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On the Wiener Formula of Functions of Two Varihbles

Kazuo ANZAI, Sumiyuki KOIZUMI and Katsuo MATSUOKA

Kagawa University and Keio University

Introduction

In dealing with the generalized harmonic analysis of functions of
several variables, a problem of basic importance would be to study the
so-called Wiener formula which states the equivalence of

1

lim -+ {" (° £) dsdt
lim 4ST§_T§_S £ (s, t)['ds

and

. 1 S“ S‘” . 8in’ es sin’nt ,
1:1:10 el I _wlf(s, t)| e r dsdt .

Different from the case of functions of one variable, one should
keep in mind that there are several kinds of methods about limit pro-
cesses and this makes the problem more involved than that of one vari-
able. In this paper we restrict ourselves to the case of functions of
two variables.

(1) The method of N. Wiener-A.C. Berry [9]. They assumed that
the following limit '

. 1 2z R .
(0.1) lim __—-5 S |f(r cos 6, r sin 6)rdrdd
0

R 7rR? Jo

exists and developed the spectral analysis.
(2) The method of T. Kawata [1]. He assumed that the following
limit

(0.2) :' £(s, t)|*dsdt

lim —L ("
Jim 2o

exists and has the same limit no matter how T and 7' tend to infinity
and, using the Wiener formula, derived some type of law of large num-
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bers for nonstationary processes.

We begin with examining the Wiener formulas for several particular
cases in the following section, and this indicates a new method of hand-
ling the problem. We shall deal with functions which satisfy that the
limit

1

T S
0.3) lim "V 176, tldsdt

exists and has the same limit for every positive constant C whenever
S and T tend to infinity in such a way that S = CT.

T. Kawata proved the Wiener formula directly, but it also follows
from the general Tauberian theorem. See W. Rudin [8].

We first give a modification of the general Tauberian theorem and
then establish the Wiener formula according to the method of H. R.
Pitt [7].

We, here, give a remark. S. Koizumi [2] has studied about the
spectral analysis of the Hilbert transform in the case of one variable.
Recently K. Matsuoka [4, 5, 6] has succeeded to extend the results to
the case of functions of two variables using the Wiener formula we
have obtained in this paper.

The authors are grateful to Professor T. Kawata for several valu-
able suggestions concerning the subject matter of this paper.

§1. Some examples.

1. Trigonometrical polynomial. Let us write

N M
(1.1) P, Y)= 3, D Cppe'im=teat) |

n=0 m=0

Then we easily see that

T S
418%‘8 _TS_S p(x+s8, y+1)p(s, t)dsdt
= ﬁ i 2 _"_em"‘“""")——l—ss e‘“m“k"ds—l—sr I
»,1=0 m,k=0 mn Tkl 2S -8 2T 7

Since

.1 ST e |1 (x=0)
Mmool =1 z0),
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we have

. .
(1.2) o(x, y)= sl,}’&o Z’é’z’*S-TS-s p(x+s, y+1)p(s, t)dsdt

N M
=3 3 fomalietineri

n=0 m=0

where S and T tend to infinity independently. Furthermore if we put
(1.3) Au, v)=27 3, 3, [Cml®,
NIy <V My <%
then
(1.4) 5@, 1=
T

(=]

gm e g A(u, v) .

~—oo

This is called the spectral representation of the correlation function of
p(x, y). In particular, we have, letting x=y=0,

1. 1 T S 2d d N M .
lim 2 STLS_S [0(s, D'dsdt=3] 3\ leal’ -

On the other hand,

1 S°° S‘” . 8in’es  sin*nt
, t d
e I _ P D= s dadt

N M .
= Z Z CnnCril 1 S
, T

o

. s o ts
SIN’es i,-insgg 1 S SIN'TE oyt gy ’
-~ & N ?

which yields, because of

1 (x=0)

18“’ 1—cos au
0 (x+0) ,

lim — — e du=
a0 T J-oo aw

oo =) : 3 N M
tim 1" (" |, o200 ST Godt=3 5% fenl
—o00J —oo S

&,7—0 71'2677 n=0 m=0

where ¢, 7 tend to 0 independently. Therefore we have the Wiener
formula

15 tim - (" (° *dsd
(1.5) S,}IB&4STS—TS—S (s, t)Pdsdt
. 1 (= (~ sin’es sin’nt
=1 1k dsdt .
e}nglo 7['2677 g—oog—oolp(s, )l 82 t2 s

Similarly, if (O, ¢) # (0, 0), then writing s + pt = rpcosd, we see
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that
71'}132 SS 24+¢25p2 ei(hﬁut)ds‘it:ﬂ.’;z SRS”e‘mcow?'dad'r
=%§ J(rp)rdr=0(R-") as R—oo .

