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Introduction

In this paper we shall prove the local existence of holomorphic func-
tions in an analytic cover (a ramified Riemann domain) $\pi:Y\rightarrow X$ by
using a solution of the Riemann-Hilbert problem (see \S 6). The existence of
such functions was earlier proved in 1958 by H. Grauert and R. Remmert
[10] and in 1960 by R. Kawai [11] by different methods. We can consider
the functions on $Y$ as many-valued functions on $X$ which may have the
branch points along the critical locus $D$ of the analytic cover $\pi:Y\rightarrow X$.
We shall construct such many-valued functions on $X$ from the solutions
of the total differential equation (1.1) whose monodromy representation
is the one associated with the analytic cover $\pi:Y\rightarrow X$ (see \S 5). For this
purpose, in \S 3, using the results of P. Deligne [6], we solve the Riemann-
Hilbert problem in the following situation; let $X$ be a connected Stein
manifold and let $D$ be a divisor of $X$ (not necessarily normal crossing).

Suppose that a representation $\rho$ of $\pi_{1}(X-D, x_{0})$ in $GL_{q}(C)$ is given. We
shall construct a total differential equation (1.1) whose monodromy is the
given $\rho$ . We can study in detail the case of $\dim X=2$ than that of
$\dim X\geqq 3$ , more precisely, when $\dim X=2$ , if $H^{2}(X, Z)=0$ , we can solve
the Riemann-Hilbert problem without apparent singularities (Theorem 3).

As an application of Proposition 2 of \S 3, we shall give a remark to the
Riemann-Hilbert problem in the restricted sense, when $X$ is a two-dimen-
sional connected complex manifold. This problem was treated by K.
Aomoto [1] by different method when $X$ is an n-dimensional complex
projective space (see \S 4). In solving the Riemann-Hilbert problem, we do
not use the existence of resolution of $X$ satisfying the condition that the
inverse image of $D$ is normal crossing, but we use essentially the extension
theorems of coherent analytic sheaves of J.-P. Serre [15] and Y.-T. Siu
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[16] (see \S 2).

\S 1. Preliminaries.

1.1. In what follows we assume that all manifolds under considera-
tion are paracompact. Let $X$ be a connected complex manifold and we
fix a base point $x_{0}\in X$. Suppose that $\gamma_{1}$ and $\gamma_{2}$ be closed curves in $X$

starting from $x_{0}$ . Then we denote by $\gamma_{1}\cdot\gamma_{2}$ the closed curve defined
by

$\gamma_{1}\cdot\gamma_{z}(t)=\left\{\begin{array}{ll}\gamma_{2}(2t) & for 0\leqq t\leqq 1/2\\\gamma_{1}(2t-1) & for 1/2\leqq t\leqq 1.\end{array}\right.$

The constant sheaf with coefficients in $C^{q}$ is denoted by $\underline{C}^{q}$ . In this paper,
a locally constant sheaf $V$ on $X$ of rank $q$ means always the sheaf which
is locally isomorphic to the constant sheaf $\underline{C}^{q}$ . Let $\gamma$ be a closed curve
starting from $x_{0}$ ; i.e., let 7: $[0,1]\rightarrow X$ be a continuous map with
$\gamma(0)=\gamma(1)=x_{0}$ . Then $\gamma^{*}(\underline{V})$ is a locally constant sheaf on $[0,1]$ ; hence it
is a constant sheaf. Thus there is a unique isomorphism between $\gamma^{*}(\underline{V})$

and the constant sheaf on $[0,1]$ with coefficients in $V_{x_{0}}$ . It follows that
7 determines an isomorphism $\gamma_{*}e$ GL $(\underline{V}_{x_{0}})$ and $\gamma_{*}$ depends only on the
homotopy class of $\gamma$ . It is evident that $(\gamma_{1}\cdot\gamma_{2})_{*}=(\gamma_{1})_{*}\cdot(\gamma_{2})_{*}$ . Hence one
can determine a homomorphism $\rho:\pi_{1}(X, x_{0})\rightarrow GL(\underline{V}_{x_{0}})$ by $\rho(\gamma)=\gamma_{*}$ .

Let -V be as above. There exists a sufficiently fine open covering
$X=\bigcup_{\dot{g}eJ}U_{j}$ such that $\underline{V}|_{U_{j}}$ is $con8tant$ ; hence there is an isomorphism
$\varphi_{j}:\underline{C}^{q}\rightarrow\underline{V}|_{U_{j}}$ . Since $\varphi_{i}^{-1}\cdot\varphi_{j}$ is an isomorphism of constant sheaf $\underline{C}^{q}$ on
$U_{i}\cap U_{j}$ , there exists a matrix $g_{ij}\in GL_{q}(C)$ for any $ U_{i}\cap U_{j}\neq\emptyset$ such that

$\varphi_{:}(\xi_{i})=\varphi_{j}(\xi_{j})$ , where $\xi_{i},$ $\xi_{j}\in\underline{C}^{q}$

if and only if $\xi_{i}=g_{ij}\cdot\xi_{\dot{f}}$ . It is obvious that $g_{ij}$ satisfy the cocycle condi-
tions:

$g_{ij}\cdot g_{jk}=g_{ik}$ on $ U_{i}\cap U_{j}\cap U_{k}\neq\emptyset$ ;

hence there is determined a flat vector bundle $E$ of rank $q$ with the tran-
sition functions $g_{ij}$ . There is a simple relation between -V and $E$, i.e.,
-V is isomorphic to $C(E)$ , where $C(E)$ is the sheaf of germs of locally
constant sections of $E$. Thus we have seen that a flat vector bundle
determines a representation $\rho$ of $\pi_{1}(X, x_{0})$ in $GL(\underline{V}_{x_{0}})$ . Let us consider
the converse. Suppose that a representation $\rho$ of $\pi_{1}(X, x_{0})$ in $GL_{q}(C)$ be
given. There is an open covering $X=\bigcup_{jeJ}U_{j}$ such that each $U_{j}$ and
$U_{j}\cap U_{k}$ are simply connected. We suppose $x_{0}\in U_{0}$ , and choose a point
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$x_{j}\in U_{j}$ . Since $X$ is connected, there is a $path\swarrow j$ in $X$ from $x_{0}$ to $x_{j}$ .
For any $x\in U_{i}\cap U_{j}$ , let $d_{ij}(x)$ be a path in $U_{i}$ from $x_{i}$ to $x$ . If 7 is a
closed curve starting from $x_{0}$ , we denote by [7] the homotopy class of $\gamma$ .
Write

$g_{i\dot{J}}:=\rho([\swarrow_{i}^{-1}\cdot d_{ij}^{-1}(x)\cdot d_{ji}(x)\cdot\swarrow_{j}])$ for $xeU_{i}\cap U_{j}$ .
Since each $U_{j}$ and $U_{i}\cap U_{j}$ are simply connected, $g_{ij}$ is constant on $U_{i}\cap U_{j}$ .
It follows that

$g_{lj}\cdot g_{jk}=g_{ik}$ on $ U_{i}\cap U_{j}\cap U_{k}\neq\emptyset$ .
Hence $\{g_{ij}\}$ satisfies the cocycle conditions, and one can determine a flat
vector bundle $E$ with the transition functions $g_{ij}$ . Let $C(E)=\underline{V}$, and let
7: $[0,1]\rightarrow X$ be a closed curve starting from $x_{0}$ , then there is an open
covering $\gamma([0,1])\subset\bigcup_{jeJ}U_{j}$ (if necessary, change the indices of $\{U_{i}\}$) such
that $ U_{i}\cap U_{i+1}\neq\emptyset$ for $i=0,$ $\cdots,$ $m$ , where $U_{m+1}=U_{0}$ . By the definition of
$E$, there is a frame $e^{(t)}=(e_{1}^{(i)}$ , $\cdot$ . ., $e_{q}^{(1)})$ of $E$ on $U_{i}$ such that, any section $\xi$

of $E$ is identified with the collection of vectors $\{\xi_{i}\}$ such that $\xi_{i}=g_{tj}\cdot\xi_{j}$ ,
where $\xi_{i}={}^{t}(\xi_{i}^{1}, \cdots, \xi_{i}^{q})$ and $\xi=\sum_{\alpha=1}^{q}\xi_{i}^{\alpha}e_{\alpha}^{(i)}$ . Let $\xi_{0}$ be a local section of $C(E)$

on a neighborhood of $x_{0}$ . Using the frame $e^{(0)}$ , we can identify the
vector space $\underline{V}_{x_{0}}$ with the complex number space $C^{q}$ ; hence we can
consider $\gamma_{*}\in GL(\underline{V}_{x_{0}})$ as a matrix $A_{\gamma_{*}}\in GL_{q}(C)$ . Then, by the definition
of $\gamma_{*}$ , it follows that

$ A_{\gamma}.=g_{0m}\cdot g_{m,m-1}\cdot\cdots$ $g_{10}\cdot\xi_{0}$

$=\rho([\swarrow_{0}^{-1}d_{0m}^{-1}d_{m0}\swarrow_{m}])\cdot\cdots$ $\rho([\swarrow_{1}^{-1}d_{10}^{-1}d_{01}\swarrow_{0}])\xi_{0}$

$=\rho([\gamma])\xi_{0}$

because the closed curve $(\swarrow_{0}^{-1}d_{0m}^{-1}d_{m0}\swarrow_{m})\cdots(\swarrow_{1}^{-1}d_{10}^{-1}d_{01}\swarrow_{0})$ is homotopic to 7.
Hence we have that

$\gamma_{*}(e_{1}^{(0)}, \cdots, e_{q}^{(0)})=(e_{1}^{(0)}, \cdots, e_{q}^{(0)})\rho([\gamma])$ ,

where $\gamma_{*}(e_{1}^{(0)}$ , $\cdot$ . ., $e_{q}^{(0)})$ is a $1\times q$ matrix $(\gamma_{*}e_{1}^{(0)}, \cdot. ., \gamma_{*}e_{q}^{(0)})$ of $q$ sections of
$C(E)$ on $U_{0}$ . Thus we have that, given a representation $\rho$ of $\pi_{1}(X, x_{0})$

in $GL_{q}(C)$ , there exists a flat vector bundle $E$ on $X$ satisfying the con-
ditions that the action of $\pi_{1}(X, x_{0})$ to $C(E)_{x_{0}}$ is identified with the given
$\rho$ provided that we choose properly the basis of $C(E)_{x_{0}}$ .

