{pmatrix} + \begin{pmatrix} \omega_{11} & \cdots & \omega_{1q} \\ & \cdots & \\ \omega_{q1} & \cdots & \omega_{qq} \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_q \end{pmatrix} = 0$$
.

Hence, by the classical existence theorem of differential equations, if V is integrable, then the subsheaf Ker V (of $\mathcal{O}(E)$) of local solutions of Vs=0 is a locally constant sheaf of rank q. Conversely, let E be a flat vector bundle of rank q. Since $\mathcal{O}(E) = C(E) \bigotimes_{c} \mathcal{O}_{x}$, we can define a C-linear homomorphism $V: \mathcal{O}(E) \to \Omega_{X}^{1} \bigotimes_{\mathcal{O}_{X}} \mathcal{O}(E)$ as follows: $V(s \otimes f): = df \otimes s$ for any local sections s of C(E) and f of \mathcal{O}_{x} . It is easy to check that V is an integrable connection on E such that Ker V = C(E).

1.3. Let D be a normal crossing divisor of X, i.e., D is locally defined by the equation $\{z_1 \cdots z_k = 0\}$, where (z_1, \cdots, z_n) is a local coordinate system. Write $X^* = X - D$. Suppose that E is a holomorphic vector bundle on X and V is an integrable connection on $E|_{X^*}$. Suppose that there exists a local coordinate system (z_1, \cdots, z_n) in a neighborhood U of a point $x \in D$ such that $U \cap D = \{z_1 \cdots z_k = 0\}$. Then V is said to have at most logarithmic pole along D, if the connection matrix $(\omega_{ij}) = \omega$ associated with any frame has at most logarithmic pole along $U \cap D$, i.e., each ω_{ij} is written in the form

$$oldsymbol{\omega}_{ij}\!=\!\sum\limits_{
u=1}^klpha_
u\!(dz_
u\!/\!z_
u)\!+\!\eta$$
 ,

where α_{ν} is holomorphic on U and η is a holomorphic 1-form on U. Write $U \cap D =: \bigcup_{i=1}^{k} C_i$ where $C_i = \{z_i = 0\}$, then we write $\operatorname{res}_{C_{\nu}} \omega_{ij} := \alpha_{\nu}|_{C_{\nu}}$ and call $\operatorname{res}_{C_{\nu}} \omega_{ij}$ the residue of ω_{ij} along C_{ν} . We set $\operatorname{res}_{C_{\nu}} \omega := (\operatorname{res}_{C_{\nu}} \omega_{ij})$ and call it the residue of the connection V along C_{ν} . Let $D = \bigcup D_j$ be the decomposition into irreducible components of D. It is shown that

$$\operatorname{res}_{D_i} \omega \in \Gamma(D_i, \mathscr{O}(\operatorname{End}(E)|_{D_i}) \otimes_{\mathscr{O}_{D_i}} \widetilde{\mathscr{O}}_{D_i})$$

where \mathcal{O}_{D_i} is the sheaf of germs of weakly holomorphic functions on D_i (see [5], p. 78).

1.4. Let D, E, V be as above. Let $\Delta = \{z \in C \mid |z| < 1\}$. Let $\phi: \Delta \to X$ be an arbitrary holomorphic map such that $\phi^{-1}(D) = \{0\}$, and let ϕ^*V and ϕ^*E

be the inverse of V and E by ϕ respectively. We say that V is regular singular along D if the connection ϕ^*V on ϕ^*E is regular singular at z=0 in the usual sense of ordinary differential equation (see [6], p. 85). Let

(1.1)
$$d\begin{pmatrix} y_1 \\ \vdots \\ y_q \end{pmatrix} + \begin{pmatrix} \Omega_{11} & \cdots & \Omega_{1q} \\ & \cdots & \\ \Omega_{q1} & \cdots & \Omega_{qq} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_q \end{pmatrix} = 0$$

be a total differential equation, where every Ω_{ij} has at most pole along D. Suppose that (1.1) is completely integrable on X-D. D is said to be the *apparent singularity* of (1.1) if, for every $x \in D$, any solution of (1.1) in a small simply-connected neighborhood of x is single-valued and meromorphic there.

§2. Extension of flat vector bundles.

2.1. Let X be a connected complex manifold and let D be a divisor of X. Let $X^* := X - D$ and $x_0 \in X^*$. Suppose that a representation ρ of $\pi_1(X^*, x_0) \rightarrow \operatorname{GL}_q(C)$ is given. We shall attempt to construct a completely integrable total differential equation of the form (1.1) which satisfies the following two conditions:

1) the equation (1.1) is regular singular along D, moreover there exists a divisor A in X along which (1.1) may have apparent singularities.

We choose q linearly independent solutions f_1, \dots, f_q of (1.1) at $x_0 \notin A$ properly, and let γ be any closed curve in X^* starting from x_0 . We denote by $\gamma_*[f_1, \dots, f_q]$ the result of analytic continuation of the function element $[f_1, \dots, f_q]$ along the curve γ .

We require that

2) $\gamma_*[f_1, \dots, f_q] = [f_1, \dots, f_q] \rho([\gamma])$ for any $[\gamma] \in \pi_1(X^*, x_0)$.

For a given representation ρ of $\pi_1(X^*, x_0)$ in $\operatorname{GL}_q(C)$, we shall call the Riemann-Hilbert problem the problem of constructing the equation (1.1) which satisfies the above two conditions.

As is constructed in $n^{\circ}1$ and $n^{\circ}2$ of §1, there exist a flat vector bundle E on X^* associated with ρ , and a unique integrable holomorphic connection V on E such that the sheaf of germs of local solutions of Vs=0 coinsides with C(E). For the pair (V, E), Y. Manin showed ([6], p. 94) that E can be extended uniquely to a holomorphic vector bundle E_1 on $X-\operatorname{Sing}(D)$, where $\operatorname{Sing}(D)$ means the singular locus of D, satisfying the following two conditions: (M.1) For any point $x \in D-\text{Sing}(D)$, there exists an open neighborhood U of x in X-Sing(D) such that, for any holomorphic frame $e = (e_1, \dots, e_q)$ of E_1 on U, if we write

$$abla e_i = \sum\limits_{j=1}^q oldsymbol{\omega}_{ji} e_j \quad ext{for} \quad i = 1, \ \cdots, \ q$$
 ,

then any ω_{ij} has at most logarithmic poles along $D \cap U$.

(M.2) Let $\omega = (\omega_{ij})$ be a connection matrix. By $n^{\circ}3$ of §1, we have res $\omega \in \Gamma(D \cap U, \mathcal{O}(\text{End}(E_i)|_D) \bigotimes_{\mathcal{O}_D} \tilde{\mathcal{O}_D})$. Suppose that $D \cap U = \bigcup_{i=1}^m C_i$ be the decomposition into irreducible components of $D \cap U$. Then, by the simple computation (See [5], p. 79.), the eigenvalues $\alpha_1, \dots, \alpha_q$ of the matrix $\operatorname{res}_{\mathcal{O}_i} \omega$ are constant on C_i . Then the following inequality must be satisfied

$$0 \leq \operatorname{Re} \alpha_i < 1$$
 for $i=1, \dots, q$.

2.2. First we consider two-dimensional case. Write S=Sing(D). In this case, S is at most countable discrete point set in X; hence for any $s_0 \in S$, there exists an open neighborhood U of s_0 in X such that $S \cap U = \{s_0\}$. By iteration of σ -process centered at s_0 , we see that the inverse image of $D \cap U$ is normal crossing. Doing this procedure at every point of S, we have the proper modification $\tau: \tilde{X} \to X$ as follows:

- 1) \widetilde{X} is a complex manifold,
- 2) $\tau^{-1}(D)$ is a normal crossing divisor in \widetilde{X} ,
- 3) $\tau: \tilde{X} \tau^{-1}(S) \rightarrow X S$ is biholomorphic.

Since by 3), $\tilde{X}-\tau^{-1}(D)$ is biholomorphic to X-D, there exists a flat vector bundle F on $\tilde{X}-\tau^{-1}(D)$ such that $\tau_*(\mathcal{O}(F))=\mathcal{O}(E)$. By 2) and a result of Y. Manin cited above, F can be extended uniquely to a holomorphic vector bundle F_1 on \tilde{X} which satisfies (M.1) and (M.2). On the other hand, E can be also extended uniquely to a holomorphic vector bundle E_1 on X-S satisfying the conditions (M.1) and (M.2). Considering that $\tilde{X}-\tau^{-1}(S)$ is biholomorphic to X-S and that the extension is uniquely determined by the above two conditions, it follows easily that

$$\tau_*(\mathscr{O}(F_1|_{\widetilde{X}-\tau^{-1}(S)})) = \mathscr{O}(E_1)$$
.

By H. Grauert and R. Remmert ([9], p. 424) the direct image $\tau_*(\mathscr{O}(F_1))$ of $\mathscr{O}(F_1)$ is a coherent analytic sheaf on X; hence $\mathscr{O}(E_1)$ can be extended to a coherent analytic sheaf $\tau_*(\mathscr{O}(F_1))$ on X. Let $j: X \to X$ be a canonical injection. Since S is a two-codimensional analytic subset of X, by a theorem of J.-P. Serre ([15], Th. 1), we have the direct image $j_*(\mathscr{O}(E_1))$ is a coherent analytic sheaf on X. Since the locally free sheaf

 $\mathcal{O}(E_1)$ is reflexive, we see that $j_*(\mathcal{O}(E_1))$ is reflexive ([15], Prop. 7). On the other hand, Serre ([15], Remarques 2) stated, without proof, the following:

PROPOSITION 1. Let $A = C\{z_1, z_2\}$ be a two-dimensional regular analytic local C-algebra and let M be a finitely generated A-module. If M is reflexive, M is a free A-module.