Thus we also have

im0, Dldsdt= 3, 3 Je.:

(1.6) B e
. — lim 1 Sw S |08, £)[* sin’es sin’)t dsdit .
690 TEN) J—co)—co 8’ t

2. A function with random signs. Let (A, %) be a pair of numbers
in (0, 1)x (0, 1), with the binary expansion
Av=0.a a0, - -+ (2), a;=0o0r 1,
2=0.81B1:Bun - 2), Bu=0or1l.
We define the function f(z, y) as follows:

2011 a1 (M<2EM+1, n<ys<n-+1)
2Bmirmiz (M<L<TEM+1, —n—1<y<—n)
2Bmtizmtr (—m—1<z=s—m, n<y=n+1)
20tz 41 (—m—1<zS—m, —N—1<y=< —n)

1.7) S, )=

(m,n=0,1,2, ---). We wish to show that

(1.8) o(z, y)—- hm Z—.;".T’ST S . fx+s, y+1t)f(s, t)dsdt
_ {(1—|wl)(1—lyl) (x| <1, y|<1)
0 (elsewhere) ,

where S and T tend to infinity under the restriction S=CT for every
positive constant C.

What we are going to show, may be stated also as follows: If
Sf(z, y) has over each square (m, m+1)X(n, n+1) (m, n=0, +1, +2, --.)
either the value +1 or the value —1, and if each choice of these values
is independent of all the others, then the probability that ¢(x, y) will
not have the value given in (1.8) is 0.

To begin with, let us note that for m'sSex<m’+1, n'=ZSy<n'+1,
Im'| <M, |n'|<N, M, N being large positive integers, we have
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4Jl}N S:Si,f (x +8, y+1t)f(s, t)dsdt

e, B L e, .

where

Jm+m'+1, n+n'+1)f(m+1, n+1)dsdt

n+n'+l—y§m+m’+1—z

SS (")dsdt:S
(1) . L3
=(m'+1—-z)(n'+1—y)f(m+m’'+1, n+n'+1)f(m+1, n+1),
SS( )(")dsdt—:S"“ §m+m'+l—”f(m+m'+1, n-+n' +2)f(m+1, n+1)dsdt
2
=(m'+1—z)y—n)fim+m' +1, n+n'+2)f(m+1, n+1),
SS( )(n)det:: S“Hf“—" Sm:1 . Jfim+m'+2, n+n'+1)f(m+1, n+1)dsdt

W[, odsar={"" " fmtm'+2, ntn+2)fm1, nt Ddade

atn'+i—yJmtm'+1—2 .

m

ntan’ti—yJm

=@—m)y—n)fm+m'+2, n+n'+2)f(m+1, n+1).
This representation gives us
#(@, y)=(m'+1—x)(n'+1—y)g(m’, n')
+(m' +1—x)y—n")p(m', ' +1)
+@—m)Y(n +1—y)p(m'+1, n’)
+(@—m)y—n")p(m +1, n’+1) .
Suppose we can prove that

(1 ((m, m)=(0, 0))
(1.9) #(m, n)= 0 (elsewhere) .

Then we see that according as (i) 0<2<1, 0<y =1, (ii) 0<z<1, —1<y=0,
(iii) —1<2=0, 0<y<1, and (iv) —1<2<0, —1<y=0, we have ¢(x, y)=
Al=-x)(1—y), A—2)1+y), 1+2)(1—y), and (1+2)(1+y), and for other
values of (x, ¥), 4(x, y)=0, which can be written simply by

_(@A=l=hA—=lyh)  (2]=1, lylsD)
(1.10) #(®, y)= 0 (elsewhere) .

This, in turn, is written by
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A% v\?