1.2. Let $E$ be a holomorphic vector bundle of rank $q$ on $X$, and let
$P(E)$ be the sheaf of germs of holomorphic sections of $E$. We denote
by $\Omega_{X}^{p}$ the sheaf of germs of holomorphic p-forms on $X$. A holomorphic
connection $\nabla$ on $E$ is a C-linear homomorphism
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$\nabla;a(E)\rightarrow\Omega_{X}^{1}\emptyset_{X}P(E)$,

which satisfies the Leibniz formula

$\nabla(fs)=df\otimes s+f\nabla s$

for any local sections $f$ of $p_{X}$ and $s$ of $d(E)$ . Given $\nabla$ , there is one
and only one C-linear homomorphism

$\hat{\nabla}:\Omega_{x_{d}}^{1}\emptyset_{X}p(E)\rightarrow\Omega_{X}^{2}\emptyset_{X}P(E)$,

which satisfies the Leibniz formula
$\hat{\nabla}(\theta\otimes s)=d\theta\otimes s-\theta\wedge\nabla s$

for any local sections $\theta$ of $\Omega_{X}^{1}$ and $s$ of $P(E)$ . Now let us consider the
composition

$K=\hat{\nabla}\circ\nabla;a(E)\rightarrow\Omega_{X}^{2}\emptyset cfe_{X}(E)$ .
By simple computation, it follows that the correspondence $s(x)\rightarrow$

$K(s)(x)$ defines a holomorphic section of holomorphic vector bundle
$Hom(E, \wedge^{2}T_{X}^{*}\otimes E)\cong\wedge^{2}T_{X}^{*}\otimes End(E)$ , where $T_{X}^{*}$ is the cotangent bundle
of $X$ and End $(E)=Hom(E, E)$ , so we have $K\in\Gamma(X, \Omega_{X}^{2}\emptyset,{}_{x}P(End(E)))$ .
This section $K=K_{r}$ is called the curvature tensor of the connection $\nabla$ .
A connection $\nabla$ is called integrable if its curvature tensor $K_{r}$ is zero.
Let $e=(e_{1}, \cdots, e_{q})$ be a holomorphic frame of $E$ on a neighborhood $U$ in
X. Then we define the connection matrix $\omega=(\omega_{ij})$ associated with the
frame $e$ by setting

$\nabla e_{i}=\sum_{\dot{g}=1}^{q}\omega_{ji}e_{j}$ for $i=1,$ $\cdots,$ $q$ ,

where $\omega_{ji}\in\Gamma(U, \Omega_{X}^{1})$ . Note that

$K(e_{i})=\hat{\nabla}(\sum_{\dot{s}=1}^{q}\omega_{i:}e_{i})$

$=\sum_{j=1}^{q}K_{\dot{J}i}\otimes e_{j}$ ,

where we have set

$K_{ij}=d\omega_{cj}+\sum_{k=1}^{q}\omega_{ik}\wedge\omega_{kj}\in\Gamma(U, \Omega_{X}^{2})$ ,

i.e., in matrix notation $K=d\omega+\omega\wedge\omega,$ $K=(K_{ij})$ . Hence $\nabla$ is integrable
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if and only if the connection matrix $\omega$ satisfies the differential equation
$d\omega+\omega\wedge\omega=0$ . Using the frame $e$ , we write a local section $s$ in the form
$s=\sum_{i=1}^{q}u_{i}e_{i}$ ; then the relation $\nabla s=0$ is equivalent to the total differential
equation

$d\left(\begin{array}{l}u_{1}\\\vdots\\ u_{q}\end{array}\right)+\left(\begin{array}{lll}\omega_{11} & \cdots & \omega_{1q}\\\cdots & \cdots & \cdots\\\omega_{q1} & \cdots & \omega_{qq}\end{array}\right)\left(\begin{array}{l}u_{1}\\\vdots\\ u_{q}\end{array}\right)=0$ .

Hence, by the classical existence theorem of differential equations, if $\nabla$

is integrable, then the subsheaf $Ker\nabla$ (of $P(E)$) of local solutions of
$\nabla s=0$ is a locally constant sheaf of rank $q$ . Conversely, let $E$ be a flat
vector bundle of rank $q$ . Since $p(E)=C(E)\otimes_{c}p_{X}$ , we can define a C-
linear homomorphism $\nabla;\beta(E)\rightarrow\Omega_{X}^{1}\emptyset_{p}p_{X}\beta(E)$ as follows: $\nabla(s\otimes f):=df\otimes s$

for any local sections $s$ of $C(E)$ and $f$ of $p_{X}$ . It is easy to check that
$\nabla$ is an integrable connection on $E$ such that $Ker\nabla=C(E)$ .

1.3. Let $D$ be a normal crossing divisor of $X$, i.e., $D$ is locally
defined by the equation $\{z_{1}\cdots z_{k}=0\}$ , where $(z_{1}, \cdots, z_{\tau\iota})$ is a local co-
ordinate system. Write $X^{*}=X-D$ . Suppose that $E$ is a holomorphic
vector bundle on $X$ and $\nabla$ is an integrable connection on $E|_{x*}$ . Suppose
that there exists a local coordinate system $(z_{1}, \cdots, z_{n})$ in a neighborhood
$U$ of a point $x\in D$ such that $U\cap D=\{z_{1}\cdots z_{k}=0\}$ . Then $\nabla$ is said to
have at most logarithmic pole along $D$ , if the connection matrix $(\omega_{ij})=\omega$

associated with any frame has at most logarithmic pole along $U\cap D$ , i.e.,
each $\omega_{ij}$ is written in the form

$\omega_{ij}=\sum_{\nu=1}^{k}\alpha_{\nu}(dz_{\nu}/z_{\nu})+\eta$ ,

where $\alpha_{\nu}$ is holomorphic on $U$ and $\eta$ is a holomorphic l-form on $U$.
Write $U\cap D=:\bigcup_{i=1}^{k}C_{i}$ where $C_{i}=\{z_{i}=0\}$ , then we write $res_{c_{\nu}}\omega_{lj}:=\alpha_{\nu}|_{c_{\nu}}$

and call $res_{c_{\nu}}\omega_{ij}$ the residue of $\omega_{ij}$ along $C_{\nu}$ . We set $res_{c_{\nu}}\omega:=(res_{c_{\nu}}\omega_{ij})$

and call it the residue of the connection $\nabla$ along $C_{\nu}$ . Let $D=\cup D_{j}$ be
the decomposition into irreducible components of $D$ . It is shown that

$res_{D_{i}}\omega\in\Gamma(D_{i}, \beta(End(E)|_{D_{i}})\otimes_{9_{D_{i}}}\tilde{P}_{D_{i}})$

where $\tilde{d}_{D_{i}}$ is the sheaf of germs of weakly holomorphic functions on $D_{i}$

(see [5], p. 78).

1.4. Let $D,$ $E,$ $\nabla$ be as above. Let $\Delta=\{z\in C||z|<1\}$ . Let $\phi;\Delta\rightarrow Xbe$

an arbitrary holomorphic map such that $\phi^{-1}(D)=\{0\}$ , and let $\phi^{*}\nabla$ and $\phi^{*}E$
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be the inverse of $\nabla$ and $E$ by $\phi$ respectively. We say that $\nabla$ is regular
singular along $D$ if the connection $\phi^{*}\nabla$ on $\phi^{*}E$ is regular singular at
$z=0$ in the usual sense of ordinary differential equation (see [6], p. 85).
Let

(1.1) $d\left(\begin{array}{l}y_{1}\\\vdots\\ y_{q}\end{array}\right)+\left(\begin{array}{lll}\Omega_{11} & \cdots & \Omega_{1q}\\\cdots & \cdots & \cdots\\\Omega_{q1} & \cdots & \Omega_{qq}\end{array}\right)\left(\begin{array}{l}y_{\iota}\\\vdots\\ y_{q}\end{array}\right)=0$

be a total differential equation, where every $\Omega_{j}$ has at most pole along
$D$ . Suppose that (1.1) is completely integrable on $X-D$ . $D$ is said to
be the apparent singularity of (1.1) if, for every $x\in D$ , any solution of
(1.1) in a small simply-connected neighborhood of $x$ is single-valued and
meromorphic there.

\S 2. Extension of flat vector bundles.

2.1. Let $X$ be a connected complex manifold and let $D$ be a divisor
of $X$. Let $X^{*}:$ $=X-D$ and $x_{0}\in X^{*}$ . Suppose that a representation $\rho$ of
$\pi_{1}(X^{*}, x_{0})\rightarrow GL_{q}(C)$ is given. We shall attempt to construct a completely
integrable total differential equation of the form (1.1) which satisfies the
following two conditions:

1) the equation (1.1) is regular singular along $D$ , moreover there
exists a divisor $A$ in $X$ along which (1.1) may have apparent singularities.

We choose $q$ linearly independent solutions $f_{1},$
$\cdots,$

$f_{q}$ of (1.1) at $x_{0}\not\in A$

properly, and let $\gamma$ be any closed curve in $X^{*}$ starting from $x_{0}$ . We
denote by $\gamma_{*}[f_{1}, \cdots, f_{q}]$ the result of analytic continuation of the function
element $[f_{1}, \cdots, f_{q}]$ along the curve $\gamma$ .

We require that

2) $\gamma_{*}[f_{1}, \cdots, f_{q}]=[f_{1}, \cdots, f_{q}]\rho([\gamma])$ for any $[\gamma]\in\pi_{1}(X^{*}, x_{0})$ .
For a given representation $\rho$ of $\pi_{1}(X^{*}, x_{0})$ in $GL_{q}(C)$ , we shall call the
Riemann-Hilbert problem the problem of constructing the equation (1.1)
which satisfies the above two conditions.

As is constructed in $n^{o}1$ and $n^{o}2$ of \S 1, there exist a flat vector
bundle $E$ on $X^{*}$ associated with $\rho$ , and a unique integrable holomorphic
connection $\nabla$ on $E$ such that the sheaf of germs of local solutions of
$\nabla s=0$ coinsides with $C(E)$ . For the pair $(\nabla, E)$ , Y. Manin showed ([6],
p. 94) that $E$ can be extended uniquely to a holomorphic vector bundle $E_{1}$

on $X-Sing(D)$ , where Sing $(D)$ means the singular locus of $D$ , satisfying
the following two conditions:
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(M.1) For any point $x\in D$ -Sing $(D)$ , there exists an open neighbor-
hood $U$ of $x$ in $X$-Sing $(D)$ such that, for any holomorphic frame $e=$

$(e_{1}, \cdots, e_{q})$ of $E_{1}$ on $U$, if we write

$\nabla e_{i}=\sum_{j=1}^{q}\omega_{ji}e_{j}$ for $i=1,$ $\cdots,$ $q$ ,

then any $\omega_{ij}$ has at most logarithmic poles along $D\cap U$.
(M.2) Let $\omega=(\omega_{ij})$ be a connection matrix. By $n^{o}3$ of \S 1, we have

$res\omega\in\Gamma(D\cap U, a(End(E_{1})|_{D})\otimes_{\iota^{r_{D}}}\tilde{p}_{D})$ . Suppose that $D\cap U=\bigcup_{i=1}^{m}C_{i}$ be
the decomposition into irreducible components of $D\cap U$. Then, by the
simple computation (See [5], p. 79.), the eigenvalues $\alpha_{1},$ $\cdots,$ $\alpha_{q}$ of the
matrix $res_{c_{i}}\omega$ are constant on $C_{i}$ . Then the following inequality must
be satisfied

$0\leqq{\rm Re}\alpha_{i}<1$ for $i=1,$ $\cdots,$ $q$ .
2.2. First we consider two-dimensional case. Write $S=Sing(D)$ .

In this case, $S$ is at most countable discrete point set in $X$; hence for
any $s_{0}\in S$ , there exists an open neighborhood $U$ of $s_{0}$ in $X$ such that
$S\cap U=\{s_{0}\}$ . By iteration of a-process centered at $s_{0}$ , we see that the
inverse image of $D\cap U$ is normal crossing. Doing this procedure at every
point of $S$ , we have the proper modification $\tau:\tilde{X}\rightarrow X$ as follows:

1) $\tilde{X}$ is a complex manifold,
2) $\tau^{-1}(D)$ is a normal crossing divisor in $\tilde{X}$ ,
3) $\tau:\tilde{X}-\tau^{-1}(S)\rightarrow X-S$ is biholomorphic.

Since by 3), $\tilde{X}-\tau^{-1}(D)$ is biholomorphic to $X-D$ , there exists a flat
vector bundle $F$ on $\tilde{X}-\tau^{-1}(D)$ such that $\tau_{*}(\theta(F))=P(E)$ . By 2) and a
result of Y. Manin cited above, $F$ can be extended uniquely to a holomor-
phic vector bundle $F_{1}$ on $\tilde{X}$ which satisfies (M.1) and (M.2). On the other
hand, $E$ can be also extended uniquely to a holomorphic vector bundle
$E_{1}$ on $X-S$ satisfying the conditions (M.1) and (M.2). Considering that
$\tilde{X}-\tau^{-1}(S)$ is biholomorphic to $X-S$ and that the extension is uniquely
determined by the above two conditions, it follows easily that

$\tau_{*}(p(F_{1}|_{\tilde{x}_{-\tau^{-1}}(S)}))=e(E_{1})$ .
By H. Grauert and R. Remmert ([9], p. 424) the direct image $\tau_{*}(\theta(F_{1}))$

of $\beta(F_{1})$ is a coherent analytic sheaf on $X$; hence 4 $(E_{1})$ can be extended
to a coherent analytic sheaf $\tau_{*}(P(F_{1}))$ on $X$. Let $j:X-S\rightarrow X$ be a
canonical injection. Since $S$ is a two-codimensional analytic subset of $X$,
by a theorem of J.-P. Serre ([15], Th. 1), we have the direct image
$j_{*}(P(E_{1}))$ is a coherent analytic sheaf on $X$. Since the locally free sheaf
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$P(E_{1})$ is reflexive, we see that $j_{*}(P(E_{1}))$ is rejlexive ([15], Prop. 7). On
the other hand, Serre ([15], Remarques 2) stated, without proof, the
following:

PROPOSITION 1. Let $A=C\{z_{1}, z_{2}\}$ be a two-dimensional regular analytic
local C-algebra and let $M$ be a finitely generated A-module. If $M$ is
reflexive, $M$ is a free A-module.