Since Theorem 3 depends essentially on this fact, we shall give the proof below;

PROOF. Let $A = C\{z_1, z_2\}$ be the ring of convergent power series of two variables z_1 and z_2 , and let P(A) be the set of all prime ideals of height equal to one, and for an A-module M we put

$$Z(M) = \{f \in A \mid \exists x \in M, x \neq 0 \text{ with } fx = 0\}.$$

We denote by $\operatorname{prof}_{A} M$ the homological codimension of M. Since M is reflexive, we can consider M as a lattice of some finite dimensional Kvector space with respect to A, where K is the quotient field of A, (see [4], p. 50). So, there exist free A-submodule L_1 and L_2 of V such that $L_1 \subset M \subset L_2$ and $\operatorname{rg}_A L_1 = \dim_K V$. It follows that $Z(M) = \{0\}$, and especially $z_1 \notin Z(M)$; hence $\operatorname{prof}_A M \geq 1$. If $\operatorname{prof}_A M = 1$, we have $\operatorname{prof}_A(M/z_1M) =$ $\operatorname{prof}_{\mathcal{A}} M - 1 = 0$. By the definition of homological codimension, we see that the maximal ideal m of A is contained in $Z(M/z_1M)$, especially $z_2 \in Z(M/z_1M)$. So, there exists $m_1 \notin z_1 M$ such that $z_2 m_1 = z_1 m_2$ where $m_2 \in M$ and $m_2 \neq 0$. Let $\mathfrak{p}_1:=Az_1\in P(A)$ and $\mathfrak{p}_2:=Az_2\in P(A)$. If we write $n_1:=m_1/z_1$ and $n_2:=$ m_2/z_2 , then we have $n_1 \in M_{\nu_2}$ and $n_2 \in M_{\nu_1}$ where M_{ν_2} is the localization of M with respect to the prime ideal p_i . We can consider M as the subset of V, and so $M_{\mathfrak{p}} \subset V$ for any $\mathfrak{p} \in P(A)$. Therefore we have that $n_1 = n_2 = :$ $\alpha \in V$. If $\mathfrak{p} \in P(A)$ is an ideal containing z_1 , then we have $\mathfrak{p} = Az_1$, because \mathfrak{p} is minimal and Az_1 is prime. The same situation holds for z_2 . So it follows that if $\mathfrak{p} \in P(A)$ is not equal to \mathfrak{p}_1 and \mathfrak{p}_2 , then we have $z_1 \notin \mathfrak{p}$ and $z_2 \notin \mathfrak{p}$. Hence α is contained in $M_{\mathfrak{p}}$ for any $\mathfrak{p} \in P(A)$. Since M is reflexive, we have $M = \bigcap_{\mathfrak{p} \in P(A)} M_{\mathfrak{p}}$ by ([4], p. 50), and so $\alpha \in M$. Thus we have $m_1 = z_1 \alpha \in z_1 M$, which is a contradiction. Therefore we have $\operatorname{prof}_A M \geq 2$. Since $\dim_A M \leq \dim A = 2$ and since $2 \leq \operatorname{prof}_A M \leq \dim_A M$, we see that $\operatorname{prof}_{A} M = \operatorname{dim}_{A} M = 2$; hence M is a Cohen-Macaulay module of $\operatorname{dim}_{A} M = 2$. A being regular, we conclude that M is a free A-module (see for example [8], p. 142). Q.E.D.

From Proposition 1, it follows that $j_*(\mathscr{O}(E_1))$ is a locally free sheaf on X. Hence we have the following:

8

PROPOSITION 2. Let X be a connected two-dimensional complex manifold and let D, X^{*} and $x_0 \in X^*$ be as in n° 2.1. We assume that a representation ρ of $\pi_1(X^*, x_0)$ in $\operatorname{GL}_q(C)$ is given. If E is a flat vector bundle on $X-D=X^*$ associated with ρ , then E can be uniquely extended to a holomorphic vector bundle E_1 on $X-\operatorname{Sing}(D)$ satisfying (M.1) and (M.2); moreover the direct image $j_*(\mathscr{O}(E_1))$ is a locally free sheaf on X.

2.3. We consider the general case of dim $X \ge 3$. Let us recall the definition of absolute gap-sheaves. Suppose that \mathscr{S} is a coherent analytic sheaf on a complex manifold X. We define the sheaf $\mathscr{S}^{[d]}$ on X by the following presheaf:

$$U \longrightarrow \lim_{A \in \mathfrak{A}_{d}(U)} \Gamma(U - A, \mathscr{S})$$
,

where $\mathfrak{A}_d(U)$ is the directed set of all analytic subset of U of dim $A \leq d$. We call $\mathscr{S}^{[d]}$ the *d*-th absolute gap-sheaf of \mathscr{S} . Let $D = D_1 \times D_2 \subset C^{n-2} \times C^2 = C^n(z_1, \dots, z_n)$ be a polydisc centered at the origin, where (z_1, \dots, z_n) is the coordinate system of C^n . Put $V = \{z \in D \mid z_{n-1} = z_n = 0\}$, and let \mathscr{F} be a coherent analytic sheaf on D - V. For any $t \in D_1$, we denote the analytic restriction of \mathscr{F} to the linear subspace $\{z \in C^n \mid z_1 = t_1, \dots, z_{n-2} = t_{n-2}\}$ by

$$\mathscr{F}(t):=\mathscr{F}\bigotimes_{\mathscr{O}_{D-V}}(\mathscr{O}_{D-V}/(z_1-t_1,\cdots,z_{n-2}-t_{n-2})\mathscr{O}_{D-V}).$$

We use the following:

LEMMA 1 (Y.-T. Siu [16], p. 243). Let \mathscr{F} be a coherent analytic sheaf on D-V such that $\mathscr{F}^{[n-2]}=\mathscr{F}$. Suppose that $\mathscr{F}(t)$ can be extended to a coherent analytic sheaf on $\{t\}\times D_2$ for any $t\in D_1$. Then \mathscr{F} can be extended uniquely to a coherent analytic sheaf \mathscr{F} on $D=D_1\times D_2$ satisfying the condition $\mathscr{\widetilde{F}}^{[n-2]}=\mathscr{\widetilde{F}}$.

Using this lemma, we shall prove the following theorem.

THEOREM 1. Let X be a connected complex manifold and let D be a divisor of X. We assume that a representation ρ of $\pi_1(X-D, x_0)$ in $\operatorname{GL}_q(C)$ is given. Let E be the flat vector bundle associated with ρ . Then E can be extended to the unique vector bundle E_1 on $X-\operatorname{Sing}(D)$ satisfying the conditions (M.1) and (M.2) in n°2.1. Moreover $\mathcal{O}(E_1)$ can be extended to a coherent analytic sheaf on X, in particular $j_*(\mathcal{O}(E_1))$ is coherent.

PROOF. Let $S_1 = \text{Sing}(D)$, $S_2 = \text{Sing}(S_1)$, \cdots , $S_k = \text{Sing}(S_{k-1})$ be a de-

creasing sequence of analytic subset of X where dim $S_i = n_i$ for $i = 1, \dots, k$ and S_k is smooth. Write $\mathscr{F}_i := \mathscr{O}(E_i)$. First we show the following:

LEMMA 2. The locally free sheaf \mathscr{F}_1 on $X-S_1$ can be extended uniquely to a coherent analytic sheaf \mathscr{F}_2 on $X-S_2$ satisfying $\mathscr{F}_2^{[n-2]}=\mathscr{F}_2$.

PROOF OF LEMMA 2. Let $x_0 \in S_1 - S_2$, then x_0 is a smooth point of S_1 . There exists a local coordinate system (z_1, \dots, z_n) is a small neighborhood U of x_0 such that $U \cap S_2 = \emptyset$, $\{z_1 = \dots = z_{n-1} = 0\} \cap D \cap U = \{x_0\}$ and $U \cap S_1 = \{z_{n_1+1} = \dots = z_n\} = 0$, where $x_0 = (0, \dots, 0)$. Hence there exists a small polydisc

as follows:

1) Put $\Delta' = \{(z_1, \dots, z_{n-1}) | |z_i| < \varepsilon_i, i = 1, \dots, n-1\}$ and $\Delta'' = \{z_n \in C | |z_n| < \varepsilon_n\}$ and let $\pi: \Delta \cap D \to \Delta'$ be a holomorphic map induced by the natural projection: $\Delta \to \Delta'$. Then π is proper.