2 poo (oo [SIN—\ [8in—
(111) ¢(x’ y) :(._2_17:[__) g S 2 2 et(uz+w)dud,v
—o0J—00 u v ’
2 2

because of a well known property of Fejér integral. Now writing

. 8\% /. t\?
sinZ\ (sin>
_ 1 ? %
(1.12) Au, ">——2,7§-J_w 5| || et
2 2
(1.11) can be represented by
(1.13) o(z, y)=—1_S°° S“ NG Ay, v) .
21 J-e)-w

Let us consider f(m+m', n+n')f(m, n) for fixed (m’, n’) and varying
(m, n). For any fixed (m’, n’) each for them assumes either +1 or —1
for each (m, n). Any set of signs are equal probably assigned to
squares which are formed by any finite consecutive set of pairs (m, n),
and hence the each choise of any set of signs corresponds to the set of
(A, ¢#) of the same Lebesgue measure.

Let us put
’ ’ a i ’ ’
Sun(m', n)= 3, 3, fm+m', n+n')f(m, n) .

Then by an elementary consideration from the theory of probability,
we have

HOx, 29 [Su,v(m', m')| > MNEe}|
1w 2.(4MN)!

=
Ik k=§'zve/4] (CMN+2k)! (2MN —2k)!

By Stirling’s theorem this is asymptotically

V 27 k=(MNe/s)

2 le\‘v e—4k2/(mv)( 1 )1/2 =0 ((MN)x/ze—MNez/«a) .

Now, take any pair of positive constants C, D(C<D) and fix them. If
we write C=tana, D=tan g8 (0<a<pg<m/2), then
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( M N)1/2 e-MNc%

(M,N):CSN/MsD

oo B o .
:O(S S 7(sin 6 cos 0)1’23‘“?"S‘““O””“rdﬁd'r)
1 Ja

|

O(Sw,rze_(ﬂsinacosp)/«i.rzd,’.)< oo .

1

The convergence of the above series implies from Borel-Cantelli lemma
(transforming (M, N) into single sequence) that the chance that

N— —1
Z_IN {ZMf(m—i—m', n+n')f(m, fn)l > MNe

takes place infinitely often is zero. Hence, except for a set of pair of
(N, ¢) of zero measure,

T—- 1 N—-1 M-—-1 , , S e
”’llgjw 4AMN n=z—"zv mglmf(m+m y 0O f(m, n)| =4’

where M, N tend to infinity under the restriction that C<N/M<D, for
any pair of positive constants C and D. Since ¢ is arbitrarily, and the
sum of a denumerable set of null sets is null, we should have

R T A _
Jlim MS_NS_M fim' +3, 0 +8)f(s, t)dsdt=0 ,

except for a null set of pair of values of (A, ), where M, N tend to
infinity under the restriction in consideration. The transition from
integral (M, N) to general values (S, T') offers no difficulty, and we have

g(m', n')=0 ((m’, n)=(0, 0)) ,
thus completing the proof of (1.9) and therefore (1.10).

3. Constant functions in a half-plane. Let us consider the funection

1 <
(1.14) fw, y)= {0 éz;g
Then for eVery T>0,
1 (7 (7T , 1
4T* S—TS«-T ,f(s’ t)l det_._E .

On the other hand for every >0,
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oo oo I in2
1 S_ S- (s, B sn;zss sin’et dsdt

et t?
1 1 S“’ S‘” sin’es sin’ct _1
2 met)-w)-= g t dsdt= 2
Thus
. 1 T S
(1.15) lim __S S (s, t)[*dsdt
§,T 0 4S8TY-r)-5s
=tim (" {7 |(s, yp-SIE8 SITE oy
sé:;"ﬂ: en —o0 J—o0 8 tz
While we see that
l' 1 T T
lim WS_TS_Tf(m-i»s, y+)f(s, t)dsdt
—im BT+ @—pf_1
e 8T 2"

Thus it can be represented by

Y 1 (7 (S
(1.16) #(z, y)—sl’};wms*rs_s flx+s, y+)f(s, t)dsdt
—-_l_ « < i(uz4vy)
N 271.' —°°§-oa e ' dA(u’ ,v) ’
where
T (w, v=0)
1 Au, v)=
1D %, v) {0 (elsewhere) .

We give one more example. Let us consider the function

t ((2y —x)(2y +2)<0)
(1.18) f@, v)= {0 (elsewhere) .
Then for every T>0,
1 (T (7 . _ _1-
(1.19) ﬁ?g_rs_rlf(s, tFdsdt="1 .