Since Theorem 3 depends essentially on this fact, we shall give the
proof below;

PROOF. Let $A=C\{z_{1}, z_{2}\}$ be the ring of convergent power series of
two variables $z_{1}$ and $z_{2}$ , and let $P(A)$ be the set of all prime ideals of
height equal to one, and for an A-module $M$ we put

$Z(M)=$ {$f\in A|\exists x\in M,$ $x\neq 0$ with $fx=0$}.

We denote by $prof_{A}M$ the homological codimension of $M$. Since $M$ is
reflexive, we can consider $M$ as a lattice of some finite dimensional K-
vector space with respect to $A$ , where $K$ is the quotient field of $A$ , (see
[4], p. 50). So, there exist free A-submodule $L_{1}$ and $L_{2}$ of $V$ such that
$L_{1}\subset M\subset L_{2}$ and $rg_{A}L_{1}=\dim_{K}V$. It follows that $Z(M)=\{0\}$ , and especially
$z_{1}\not\in Z(M)$ ; hence $prof_{A}M\geqq 1$ . If $prof_{A}M=1$ , we have $prof_{A}(M/z_{1}M)=$

$prof_{A}M-1=0$ . By the definition of homological codimension, we see that
the maximal ideal $m$ of $A$ is contained in $Z(M/z_{1}M)$ , especially $z_{2}\in Z(M/z_{1}M)$ .
So, there exists $m_{1}\not\in z_{1}M$ such that $z_{2}m_{1}=z_{1}m_{2}$ where $m_{2}\in M$ and $m_{2}\neq 0$ .
Let $\mathfrak{p}_{1};=Az_{1}\in P(A)$ and $\mathfrak{p}_{2};=Az_{2}\in P(A)$ . If we write $n_{1}:=m_{1}/z_{1}$ and $n_{2}:=$

$m_{2}/z_{2}$ , then we have $n_{1}\in M_{\mathfrak{p}_{2}}$ and $n_{2}\in M_{\mathfrak{p}_{1}}$ where $M_{\mathfrak{p}_{i}}$ is the localization of
$M$ with respect to the prime ideal $\mathfrak{p}_{i}$ . We can consider $M$ as the subset
of $V$, and so $M_{\mathfrak{p}}\subset V$ for any $\mathfrak{p}eP(A)$ . Therefore we have that $n_{1}=n_{2}=$ :
$\alpha\in V$. If $\mathfrak{p}\in P(A)$ is an ideal containing $z_{1}$ , then we have $\mathfrak{p}=Az_{1}$ , because
$\mathfrak{p}$ is minimal and $Az_{1}$ is prime. The same situation holds for $z_{2}$ . So it
follows that if $\mathfrak{p}\in P(A)$ is not equal to $\mathfrak{p}_{1}$ and $\mathfrak{p}_{2}$ , then we have $z_{1}\not\in \mathfrak{p}$ and
$z_{2}\not\in \mathfrak{p}$. Hence $\alpha$ is contained in $M_{\mathfrak{p}}$ for any $\mathfrak{p}\in P(A)$ . Since $M$ is reflexive,
we have $M=\bigcap_{\mathfrak{p}eP(A)}M_{V}$ by ([4], p. 50), and so $\alpha\in M$. Thus we have
$m_{1}=z_{1}\alpha\in z_{1}M$, which is a contradiction. Therefore we have $prof_{A}M\geqq 2$ .
Since $\dim_{A}M\leqq\dim A=2$ . and since $2\leqq prof.M\leqq dim.M$, we see that
$prof_{A}M=\dim_{A}M=2$ ; hence $M$ is a Cohen-Macaulay module of $\dim_{A}M=2$ .
A being regular, we conclude that $M$ is a free A-module (see for example
[8], p. 142). Q.E.D.

From Proposition 1, it follows that $j_{*}(p(E_{1}))$ is a locally free sheafon $X$. Hence we have the following:
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PROPOSITION 2. Let $X$ be a connected two-dimensional complex

manifold and let $D,$ $X^{*}$ and $x_{0}\in X^{*}$ be as in $n^{o}2.1$ . We assume that
a representation $\rho$ of $\pi_{1}(X^{*}, x_{0})$ in $GL_{q}(C)$ is given. If $E$ is a flat
vector bundle on $X-D=X^{*}$ associated with $\rho$ , then $E$ can be uniquely
extended to a holomorphic vector bundle $E_{1}$ on $X$-Sing $(D)$ satisfying (M.1)

and (M.2); moreover the direct image $j_{*}(\ovalbox{\tt\small REJECT}(E_{1}))$ is a locally free sheaf
on $X$.

2.3. We consider the general case of $\dim X\geqq 3$ . Let us recall the
definition of absolute gap-sheaves. Suppose that $\mathscr{L}$ is a coherent analytic
sheaf on a complex manifold $X$. We define the sheaf.$\mathscr{L}^{[d]}$ on $X$ by the
following presheaf:

$U\rightarrow\lim_{\rightarrow}Ae\mathfrak{U}_{d}(U)\Gamma(U-A, \mathscr{L})$ ,

where $\mathfrak{U}_{d}(U)$ is the directed set of all analytic subset of $U$ of $\dim A\leqq d$ .
We call $\mathscr{L}^{[d]}$ the d-th absolute gap-sheaf of X Let $ D=D_{1}\times D_{2}\subset C^{n-2}\times$

$C^{2}=C^{n}(z_{1}, \cdots, z_{n})$ be a polydisc centered at the origin, where $(z_{1}, \cdots, z_{\iota})$ is
the coordinate system of $C^{n}$ . Put $V=\{z\in D|z_{n-1}=z_{n}=0\}$ , and let $\mathscr{G}^{-}$ be a
coherent analytic sheaf on $D-V$. For any $t\in D_{1}$ , we denote the analytic
restriction of $\mathscr{G}^{-}$ to the linear subspace $\{z\in C^{n}|z_{1}=t_{1}, \cdots, z_{n-2}=t_{n-2}\}$ by

$\mathscr{F}(t):=\mathscr{G}^{-}\otimes_{\ell^{r_{D-V}}}(d_{D-V}/(z_{1}-t_{1}, \cdots, z_{n-z-2}-t,)p_{D-V})$ .
We use the following:

LEMMA 1 (Y.-T. Siu [16], p. 243). Let $\ovalbox{\tt\small REJECT}$ be a coherent analytic

sheaf on $D-V$ such that.$\mathscr{F}^{[n-2]}=\mathscr{G}^{-}$ Suppose that $\mathscr{F}(t)$ can be extend-
$ed$ to a coherent analytic sheaf on $\{t\}\times D_{2}$ for any $t\in D_{1}$ . Then $\mathscr{G}^{-}$ can
be extended uniquely to a coher\’ent analytic sheaf $\mathscr{G}^{\approx}$ on $D=D_{1}\times D_{2}$

satisfying the condition $\mathscr{G}^{\tilde{-}}[n-2]=\tilde{\mathscr{J}}$

Using this lemma, we shall prove the following theorem.

THEOREM 1. Let $X$ be a connected complex manifold and let $D$ be a
divisor of X. We assume that a representation $\rho$ of $\pi_{1}(X-D, x_{0})$ in
$GL_{q}(C)$ is given. Let $E$ be the flat vector bundle associated with $\rho$ .
Then $E$ can be extended to the unique vector bundle $E_{1}$ on $X$-Sing ($ D\rangle$

satisfying the conditions (M.1) and (S.2) in $n^{o}2.1$ . Moreover $P(E_{1})$ can
be extended to a coherent analytic sheaf on $X$, in particular $j_{*}(p(E_{1}))$

is coherent.

PROOF. Let $S_{1}=Sing(D),$ $S_{2}=Sing(S_{1}),$ $\cdots,$
$S_{k}=Sing(S_{k-1})$ be a de-
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creasing sequence of analytic subset of $X$ where $\dim S_{i}=n_{l}$ for $i=1,$ $\cdots,$
$k$

and $S_{k}$ is smooth. Write $\mathscr{G}_{1}^{\rightarrow}:=P(E_{1})$ . First we show the following:

LEMMA 2. The locally free $sheaf\swarrow^{\prime}1$’ on $X-S_{1}$ can be extended uni-
quely to a coherent analytic sheaf $L\mathscr{F}_{2}$ on $X-S_{2}$ satisfying $\mathscr{L}_{2}^{-[n-2]}=\mathscr{G}_{2}^{\sim}$.

PROOF OF LEMMA 2. Let $x_{0}eS_{1}-S_{2}$ , then $x_{0}$ is a smooth point of $S_{1}$ .
There exists a local coordinate system $(z_{1}, \cdots, z_{n})$ is a small neighbor-
hood $U$ of $x_{0}$ such that $U\cap S_{2}=\emptyset,$ $\{z_{1}=\cdots=z_{n-1}=0\}\cap D\cap U=\{x_{0}\}$ and
$U\cap S_{1}=\{z_{1^{+1}}=\cdots=z_{n}\}=0$ , where $x_{0}=(0, \cdots, 0)$ . Hence there exists a
small polydisc

$\Delta=\{z\in U||z_{i}|<\epsilon_{i}, i=1, \cdots, n\}$

as follows:
1) Put $\Delta=\{(z_{1}, \cdots, z_{n-1})||z_{i}|<\epsilon_{i}, i=1, \cdots,n-1\}$ and $\Delta‘‘=\{z_{n}\in C||z_{n}|<\epsilon_{n}\}$

and let $\pi:\Delta\cap D\rightarrow\Delta$ ’ be a holomorphic map induced by the natural projec-
tion: $\Delta\rightarrow\Delta^{\prime}$ . Then $\pi$ is proper.

2) Write $\Delta_{1}=\{(z_{1}, \cdots, z_{n-2})||z_{i}|<\epsilon_{l}, i=1,\cdots, n-2\}\Delta_{2}=\{(z_{n-1}, z_{n})||z_{i}|<\epsilon_{i}$ ,
$i=n-1,$ $n$} and $V=\{z\in\Delta|z_{n-1}=z_{*}=0\}$ . Then $\Delta\cap S_{1}\subset V$. Since $-\sqrt[\varpi]{}1$ is
locally free on $\Delta-V$, we have $\mathscr{G}_{1}^{-[n-2]}=\mathscr{G}_{1}^{\rightarrow}$ on $\Delta-V$ by the definition of
absolute $(n-2)$-th gap-sheaves and Hartogs’ continuation theorem. Let
$t\in\Delta_{1}$ and put $D(t):=(\{t\}\times\Delta_{2})\cap D$ . Since $\pi$ is proper, we have $D(t)\subsetneqq\Delta_{2}$ ,
i.e., $D(t)$ is a divisor of $\Delta_{2}$ . Suppose that $f(x)=0$ is a defining equation
of $D$ in $\Delta$ . Then, after some linear change of coordinate of $(z_{1}, \cdots, z_{n})$

if necessary, (Write $f(x)$ in the form of Weierstrass polynomial and
consider the discriminant of $f(x).)$ it follows that

1) $f(t, z,.-1’ z,.)=0$ is a defining equation of $D(t)$ ,
2) $either\partial f(t, z_{*-1}, z_{n})/\partial z_{n-1}\neq 0or\partial f(t, z_{n-1}, z_{n})/\partial z_{n}\neq 0atasmoothpoInt$