2) Write $\Delta_1 = \{(z_1, \dots, z_{n-2}) | | z_i | < \varepsilon_i, i = 1, \dots, n-2\} \Delta_2 = \{(z_{n-1}, z_n) | | z_i | < \varepsilon_i, i = n-1, n\}$ and $V = \{z \in \Delta \mid z_{n-1} = z_n = 0\}$. Then $\Delta \cap S_1 \subset V$. Since \mathscr{F}_1 is locally free on $\Delta - V$, we have $\mathscr{F}_1^{[n-2]} = \mathscr{F}_1$ on $\Delta - V$ by the definition of absolute (n-2)-th gap-sheaves and Hartogs' continuation theorem. Let $t \in \Delta_1$ and put $D(t): = (\{t\} \times \Delta_2) \cap D$. Since π is proper, we have $D(t) \subseteq \Delta_2$, i.e., D(t) is a divisor of Δ_2 . Suppose that f(x) = 0 is a defining equation of D in Δ . Then, after some linear change of coordinate of (z_1, \dots, z_n) if necessary, (Write f(x) in the form of Weierstrass polynomial and consider the discriminant of f(x).) it follows that

1) $f(t, z_{n-1}, z_n) = 0$ is a defining equation of D(t),

2) either $\partial f(t, z_{n-1}, z_n)/\partial z_{n-1} \neq 0$ or $\partial f(t, z_{n-1}, z_n)/\partial z_n \neq 0$ at a smooth point u of D(t). Thus (t, u) is a smooth point of D if u is a smooth point of D(t). Put $(\{t\} \times \Delta_2)^* := \{t\} \times \Delta_2 - \operatorname{Sing}(D(t))$. Then the sheaf $\mathscr{F}_1(t)$ is isomorphic to $\mathscr{O}(E_1|_{((t) \times \Delta_2)^*})$ where $E_1|_{((t) \times \Delta_2)^*}$ is the restriction of the vector bundle E_1 to $(\{t\} \times \Delta_2)^*$. Since E_1 is a flat vector bundle on X-D, $E_1|_{(t) \times \Delta_2-D(t)}$ is also a flat vector bundle. On the other hand, there is a unique connection V on E_1 satisfying (M.1), (M.2) and the condition "Ker $V = C(E_1)$ on X-D". So the integrable meromorphic connection V' is induced on $E_1|_{((t) \times \Delta_2)^*}$ for which (M.1), (M.2) and the condition "Ker $V' = C(E_1|_{(t) \times \Delta_2-D(t)})$ on $\{t\} \times \Delta_2 - D(t)$ " are satisfied. In fact, suppose that $u \in D(t)$ is a smooth point of D(t). Then (t, u) is a smooth point of D; hence there is a small neighborhood N of (t, u) in Δ such that $N \cap S_1 = \emptyset$ and $N \cap (\{t\} \times \Delta_2) \cap \operatorname{Sing}(D(t)) = \emptyset$. For an arbitrary holomorphic frame $e = (e_1, \dots, e_q)$ of E_1 on N, we can write $Ve_i = \sum_{j=1}^q \omega_{ji}e_j$. Let N' =

10

RIEMANN-HILBERT PROBLEM

 $N \cap (\{t\} \times \Delta_2)$ and let $e' = e|_{N'}$ be the restriction of the frame e to N', which is the frame of $E_1|_{N'}$ on N'. By the definition of F', we see that $F'e'_i = \sum_{j=1}^{q} (\omega_{ji}|_{N'})e'_j$. Thus $\omega_{ij}|_{N'}$ has at most logarithmic pole along $N' \cap D(t)$, and the eigenvalues $\alpha_1, \dots, \alpha_q$ of $(\operatorname{res}(\omega_{ij}|_{N'}))$ satisfy the inequality $0 \leq \operatorname{Re} \alpha_i < 1$ for $i=1, \dots, q$. Hence the pair $(E_1|_{(\{t\} \times d_2)^*}, F')$ satisfies the conditions (M.1) and (M.2). Applying the Proposition 2 to $E_1|_{(\{t\} \times d_2 - D(t))}$ we see that $\mathscr{F}_1(t)$ can be extended to a coherent analytic sheaf on $\{t\} \times \Delta_2$. Thus all the conditions of Lemma 1 are satisfied. So \mathscr{F}_1 can be extended to a coherent analytic sheaf \mathscr{F}_1 on Δ satisfying $\mathscr{F}_1^{[n-2]} = \widetilde{\mathscr{F}_1}$. On the other hand, since this extension is unique by Lemma 1, we can glue $\widetilde{\mathscr{F}_1}$ to get the coherent analytic sheaf \mathscr{F}_2 on $X-S_2$. Thus Lemma 2 is proved. Q.E.D.

LEMMA 3. Let \mathscr{F}_i be a coherent analytic sheaf on $X-S_i$ constructed inductively from \mathscr{F}_1 satisfying $\mathscr{F}_i^{[n-2]} = \mathscr{F}_i$. Then \mathscr{F}_i can be extended uniquely to a coherent analytic sheaf \mathscr{F}_{i+1} on $X-S_{i+1}$ which satisfies $\mathscr{F}_{i+1}^{[n-2]} = \mathscr{F}_{i+1}$.

PROOF OF LEMMA 3. Let $x_0 \in S_i - S_{i+1}$. As in Lemma 2, there exists a local coordinate system (z_1, \dots, z_n) in a small neighborhood U of x_0 in X such that $U \cap S_{i+1} = \emptyset$, $\{z_1 = \dots = z_{n-1} = 0\} \cap U \cap D = \{x_0\}$ and $S_i \cap U =$ $\{z_{n_i+1} = \dots = z_n = 0\}$. Hence there exists a polydisc Δ in U centered at x_0 such that $\pi: \Delta \cap D \to \Delta'$ is proper, where π , Δ' , and Δ are as in Lemma 2. Since dim $S_i \leq n-2$, we have that $S_i \cap \Delta \subset \{z_{n-1} = z_n = 0\}$. Let $t \in \Delta_1$, then $(\{t\} \times \Delta_2) \cap D = D(t)$ is a divisor of $\{t\} \times \Delta_2$. In the same way as in Lemma 2, we have that $\mathscr{F}_i(t)$ is isomorphic to $\mathscr{O}(E_1|_{(\{t\} \times \Delta_2 - D(t)\}})$ on $\{t\} \times \Delta_2 - D(t)$ and that $\mathscr{F}_i(t)$ can be extended to a coherent analytic sheaf \mathscr{F}_i satisfying $\widetilde{\mathscr{F}}_i^{[n-2]} = \widetilde{\mathscr{F}_i}$ on Δ . Gluing $\widetilde{\mathscr{F}}_i$ at every point of $S_i - S_{i+1}$, \mathscr{F}_i can be extended to a coherent analytic sheaf \mathscr{F}_{i+1} on $X - S_{i+1}$ satisfying $\mathscr{F}_i^{[n-2]} = \widetilde{\mathscr{F}_{i+1}}$. Q.E.D.

The proof of Theorem 1 is actually done by using Lemma 2 and Lemma 3 inductively. This completes the proof of Theorem 1.

§3. The Riemann-Hilbert problem on Stein manifolds.

3.1. Let X be a connected Stein manifold and let D be a divisor of X. Suppose that a representation ρ of $\pi_1(X-D, x_0)$ in $\operatorname{GL}_q(C)$ is given where x_0 is a base point of X-D. Let E be the flat vector bundle associated with ρ , and let E_1 be the unique vector bundle on $X-\operatorname{Sing}(D)$ satisfying the conditions (M.1) and (M.2). By Theorem 1, $\mathscr{O}(E_1)$ can be

extended as a coherent analytic sheaf \mathscr{F} on X. Let $D = \bigcup_{i \in I} D_i$ be the decomposition of D into its irreducible components and let $x_i \in D_i$. Sing (D). Then $V = \{x_i \in X | i \in I\}$ is a discrete point set of X, and consequently a zero-dimensional analytic subset of X. Let us take an element $\varphi \in \Gamma(X, \mathscr{F})$. We denote by \mathfrak{m}_{X,x_i} the maximal ideal of the local ring \mathcal{O}_{X,x_i} at x_i , and let φ_{x_i} be the germ at x_i defined by φ . Noting that $\mathscr{F}_{x_i} = \mathscr{O}(E_i)_{x_i}$, the quotient $\mathscr{F}_{x_i}/\mathfrak{m}_{X,x_i} \mathscr{F}_{x_i}$ is isomorphic to C^q . We will denote by $\varphi(x_i)$ the residue class of $\varphi_{x_i} \mod \mathfrak{m}_{X,x_i} \mathscr{F}_{x_i}$ in C^q and $\varphi(x_i)$ is said to be the value of φ at x_i .

LEMMA 4. There exists a global section $\varphi \in \Gamma(X, \mathscr{F})$ which has the prescribed value in $\mathscr{F}_{x_i}/\mathfrak{m}_{x,x_i} \mathscr{F}_{x_i} \cong \mathbb{C}^q$ at every point $x_i \in V$.

PROOF. Let \mathscr{I} be the coherent analytic sheaf of ideals defined by V, then we have the exact sequence of sheaves

$$0 \longrightarrow \mathscr{I} \longrightarrow \mathscr{O}_{x} \xrightarrow{p} \mathscr{O}_{x} / \mathscr{I} \longrightarrow 0$$

where p is the natural projection. Making tensor product with \mathcal{F} , we have the exact sequence

$$\mathscr{I} \bigotimes_{\mathscr{O}_{X}} \mathscr{F} \longrightarrow \mathscr{O}_{X} \bigotimes_{\mathscr{O}_{X}} \mathscr{F} \xrightarrow{p \otimes 1} (\mathscr{O}_{X}/\mathscr{I}) \bigotimes_{\mathscr{O}_{X}} \mathscr{F} \longrightarrow 0.$$

Since Ker $(p \otimes 1) = : \mathscr{K}$ is coherent, and $(\mathscr{O}_X/\mathscr{I}) \bigotimes_{\mathscr{O}_X} \mathscr{F}$ is isomorphic to $\coprod_{i \in I} (\mathscr{F}_{x_i}/\mathfrak{m}_{x,x_i} \mathscr{F}_{x_i})$, where \coprod means disjoint union, we have the exact sequence

$$0 \longrightarrow \mathscr{K} \longrightarrow \mathscr{F} \longrightarrow \underset{i \in I}{\amalg} (\mathscr{F}_{x_i}/\mathfrak{m}_{X,x_i}\mathscr{F}_{x_i}) \longrightarrow 0$$

By Theorem B of Oka-Cartan-Serre on Stein manifolds, we have $H^1(X, \mathscr{K}) = 0$; hence $\Gamma(X, \mathscr{F}) \to \coprod_{i \in I} (\mathscr{F}_{x_i}/\mathfrak{m}_{X, x_i}, \mathscr{F}_{x_i})$ is surjective. This is to be proved. Q.E.D.