On the other hand for every ¢>0,

1 (= (~ sin’s sin’et
- S_J_Jf(s, typSIes SINEE goqy
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4 S°° ( Sf’2 sin’et dt) sin’es ;.

I

2%t Jo \Jo e / g2
oo £8/2 a3 2. in2

— 4 S (S sun'vdv>sr,1nc-:sd:3
7% Jo \Jo v? 8

_4 S“(S“’” sin’v ;. \sin’w ;.
m2Jo \Jo »? /] ud

Since it is clear that for every >0,

u/2 a3 [ 12
S sin%y dv>s sin’y .
u/2

o 9 v?

and

4 S“ S“ sin® , \siny , 1

7r20(0 o d'v/ i du——z,
the above is strictly greater than 1/4. That is

im (" {° 'dsdt
(1.20) ssrlgo 4STS-—TS—S | f(8, t)l"ds »
<lim —L S“’ S” £ (s, )P SREB SINTE o
€10 eI o) 8 t

Thus in this case, the Wiener formula fails to hold.
§2. General Tauberian theorems.

Let G be a locally compact aberian group and ~(x) be a character
of G. The set of all continuous characters of G forms a group I', the
dual group of G.

If fe LYG), the convolution (f*¢)(x) may be regarded as an average
of ¢ by assigning a weight factor f(x—y) to the value ¢(y). Then we
have

THEOREM (N. Wiener). Suppose ¢ € L=(R), fe LX®), f7)#0 for all
vel, and

(f*)(@) — af(0)  (x——e0).
Then the limit relation

(g*p)(@) — ag(0) (¢ —— o)
holds for every g€ L'G).

If we impose slightly stronger conditions on ¢, the conclusion of the
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preceding theorem may be replaced by the stronger assertion that
é(x)—a as x—co.

Let us call a function ¢ € L=(G) slowly oscillating if ¢(x)—¢(y)—0 as
x—o and x—y—0. More explicitly, we require that for each ¢>0, there
should exist a compact set K in G and a compact neighborhood V of 0
in G such that |g(x)—d(y)|<ec if x—y € V and x¢ K. Then we have

THEORAEM (H.R. Pitt). Suppose ¢cL=(G), ¢ is slowly oscillating,
fe LNG), f(v)#0 for all yeI', and

(F*@)(@)—af(0)  (x—o0).
Then ¢(x)—a as x— oo.

_ For feL(G), we define Z(f) to be the set of all yeI' such that
f(v)=0, and if I is an ideal in L'(G), we define the zero-set of I by

2= 2(f) -

Thus v € Z(I) if and only if f(v)=0 for all feI. Let us notice that if
Iis a closed ideal in LYG) with Z(I) empty, then I=LYG). These
theorems are based on this result.

Now let us modify these theorems to meet our purpose. Let us
consider a path z(t) in G with a real parameter ¢ such that

2(0)=0, 2z2{t)—> o as t—> oo .

This means that for every compact set K there exists a positive number
T such that x(t) belongs to the complement of K for all t{=7T. Then
we have

THEOREM 1. Suppose ¢ € L=(G), fe LXG), f(v)#0 for all vyeTI, and
(fo)@(t)—u)——af(0) as t—co (Vuel).
Then the limit relation
(9*g)(2(t) —u)—ag(0) as t—— oo (VueG)
holds for every geL;(G).

Proor. Replacing ¢ by ¢é—a, we may assume, without loss of
generality, that a=0. The set I of all g € L'(G) such that (g*¢)(x(t) —u)—0
as t—c for all ueG is a linear subspace of L*G) which is clearly
translation-invariant. Also I is closed, for if g¢g,€l and ||g.,—g]|,— O,
then ||g,*¢—9*$|l-—0; and geI. Hence I is a closed ideal in L'(G) with
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Z(I) empty, and so I=LYG).

Next let us call a function ¢ € L*(G) slowly oscillating along a path
x(t) if p(x(t)—u)—g(y—u)— 0 as t — o and z(t)—y — 0 for all ue G. More
explicitly, we require that for each &>0, there should exist a positive
number T and a compaet neighborhood V of 0 in G such that
lg(w(t) —u)—g(y—u)|<e if t=T and x(t)—y<c V. We then have

THEOREM 2. Suppose ¢ € L~(G), ¢ is slowly oscillating along a path
x(t), fe LNG@), f('y);éO Jor all veI', and

(f*)(@(t)—wu)— af(0) as t— o (YueG).
Then ¢(x(t)—u)—a as t— o (YueG).