$u$ of $D(t)$ . Thus $(t, u)$ is a smooth point of $D$ if $u$ is a smooth point
of $D(t)$ . Put $(\{t\}\times\Delta_{2})^{*}:$ $=\{t\}\times\Delta_{2}$ -Sing $(D(t))$ . Then the sheaf $F_{1}(t)$ is
isomorphic to $P(E_{1}|_{(\{t\}\times\Delta_{2})^{e}})$ where $E_{1}|_{(\{t\}\times\Delta_{2})*}$ is the restriction of the
vector bundle $E_{1}$ to $(\{t\}\times\Delta_{f})^{*}$ . Since $E_{1}$ is a flat vector bundle on $X-D$ ,
$E_{1}|_{\{t\}\times\Delta_{2}-D(t)}$ is also a flat vector bundle. On the other hand, there is
a unique connection $\nabla$ on $E_{1}$ satisfying (M.1), (M.2) and the condition
$Ker\nabla=C(E_{1})$ on $X-D’$ . So the integrable meromorphic connection

$\nabla$
’ is induced on $E_{1}|_{(\{t\}\times\Delta_{2})*}$ for which (M.1), (M.2) and the condition
$Ker\nabla^{\prime}=C(E_{1}|_{\{t\}\times\Delta_{2}-D(t)})$ on $\{t\}\times\Delta_{2}-D(t)$ are satisfied. In fact, suppose

that $u\in D(t)$ is a smooth point of $D(t)$ . Then $(t, u)$ is a smooth point
of $D$ ; hence there is a small neighborhood $N$ of $(t, u)$ in $\Delta$ such that
$ N\cap S_{1}=\emptyset$ and $ N\cap(\{t\}\times\Delta_{l})\cap SIng(D(t))=\emptyset$ . For an arbitrary holomorphic
frame $e=(e_{1}, \cdots, e_{q})$ of $E_{1}$ on $N$, we can write $\nabla e_{i}=\sum_{\dot{g}=1}^{q}\omega_{ji}e_{j}$ . $LetN^{\prime}=$
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$N\cap(\{t\}\times\Delta_{2})$ and let $e^{\prime}=e|_{N}^{\prime}$ be the restriction of the frame $e$ to $N^{\prime}$ , which
is the frame of $E_{1}|_{N^{\prime}}$ on $N^{\prime}$ . By the definition of $\nabla$ , we see that $\nabla^{\prime}e_{i}^{\prime}=$

$\sum_{j=1}^{q}(\omega_{ji}|_{N^{\prime}})e_{j}^{\prime}$ . Thus $\omega_{ij}|_{N^{\prime}}$ has at most logarithmic pole along $N^{\prime}\cap D(t)$ ,
and the eigenvalues $\alpha_{1},$ $\cdots,$ $\alpha_{q}$ of $(res(\omega_{ij}|_{N^{\prime}}))$ satisfy the inequality
$0\leqq{\rm Re}\alpha_{i}<1$ for $i=1,$ $\cdots,$ $q$ . Hence the pair $(E_{1}|_{(\{t\}\times\Delta_{2})*}, \nabla^{\prime})$ satisfies the
conditions (M.1) and (M.2). Applying the Proposition 2 to $E_{1}|_{(\{t\}\times\Delta_{2}-D(t))}$

we see that $\ovalbox{\tt\small REJECT}_{1}(t)$ can be extended to a coherent analytic sheaf on
$\{t\}\times\Delta_{2}$ . Thus all the conditions of Lemma 1 are satisfied. So $\ovalbox{\tt\small REJECT}_{1}$ can
be extended to a coherent analytic sheaf $\ovalbox{\tt\small REJECT}_{1}$ on $\Delta$ satisfying $\tilde{\ovalbox{\tt\small REJECT}}_{1}^{[n-2]}=\tilde{F}_{1}$.
On the other hand, since this extension is unique by Lemma 1, we can
glue $\tilde{\mathscr{J}}_{1}$ to get the coherent analytic sheaf $\ovalbox{\tt\small REJECT}_{2}$ on $X-S_{2}$ . Thus Lemma
2 is proved. Q.E.D.

LEMMA 3. Let $\ovalbox{\tt\small REJECT}_{l}$ be a coherent analytic sheaf on $X-S_{i}$ constructed
inductively from $\ovalbox{\tt\small REJECT}_{1}$ satisfying $\ovalbox{\tt\small REJECT}_{l}^{[n-2]}=\mathscr{G}_{i}^{\rightarrow}$. Then $\mathscr{G}_{i}^{\vee}$ can be extended
uniquely to a coherent analytic sheaf $\mathscr{J}_{i+1}$ on $X-S_{i+1}$ which satisfies
$\ovalbox{\tt\small REJECT}_{i+1}^{-[n-2]}=\mathscr{G}_{i+1}^{-}$ .

PROOF OF LEMMA 3. Let $x_{0}\in S_{i}-S_{i+1}$ . As in Lemma 2, there exists
a local coordinate system $(z_{1}, \cdots, z_{n})$ in a small neighborhood $U$ of $x_{0}$

in $X$ such that $U\cap S_{i+1}=\emptyset,$ $\{z_{1}=\cdots=z_{n-1}=0\}\cap U\cap D=\{x_{0}\}$ and $S_{i}\cap U=$

$\{z_{n_{i}+1}=\cdots=z_{n}=0\}$ . Hence there exists a polydisc $\Delta$ in $U$ centered at
$x_{0}$ such that $\pi;\Delta\cap D\rightarrow\Delta$ is proper, where $\pi,$

$\Delta’$ , and $\Delta$ are as in Lemma
2. Since $\dim S_{l}\leqq n-2$ , we have that $S_{i}\cap\Delta\subset\{z_{n-1}=z_{n}=0\}$ . Let $t\in\Delta_{1}$ ,
then $(\{t\}\times\Delta_{2})\cap D=D(t)$ is a divisor of $\{t\}\times\Delta_{2}$ . In the same way as in
Lemma 2, we have that $\sim \mathscr{F}_{i}(t)$ is isomorphic to $\ovalbox{\tt\small REJECT}(E_{1}|_{(\{t\}\times\Delta_{2}-D(t))})$ on
$\{t\}\times\Delta_{2}-D(t)$ and that $\mathscr{G}_{i}^{-}(t)$ can be extended to a coherent analytic sheaf
$\mathscr{L}_{i}^{\prime}\approx$ satisfying $\mathscr{G}_{i}^{\tilde{-}[n-2]}=\tilde{\ovalbox{\tt\small REJECT}}_{i}$ on $\Delta$ . $Gluing_{c}\tilde{\mathscr{F}}_{i}$ at every point of $S_{i}-S_{i+1’\alpha}\ovalbox{\tt\small REJECT}_{i}$

can be extended to a coherent analytic sheaf $\ovalbox{\tt\small REJECT}_{i+1}$ on $X-S_{i+1}$ satisfying
$\mathscr{F}_{\iota+1}^{[n-2]}=\ovalbox{\tt\small REJECT}_{i+1}$ . Q.E.D.

The proof of Theorem 1 is actually done by using Lemma 2 and
Lemma 3 inductively. This completes the proof of Theorem 1.

\S 3. The Riemann-Hilbert problem on Stein manifolds.

3.1. Let $X$ be a connected Stein manifold and let $D$ be a divisor of
X. Suppose that a representation $\rho$ of $\pi_{1}(X-D, x_{0})$ in $GL_{q}(C)$ is given
where $x_{0}$ is a base point of $X-D$ . Let $E$ be the flat vector bundle
associated with $\rho$ , and let $E_{1}$ be the unique vector bundle on $X$-Sing $(D)$

satisfying the conditions (M.1) and (M.2). By Theorem 1, $\angle \mathscr{F}(E_{1})$ can be
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extended as a coherent analytic sheaf $\mathscr{P}^{-}$ on $X$. Let $D=\bigcup_{ieI}D_{i}$ be the
decomposition of $D$ into its irreducible components and let $x_{i}\in D_{i}-$

Sing $(D)$ . Then $V=\{x_{i}\in X|i\in I\}$ is a discrete point set of $X$, and conse-
quently a zero-dimensional analytic subset of $X$. Let us take an element
$\varphi\in\Gamma(X,$ $\mathscr{G}\gamma$ . We denote by $\mathfrak{m}_{X,x}$ : the maximal ideal of the local ring
$p_{X,x_{i}}$ at $x_{i}$ , and let $\varphi_{x}$ , be the germ at $x_{l}$ defined by $\varphi$ . Noting that
$\ovalbox{\tt\small REJECT}_{x_{l}}=P(E_{1})_{x_{i}}$ , the quotient $\sim \mathscr{F}_{x_{i}}/\mathfrak{m}_{X,x_{i}}\ovalbox{\tt\small REJECT}_{x_{i}}$ is isomorphic to $C^{q}$ . We will
denote by $\varphi(x_{:})$ the residue class of $\varphi_{x_{i}}mod \mathfrak{m}_{X,x_{i}}\mathscr{G}_{x_{i}}^{\rightarrow}$ in $C^{q}$ and $\varphi(x_{i})$ is
said to be the value of $\varphi$ at $x_{i}$ .

LEMMA 4. There exists a global section $\varphi\in\Gamma(X, \mathscr{G}^{-})$ which has the
prescribed value in $\mathscr{G}_{x_{i}}^{\rightarrow}/\mathfrak{m}_{X,x_{i}}F_{x_{i}}\cong C^{q}$ at every point $x_{i}\in V$.

PROOF. Let $\mathcal{J}$ be the coherent analytic sheaf of ideals defined by
$V$, then we have the exact sequence of sheaves

$0\rightarrow\ovalbox{\tt\small REJECT}\rightarrow p_{X}\rightarrow^{p}P_{X}/\mathcal{J}\rightarrow 0$

where $p$ is the natural projection. Making tensor product with $\mathscr{L}^{J^{-}}$, we
have the exact sequence

$\ovalbox{\tt\small REJECT}\emptyset_{d_{X}}\mathscr{G}^{-}\rightarrow p_{X}\emptyset,X\mathscr{G}^{-}\rightarrow(p_{X}/\mathcal{J})\emptyset e_{X}\mathscr{G}^{-}p\otimes 1\rightarrow 0$ .
Since $Ker(p\otimes 1)=:.\ovalbox{\tt\small REJECT}^{\nearrow}$ is coherent, and $(p_{X}/\mathcal{J})\emptyset a_{X}\mathscr{G}^{-}$ is isomorphic to
$\perp_{ieI}(\mathscr{G}_{x_{i}}^{\rightarrow}/\mathfrak{m}_{X,x_{i^{1}}}\ovalbox{\tt\small REJECT}_{x_{i}})$ , where $\perp$ means disjoint union, we have the exact
sequence

$0\rightarrow\ovalbox{\tt\small REJECT}\nearrow-\mathscr{F}\rightarrow\perp L(\ovalbox{\tt\small REJECT}_{x_{i}},/\mathfrak{m}_{X,x_{i^{L}}}\prime r_{x_{i}}):eI\rightarrow 0$ .
By Theorem $B$ of Oka-Cartan-Serre on Stein manifolds, we have
$H^{1}(X, \ovalbox{\tt\small REJECT}^{\prime})=0$ ; hence $\Gamma(X, \mathscr{G}^{-})\rightarrow\lrcorner L_{ieI}(.\mathscr{F}_{x_{i}}/\mathfrak{m}_{X,x_{i^{\iota}}}\mathscr{F}_{x_{i}})$ is surjective. This
is to be proved. Q.E.D.