Choose q linearly independent vectors in $C^q (\cong \mathscr{F}_{x_i}/\mathfrak{m}_{X,x_i} \mathscr{F}_{x_i})$ and apply Lemma 4. Then there exist global sections $\varphi_1, \dots, \varphi_q \in \Gamma(X, \mathscr{F})$ such that the value $\varphi_1(x_i), \dots, \varphi_q(x_i)$ are linearly independent in C^q at every point $x_i \in V$. Put $X' := X - \operatorname{Sing}(D)$. Since $\mathscr{F}|_{X'} = \mathscr{O}(E_1)$, φ_α can be considered as a global section of $\mathscr{O}(E_1)$. Let $\mathfrak{U} = \{U_j\}$ be a sufficiently fine open covering of X' and let $\{g_{jk}\}$ be the transition functions of E_1 with respect to \mathfrak{U} , where g_{jk} is $\operatorname{GL}_q(C)$ -valued holomorphic function on $U_j \cap U_k$. Then a global section φ_α of E_1 is identified with collection $\{\varphi_{\alpha,j}\}$ where $\varphi_{\alpha,j} =$ ${}^t(\varphi_{\alpha,j}^1, \dots, \varphi_{\alpha,j}^q)$ is C^q -valued holomorphic function on U_j such that $\varphi_{\alpha,j} =$ $g_{jk}\varphi_{\alpha,k}$ on $U_j \cap U_k$, and the values $\varphi_\alpha(x_i) \in \mathscr{F}_{x_i}/\mathfrak{m}_{X,x_i} \mathscr{F}_{x_i}$ $(x_i \in U_j)$ is identified with the value $\varphi_{\alpha,j}(x_i)$ of the holomorphic function $\varphi_{\alpha,j}$ on U_j . The set $\Psi_j = (\varphi_{1,j}, \dots, \varphi_{q,j})$ can be considered as a (q, q)-matrix-valued holomorphic function on U_j . On the other hand, we have $\Psi_j = g_{jk}\Psi_k$ on $U_j \cap U_k$. So, putting ψ_j : =det Ψ_j , we see that $\psi_j = (\det g_{jk})\psi_k$ in $U_j \cap U_k$. Let G be the line bundle defined by the transition functions $\{\det g_{jk}\}$, i.e., $G = \{\det g_{jk}\} \in Z^1(\mathfrak{U}, \mathcal{O}_{X'}^*)$. Then we have $\psi := \{\psi_j\} \in \Gamma(X', \mathcal{O}(G))$. Since the values $\varphi_1(x_i), \dots, \varphi_q(x_i)$ are linearly independent in C^q , it follows that $\psi(x_i) \neq 0$ at every point $x_i \in V$; hence $A' := \{x \in X' \mid \psi(x) = 0\}$ defines either a divisor or an empty set. Since $X - X' = \operatorname{Sing}(D)$ is an analytic subset of X of codimension at least two at every point of Sing(D), the closure $\overline{A'}$ of A' in X is a divisor of X by the continuation theorem of Thullen [17]. Thus we have the following:

LEMMA 5. There exist a divisor A of X and q global sections $s_1, \dots, s_q \in \Gamma(X', \mathcal{O}(E_1))$ of E_1 such that (s_1, \dots, s_q) is a frame of E_1 on X'-A and such that $D_i \not\subset A$ for any irreducible component of D.

3.2. Let V be the unique connection on E_1 satisfying (M.1) and (M.2) such that Ker V = C(E) on X-D. Let $s_1, \dots, s_q \in \Gamma(X', \mathcal{O}(E_1))$ be as above. We write Vs_i on X'-A in the form:

$$abla s_i = \sum\limits_{j=1}^q arOmega_{ji} s_j \quad ext{for} \quad i = 1, \ \cdots, \ q \;.$$

By (M.1) Ω_{ij} has at most logarithmic pole along $(X'-A) \cap D$.

LEMMA 6. Ω_{ij} is a meromorphic form on X for $i, j=1, \dots, q$.

PROOF. Let $x \in (A-D) \cap X'$; then one can find a small open neighborhood U of X such that there is a holomorphic frame $e = (e_1, \dots, e_q)$ of E_1 on U and that $U \cap D = \emptyset$. We can write $s_i = \sum_{j=1}^q h_{ij}e_j$ where $h_{ij} \in \Gamma(U, \mathcal{O}_U)$. Then the matrix $h: = (h_{ij})$ is non-singular at every point of $U - (A \cap U)$. We write $\nabla e_i = \sum_{j=1}^q \omega_{ji}e_j$ for $i = 1, \dots, q$, where ω_{ji} is a holomorphic one-form on U. Then we have

$$egin{aligned} &
abla s_i \!=\!
abla \! \left(\sum_{j=1}^q h_{ij} e_j
ight) \ &=\! \sum_{j=1}^q dh_{ij} e_j \!+\! \sum_{j=1}^q h_{ij}
abla e_j \ &=\! \sum_{j=1}^q \left(dh_{ij} \!+\! \sum_{k=1}^q h_{ik} \omega_{jk}
ight) \! e_j \;. \end{aligned}$$

On the other hand, on $U-(U\cap A)$, we have

$$\nabla s_i = \sum_{j=1}^q \mathcal{Q}_{ji} s_j = \sum_{j=1}^q \left(\sum_{k=1}^q \mathcal{Q}_{ki} h_{kj} \right) e_j;$$

hence, on $U-(U\cap A)$, we obtain

$$dh_{ij} + \sum_{k=1}^{q} h_{ik} \omega_{jk} = \sum_{k=1}^{q} \mathcal{Q}_{ki} h_{kj}$$
 for $i, j = 1, \dots, q$.

The above equation can be written in the matrix notation,

$$dh + h \cdot \omega = \Omega \cdot h$$
,

or

$$(3.1) \qquad {}^{t} \mathcal{Q} = (dh) \cdot h^{-1} + h \cdot {}^{t} \omega \cdot h^{-1} \quad \text{on} \quad U - (U \cap A) .$$

Since h^{-1} has at most pole along $U \cap A$, so has ${}^{i}\Omega$, i.e., Ω_{ij} is a meromorphic one-form on $X-\operatorname{Sing}(D) \cup (A \cap D)$. We know by Lemma 5 $\operatorname{codim}(A \cap D) \ge 2$ and $\operatorname{codim}(\operatorname{Sing}(D)) \ge 2$, so Ω_{ij} is extended to a meromorphic one-form on X by the continuation theorem of Levi. Q.E.D.

Let Ω_{ij} and $s_1, \dots, s_q \in \Gamma(X', \mathcal{O}(E_1))$ be as above and let $u = \sum_{i=1}^q y_i s_i$ be a local section of $\mathcal{O}(E_1)$ around $x \in X - (A \cup D)$. From the relation

$$abla u = \sum_{i=1}^q \left(dy_i + \sum_{j=1}^q \, \mathcal{Q}_{ij} y_j \right) s_i$$
 ,

it follows that u is a horizontal section of ∇ if and only if $u = \sum_{i=1}^{q} y_i s_i$ satisfies the total differential equation

(3.2)
$$d\begin{pmatrix} y_1 \\ \vdots \\ y_q \end{pmatrix} + \begin{pmatrix} \Omega_{11} & \cdots & \Omega_{1q} \\ & \ddots & \\ \Omega_{q1} & \cdots & \Omega_{qq} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_q \end{pmatrix} = 0 .$$

Since Ker $\mathcal{V} = \mathcal{C}(E)$ on X - D and (s_1, \dots, s_q) is a frame of E_1 on $X - (A \cup D)$, we see that the equation (3.2) is completely integrable on $X - (A \cup D)$. Let \mathscr{S} be the sheaf of germs of local solutions of (3.2); then it follows that \mathscr{S} is locally constant sheaf on $X - (A \cup D)$ and that \mathscr{S} is isomorphic to $\mathcal{C}(E)$ on $X - (A \cup D)$ by the map

$$(y_i) \in \mathscr{S} \longrightarrow \sum_{i=1}^{q} y_i s_i \in C(E)$$
.

LEMMA 7. The total differential equation (3.2) has a regular singularity along $A \cup D$; moreover A is the apparent singularity of (3.2).

PROOF. Let $x \in A - D$; then we can find a small neighborhood U of

x in X such that there is a holomorphic frame $e = (e_1, \dots, e_q)$ of E_1 on U and that $U \cap D = \emptyset$. If we write $\nabla e_i = \sum_{j=1}^q \omega_{ji} e_j$ and take a horizontal section $u = \sum_{i=1}^q u_i e_i$ of ∇ on U, then we have

$$0 =
abla u = \sum_{i=1}^q \left(du_i + \sum_{j=1}^q \omega_{ij} u_j \right) e_i$$
,

that is,

(3.3)
$$du_i + \sum_{j=1}^{q} \omega_{ij} u_j = 0 \text{ for } i=1, \dots, q.$$

If we write $u = \sum_{i=1}^{q} y_i s_i$ and $s_i = \sum_{j=1}^{q} h_{ij} e_j$, then we have $u_i = \sum_{j=1}^{q} h_{ij} y_j$. This can be written as

$$u = {}^{t}h \cdot y$$
 or $y = {}^{t}h^{-1} \cdot u$,

where $u = {}^{t}(u_1, \dots, u_q)$, $y = {}^{t}(y_1, \dots, y_q)$ and $h = (h_{ij})$. Thus we have, in matrix notation,

$$dy + \Omega y = d({}^{t}h^{-1}) + {}^{t}h^{-1}du + \Omega{}^{t}h^{-1}u$$

= ${}^{t}h^{-1}\{du + ({}^{t}h \cdot \Omega \cdot {}^{t}h^{-1} - (d{}^{t}h){}^{t}h^{-1})u\}$
= ${}^{t}h^{-1}(du + \omega u)$ (by (3.1))
= 0.