PROOF. Given >0, choose T and V as above, and let g be the
characteristic function of V, divided by m(V). Then

H(@(8) —u) — (g*p)(w(t) —u) =

o), O —0) —datt) —u—y)dy ,

80 that [g(2(t) —u)—(9*@)(x(t)—u)|<eforall t=7 and u € G. By Theorem 1,
(9*¢)(x(t)—u)—a as t—o for all u € G, and the desired conclusion follows.

We shall slightly generalize these theorems for later purposes. Let
L, be a subclass of L'(G) such that for every v eI, there exists f in
L, with f(’)’)¢0 Then we have

THEOREM 1'. Suppose ¢ € L>(G), and for all fe L,
(f*d)@(t)—u)—af(0) as t— oo (VueG).
Then the limit relation
(g*g)(@(t)—u)——ag(0) as t——> o (YueG)
holds for every g e LYG).

THEOREM 2'. Suppose ¢ € L=(G), ¢ 18 slowly oscillating along a path
x(t), and for all feL,

(f*D@®—u)—> af(0) as t— e (Vue).
Then ¢(x(t)—u)—a as t— o (Yue@).
§3. The Wiener formula.

Let R® be the two-dimensional Euclidean space, M(R?) be a subclass
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of L'(R?), consisting of all continuous functions f for which

o0

(3.1) S 3 max  |f(z, m)<oo,

n=—00 M=—co (2,Zg) eIm,,‘

where I, .={x, x,): m=Zx,<m+1, n=<x,<n+1}. Then for every fe
M(R?), its Fourier transform 7 is defined for every pair of real argu-
ments. Let us also introduce a subclass M, of M(R?), consisting of f
which satisfies the following property:

(3.2) v(u,, w,)eR?*, 3IAfeM,: f(ul, ) #0 .
On the other hand, let V(R?) be a class of functions a of bounded

variation over any finite rectangle for which

prlfmil
(3.3) sup S S da(z,, )< oo .

—o<m,nloJn m

From now on, for the sake of simplicity, we shall use notations «,

u instead of (z,, «,), (4., 4,) and also f(x), a(u) instead of f(x, =,), a(u,, u,)
and similarly in other cases.

Then for every pair of fe M(R?) end a € V(R?), the Stieltjes integral
of f with respect to a is defined and denoted as follows:

3.4 |" | fa—vda)  (vaer).

Let us also consider a path &(f) in R? such as
(3.5) £(0)=0, &#)—— > as t— oo .

Then we have

THEOREM 3. Suppose a € V(R?), and for all fe M,
@6 lim|"|" set)—t-ndaw=a|" |" @z (vCern.
Then the limit relation
@n  lim{" " gew—t-ada@=a|" |" s@dz  viem
holds for every g€ M(R?).

PrOOF. Let us define for any g € M(R?),

(3.8) a@)=\"|"_s@—vdaw .
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Then we shall prove that a(x) € L~(R?) and is slowly oscillating along the
path &(). First, we have

e@i=| 5 5[

N=—00 M=—00

©0

<3 5 maxse-ul| | lda@)

n=—00 Mm=—c0o ye€I

<4 sup. §§ lda@)| 33 max [gw)l<e

—oco<m,n<oco N=—00 M=-—00 Y€ m n

and second,
la(¢®)—8)—a(z—0)|
- I S:S: (9¢6®)—C—y)—g(x— C—v)da(y)

<4 _sup |"("Vlda) 33 max loew—at+w)—ow),

—co<Mm,n<coJn N=—0O M=—00 Y€ m n

since clearly g(x) is uniformly continuous in any compact neighborhood
of 0, it will yield us

la(¢®)—8)—a(x—L{)|——0 as t—— oo and &(t)—x—0 (VL ER?).
Now it follows that
"7 e —c—wawaa
= S:r JEe®)—¢ *x)de:SZ 9@ —y)da(y)
=\" |7 daw|” |” e~ t-ng@—y)ds
=\" {7 da)|” " rewy—t—o—po@ix
=\" |7 s@aal” [" setr—t—2—v)aw)
by the Fubini theorem and change of variables and again the Fubini

theorem for the inversion of order of integration. By the Lebesgue
convergence theorem with the formula (38.6),

|\ fee—t—wa@ias — af” {” g@ie | |° sz

as t— o (Ve R?. Hence we can apply Theorem 2’, to have
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ae®)-0— A" |” g@)dz as t— o (V(eRY.
That is
"\ sew—t—nda@— al” " sz
as t »>o (Ve R?). This completes the theorem.