Choose $q$ linearly independent vectors in $C^{q}(\cong \mathscr{G}_{x_{i}}^{\rightarrow}/\mathfrak{m}_{X.x_{i}}.\ovalbox{\tt\small REJECT}_{x_{i}})$ and apply
Lemma 4. Then there exist global sections $\varphi_{1},$ $\cdots,$ $\varphi_{q}\in\Gamma(X, \mathscr{G}^{-})$ such
that the value $\varphi_{1}(x_{i}),$

$\cdots,$ $\varphi_{q}(x_{i})$ are linearly independent in $C^{q}$ at every
point $x_{i}\in V$. Put $X:=X$-Sing $(D)$ . Since $\mathscr{G}^{-}|_{X},=a(E_{1}),$ $\varphi_{\alpha}$ can be con-
sidered as a global section of $P(E_{1})$ . Let $\mathfrak{U}=\{U_{\dot{f}}\}$ be a sufficiently fine open
covering of $X^{\prime}$ and let $\{g_{jk}\}$ be the transition functions of $E_{1}$ with respect
to $U$ , where $g_{jk}$ is $GL_{q}(C)$-valued holomorphic function on $U_{j}\cap U_{k}$ . Then
a global section $\varphi_{\alpha}$ of $E_{1}$ is identified with collection $\{\varphi_{\alpha.\dot{J}}\}$ where $\varphi_{\alpha,j}=$

${}^{t}(\varphi_{\alpha.j}^{1}, \cdots, \varphi_{\alpha.j}^{q})$ is $C^{q}$-valued holomorphic function on $U_{j}$ such that $\varphi_{\alpha,j}=$

$g_{jk}\varphi_{\alpha,k}$ on $U_{j}\cap U_{k}$ , and the values $\varphi_{\alpha}(x_{i})\in \mathscr{G}_{l}^{-}i/\mathfrak{m}_{X.x_{i}}\mathscr{G}_{l}^{\rightarrow}i(x_{l}\in U_{j})$ is identified



RIEMANN-HILBERT PROBLEM 13

with the value $\varphi_{\alpha,j}(x_{i})$ of the holomorphic function $\varphi_{\alpha,j}$ on $U_{j}$ . The set
$\Psi_{j}=(\varphi_{1,j}, \cdots, \varphi_{q,j})$ can be considered as a $(q, q)$-matrix-valued holo-
morphic function on $U_{j}$ . On the other hand, we have $\Psi_{j}=g_{jk}\Psi_{k}$ on
$U_{j}\cap U_{k}$ . So, putting $\psi_{j}:=\det\Psi_{j}$ , we see that $\psi_{j}=(\det g_{jk})\psi_{k}$ in $U_{j}\cap U_{k}$ .
Let $G$ be the line bundle defined by the transition functions $\{\det g_{\dot{g}k}\}$ ,
i.e., $G=\{\det g_{jk}\}\in Z^{1}(\mathfrak{U}, p_{X}*,)$ . Then we have $\psi:=\{\psi_{j}\}\in\Gamma(X’, P(G))$ . Since
the values $\varphi_{1}(x_{i}),$

$\cdots,$
$\varphi_{q}(x_{i})$ are linearly independent in $C^{q}$ , it follows

that $\psi(x_{i})\neq 0$ at every point $x_{i}\in V$; hence $A’:=\{x\in X^{\prime}|\psi(x)=0\}$ defines
either a divisor or an empty set. Since $X-X^{\prime}=Sing(D)$ is an analytic
subset of $X$ of codimension at least two at every point of Sing $(D)$ , the
closure $\overline{A}$’ of $A^{\prime}$ in $X$ is a divisor of $X$ by the continuation theorem of
Thullen [17]. Thus we have the following:

LEMMA 5. There exist a divisor $A$ of $X$ and $q$ global sections
$s_{1},$ $\cdots,$ $s_{q}\in\Gamma(X^{\prime}, P(E_{1}))$ of $E_{1}$ such that $(s_{1}, \cdots, s_{q})$ is a frame of $E_{1}$ on
$X^{\prime}-A$ and such that $D_{i}\not\subset A$ for any irreducible component of $D$ .

3.2. Let $\nabla$ be the unique connection on $E_{1}$ satisfying (M.1) and (M.2)
such that $Ker\nabla=C(E)$ on $X-D$ . Let $s_{1},$ $\cdots,$ $s_{q}\in\Gamma(X’, P(E_{1}))$ be as
above. We write $\nabla s_{i}$ on $X^{\prime}-A$ in the form:

$\nabla s_{i}=\sum_{j=1}^{q}\Omega_{ji}s_{j}$ for $i=1,$ $\cdots,$ $q$ .
By (M.1) $\Omega_{ij}$ has at most logarithmic pole along $(X’-A)\cap D$ .

LEMMA 6. $\Omega_{ij}$ is a meromorphic form on $X$ for $i,$ $j=1,$ $\cdots,$ $q$ .
PROOF. Let $x\in(A-D)\cap X’$ ; then one can find a small open neigh-

borhood $U$ of $X$ such that there is a holomorphic frame $e=(e_{1}, \cdots, e_{q})$

of $E_{1}$ on $U$ and that $ U\cap D=\emptyset$ . We can write $s_{i}=\sum_{j=1}^{q}h_{ij}e_{j}$ where $ h_{ij}\in$

$\Gamma(U, p_{U})$ . Then the matrix $h:=(h_{lj})$ is non-singular at every point of
$U-(A\cap U)$ . We write $\nabla e_{i}=\sum_{j=1}^{q}\omega_{ji}e_{j}$ for $i=1,$ $\cdots,$ $q$ , where $\omega_{ji}$ is a
holomorphic one-form on $U$. Then we have

$\nabla s_{i}=\nabla(\sum_{j=1}^{q}h_{ij}e_{j})$

$=\sum_{j=1}^{q}dh_{ij}e_{j}+\sum_{j=1}^{q}h_{ij}\nabla e_{j}$

$=\sum_{j\Rightarrow 1}^{q}(dh_{ij}+\sum_{k=1}^{q}h_{ik}\omega_{jk})e_{j}$ .
On the other hand, on $U-(U\cap A)$ , we have
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$\nabla s_{:}=\sum_{\dot{g}=1}^{q}\Omega_{ji}s_{j}=\sum_{j=1}^{q}(\sum_{k=1}^{q}\Omega_{ki}h_{kj})e_{j}$ ;

hence, on $U-(U\cap A)$ , we obtain

$dh_{ij}+\sum_{k=1}^{q}h_{ik}\omega_{\dot{g}k}=\sum_{k=1}^{q}\Omega_{ki}h_{kj}$ for $i,$ $j=1,$ $\cdots,$ $q$ .
The above equation can be written in the matrix notation,

$dh+h\cdot{}^{t}\omega={}^{t}\Omega\cdot h$ ,
or
(3.1) ${}^{t}\Omega=(dh)\cdot h^{-}+h\cdot{}^{t}\omega\cdot h^{-1}$ on $U-(U\cap A)$ .
Since $h^{-1}$ has at most pole along $U\cap A$ , so has ${}^{t}\Omega$ , i.e., $\Omega_{ij}$ is a mero-
morphic one-form on $X$-Sing $(D)\cup(A\cap D)$ . We know by Lemma 5
codim $(A\cap D)\geqq 2$ and codim (Sing $(D)$ ) $\geqq 2$ , so $\Omega_{ij}$ is extended to a mero-
morphic one-form on $X$ by the continuation theorem of Levi. Q.E.D.

Let $\Omega_{i\dot{g}}$ and $s_{1},$ $\cdots,$ $s_{q}\in\Gamma(X^{\prime}, P(E_{1}))$ be as above and let $u=\sum_{i=1}^{q}y_{i}s_{i}$

be a local section of $\rho(E_{1})$ around $x\in X-(A\cup D)$ . From the relation

$\nabla u=\sum_{=1}^{q}(dy_{i}+\sum_{\dot{g}=1}^{q}\Omega_{ij}y_{\dot{f}})s_{l}$ ,

it follows that $u$ is a horizontal section of $\nabla$ if and only if $u=\sum_{i=1}^{q}y_{i}s_{i}$

satisfies the total differential equation

(3.2) $d\left(\begin{array}{l}y_{1}\\\vdots\\ y_{q}\end{array}\right)+\left(\begin{array}{lll}\Omega_{11} & \cdots & \Omega_{1q}\\\cdots & \cdots & \cdots\\\Omega_{q1} & \cdots & \Omega_{qq}\end{array}\right)\left(\begin{array}{l}y_{1}\\l\\y_{q}\end{array}\right)=0$ .

Since $Ker\nabla=C(E)$ on $X-D$ and $(s_{1}, \cdots, s_{q})$ is a frame of $E_{1}$ on $X-(A\cup D)$ ,
we see that the equation (3.2) is completely integrable on $X-(A\cup D)$ .
Let $\mathscr{L}$ be the sheaf of germs of local solutions of (3.2); then it follows
that $\mathscr{L}$ is locally constant sheaf on $X-(AUD)$ and that $\mathscr{L}$ is isomorphic
to $C(E)$ on $X-(A\cup D)$ by the map

$(y_{l})\in \mathscr{L}\rightarrow\sum_{i=1}^{q}y_{i}s_{i}\in C(E)$ .
LEMMA 7. The total differential equation (3.2) has a regular singu-

larity along $A\cup D$ ; moreover $A$ is the apparent singularity of (3.2).

PROOF. Let $x\in A-D$ ; then we can find a small neighborhood $U$ of
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$x$ in $X$ such that there is a holomorphic frame $e=(e_{1}, \cdots, e_{q})$ of $E_{1}$ on $U$

and that $ U\cap D=\emptyset$ . If we write $\nabla e_{i}=\sum_{\dot{g}=1}^{q}\omega_{ji}e_{j}$ and take a horizontal
section $u=\sum_{i=1}^{q}u_{i}e_{l}$ of $\nabla$ on $U$, then we have

$0=\nabla u=\sum_{i=1}^{q}(du_{l}+\sum_{j=1}^{q}\omega_{ij}u_{j})e_{i}$ ,

that is,

(3.3) $du_{l}+\sum_{\dot{J}--1}^{q}\omega_{ij}u_{j}=0$ for $i=1,$ $\cdots,$ $q$ .

If we write $u=\sum_{i=1}^{q}y_{i}s_{i}$ and $s_{l}=\sum_{\dot{g}=1}^{q}h_{ij}e_{j}$ , then we have $u_{i}=\sum_{j=1}^{q}h_{ij}y_{j}$ .
This can be written as

$u={}^{t}h\cdot y$ or $y={}^{t}h^{-1}\cdot u$ ,

where $u={}^{t}(u_{1}, \cdots, u_{q}),$ $y={}^{t}(y_{1}, \cdots, y_{q})$ and $h=(h_{ij})$ . Thus we have, in
matrix notation,

$dy+\Omega y=d({}^{t}h^{-1})+{}^{t}h^{-1}du+\Omega^{t}h^{-1}u$

$={}^{t}h^{-1}\{du+({}^{t}h\cdot\Omega\cdot {}^{t}h^{-1}-(d^{t}h)^{t}h^{-1})u\}$

$={}^{t}h^{-1}(du+\omega u)$ (by (3.1))

$=0$ .
It follows that if $u$ is a local solution of (3.3) on $U$, then $y={}^{t}h^{-1}u$ is a
solution of (3.2) on $U-(A\cap U)$ . Since (3.3) is completely integrable on
$U$, this means that $A$ is the apparent singularity of equation (3.2). It
follows from the condition (M.1) that $\Omega$ has at most logarithmic pole
along $Z:=$ ($D$ -Sing $(D)$) $-A$ ; hence the equation (3.2) has a regular
singularity along $Z$. From Lemma 5, we see that $A$ does not contain
any irreducible component of $D$ . So by a result of P. Deligne ([6], $p$ .
85), $D$ is the regular singularity of the equation (3.2). Q.E.D.

Considering the proof of Lemma 5, we suppose that $A$ does not
contain the base point $x_{0}\in X-D$ . Take $q$ linearly independent solutions
$f_{1}(x),$ $\cdots,$ $f_{q}(x)$ of (3.2) at $x_{0}$ . For a closed curve $\gamma$ in $X-(A\cup D)$ starting
from $x_{0}$ , we have (See \S 2.1.)