It follows that if u is a local solution of (3.3) on U, then $y={}^{t}h^{-1}u$ is a solution of (3.2) on $U-(A \cap U)$. Since (3.3) is completely integrable on U, this means that A is the apparent singularity of equation (3.2). It follows from the condition (M.1) that Ω has at most logarithmic pole along $Z:=(D-\operatorname{Sing}(D))-A$; hence the equation (3.2) has a regular singularity along Z. From Lemma 5, we see that A does not contain any irreducible component of D. So by a result of P. Deligne ([6], p. 85), D is the regular singularity of the equation (3.2).

Considering the proof of Lemma 5, we suppose that A does not contain the base point $x_0 \in X-D$. Take q linearly independent solutions $f_1(x), \dots, f_q(x)$ of (3.2) at x_0 . For a closed curve γ in $X-(A \cup D)$ starting from x_0 , we have (See §2.1.)

$$\gamma_*[f_1, \cdots, f_q] = [f_1, \cdots, f_q] \mu([\gamma]) ,$$

where $[\gamma] \in \pi_1(X - (A \cup D), x_0)$ and $\mu([\gamma]) \in \operatorname{GL}_q(C)$. μ is called the monodromy representation of the equation (3.2). Let $j: X - (A \cup D) \to X - D$ be the canonical injection and let $j_*: \pi_1(X - (A \cup D), x_0) \to \pi_1(X - D, x_0)$ be the induced surjective homomorphism. Since A is the apparent singularity

of (3.2), μ is naturally extended to a homomorphism

$$\hat{\mu}: \pi_1(X - D, x_0) \longrightarrow \operatorname{GL}_q(C)$$

such that $\hat{\mu} \circ j_* = \mu$ and that

 $\gamma_*[f_1, \cdots, f_q] = [f_1, \cdots, f_q] \hat{\mu}([\gamma]) \quad \text{for} \quad [\gamma] \in \pi_1(X - D, x_0) .$

Since the monodromy representation of (3.2) is, by the definition, the same as that of the locally constant sheaf \mathscr{S} and since \mathscr{S} is isomorphic to C(E) on $X-(A\cup D)$, we see that $\hat{\mu}=\rho$, choosing the independent solutions of (3.2) properly. Thus we have the following:

THEOREM 2. Let X be a Stein manifold and let D be a divisor of X. Suppose that a representation ρ of $\pi_1(X-D, x_0)$ in $\operatorname{GL}_q(C)$ is given. Then we can construct a total differential equation (3.2) as follows:

1) there exists a divisor A of X such that A does not contain any irreducible component of D.

2) the equation (3.2) is completely integrable on $X-(A \cup D)$; moreover A is the apparent singularity of (3.2).

3) the monodromy representation of (3.2) coinsides with the given representation ρ .

3.3. On two-dimensional Stein manifold X, we could solve, by Proposition 2, the Riemann-Hilbert problem without apparent singularity under some topological condition on X. Let E, E_1 , and ρ be as above and let $j: X - \operatorname{Sing}(D) \to X$ be the canonical injection. Then by Proposition 2, we have that $j_*(\mathcal{O}(E_i))$ is a locally free sheaf on X; so one has $j_*(\mathcal{O}(E_1)) = \mathcal{O}(G)$ for a certain holomorphic vector bundle G on X. By a result of A. Andreotti and T. Frankel [2], X is of the same homotopy type as a two-dimensional CW-complex. So from a theorem of F. Peterson [13], it follows that a continuous complex vector bundle F on X of rank q is trivial if and only if the first Chern class $c_1(F)$ of F is equal to zero. Thus, by the Oka principle (H. Grauert [7]), $j_*(\mathscr{O}(E_i))$ is a free sheaf if and only if $c_1(G) = 0$. So, we can find a global frame $s = (s_1, \dots, s_q)$ of G on X. Hence, if we write $\nabla s_i = \sum_{j=1}^q \Omega_{ji} s_j$, the equation (3.2) has the regular singularity only along D and does not have the apparent singularity. Thus we obtain the following:

PROPOSITION 3. Let X be a connected two-dimensional Stein manifold and let D, E, E₁, and ρ be as above. Then we obtain $j_*(\mathcal{O}(E_1)) = \mathcal{O}(G)$ for a certain holomorphic vector bundle G on X. If $c_1(G) = 0$, then we can construct a completely integrable total differential equation (3.2) which is regular singular along D and does not have the apparent singularity, and furthermore whose monodromy representation coincides with the given ρ .

By Proposition 3, it follows easily the following theorem.

THEOREM 3. Let X be a connected two-dimensional Stein manifold. If $H^2(X, \mathbb{Z})=0$, then for any divisor and representation ρ of $\pi_1(X-D, x_0)$ in $\operatorname{GL}_q(\mathbb{C})$, we can always find a solution without apparent singularity to the Riemann-Hilbert problem.

REMARK. In the case of Theorem 3, let $\Omega = (\Omega_{ij})$ be the connection matrix of the equation (3.2). From the construction of the equation (3.2), we see that each Ω_{ij} is a meromorphic form with generically logarithmic poles along D. This notion was introduced by K. Saito [14].

§4. A remark to a work of K. Aomoto [1]——The Riemann-Hilbert problem in the restricted sense on two-dimensional manifolds.

4.1. Let X be a connected two-dimensional complex manifold and let D be a divisor of X. Let ρ be a representation of the group $\pi_1(X-D, x_0)$ in $\operatorname{GL}_q(C)$. Suppose that $\rho(\pi_1(X-D, x_0))$ is contained in a maximal unipotent subgroup $\mathfrak{U}(q)$ of $\operatorname{GL}_q(C)$; that is, $\mathfrak{U}(q)$ is a sub-

group conjugate to the closed subgroup $\left\{ \begin{pmatrix} 1 & * \\ & \cdot & \\ 0 & 1 \end{pmatrix} \in \operatorname{GL}_q(C) \right\}$ in $\operatorname{GL}_q(C)$.

Let ρ be a representation of $\pi_1(X-D, x_0)$ in $\mathfrak{U}(q)$. After K. Aomoto [1], we shall call the *Riemann-Hilbert problem in the restricted sense* the problem of constructing the total differential equation (3.2) which is regular singular along D and has the above given monodromy ρ .

Let E be the flat vector bundle associated with ρ where ρ is a representation of $\pi_1(X-D, x_0)$ in $\mathfrak{U}(q)$. By a result to P. Deligne ([6], p. 91), E can be extended to a holomorphic vector bundle E_1 on X-Sing (D) such that, choosing a sufficiently fine open covering $\mathfrak{B}=\{V_j\}_{j\in J}$ of X-Sing (D), the transition functions f_{jk} of E_1 are $\mathfrak{U}(q)$ -valued holomorphic functions on $V_j \cap V_k$ for any $j, k \in J$. From Proposition 2 of §2, it follows that $j_*(\mathscr{O}(E_1))$ is a locally free sheaf on X where j: X-Sing $(D) \to X$ is the canonical injection. Let \widetilde{E} be the holomorphic vector bundle on X corresponding to $j_*(\mathscr{O}(E_1))$. Then by the same argument as above (See [6], p. 91.), choosing a sufficiently fine suitable open covering $\mathfrak{W}=\{W_j\}$ of X, we have that the transition functions g_{jk} are $\mathfrak{U}(q)$ -valued holomorphic functions on each $W_j \cap W_k$.

4.2. Now we shall prepare the following elementary

LEMMA 8. Let X be as above and let V be a holomorphic vector bundle with the structure group $\mathfrak{U}(q)$. If $H^1(X, \mathscr{O}_X)=0$, then the vector bundle V is holomorphically trivial.