We are going to apply this Tauberian theorem to prove the Wiener
formula in the two-dimensional case. In fact, the Wiener formula we
want to prove can be stated as the following theorem. For the sake of
simplicity, we shall consider in the first quadrant. Let R: be a half
real line (0, ) and R%: be the first quadrant of the plane. |

THEOREM 4. Suppose f(x,, x,)=0 in (x,, x,) € B: and bounded on R%.
Then the limit relations

1 C,T
(3.9) lim 2ol e e)dndn=4 (vC, C>0)

and

(3.10) 1lim 2GS 4C.G, S S fla,, ) SIECT T, SIN'ECT g 4 — A (VC,, C,>0)
et x; x3

are equivalent in the semse that if either of the limits (3.9) or (3.10)
exists, then the other limit exists and assumes the same value.

ProOF. Let us put
r,=er, x,—e
and
S(@y, T)=9(&y &) -

So (&, &)=0 in (&, &) € R* and (&, &) is bounded on R*’. Again let us
put

C,=e*, C,=¢®
and

T=e¢, e=T"1.

Then (3.9) and (3.10) are written respectively by
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. C+bfl+a
(3.11) th S g Era—tgm ity (s £ NdE g, = A

{—o0 —00 J—o0

for all (a, b) e R?, and

3.12) lim 4 S:Sm sinZe—(¢+e—¢) ginZe—(t+b—¢2) Se Edede,= A

{—oo 7:2 —oc0 e——((+a-—€1) e-—(C+b—52)

for all (a, b) € R®.
Since (&, &) is bounded on R?,

(3.13) sup "\, sadedei< o

—oo<m,n<o Jn

Now let us put

(¢t
(3.1 0@, &0=\"\ ¥, n)dndn, .
Then since (7, 7,) =0,
| e, )l =gn+1, n+1)—glm+1, 0)—glm, n+1)+g(m, %)

=", 0dee,

n

and so

A1 m41
sup | "ldgee, 1<
—o<m,n<o Jn mn
that is, g € V(R?Y. ‘
Furthermore we can write (8.11) and (8.12) in the forms (3.15) and
(3.17) respectively:

[=-]

315 lm|” " K@ra—g, c+o-gddg, 0=4 (Ve BeR),

where

e~fig—t2 (&1 £:>0)
(3.16) K&y &)= 0 (elsewhere) ,
and

[=-]

|” K@+a—g, C+b—g)dole, =4 (Ve b)eRY,

—00 ) —

3.17) lim S
{—o0
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where

(3.18) K. (4, 52)=—4'2 Sinze: i Sinzee_ = .
T e~ "1 e ‘2

Since

S:S: Kiew 52>d51d&=§1§°_°w K&, &)de,de=1,

both (3.15) and (3.17) can also be written as follows:

@.19) lim|” [" K(@+a—g, C+o-eidot, =4 " K, edede.
(V(a, b) & RY

and
@200 lim|” " KCra—s, Cro—gidoe, e0=a]" (" K, erdede,
(Y(a, b) e RY) .

To show the equivalence of (3.15) and (8.17), we quote Theorem 3.
The kernel K, clearly belongs to M(R?), since

1 -1\ 2 3 —&\ 2
%6—5,6—62(31:_2 1) (Sll;—eez 2) (O§51, 52)
s e
Zeten(E N ginten . (6,506
T e
Kz(fn 52)'—— s N2

%eele—fzsinﬁe—h(s_ug__eezz) (51 =< 0 é&'z)
%e‘le‘zsin’e"elsin’e“ez (&, £:50)

and so

| K8y &)< eletemttal
T

Its Fourier transform is

~ 1 2 hed -
Ky(u,, u2)=——27c ’!"[1 et~ rigin®e—tkd s,

2

1 I"(3u+1) (e—T4k/2 — grup/2)Q—iuj—1
2 Ex w,(tu,—1) ) ’
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and then I’Q(ul, u,)7#0 for any pair of real numbers (u,, u,).
The kernel K, is discontinuous, and hence does not belong to M(R?).
The modified kernels