$\gamma_{*}[f_{1}, \cdots, f_{q}]=[f_{1}, \cdots, f_{q}]\mu([\gamma])$ ,

where $[\gamma]\in\pi_{1}(X-(A\cup D), x_{0})$ and $\mu([\gamma])\in GL_{q}(C)$ . $\mu$ is called the mono-
dromy representation of the equation (3.2). Let $j:X-(A\cup D)\rightarrow X-D$

be the canonical injection and let $j_{*}:$ $\pi_{1}(X-(AUD), x_{0})\rightarrow\pi_{1}(X-D, x_{0})$ be
the induced surjective homomorphism. Since $A$ is the apparent singularity
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of (3.2), $\mu$ is naturally extended to a homomorphism

$\hat{\mu}:\pi_{1}(X-D, x_{0})\rightarrow GL_{q}(C)$

such that $\hat{\mu}\circ j_{*}=\dot{\mu}$ and that

$\gamma_{*}[f_{1}, \cdots, f_{q}]=[f_{1}, \cdots, f_{q}]\hat{\mu}([\gamma])$ for $[\gamma]\in\pi_{1}(X-D, x_{0})$ .
Since the monodromy representation of (3.2) is, by the definition, the
same as that of the locally constant sheaf $\mathscr{L}$ and since $\mathscr{L}$ is isomorphic
to $C(E)$ on $X-(A\cup D)$ , we see that $\hat{\mu}=\rho$ , choosing the independent solu-
tions of (3.2) properly. Thus we have the following:

THEOREM 2. Let $X$ be a Stein manifold and let $D$ be a divisor of
X. Suppose that a representation $\rho$ of $\pi_{1}(X-D, x_{0})$ in $GL_{q}(C)$ is given.
Then we can construct a total differential equation (3.2) as follows:

1) there exists a divisor $A$ of $X$ such that $A$ does not contain any
$i\gamma?\cdot educible$ component of $D$.

2) the equation (3.2) is completely integrable on $X-(AUD)$ ; more-
over $A$ is the apparent singularity of (3.2).

3) the monodromy representation of (3.2) coinsides with the given
representation $\rho$ .

3.3. On two-dimensional Stein manifold $X$, we could solve, by
Proposition 2, the Riemann-Hilbert problem without apparent singularity
under some topological condition on $X$. Let $E,$ $E_{1}$ , and $\rho$ be as above
and let $j:X-Sing(D)\rightarrow X$ be the canonical injection. Then by Proposi-
tion 2, we have that $j_{*}(P(E_{1}))$ is a locally free sheaf on $X$; so one has
$j_{*}(a(E_{1}))=P(G)$ for a certain holomorphic vector bundle $G$ on $X$. By a
result of A. Andreotti and T. Frankel [2], $X$ is of the same homotopy
type as a two-dimensional CW-complex. So from a theorem of F.
Peterson [13], it follows that a continuous complex vector bundle $F$ on
$X$ of rank $q$ is trivial if and only if the first Chern class $c_{1}(F)$ of $F$

is equal to zero. Thus, by the $Oka$ principle (H. Grauert [7]), $j_{*}(\beta(E_{1}))$

is a free sheaf if and only if $c_{1}(G)=0$ . So, we can find a global frame
$s=(s_{1}, \cdots, s_{q})$ of $G$ on $X$. Hence, if we write $\nabla s_{i}=\sum_{j=1}^{q}\Omega_{\dot{g}i}s_{j}$ , the equation
(3.2) has the regular singularity only along $D$ and does not have the
apparent singularity. Thus we obtain the following:

PROPOSITION 3. Let $X$ be a connected two-dimensional Stein manifold
and let $D,$ $E,$ $E_{1}$ , and $\rho$ be as above. Then we obtain $j_{*}(P(E_{1}))=P(G)$

for a certain holomorphic vector bundle $G$ on X. If $c_{1}(G)=0$ , then we
can construct a completely integrable total differential equation (3.2)
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which is regular singular along $D$ and does not have the apparent
singularity, and furthermore whose monodromy representation coincides
with the given $\rho$ .

By Proposition 3, it follows easily the following theorem.

THEOREM 3. Let $X$ be a connected two-dimensional Stein manifold.
If $H^{2}(X, Z)=0$ , then for any divisor and representation $\rho$ of $\pi_{1}(X-D, x_{0})$

in $GL_{q}(C)$ , we can always find a solution without apparent singularity
to the Riemann-Hilbert problem.

REMARK. In the case of Theorem 3, let $\Omega=(\Omega_{ij})$ be the connection
matrix of the equation (3.2). From the construction of the equation (3.2),

we see that each $\Omega_{ij}$ is a meromorphic form with generically logarithmic
poles along $D$ . This notion was introduced by K. Saito [14].

\S 4. A remark to a work of K. Aomoto $[1]$–The Riemann-Hilbert
problem in the restricted sense on two-dimensional manifolds.

4.1. Let $X$ be a connected two-dimensional complex manifold and
let $D$ be a divisor of $X$. Let $\rho$ be a representation of the group
$\pi_{1}(X-D, x_{0})$ in $GL_{q}(C)$ . Suppose that $\rho(\pi_{1}(X-D, x_{0}))$ is contained in a
maximal unipotent subgroup $U(q)$ of $GL_{q}(C)$ ; that is, $\mathfrak{U}(q)$ is a sub-

group conjugate to the closed subgroup $\{\left(\begin{array}{lll}1 & & *\\ & \ddots & \\0 & & 1\end{array}\right)\in GL_{q}(C)\}$ in $GL_{q}(C)$ .
Let $\rho$ be a representation of $\pi_{1}(X-D, x_{0})$ in $U(q)$ . After K. Aomoto [1],

we shall call the Riemann-Hilbert problem in the restricted sense the
problem of constructing the total differential equation (3.2) which is
regular singular along $D$ and has the above given monodromy $\rho$ .

Let $E$ be the flat vector bundle associated with $\rho$ where $\rho$ is a
representation of $\pi_{1}(X-D, x_{0})$ in $\mathfrak{U}(q)$ . By a result to P. Deligne ([6],

p. 91), $E$ can be extended to a holomorphic vector bundle $E_{1}$ on $X-$

Sing $(D)$ such that, choosing a sufficiently fine open covering $\mathfrak{B}=\{V_{j}\}_{jeJ}$

of $X$-Sing $(D)$ , the transition functions $f_{jk}$ of $E_{1}$ are $U(q)$-valued holo-
morphic functions on $V_{j}\cap V_{k}$ for any $j,$ $k\in J$. From Proposition 2 of
\S 2, it follows that $j_{*}(\theta(E_{1}))$ is a locally free sheaf on $X$ where $j:X-$

Sing $(D)\rightarrow X$ is the canonical injection. Let $\tilde{E}$ be the holomorphic vector
bundle on $X$ corresponding to $j_{*}(P(E_{1}))$ . Then by the same argument
as above (See [6], p. 91.), choosing a sufficiently fine suitable open cover-
ing $\mathfrak{W}=\{W_{\dot{f}}\}$ of $X$, we have that the transition functions $g_{\dot{g}k}$ are $n(q)-$

valued holomorphic functions on each $W_{j}\cap W_{k}$ .
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4.2. Now we shall prepare the following elementary

LEMMA 8. Let $X$ be as above and let $V$ be a holomorphic vector
bundle with the structure group $u(q)$ . If $H^{1}(X, d_{X})=0$ , then the vector
bundle $V$ is holomorphically trivial.

PROOF. Without loss of generality, we can suppose that $u(q)$ is

the following subgroup $\{\left(\begin{array}{lll}1 & & *\\ & \ddots & \\0 & & l\end{array}\right)\in GL_{q}(C)\}$ of $GL_{q}(C)$ . We proceed by

the induction on the rank of vector bundles. When $q=1$ , there is nothing
to prove. We suppose that Lemma 8 is true for all holomorphic vector
bundle with structure group $u(m)$ of rank less than $q$ . Choosing a
sufficiently fine Stein covering $\mathfrak{W}=\{W_{j}\}_{jeJ}$ , we may suppose that the
transition functions $\{f_{\dot{g}k}\}$ of $V$ are $U(q)$-valued holomorphic functions on
$W_{j}\cap W_{k}$ and they satisfy the cocycle conditions

$f_{i\dot{J}}\cdot f_{jk}=f_{k}$ on $W_{i}\cap W_{j}\cap W_{k}$ ;

that is, $\{f_{jk}\}\in Z^{1}(\mathfrak{W}, u(q))$ . If we write each $f_{jk}$ in the following form

$f_{\dot{g}k}=(\frac{1}{0}|\frac{a}{g_{jk}}\dot{g}k)$

where $\{a_{\dot{g}k}\}\in C^{1}(\mathfrak{W}, p_{X}^{q-1})$ and $\{g_{jk}\}\in C^{1}(\mathfrak{W}, u(q-1))$ , the above cocycle con-
ditions can be rewritten in the following form:

$\left\{\begin{array}{l}a_{i\dot{g}}g_{jk}+a_{jk}=a_{ik}\\g_{ij}g_{jk}=g_{lk}\end{array}\right.$

By the hypothesis of induction, there exists a zero cochain $\{g_{j}\}\in$

$C^{0}(\mathfrak{W}, u(q-1))$ such that $g_{jk}=g_{j}g_{k}^{-1}$ on $W_{j}\cap W_{k}$ . On the other hand,
putting $\hat{a}_{ij}=a_{lj}g_{j}$ , we have that

$\hat{a}_{lj}g_{\dot{f}}^{-1}g_{jk}+\hat{a}_{jk}g_{k}^{-\iota}=\hat{a}_{lk}g_{k}^{-1}$ ;

hence, using the equation $g_{\dot{f}}^{-1}g_{jk}=g_{k}^{-\iota}$ , we conclude that $\{\hat{a}_{jk}\}$ satisfies the
cocycle conditions

$\hat{a}_{lj}+\hat{a}_{jk}=\hat{a}_{ik}$ on $W_{l}\cap W_{j}\cap W_{k}$ .
Since $\{\hat{a}_{jk}\}\in Z^{1}(\mathfrak{W}, a_{x^{-1}}^{q})$ and $H^{1}(\mathfrak{W}, P_{X})=0$ , there is a O-cochain $\{a_{i}\}\in$

$C^{0}(\mathfrak{W}, p_{X}^{q-1})$ which satisfies the equation

$\hat{a}_{jk}=a_{j}-a_{k}$ .
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When we put

$f_{j}=\left(\begin{array}{ll}l & a_{j}\\0 & g_{j}\end{array}\right)$ on $W_{j}$ ,

by a simple computation, we see that

$f_{\dot{f}}\cdot f_{k}^{-1}=\left(\begin{array}{ll}1 & a_{j}\\0 & g_{j}\end{array}\right)(\frac{1}{0}|\frac{-a_{k}^{-1}g_{k}^{-1}}{g_{k}}-1)$

$=f_{\dot{g}k}$ .
Hence it follows that the vector bundle $V$ with transition functions $\{f_{jk}\}$

is holomorphically trivial on $X$. Q.E.D.

Now let us return to the situation of $n^{o}4.1$ , and let the notations
be as above. Since $\tilde{E}$ is the holomorphic vector bundle on $X$ with struc-
ture group $U(q)$ , by Lemma 8 we conclude that $\tilde{E}$ is holomorphically
trivial provided that $H^{1}(X, p_{X})=0$ . Thus we obtain the following:

THEOREM 4 (K. Aomoto, [1]). Let $X$ be a connected two-dimensional
complex manifold. If $H^{1}(X, p_{X})=0$ , then for any divisor $D$ and any
representation $\rho$ of $\pi_{1}(X-D, x_{0})$ in a maximal unipotent subgroup $U(q)$

of $GL_{q}(C)$ , we can always find a solution to the Riemann-Hilbert pro-
blem in the restricted sense without apparent singularity.

COROLLARY. If $X$ is a compact two-dimensional Kahler manifold
such that the first Betti number is zero; i.e., $H^{1}(X, C)=0$ , then we can
always find a solution to the Riemann-Hilbert problem in the restricted
sense without apparent singularity for any divisor and any represen-
tation $\rho$ of $\pi_{1}(X-D, x_{0})$ in $\mathfrak{U}(q)$ .

REMARK. In the case of Theorem 4 and its Corollary, let $\Omega=(\Omega_{i\dot{f}})$

be the connection matrix of the equation (3.2). By the same reason as
the Remark to Theorem 3, we see that $\Omega_{ij}$ is a meromorphic form with
ge.nerically logarithmic poles along $D$ .

\S 5. Analytic covers and the associated monodromy.