PROOF. Without loss of generality, we can suppose that $\mathfrak{U}(q)$ is the following subgroup $\left\{ \begin{pmatrix} 1 & & \\ & & \\ & & \\ & & \\ \end{pmatrix} \in \operatorname{GL}_q(C) \right\}$ of $\operatorname{GL}_q(C)$. We proceed by the induction on the rank of vector bundles. When q=1, there is nothing to prove. We suppose that Lemma 8 is true for all holomorphic vector bundle with structure group $\mathfrak{U}(m)$ of rank less than q. Choosing a sufficiently fine Stein covering $\mathfrak{W} = \{W_j\}_{j \in J}$, we may suppose that the transition functions $\{f_{jk}\}$ of V are $\mathfrak{U}(q)$ -valued holomorphic functions on $W_j \cap W_k$ and they satisfy the cocycle conditions

$$f_{ij} \cdot f_{jk} = f_{ik}$$
 on $W_i \cap W_j \cap W_k$;

that is, $\{f_{jk}\} \in Z^1(\mathfrak{W}, \mathfrak{U}(q))$. If we write each f_{jk} in the following form

$$f_{jk} = \left(\begin{array}{c|c} 1 & a_{jk} \\ \hline 0 & g_{jk} \end{array} \right)$$

where $\{a_{jk}\} \in C^1(\mathfrak{W}, \mathcal{O}_X^{q-1})$ and $\{g_{jk}\} \in C^1(\mathfrak{W}, \mathfrak{U}(q-1))$, the above cocycle conditions can be rewritten in the following form:

$$\begin{cases} a_{ij}g_{jk} + a_{jk} = a_{ik} \\ g_{ij}g_{jk} = g_{ik} \end{cases}$$

By the hypothesis of induction, there exists a zero cochain $\{g_j\} \in C^0(\mathfrak{W}, \mathfrak{U}(q-1))$ such that $g_{jk} = g_j g_k^{-1}$ on $W_j \cap W_k$. On the other hand, putting $\hat{a}_{ij} = a_{ij}g_j$, we have that

$$\hat{a}_{ij}g_{j}^{-1}g_{jk} + \hat{a}_{jk}g_{k}^{-1} = \hat{a}_{ik}g_{k}^{-1};$$

hence, using the equation $g_j^{-1}g_{jk} = g_k^{-1}$, we conclude that $\{\hat{a}_{jk}\}$ satisfies the cocycle conditions

$$\hat{a}_{ij} + \hat{a}_{jk} = \hat{a}_{ik}$$
 on $W_i \cap W_j \cap W_k$.

Since $\{\hat{a}_{jk}\} \in Z^1(\mathfrak{W}, \mathcal{O}_X^{q-1})$ and $H^1(\mathfrak{W}, \mathcal{O}_X) = 0$, there is a 0-cochain $\{a_i\} \in C^0(\mathfrak{W}, \mathcal{O}_X^{q-1})$ which satisfies the equation

$$\widehat{a}_{jk} = a_j - a_k$$
 .

When we put

$$f_j = \left(\begin{array}{c|c} 1 & a_j \\ \hline 0 & g_j \end{array} \right)$$
 on W_j ,

by a simple computation, we see that

$$egin{aligned} f_{j} \cdot f_{k}^{-1} &= \left(egin{aligned} 1 & a_{j} \ \hline 0 & g_{j} \end{array}
ight) & \left(egin{aligned} 1 & -a_{k}^{-1}g_{k}^{-1} \ \hline 0 & g_{k}^{-1} \end{array}
ight) \ &= & \left(egin{aligned} 1 & \hat{a}_{jk}g_{k}^{-1} \ \hline 0 & g_{jk} \end{array}
ight) = & \left(egin{aligned} 1 & a_{jk} \ \hline 0 & g_{jk} \end{array}
ight) \ &= & f_{jk} \ . \end{aligned}$$

Hence it follows that the vector bundle V with transition functions $\{f_{jk}\}$ is holomorphically trivial on X. Q.E.D.

Now let us return to the situation of n° 4.1, and let the notations be as above. Since \tilde{E} is the holomorphic vector bundle on X with structure group $\mathfrak{U}(q)$, by Lemma 8 we conclude that \tilde{E} is holomorphically trivial provided that $H^1(X, \mathcal{O}_X)=0$. Thus we obtain the following:

THEOREM 4 (K. Aomoto, [1]). Let X be a connected two-dimensional complex manifold. If $H^1(X, \mathscr{O}_X) = 0$, then for any divisor D and any representation ρ of $\pi_1(X-D, x_0)$ in a maximal unipotent subgroup $\mathfrak{U}(q)$ of $\operatorname{GL}_q(C)$, we can always find a solution to the Riemann-Hilbert problem in the restricted sense without apparent singularity.

COROLLARY. If X is a compact two-dimensional Kähler manifold such that the first Betti number is zero; i.e., $H^1(X, C)=0$, then we can always find a solution to the Riemann-Hilbert problem in the restricted sense without apparent singularity for any divisor and any representation ρ of $\pi_1(X-D, x_0)$ in $\mathfrak{U}(q)$.

REMARK. In the case of Theorem 4 and its Corollary, let $\Omega = (\Omega_{ij})$ be the connection matrix of the equation (3.2). By the same reason as the Remark to Theorem 3, we see that Ω_{ij} is a meromorphic form with generically logarithmic poles along D.

§5. Analytic covers and the associated monodromy.

5.1. Let us recall the definition of *analytic covers* and holomorphic functions on them. Let Y be a locally compact Hausdorff space and let

X be a complex manifold. An analytic cover is a triple (Y, π, X) (later on we will write this in the form $\pi: Y \to X$) such that

1) π is a proper continuous map of Y onto X with discrete fibers.

2) There are a divisor D of X and a positive integer q such that π is a q-sheeted topological covering map from $Y-\pi^{-1}(D)$ onto X-D.

3) $Y-\pi^{-1}(D)$ is dense in Y.

4) For any point $y \in \pi^{-1}(D)$ and any connected open neighborhood U of y, there exists an open neighborhood $U' \subset U$ such that $U' - \pi^{-1}(D) \cap U'$ is connected.

D is called the *critical locus* of analytic cover $\pi: Y \rightarrow X$ and q is called the sheet number of it. There is a unique complex structure on $Y - \pi^{-1}(D)$ such that $\pi: Y - \pi^{-1}(D) \rightarrow X - D$ is a locally biholomorphic map; hence, $Y - \pi^{-1}(D)$ will be regarded as the complex manifold with this structure. We recall the definition of complex analytic space in the sense of Behnke-Stein [3]. Let $\pi: Y \to X$ be an analytic cover, and let U be an open set in Y. A continuous complex-valued function f(y) on U is, by definition, holomorphic on U if the restriction of f(y) to $U - U \cap \pi^{-1}(D)$ is holomorphic in the usual sense on the open subset $U - U \cap \pi^{-1}(D)$ of the complex manifold $Y - \pi^{-1}(D)$. Let \mathcal{O}_Y be the sheaf of germs of holomorphic functions on Y; then it follows that (Y, \mathcal{O}_Y) is a C-local ringed space. Let W be a Hausdorff space. A C-local ringed space (W, \mathcal{O}_w) is, by definition, a complex analytic space in the sense of Behnke-Stein (komplexe α -Raum in [10]) if there exists an open covering $W = \bigcup U_i$ such that $(U_i, \mathcal{O}_W|_{U_i})$ is isomorphic to a ringed space (Y, \mathcal{O}_Y) as above, where Y is an analytic cover. As is noted in Introduction, H. Grauert and R. Remmert [10] and R. Kawai [11] proved that (W, \mathcal{O}_w) is a normal complex analytic space in the sense of Cartan-Serre [5]. Our aim is to prove this theorem by using the Riemann-Hilbert problem. For this purpose. we shall study the relation between holomorphic functions on Y and representation of $\pi_1(X-D, x_0)$ where $\pi: Y \to X$ and D are as above and x_0 is a base point of X-D.

For later applications, we list the following standard result about holomorphic functions on analytic covers. Let (Y, \mathcal{O}_Y) be as above, where $\pi: Y \to X$ is an analytic cover and we denote by $\mathcal{O}_{Y,y}$ the stalk of \mathcal{O}_Y at $y \in Y$.

LEMMA 9 ([10], p. 264). Suppose that $x \in D$ is a smooth point of D, and let $\pi^{-1}(x) = \{y_1, \dots, y_t\}$. Then \mathcal{O}_{Y,y_i} is a regular C-local algebra for $i=1, \dots, t$. Let $Y' := Y - \pi^{-1}(\operatorname{Sing}(D))$. Then $(Y', \mathcal{O}_Y|_{Y'})$ is a complex manifold which contains $Y - \pi^{-1}(D)$ as the open submanifold. LEMMA 10 ([10], p. 266). Let $\pi: Y \to X$ be as above and let q be the sheet number of Y. Let f(y) be a continuous functions on Y. f(y)is holomorphic on Y if and only if there is a monic polynomial

(5.1)
$$\omega(Z; x) = Z^{q} + a_{1}(x)Z^{q-1} + \cdots + a_{q}(x)$$

such that $\omega(f(x); x) = 0$ on Y, where $a_i(x)$ is holomorphic on X.

LEMMA 11 ([10], p. 267). Let A be an analytic subset of Y, and f(y) be a holomorphic function on Y-A. Suppose that, for every point $y \in A$, there exists an open neighborhood U of x such that f(y) is bounded on $U-(U\cap A)$. Then f(y) can be extended uniquely to a holomorphic function on Y.

5.2. Let $\pi: Y \to X$ be an analytic cover with critical locus D whose sheet number is q. By the definition of complex analytic spaces in the sense of Behnke-Stein, the problem is local, i.e., we can assume X to be a polydisc in C^n , and it is sufficient to show the existence of a holomorphic function f(y) separating arbitrary two points in $\pi^{-1}(x_0)$, $x_0 \in X-D$.