§1+e

§o-t¢ .
Ki(&, & 5)=']‘é'§ S K, (1, 1.)dn,d7,
e2le, Je

1

/ _ell—e-s .6_52 1'_‘6__6

e (Oéély 52)
€ €
e—e11~:“ . 1“2’“" 0=, —<5<0)
— 1——66‘“‘e .e—ezl—“:_’ (—e<£,<0, 0<8,)
__p—t&1—c¢ e p—Ea—t
1 e 1 ] 1 e 2 (—-5_3_81, $2<O)
€ €
0 (elsewhere)

do however belong to M(R?). Their Fourier transforms are
K1('“1; Uy; €)
§1te

_—_-?175_8"_"&8” e—iwmwdeldez—;-S:“Se K7, 7)dn,dn,
§

1

e—““lfﬁ"fz’dsldezglgg S;Kl(slwl, &+ 72)d7,d7,

L4
—00 0

— z 1 ¢ ® —Ep(1+tug)—
_kI=Ix si—/- 2 Sode—nke ’ S

2 1 e‘ukc__l
w=ieV 27 i+ )

Thus Kl(ul, u,; €)=0 only for u,=2mn/e, u,=2nx/e(m, n=0, =1, =2, --.).
Hence there is no one (u, %,) for which this vanishes for every e¢. As
for detailed calculations, refer to the original paper of N. Wiener [10]
or N. Wiener [11]. Now we shall consider the subclass M,={K,(¢, &; ¢€):
€>0} instead of K,(&, &). Since

" ke ssodeae=1  (ve>0),

we can apply Theorem 3 and the equivalence of (3.17) and
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(3.21) lim S"_"JlKl(c +a—&, C+b—&; )dg(s, &)=A
(V(a, b) € R, Ve>0)

are established.
Finally, we shall prove the equivalence of (3.15) and (3.21). First,

we assume (3.15). Let us notice that

=S°° Yo {_]___Sc+b—e2+s§c+a—e1+eKl(7]1’ 7)dn.dn, }dg(&, c)

—eo)—eol g? Jetb—¢, Jeta—g,

"\ K@+a—g, trv—cs ondate, &)

=" TS k@ ra—etn, crb—gtmoanan, lo(e, &)

—ee &

=2\ Vanan " " x@+atn—g, crbtn—eodoe, &)} -

Applying the Lebesgue convergence theorem, it follows that

lim |” \” K@+a—¢, C+b—g; dg(e, &)

{—00 —0o

=6—12§‘§:Admdvz=A (V(a, b) € R, ¥>0),

(]
which is (3.21). Second, we assume (3.21). Let us notice that

e—1
€

(1*‘:" ) K, 8)SKG 85 9=(P=h) Kiete, s+e) -

Since g(g,, &) is defined by (8.14), we then see

(A=) {” |7 m+a—g, tro—gdoe, &)

€ tooo J—eo)-

- Sc_omK*(C_i'a'_eu C+b—¢,; e)dg(8, &)

T\ K@ra—gte Crb—ttodate, £

=(E=H1im (" |7 K@+a—s, Crd—eddoe., &),

{—vo0

(=) T |7 (7 K@+a—g, C+o—e)dot, &)
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sa<(=2)uim | " Kera—e, c+o—cddoc, & -

s {~>c0 —®J-

As ¢ is arbitrarily small, we may make (1—e*)/e and (e—1)/e as close
to 1 as we wish, and hence

|

{—o0

5]

|” K@+ra—g, t+b-cidoc, 2

—00 ) —

<asiim |" (" K@+a—s, t+b-2)do, 80 (V@@ DeRY,

Too J—J—
which is equivalent to (3.15). This completes the proof of Theorem 4.

REMARK. In Theorem 4, we have only used the condition of boun-
dedness of function f to show

n4iftm41
(3.13) sup "\, edsde<e .
—co<M,n<0Jn m
Therefore we can replace the condition of boundedness by somewhat
weaker one.
(1) If fe Li.(R%) and

entlpregm+1
(3.22) sup S S S@ #) g0 e <o

—oo<m,n<ooJ e® em X,%,

then (3.13) is equivalent to (3.22).
(ii) If fe Li.(R%) and

(3.23) STS f@, x)dede,=O(T) as T— oo,
1J0
1¢S

(3.24) SS f(m,, w)dwde,=0(S) as S— oo,
0J1

and

en+lpem+tl
(3.25) sup S S de,dm2<oo ,
0sm,n<oo Je? em T,%,

then (3.13) is also true.