5.1. Let us recall the definition of analytic covers and holomorphic
functions on them. Let $Y$ be a locally compact Hausdorff space and let
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$X$ be a complex manifold. An analytic cover is a triple $(Y, \pi, X)$ (later
on we will write this in the form $\pi:Y\rightarrow X$) such that

1) $\pi$ is a proper continuous map of $Y$ onto $X$ with discrete fibers.
2) There are a divisor $D$ of $X$ and a positive integer $q$ such that

$\pi$ is a q-sheeted topological covering map from $Y-\pi^{-1}(D)$ onto $X-D$ .
3) $Y-\pi^{-1}(D)$ is dense in Y.
4) For any point $y\in\pi^{-1}(D)$ and any connected open neighborhood

$U$ of $y$ , there exists an open neighborhood $U^{\prime}\subset U$ such that $U’-\pi^{-1}(D)\cap U$’

is connected.
$D$ is called the critical locus of analytic cover $\pi:Y\rightarrow X$ and $q$ is

called the sheet number of it. There is a unique complex structure on
$Y-\pi^{-1}(D)$ such that $\pi:Y-\pi^{-1}(D)\rightarrow X-D$ is a locally biholomorphic map;
hence, $Y-\pi^{-1}(D)$ will be regarded as the complex manifold with this
structure. We recall the definition of complex analytic space in the sense
of Behnke-Stein [3]. Let $\pi:Y\rightarrow X$ be an analytic cover, and let $U$ be an
open set in Y. A continuous complex-valued function $f(y)$ on $U$ is, by
definition, holomorphic on $U$ if the restriction of $f(y)$ to $U-U\cap\pi^{-1}(D)$

is holomorphic in the usual sense on the open subset $U-U\cap\pi^{-1}(D)$ of the
complex manifold $Y-\pi^{-1}(D)$ . Let $p_{Y}$ be the sheaf of germs of holomorphic
functions on $Y$; then it follows that $(Y, d_{Y})$ is a C-local ringed space.
Let $W$ be a Hausdorff space. A C-local ringed space $(W, p_{W})$ is, by
definition, a complex analytic space in the sense of Behnke-Stein (komplexe
$\alpha$-Raum in [10]) if there exists an open covering $W=\cup U_{i}$ such that
$(U_{l}, p_{W}|_{U}:)$ is isomorphic to a ringed space $(Y, p_{Y})$ as above, where $Y$

is an analytic cover. As is noted in Introduction, H. Grauert and R.
Remmert [10] and R. Kawai [11] proved that $(W, p_{W})$ is a normal com-
plex analytic space in the sense of Cartan-Serre [5]. Our aim is to prove
this theorem by using the Riemann-Hilbert problem. For this purpose,
we shall study the relation between holomorphic functions on $Y$ and
representation of $\pi_{1}(X-D, x_{0})$ where $\pi:Y\rightarrow X$ and $D$ are as above and
$x_{0}$ is a base point of $X-D$ .

For later applications, we list the following standard result about
holomorphic functions on analytic covers. Let $(Y, p_{Y})$ be as above,
where $\pi:Y\rightarrow X$ is an analytic cover and we denote by $p_{Y,y}$ the stalk of
$p_{Y}$ at $ y\in$ Y.

LEMMA 9 ([10], p. 264). Suppose that $x\in D$ is a smooth point of $D$,
and let $\pi^{-1}(x)=\{y_{1}, \cdots, y_{t}\}$ . Then $p_{Y.y_{i}}$ is a regular C-local algebra for
$i=1,$ $\cdots,$

$t$ . Let $Y’:=Y-\pi^{-1}(Sing(D))$ . Then $(Y^{\prime}, P_{Y}|_{Y^{\prime}})$ is a complex
manifold which contains $Y-\pi^{-1}(D)$ as the open submanifold.
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LEMMA 10 ([10], p. 266). Let $\pi:Y\rightarrow X$ be as above and let $q$ be
the sheet number of Y. Let $f(y)$ be a continuous functions on Y. $f(y)$

is holomorphic on $Y$ if and only if there is a monic polynomial

(5.1) $\omega(Z;x)=Z^{q}+a_{1}(x)Z^{q-1}+\cdots+a_{q}(x)$

such that $\omega(f(x);x)=0$ on $Y$, where $a_{i}(x)$ is holomorphic on $X$.
LEMMA 11 ([10], p. 267). Let $A$ be an analytic subset of $Y$, and

$f(y)$ be a holomorphic function on $Y-A$ . Suppose that, for every point
$y\in A$ , there exists an open neighborhood $U$ of $x$ such that $f(y)$ is bound-
ed on $U-(U\cap A)$ . Then $f(y)$ can be extended uniquely to a holomorphic
function on Y.

5.2. Let $\pi:Y\rightarrow X$ be an analytic cover with critical locus $D$ whose
sheet number is $q$ . By the definition of complex analytic spaces in the
sense of Behnke-Stein, the problem is local, i.e., we can assume $X$ to be a
polydisc in $C^{n}$ , and it is sufficient to show the existence of a holomorphic
function $f(y)$ separating arbitrary two points in $\pi^{-1}(x_{0}),$ $x_{0}\in X-D$ .

In fact, let $\varphi:Y\rightarrow X\times C$ be a holomorphic map defined by $\varphi(y)=$

$(\pi(y), f(y))$ . Since $f(y)$ is holomorphic on $Y$, there is, by Lemma 9, a
monic polynomial (5.1) such that $\omega(f(y);x)=0$ on Y. Putting $S:=\varphi(Y)$ ,
it follows that $S$ is a hypersurface in $X\times C$ defined by $ S=\{(x, z)\in$

$X\times C|\omega(z, x)=0\}$ . Let $\tilde{p_{s}}$ be the sheaf of germs of weakly holomorphic
functions on $S$ and $\Delta(x)$ be the discriminant of the polynomial $\omega(Z;x)$ .
It is obvious that $D\subset\{x\in X|\Delta(x)=0\}$ . Let $p:S\rightarrow X$ be the projection
induced by the one to the first component $X\times C\rightarrow X$. Since $f(y)$ separates
the values of $\pi^{-1}(x_{0})$ , we see that $A:=\{x\in X|\Delta(x)=0\}\subsetneqq X$; hence $A$ is a
divisor of $X$. It is evident that

$\varphi:Y-\pi^{-1}(A)\rightarrow S-p^{-1}(A)$

is biholomorphic map. Take a point $s_{0}\in p^{-1}(A)$ and let $N$ be a small
neighborhood of $s_{0}$ . If $g(s)$ is a holomorphic function in $N-(N\cap p^{-1}(A))$

on which $g(s)$ is bounded, then by Lemma 10 $\varphi^{*}(g)$ is holomorphic on
some components of $\pi^{-1}(p(N))$ . Applying the argument to the inverse
map $\varphi^{-1}$ , we conclude that the direct image $\varphi_{*}(p_{Y})$ is isomorphic to $\tilde{p}_{s}$ .
By the normalization theorem of Oka [12], there exists a normal complex
analytic space $\tilde{S}$ and a proper holomorphic map $\tau:\tilde{S}\rightarrow S$ such that
$\tau_{*}(e_{\overline{s}})=\tilde{e_{s}}$ . By the above facts and (4) of the definition of analytic
covers, we have $(Y, p_{Y})=(\tilde{S}, 8_{\overline{s}})$ ; this was to be proved.
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Later on, we suppose that $X$ is a polydisc in $C^{\hslash}$ . We write $Y^{*}:=$

$Y-\pi^{-1}(D)$ and $X^{*}:$ $=X-D$ . By the definition of the complex structure
of $Y^{*}$ , we can consider a holomorphic function $g(y)$ on $Y^{*}$ as a many-
valued holomorphic function on $X^{*}$ . Using this fact, we obtain the
relation between holomorphic functions on $Y^{*}$ and representations of
$\pi_{1}(X^{*}, x_{0})$ . We state this in detail. Let $\pi^{-1}(x_{0})=\{y_{1}, \cdots, y_{q}\}$ and fix this
numbering. Since $\pi:Y^{*}\rightarrow X^{*}$ is a finite unramified covering and since
$X^{*}$ is a Stein manifold, it follows that $Y^{*}$ is a Stein manifold. Hence
there exists a holomorphic function $g(y)$ on $Y^{*}$ such that $g(y_{i})=i$ for
$i=1,$ $\cdots,$ $q$ . If we choose a sufficiently small polydisc $U\subset X^{*}$ centered
at $x_{0}$ , we can speak of the branches of $g(y)$ on $U$. Thus let $g_{i}(x)$ be the
branch of $g(y)$ on $U$ such that $g_{i}(x_{0})=i$ . It follows that $g_{i}(x_{0})$ can be
continued analytically on $X^{*}$ , but, in general, it is not single-valued.
Consider the vector-valued function $\overline{g}(x)=(g_{1}(x), \cdots, g_{q}(x))$ on U. $\overline{g}(x)$

can be continued analytically on $X^{*};$ hence it is a many-valued function
on $X^{*}$ . We shall show that $\overline{g}(x)$ gives a representation of $\pi_{1}(X^{*}, x_{0})$ ; let
$\gamma$ be a closed curve in $X^{*}$ starting from $x_{0}$ . Since $\pi:Y^{*}\rightarrow X^{*}$ is a
topological covering, there are the paths $\gamma_{l}$ starting from $y_{l}$ such that
$\pi(\gamma_{l})=\gamma$ . Let us denote by $x_{r.(i)}$ the end point of $\gamma_{l}$ ; then $(_{\gamma_{*}(1)}1,$ $\gamma_{*}(q)q)$

is a permutation of $q$ letters $\{1, \cdots, q\}$ . It follows that the result of
analytic continuation of $g_{:}(x)$ along $\gamma$ is identified with that of $g(y)$ along
$\gamma_{i}$ if we consider $g_{i}(x)$ as the function element of $g(y)$ at $y_{i}$ ; hence we
have the function element of $g(y)$ at $x_{\gamma_{\ell}(t)}$ . Thus we obtain that the
result of analytic continuation of $g_{i}(x)$ along $\gamma$ is the element $g_{\gamma_{l}(i)}(x)$ .
Let $S_{q}$ be the symmetric group of $q$ letters $\{1, \cdots, q\}$ and let $e_{l}=$

:-th
$(0, \cdots, 1, \cdots, 0)i=1,$ $\cdots,$ $q$ be the standard basis of $C^{q}$ . We denote by
$j:S_{q}\rightarrow GL_{q}(C)$ the following standard faithful representation; for $\sigma\in S_{q}$ ,

$j(\sigma)(\sum_{i=1}^{q}u_{i}e_{i})=\sum_{=1}^{q}u_{l}e_{\sigma(:)}$ ;

thus we have

$j(\sigma)=(a_{kl})$ where $a_{kl}=\left\{\begin{array}{ll}1 & if k=\sigma(l)\\0 & otherwise.\end{array}\right.$

Let $\gamma$ be a closed curve in $X^{*}$ starting from $x_{0}$ , and as above we denote
by $\gamma_{*}(\overline{g})=(g_{\gamma_{*}(1)}, \cdots, g_{\gamma(q)})$ the result of analytic continuation of $\overline{g}=$

$(g_{1}, \cdots, g_{q})$ along $\gamma$ . It follows that

$(g_{\gamma_{r}(1)}, \cdots, g_{\gamma.(q)})=(g_{1}, \cdots, g_{q})\rho([\gamma])$
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if we write $\rho([\gamma])=j((\gamma_{*}(1)1,$ $\gamma_{*}(q)q))$ .
LEMMA 12. Let $\rho:\pi_{1}(X^{*}, x_{0})\rightarrow GL_{q}(C)$ be as above. Then $\rho$ is a

finite representation of $\pi_{1}(X^{*}, x_{0})$ .
PROOF. Let $7_{1}$ and $\gamma_{2}$ be closed curves in $X^{*}$ starting from $x_{0}$ . We

have

$(g_{1\prime}\cdots, g_{q})\rho([\gamma_{1}]\cdot[\gamma_{2}])=(\gamma_{1}\cdot\gamma_{l})_{*}(g_{1}, \cdots, g_{q})$

$=(\gamma_{1})_{*}((g_{1}, \cdots, g_{q})\rho([\gamma_{2}]))$

$=(g_{1}, \cdots, g_{q})\rho([\gamma_{1}])\rho([\gamma_{2}])$ ;

hence we obtain

$\rho([\gamma_{1}][\gamma_{g}])=\rho([\gamma_{1}])\rho([\gamma_{t}])$ . Q.E.D.