In fact, let $\varphi: Y \to X \times C$ be a holomorphic map defined by $\varphi(y) = (\pi(y), f(y))$. Since f(y) is holomorphic on Y, there is, by Lemma 9, a monic polynomial (5.1) such that $\omega(f(y); x) = 0$ on Y. Putting $S: = \varphi(Y)$, it follows that S is a hypersurface in $X \times C$ defined by $S = \{(x, z) \in X \times C | \omega(z, x) = 0\}$. Let $\tilde{\mathcal{O}}_S$ be the sheaf of germs of weakly holomorphic functions on S and $\Delta(x)$ be the discriminant of the polynomial $\omega(Z; x)$. It is obvious that $D \subset \{x \in X | \Delta(x) = 0\}$. Let $p: S \to X$ be the projection induced by the one to the first component $X \times C \to X$. Since f(y) separates the values of $\pi^{-1}(x_0)$, we see that $A: = \{x \in X | \Delta(x) = 0\} \subseteq X$; hence A is a divisor of X. It is evident that

$$\varphi: Y - \pi^{-1}(A) \longrightarrow S - p^{-1}(A)$$

is biholomorphic map. Take a point $s_0 \in p^{-1}(A)$ and let N be a small neighborhood of s_0 . If g(s) is a holomorphic function in $N - (N \cap p^{-1}(A))$ on which g(s) is bounded, then by Lemma 10 $\varphi^*(g)$ is holomorphic on some components of $\pi^{-1}(p(N))$. Applying the argument to the inverse map φ^{-1} , we conclude that the direct image $\varphi_*(\mathcal{O}_Y)$ is isomorphic to $\widetilde{\mathcal{O}}_S$. By the normalization theorem of Oka [12], there exists a normal complex analytic space \widetilde{S} and a proper holomorphic map $\tau: \widetilde{S} \to S$ such that $\tau_*(\mathcal{O}_{\widetilde{S}}) = \widetilde{\mathcal{O}}_S$. By the above facts and (4) of the definition of analytic covers, we have $(Y, \mathcal{O}_Y) = (\widetilde{S}, \mathcal{O}_{\widetilde{S}})$; this was to be proved.

Later on, we suppose that X is a polydisc in C^{n} . We write Y^{*} : = $Y-\pi^{-1}(D)$ and $X^*:=X-D$. By the definition of the complex structure of Y^{*}, we can consider a holomorphic function g(y) on Y^{*} as a manyvalued holomorphic function on X^* . Using this fact, we obtain the relation between holomorphic functions on Y^* and representations of $\pi_1(X^*, x_0)$. We state this in detail. Let $\pi^{-1}(x_0) = \{y_1, \dots, y_q\}$ and fix this numbering. Since $\pi: Y^* \to X^*$ is a finite unramified covering and since X^* is a Stein manifold, it follows that Y^* is a Stein manifold. Hence there exists a holomorphic function g(y) on Y^* such that $g(y_i) = i$ for $i=1, \dots, q$. If we choose a sufficiently small polydisc $U \subset X^*$ centered at x_0 , we can speak of the branches of g(y) on U. Thus let $g_i(x)$ be the branch of g(y) on U such that $g_i(x_0) = i$. It follows that $g_i(x_0)$ can be continued analytically on X^* , but, in general, it is not single-valued. Consider the vector-valued function $\vec{g}(x) = (g_1(x), \dots, g_q(x))$ on U. $\overline{g}(x)$ can be continued analytically on X^* ; hence it is a many-valued function on X^{*}. We shall show that $\overline{g}(x)$ gives a representation of $\pi_1(X^*, x_0)$; let γ be a closed curve in X^* starting from x_0 . Since $\pi: Y^* \to X^*$ is a topological covering, there are the paths γ_i starting from y_i such that $\pi(\gamma_i) = \gamma$. Let us denote by $x_{\gamma_*(i)}$ the end point of γ_i ; then $\begin{pmatrix} 1, \dots, q \\ \gamma_*(1), \dots, \gamma_*(q) \end{pmatrix}$ is a permutation of q letters $\{1, \dots, q\}$. It follows that the result of analytic continuation of $g_i(x)$ along γ is identified with that of g(y) along γ_i if we consider $g_i(x)$ as the function element of g(y) at y_i ; hence we have the function element of g(y) at $x_{r_*(i)}$. Thus we obtain that the result of analytic continuation of $g_i(x)$ along γ is the element $g_{\tau_*(i)}(x)$. Let $S_{q_{i}, j_{i}}$ be the symmetric group of q letters $\{1, \dots, q\}$ and let $e_{i} =$ $(0, \dots, 1, \dots, 0)$ $i=1, \dots, q$ be the standard basis of C^{q} . We denote by $j: S_{\sigma} \to \operatorname{GL}_{\sigma}(C)$ the following standard faithful representation; for $\sigma \in S_{\sigma}$,

$$j(\sigma)\left(\sum_{i=1}^{q}u_{i}e_{i}
ight)=\sum_{i=1}^{q}u_{i}e_{\sigma(i)}$$
 ;

thus we have

$$j(\sigma) = (a_{kl})$$
 where $a_{kl} = \begin{cases} 1 & \text{if } k = \sigma(l) \\ 0 & \text{otherwise.} \end{cases}$

Let γ be a closed curve in X^* starting from x_0 , and as above we denote by $\gamma_*(\vec{g}) = (g_{\tau_*(1)}, \dots, g_{\tau_*(q)})$ the result of analytic continuation of $\vec{g} = (g_1, \dots, g_q)$ along γ . It follows that

$$(g_{\gamma_*(1)}, \cdots, g_{\gamma_*(q)}) = (g_1, \cdots, g_q)\rho([\gamma])$$

22

if we write $\rho([\gamma]) = j\left(\begin{pmatrix}1, \dots, q\\\gamma_*(1), \dots, \gamma_*(q)\end{pmatrix}\right)$.

LEMMA 12. Let $\rho: \pi_1(X^*, x_0) \to \operatorname{GL}_q(C)$ be as above. Then ρ is a finite representation of $\pi_1(X^*, x_0)$.

PROOF. Let γ_1 and γ_2 be closed curves in X^* starting from x_0 . We have

$$(g_1, \cdots, g_q)\rho([\gamma_1] \cdot [\gamma_2]) = (\gamma_1 \cdot \gamma_2)_*(g_1, \cdots, g_q)$$

= $(\gamma_1)_*((g_1, \cdots, g_q)\rho([\gamma_2]))$
= $(g_1, \cdots, g_q)\rho([\gamma_1])\rho([\gamma_2]);$

hence we obtain

$$\rho([\gamma_1][\gamma_2]) = \rho([\gamma_1])\rho([\gamma_2]) . \qquad Q.E.D.$$

We call ρ the monodromy representation associated with the analytic cover $\pi: Y \to X$. Note that, by the definition of the permutation $\begin{pmatrix} 1, \cdots, q \\ \gamma_*(1), \cdots, \gamma_*(q) \end{pmatrix}$, ρ is determined by the topological property of the analytic cover.

REMARK. Let ρ be as above, and let E be the flat vector bundle associated with ρ . We can show that $\pi_*(C_{Y^*}) = C(E)$, where C_{Y^*} is a Cvalued constant sheaf on Y^* .

5.3. Conversely, we consider a many-valued holomorphic function $\vec{h}(x) = (h_1(x), \dots, h_q(x))$ on X^* satisfying $\gamma_*(\vec{h}(x)) = \vec{h}(x)\rho([\gamma])$ for any closed curve γ in X^* starting from x_0 .

LEMMA 13. Let h(x) be as above and suppose that Y^* is connected. Write $h(y):=h_1(\pi(y))$ in a small polydisc in Y^* centered at y_1 . Then h(y) can be continued analytically along any path in Y^* starting from y_1 ; moreover it determines a single-valued holomorphic function $\tilde{h}(y)$ on Y^* whose function element at y_i coincides with $h_i(\pi(y))$ for $i=1, \dots, q$.

PROOF. Let \checkmark be any path in Y^* starting from y_i , and let $\checkmark' = \pi(\checkmark)$. Since $h_i(x)$ can be continued analytically along the curve \checkmark' , it is evident that so is h(y); hence h(y) determines a many-valued holomorphic function $\tilde{h}(y)$ on Y^* . Suppose that $\tilde{h}(y)$ is not single-valued. Then there exists a closed curve γ in Y^* such that the result of analytic continuation of h(y) along γ is not equal to the element h(y). Let $\pi(\gamma) = \gamma'$, and let γ_i be a path in Y^* starting from y_i and satisfying $\pi(\gamma_i) = \gamma'$. Note

that γ_i is not always closed and that $\gamma_1 = \gamma$. As in n° 4.2, let g(y) be a holomorphic function on Y^* satisfying $g(y_i) = i$ for $i = 1, \dots, q$. Since g(y) is single-valued on Y^* , we have that $\gamma'_*(g_1, \dots, g_q) = (g_1, *, \dots, *)$. Hence, by $\gamma'_*(\bar{g}) = \bar{g}\rho([\gamma'])$, we can write $\rho([\gamma'])$ in the form

$$\begin{pmatrix} 1, 0, \cdots, 0 \\ 0 & * \\ 0 & \end{pmatrix}.$$

Thus we have that

$$\gamma'_{*}(h_{1}, \cdots, h_{q}) = (h_{1}, \cdots, h_{q}) \begin{pmatrix} 1, 0, \cdots, 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

i.e., $\gamma'_*(h_1) = h_1$. This means that the result of analytic continuation of h(y) along γ is equal to h(y). This is a contradiction. Since Y^* is connected, there exists a path from y_1 to y_i . Let γ_i be the path in Y^* starting from y_i such that $\pi(\gamma_i) = \pi(\gamma) = \gamma'$. Note that $\gamma = \gamma_1$ and $\gamma'_*(g_1) = g_i$. Hence, in the same way as above, we see

$$ho([\gamma']) = egin{pmatrix} 0 & * & \cdots & * \ 0 & * \ 1 & 0 & \end{pmatrix}$$
 (1 is the $(i, 1)$ -element).

By $\gamma'_*(\bar{h}) = \bar{h}\rho([\gamma'])$, we obtain $\gamma'_*(h_1) = h_i$; this means that the result of analytic continuation of h(y) along γ is equal to the element $h_i(\pi(y))$. Q.E.D.