In Theorem 4, it is clear that we can take f(x, x,)=0 if 0<x,<1
and 0=x.,<1 without loss of generality.

First, we assume (3.9), (38.23) and (3.24). Then we can suppose that
S(x,, 2,)=0 if either 0<x,<1 or 0<2,<1 by (8.23) and (3.24), and there-
fore the condition (8.22) of (i) is replaced by (3.25).

Second, we assume (3.10), (8.23) and (3.24). Then we have
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3.26) 1lim %G 4CC S S fw,, x,) SWECTn, sin'eCriwy 00 0 (vC, C,>0)

x; x3
and
(3.27) hm 4C; C f( 2., %) sin’eC; 'z, sin%C; 'z, da,dz,=0
e x? xz

(vCy C:>0) .

Because, we have by f(x, x,)=0,

0<Tim 4C,C, S S fla,, %) sin’eC 'z, sin’%C;'x, dz.de,
1

e~ T72? x x3
_1} E} ;(c)"l Sl j s fl,, @) (smsC xl) da }sm ’eC; 'z, d,

<Tim -26_. 2C, S“’{S‘f(xl, )z, } sin’eC; ', dz, .
=0 7C, e I o x3

Now if we apply the one-sided Wiener formula of S. Koizumi [3], the
last formula does not exceed

Ty |

which turns out to be o(1) as ¢— 0 by (3.23). Thus we have (3.26).
Similarly, we have (8.27) by (8.24). Therefore we can also suppose that
Sz, 2,)=0 if either 0<«,<1 or 0=2,<1, and the condition (3.22) of (i)
is replaced by (3.25).

(iii) If fe L}..(R%) and

1
ST

for any S, T>0, where B is a constant, then (3.13) is also true.
Since f(x, x,)=0, we have for any pair of integers (m, n)

(3.28) S S f@,, ©)dz,de,<B

S.n+1 SG"‘“ deldwz

en Jem X, %,
1 entl pem+1
=e- —;—;;;_,T'S s f(@,, x;)dx,dw,<e’B
e (2 0 0

by (3.28) and it follows (8.22) of (i). It is noticed that (3.28) also implies
the conditions (3.23) and (3.24) of (ii). '
Instead of the condition of boundedness, there is another kind of
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condition to make (3.13) hold.

(iv) If feLl.(R%) and the limit of either (3.9) or (3. 10) exists uni-
formly as for C, C,>0, then'(8.13) is also true.

First, we assume the uniform existence of (3.9) as for C, C,>0.
Since (&, £&)=0, it follows for all sufficiently large values of £,
{+-b L+

S ¢ e~ Cre—tig=Crb=tal (2 2 )dE dE,

—00 J —

A+1>§

%

§;+b §c+a e_(c+,,_51)e—(c+b—$z)f.‘[p($l, &)dé,dg,

¢+b—1JC+a—1

ze( 7 v, eddzde, (V@ BeRy.

(+b—1J{+a—

Now we take one of sufficiently large { and fix it, and if we choose
(a, b) such that {+a—1=m, {+b—1=n for any pan' of integers (m, n),
then we have by the above estimation

A+1ze={""0, edzde

Thus we have (3.13).
Second, we assume the uniform existence of (3.10) as for C,, C,>0.
It follows for all sufficiently large values of ,

o ain2g—({+e—E&;) INn2o—(C+b—§2)
A+1> 4" (° s sine V(& Ed5dE,

e~ {&t+e—§p) e—(C+b—52)
CHbH1fL+a+1
Zis S e—(C+a—Ep) g—(C+b—Ez)
T e
T JL+d {+a

_(8in e~ ¥+t \2/gjin g~ +b-éy)
e—(C+u—€1) e—(C+b—€z)

) e, sdsde,

v

i(sin 3)4 Sc+b+1gc+a+1,/,(51. Sg)delqu (V(a, b) e RY) .

T\ e ¢+b Ji+ta

We similarly have (8.13).
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