We call $\rho$ the monodromy representation associated with the analytic
cover $\pi:Y\rightarrow X$. Note that, by the definition of the permutation
$(_{\gamma_{*}(1)}1,$ $\gamma_{*}(q)q),$ $p$ is determined by the topological property of the

analytic cover.

REMARK. Let $\rho$ be as above, and let $E$ be the flat vector bundle
associated with $\rho$ . We can show that $\pi_{*}(C_{Y^{*}})=C(E)$ , where $C_{Y^{*}}$ is a C-
valued constant sheaf on $Y^{*}$ .

5.3. Conversely, we consider a many-valued holomorphic function
$\overline{h}(x)=(h_{1}(x), \cdots, h_{q}(x))$ on $X^{*}$ satisfying $\gamma_{*}(\vec{h}(x))=\overline{h}(x)\rho([\gamma])$ for any closed
curve $\gamma$ in $X^{*}$ starting from $x_{0}$ .

LEMMA 13. Let $\overline{h}(x)$ be as above and suppose that $Y^{*}$ is connected.
Write $h(y):=h_{1}(\pi(y))$ in a small polydisc in $Y^{*}$ centered at $y_{1}$ . Then
$h(y)$ can be continued analytically along any path in $Y^{*}$ starting from
$y_{1}$ ; moreover it determines a single-valued holomorphic function $\tilde{h}(y)$ on
$Y^{*}$ whose function element at $y_{i}$ coincides with $h_{i}(\pi(y))$ for $i=1,$ $\cdots,$ $q$ .

PROOF. $Let\swarrow be$ any path in $Y^{*}$ starting from $y_{1}$ , and $1et\swarrow^{\prime}=\pi(\swarrow)$ .
Since $h_{1}(x)$ can be continued analytically along the $curve\swarrow$ , it is evident
that so is $h(y)$ ; hence $h(y)$ determines a many-valued holomorphic func-
tion $\tilde{h}(y)$ on $Y^{*}$ . Suppose that $\tilde{h}(y)$ is not single-valued. Then there
exists a closed curve $\gamma$ in $Y^{*}$ such that the result of analytic continua-
tion of $h(y)$ along $\gamma$ is not equal to the element $h(y)$ . Let $\pi(\gamma)=\gamma$ , and
let $\gamma_{l}$ be a path in $Y^{*}$ starting from $y_{i}$ and satisfying $\pi(\gamma_{i})=\gamma$ . Note
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that $\gamma_{l}$ is not always closed and that $\gamma_{1}=\gamma$ . As in $n^{o}4.2$ , let $g(y)$ be
a holomorphic function on $Y^{*}$ satisfying $g(y_{i})=i$ for $i=1,$ $\cdots,$ $q$ . Since
$g(y)$ is single-valued on $Y^{*}$ , we have that $\gamma_{*}^{\prime}(g_{1}, \cdots, g_{q})=(g_{1}, *\cdots, *)$ .
Hence, by $\gamma_{*}(\overline{g})=\overline{g}\rho([\gamma])$ , we can write $\rho([\gamma^{\prime}])$ in the form

$(001,0,$
$\star$

$0)$ .

Thus we have that

$\gamma_{*}^{\prime}(h_{1}, \cdots, h_{q})=(h_{1}, \cdots, h_{q})(00$
$*\cdot,$

$0)$

I.e., $\gamma_{*}^{\prime}(h_{1})=h_{1}$ . This means that the result of analytic continuation of
$h(y)$ along $\gamma$ is equal to $h(y)$ . This is a contradiction. Since $Y^{*}$ is con-
nected, there exists a path from $y_{1}$ to $y_{l}$ . Let $\gamma_{i}$ be the path in $Y^{*}$

starting from $y_{i}$ such that $\pi(\gamma_{i})=\pi(\gamma)=\gamma^{\prime}$ . Note that $\gamma=\gamma_{1}$ and $\gamma_{*}^{\prime}(g_{1})=g_{:}$ .
Hence, in the same way as above, we see

$\rho([\gamma])=\left(\begin{array}{lll}0* & \cdots & *\\0 & & \\ & \star & \\1 & & \\0 & & \end{array}\right)$ (1 is the $(i,$ $1)$-element).

By $\gamma_{*}^{\prime}(\overline{h})=\vec{h}\rho([\gamma])$ , we obtain $\gamma_{*}(h_{1})=h_{i}$ ; this means that the result of
analytic continuation of $h(y)$ along $\gamma$ is equal to the element

$h_{i}(\pi(y))Q.E.D$ .
Let $\tilde{h}(y)$ be a single-valued holomorphic function on $Y^{*}$ as in Lemma

12. Suppose that $\tilde{h}(y)$ is locally bounded at every point of $\pi^{-1}(D’)$ where
$D’:=D-$Sing $(D)$ . Let $Y^{\prime}:=Y-\pi^{-1}(Sing(D))$ and $X^{\prime}:=X-$ Sing $(D)$ ; then
$\pi:Y^{\prime}\rightarrow X^{\prime}$ is an analytic cover. From Lemma 10, it follows that $\tilde{h}(y)$

can be extended to the unique holomorphic function on $Y’$ , which is
denoted by the same letter $\tilde{h}$ . By Lemma 9, we obtain the monic
polynomial

$\omega(Z;x)=Z^{q}+a_{1}(x)Z^{q-1}+\cdots+a_{q}(x)$ ,

where $a_{i}(x)$ is holomorphic on $X$-Sing $(D)$ and $\omega(h(y);x)=0$ on $Y’$ . Since
codim (Sing $(D)$ ) $\geqq 2$ , by Hartogs’ continuation theorem, $a_{:}(x)$ can be ex-
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tended to the unique holomorphic function on $X$, which is denoted by
$\hat{a}(x)$ . From the equality $\hat{\omega}(\tilde{h}(y);x)=0$ on $Y$ (where $\hat{\omega}=\sum_{i=0}^{q}\hat{a}_{i}(x)Z^{q-i}$), it
follows that $\tilde{h}(y)$ is locally bounded at any point of $\pi^{-1}(Sing(D))$ ; hence
by Lemma 10, $\tilde{h}(y)$ can be extended to the unique holomorphic function
on Y. Thus we obtain the following:

PROPOSITION 4. Let $\pi:Y\rightarrow X$ be an analytic cover and let
$\rho:\pi_{1}(X-D, x_{0})\rightarrow GL_{q}(C)$ be the monodromy representation associated with
the analytic cover. Suppose that there exists a many-valued holomorphic

function $\vec{h}(x)=(h_{1}(x), \cdots, h_{q}(x))$ on $X^{*}$ such that

1) $\gamma_{*}(\overline{h})=\overline{h}\rho([\gamma])$ for any $[\gamma]\in\pi_{1}(X-D, x_{0})$

and that

2) $h_{i}(x_{0})\neq h_{j}(x_{0})$ for any $i\neq j$ .
Let $\tilde{h}(y)$ be the single-valued function on $Y-\pi^{-1}(D)$ defined in Lemma
13. If $\tilde{h}(y)$ is locally bounded at every point of $\pi^{-1}$ ($D$ -Sing $(D)$), then
$\tilde{h}(y)$ can be extended to the unique holomorphic function on Y. Hence
we can construct the holomorphic function on $Y$ which is desired at the
beginning of $n^{o}4.2$ .

\S 6. Existence of holomorphic functions on analytic covers and
the Riemann-Hilbert problem.

Let $\pi:Y\rightarrow X$ be an analytic cover where $X$ is a polydisc in $C^{n}$ , and
let $q$ be the sheet number of Y. Let $X^{*},$ $X^{\prime}$ etc. be as before. We
shall solve the problem proposed at $n^{o}5.1$ . Since the problem is local,
we can suppose that the critical locus $D$ of the analytic cover $Y$ has
finite irreducible components: $D=\bigcup_{i=1}^{m}D_{l}$ and that $Y-\pi^{-1}(D)$ is connected
by (4) of the definition of analytic cover (see $n^{o}5.1$). Let $\rho:\pi_{1}(X-D, x_{0})\rightarrow$

$GL_{q}(C)$ be the monodromy representation associated with Y. Since $X$

is a Stein manifold, there exists, by Theorem 2, a total differential
equation (3.2) as follows:

1) there is a divisor $A$ of $X$ such that $x_{0}\not\in A,$ $D_{l}\not\subset A$ and (3.2) is
regular singular along $A\cup D$ ; moreover $A$ is the apparent singularity of
(3.2).

2) If we choose properly, $q$ linearly independent solutions $f_{1},$
$\cdots,$

$f_{q}$

of (3.2) at $x_{0}$ we have that

$\gamma_{*}[f_{1}, \cdots, f_{q}]=[f_{1}, \cdots, f_{q}]\rho([\gamma])$
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for any closed curve $\gamma$ in $X-D$ starting from $x_{0}$ .
Put $f(x)={}^{t}(f_{1i}(x), \cdots, f_{qi}(x))$ , and we define $g_{j}(x):=(f_{j_{1}}(x), \cdots, f_{jq}(x))$ ;

thus we have
$\gamma_{*}(g_{j})=g_{j}\rho([\gamma])$ for any $[\gamma]\in\pi_{1}(X-D, x_{0})$ .

Since $f_{1},$
$\cdots,$ $f_{q}$ are linearly independent, so are $g_{1},$ $\cdots,$ $g_{q}$ ; hence there

are constants $c_{l}eC(i=1, \cdots, q)$ such that, putting $\overline{h}:=\sum_{i=1}^{q}c_{l}g_{l}$ , we have
$\overline{h}(x_{0})=(1,2, \cdots, q)$ and $\gamma_{*}(\vec{h})=\vec{h}\rho([\gamma])$ for any $[\gamma]\in\pi_{1}(X-D, x_{0})$ . By Lemma
12, there exists a holomorphic function $\tilde{h}(y)$ on $Y^{*}$ such that $\tilde{h}(y_{l})=i$

for $i=1,$ $\cdots,$ $q$ . Since the equation (3.2) is regular singular along $A\cup D$

and since $\pi:Y’\rightarrow X^{\prime}$ is a finite covering by a result of P. Deligne ([6],
p. 64-65 and p. 85), $\tilde{h}(y)$ has at most pole along $Y\cap\pi^{-1}(A\cup D)$ . By
shrinking $X$ slightly, if necessary, we can suppose that the number of
irreducible components of $A$ is finite; $A=\bigcup_{=1}^{l}A_{i}$ . Since the Cousin’s
second problem has always a solution on $X$, we can write $A_{l}$ and $D_{j}$ in
the form $A_{i}=\{a_{i}(x)=0\}$ and $D_{\dot{f}}=\{d_{j}(x)=0\}$ for $i=1,$ $\cdots,$

$l$ and $j=1,$ $\cdots,$ $m$ ,
where $a_{i}$ and $d_{j}$ are holomorphic on $X$. Since $\tilde{h}(y)$ has at most pole along
$Y\cap\pi^{-1}(A\cup D)$ , there are positive integers $\mu_{i}$ and $\nu_{j}$ such that $c(\pi(y))\tilde{h}(y)$

is holomorphic on $Y$ when we write $c(x)=\prod_{i=1}^{\iota}(a_{i}(x))^{\mu t}\prod_{\dot{g}=1}^{n}(d_{j}(x))^{\nu_{j}}$ ; hence
by Proposition 4, $c(\pi(y))\tilde{h}(y)$ can be extended to the unique holomorphic
function $H(y)$ on Y. Since $c(x_{0})\neq 0$ , we have $H(y_{i})\neq H(y_{j})$ for any $i\neq j$ .
Hence we have the following:

THEOREM 5. Let $\pi:Y\rightarrow X$ be an analytic cover whose critical locus
is $D$ , where $X$ is a polydisc in $C^{\prime*}$ . Let $x_{0}\in X-D$. Suppose that
$\rho:\pi_{1}(X-D, x_{0})\rightarrow GL_{q}(C)$ is the monodromy representation associated with
the analytic cover Y. Then, using a solution of the Riemann-Hilbert
problem for the representation $\rho$ , by shrinking $Y$ slightly if necessary,
we can construct a holomorphic function $g(y)$ on $Y$ which separates
arbitrary two points in $\pi^{-1}(x_{0})$ .
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