Let $\tilde{h}(y)$ be a single-valued holomorphic function on Y^* as in Lemma 12. Suppose that $\tilde{h}(y)$ is locally bounded at every point of $\pi^{-1}(D')$ where D':=D-Sing(D). Let $Y':=Y-\pi^{-1}(\text{Sing}(D))$ and X':=X-Sing(D); then $\pi: Y' \to X'$ is an analytic cover. From Lemma 10, it follows that $\tilde{h}(y)$ can be extended to the unique holomorphic function on Y', which is denoted by the same letter \tilde{h} . By Lemma 9, we obtain the monic polynomial

$$\omega(Z; x) = Z^q + a_1(x)Z^{q-1} + \cdots + a_q(x) ,$$

where $a_i(x)$ is holomorphic on X-Sing(D) and $\omega(h(y); x)=0$ on Y'. Since $\operatorname{codim}(\operatorname{Sing}(D)) \ge 2$, by Hartogs' continuation theorem, $a_i(x)$ can be ex-

tended to the unique holomorphic function on X, which is denoted by $\hat{a}_i(x)$. From the equality $\hat{\omega}(\tilde{h}(y); x) = 0$ on Y' (where $\hat{\omega} = \sum_{i=0}^{q} \hat{a}_i(x)Z^{q-i}$), it follows that $\tilde{h}(y)$ is locally bounded at any point of $\pi^{-1}(\operatorname{Sing}(D))$; hence by Lemma 10, $\tilde{h}(y)$ can be extended to the unique holomorphic function on Y. Thus we obtain the following:

PROPOSITION 4. Let $\pi: Y \to X$ be an analytic cover and let $\rho: \pi_1(X-D, x_0) \to \operatorname{GL}_q(C)$ be the monodromy representation associated with the analytic cover. Suppose that there exists a many-valued holomorphic function $\vec{h}(x) = (h_1(x), \dots, h_q(x))$ on X^* such that

1) $\gamma_*(\vec{h}) = \vec{h}\rho([\gamma])$ for any $[\gamma] \in \pi_1(X-D, x_0)$

and that

2) $h_i(x_0) \neq h_j(x_0)$ for any $i \neq j$.

Let $\tilde{h}(y)$ be the single-valued function on $Y-\pi^{-1}(D)$ defined in Lemma 13. If $\tilde{h}(y)$ is locally bounded at every point of $\pi^{-1}(D-\operatorname{Sing}(D))$, then $\tilde{h}(y)$ can be extended to the unique holomorphic function on Y. Hence we can construct the holomorphic function on Y which is desired at the beginning of n° 4.2.

§6. Existence of holomorphic functions on analytic covers and the Riemann-Hilbert problem.

Let $\pi: Y \to X$ be an analytic cover where X is a polydisc in C^n , and let q be the sheet number of Y. Let X^* , X' etc. be as before. We shall solve the problem proposed at n° 5.1. Since the problem is local, we can suppose that the critical locus D of the analytic cover Y has finite irreducible components: $D = \bigcup_{i=1}^{m} D_i$ and that $Y - \pi^{-1}(D)$ is connected by (4) of the definition of analytic cover (see $n^\circ 5.1$). Let $\rho: \pi_1(X-D, x_0) \to$ $\operatorname{GL}_q(C)$ be the monodromy representation associated with Y. Since X is a Stein manifold, there exists, by Theorem 2, a total differential equation (3.2) as follows:

1) there is a divisor A of X such that $x_0 \notin A$, $D_i \not\subset A$ and (3.2) is regular singular along $A \cup D$; moreover A is the apparent singularity of (3.2).

2) If we choose properly, q linearly independent solutions f_1, \dots, f_q of (3.2) at x_0 we have that

$$\gamma_*[f_1, \cdots, f_q] = [f_1, \cdots, f_q] \rho([\gamma])$$

for any closed curve γ in X-D starting from x_0 .

Put $f_i(x) = {}^t(f_{1i}(x), \dots, f_{qi}(x))$, and we define $g_j(x) := (f_{j1}(x), \dots, f_{jq}(x))$; thus we have

 $\gamma_*(g_j) = g_j \rho([\gamma])$ for any $[\gamma] \in \pi_1(X - D, x_0)$.

Since f_1, \dots, f_q are linearly independent, so are g_1, \dots, g_q ; hence there are constants $c_i \in C(i=1, \dots, q)$ such that, putting $\vec{h} := \sum_{i=1}^q c_i g_i$, we have $\vec{h}(x_0) = (1, 2, \dots, q) \text{ and } \gamma_*(\vec{h}) = \vec{h} \rho([\gamma]) \text{ for any } [\gamma] \in \pi_1(X - D, x_0).$ By Lemma 12, there exists a holomorphic function $\tilde{h}(y)$ on Y^* such that $\tilde{h}(y_i) = i$ for $i=1, \dots, q$. Since the equation (3.2) is regular singular along $A \cup D$ and since $\pi: Y' \to X'$ is a finite covering by a result of P. Deligne ([6], p. 64-65 and p. 85), $\widetilde{h}(y)$ has at most pole along $Y' \cap \pi^{-1}(A \cup D)$. By shrinking X slightly, if necessary, we can suppose that the number of irreducible components of A is finite; $A = \bigcup_{i=1}^{l} A_{i}$. Since the Cousin's second problem has always a solution on X, we can write A_i and D_j in the form $A_i = \{a_i(x)=0\}$ and $D_j = \{d_j(x)=0\}$ for $i=1, \dots, l$ and $j=1, \dots, m$, where a_i and d_j are holomorphic on X. Since $\tilde{h}(y)$ has at most pole along $Y' \cap \pi^{-1}(A \cup D)$, there are positive integers μ_i and ν_j such that $c(\pi(y))\widetilde{h}(y)$ is holomorphic on Y' when we write $c(x) = \prod_{i=1}^{l} (a_i(x))^{\mu_i} \prod_{j=1}^{m} (d_j(x))^{\nu_j}$; hence by Proposition 4, $c(\pi(y))\widetilde{h}(y)$ can be extended to the unique holomorphic function H(y) on Y. Since $c(x_0) \neq 0$, we have $H(y_i) \neq H(y_j)$ for any $i \neq j$. Hence we have the following:

THEOREM 5. Let $\pi: Y \to X$ be an analytic cover whose critical locus is D, where X is a polydisc in C^{*}. Let $x_0 \in X-D$. Suppose that $\rho: \pi_1(X-D, x_0) \to \operatorname{GL}_q(C)$ is the monodromy representation associated with the analytic cover Y. Then, using a solution of the Riemann-Hilbert problem for the representation ρ , by shrinking Y slightly if necessary, we can construct a holomorphic function g(y) on Y which separates arbitrary two points in $\pi^{-1}(x_0)$.

ACKNOWLEDGEMENT. The author would like to express his sincere gratitude to Professor Kazuhiko Aomoto who called the author's attention to solving the Riemann-Hilbert problem without apparent singularities. The author also would like to thank his colleagues in his seminar for their interest and stimulating discussions during the preperation of the paper.

References

 K. AOMOTO, Fonctions hyperlogarithmiques et groupes de monodromie unipotents, J. Fac. Sci. Univ. Tokyo Sect. 1A Math., 25 (1978), 149-156.

26

RIEMANN-HILBERT PROBLEM

- [2] A. ANDREOTTI and T. FRANKEL, The Lefschetz therem on hyperplane sections, Ann. of Math., 69 (1959), 713-717.
- [3] H. BEHNKE und K. STEIN, Modifikation komplexer Mannigfaltigkeiten und Riemannsche Gebiete, Math. Ann., 124 (1951), 1-16.
- [4] N. BOURBAKI, Algèbre Commutative, Chapitre 7, Diviseurs. Hermann, Paris (1965).
- [5] H. CARTAN, Séminaire E.N.S. Théorie des fonctions de plusieurs variables, Paris, 1953-1954.
- [6] P. DELIGNE, Equations différentielles à points singuliers réguliers, Lecture Notes in Math., 163, Springer (1970).
- [7] H. GRAUERT, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., 135 (1958), 263-273.
- [8] H. GRAUERT und R. REMMERT, Analytische Stellenalgebren, Springer-Verlag, (1971).
- [9] H. GRAUERT und R. REMMERT, Bilder und Urbilder analytischer Garben, Ann. of Math., 68 (1958), 393-443.
- [10] H. GRAUERT und R. REMMERT, Komplexe Räume, Math. Ann., 136 (1958), 245-318.
- [11] R. KAWAI, On the construction of a holomorphic function in the neighborhood of a critical point of a ramified domain, Contribution to Function Theory, Tata Institute, 1960, Bombay.
- [12] K. OKA, Sur les fonctions analytiques de plusieurs variables: VIII Lemme fondamental, Iwanami Shoten, Tokyo, 1961.
- [13] F. PETERSON, Some remarks on Chern classes, Ann. of Math., 69 (1959), 414-420.
- [14] K. SAITO, On the uniformization of complements of discriminant loci, preprint.
- [15] J.-P. SERRE, Prolongement de faisceaux analytiques cohérents, Ann. Inst. Fourier, 16 (1966), 363-374.
- [16] Y.-T. SIU, Techniques of extension of analytic objects, Lecture Notes in Pure and Applied Math., 8, Dekker, 1974.
- [17] P. THULLEN, Über die wesentlichen Singularitäten analytischer Funktionen und Flächen im Räume von n komplexen Veränderlichen, Math. Ann., **111** (1935), 137–157.

Present Address:

DEPARTMENT OF MATHEMATICS SOPHIA UNIVERSITY KIOICHO, CHIYODA-KU, TOKYO, 102