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Introduction

Let $D,\overline{D},$ $H^{\infty}$ and $A$ be respectively the open unit disc in the com-
plex plane $C$, the closed unit disc, the algebra of all bounded analytic
functions on $D$ and the algebra of all continuous functions on $\overline{D}$ which
are analytic in $D$ . The norm of a function $f$ in $H^{\infty}$ or $A$ is the supremum
of $|f|$ on $D$ . Let $L^{\infty}(T)$ be the algebra of all essentially bounded,
Lebesgue measurable functions on the unit circle $T$ in $C$. The norm of
a function $f$ in $L^{\infty}(T)$ is the essential supremum of $|f|$ on $T$. We
can regard $H^{\infty}$ as a closed subalgebra of $L^{\infty}(T)$ by considering the radial
limit of a function of $H^{\infty}$ , due to the Fatou’s theorem. A convenient
reference book for the basic facts about these algebras in Hoffman
[2].

It is well known that the Douglas’ conjecture about the closed sub-
algebras between $H^{\infty}$ and $L^{\infty}(T)$ was solved affirmatively by Chang [1]
and Marshall [2] showing that every closed subalgebra of $L^{\infty}(T)$ con-
taining $H^{\infty}$ is unequely determined by its maximal ideal space. How-
ever, when we have an intention to characterize the closed subalgebras
of $H^{\infty}$ containing $A$ , the role of the maximal ideal space is no longer so
definitive as in the case of the Douglas algebras in $L^{\infty}(T)$ , because of
the existence of the two closed subalgebras with the same maximal ideal
space.

In this paper we shall construct these algebras, which seem to be
never known before. The method of this construction is essentially due
to Scheinberg [4]. In [5] we shall show further results, i.e., (i) these
algebras have the same Silov-boundary which is coincident with the Silov-
boundary of $H^{\infty}$ . (ii) These algebras are not log-modular in $L^{\infty}(T)$ . (iii)
Each unit-ball of these algebras is the closed convex hull of its Blaschke
products.
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\S 1. Construction.

For notational convenience, we shall often regard $H^{\infty}$ as an algebr$
of continuous functions on the maximal ideal space of $H^{\infty}$ , denoted $b$]
$M(H^{\infty})$ , and we shall as usual denote $M_{\lambda}$ the set of those maximal ideals
which contain the function $ z-\lambda$ for $\lambda$ in $T$ called a fiber of $M(H^{\infty}$

over N.
By the separability of $\overline{D}$, there exists a countable dense subset

denoted by $\{x_{i}\}_{ieN}$ of $\overline{D}$ . Let $\alpha$ be a mapping from $N$ into $\overline{D}$ defined $b$]
$a(n)=x.$ . By the Cech-compactification $\beta N$ of $N,$ $\alpha$ can be extended $tt$

a unique continuous mapping from $\beta N$ onto $\overline{D}$, which we also denote by
$\alpha$ . Further we know by the compactness of $\beta N-N$, that $\alpha$ maps tht
growth, $N^{*}=\beta N-N$, onto $\overline{D}$ .

Fix an interpolating sequence $\{z_{\hslash}\}$ , for $H^{\infty}$ , which converges to 1 anc
identify $n$ in $N$ with $z,$. in $D$ . We obtain an embedding of $\beta Nint($

$M(H^{\infty})$ , by which $N^{*}$ corresponds to a closed subset $Y$ of the fiber $M_{1}$

Thus a continuous mapping $\gamma$ on $Y$ onto $\overline{D}$ is defined and a mapping $\gamma^{1}$

of $C(\overline{D})$ into $C(Y)$ is defined naturally by $\gamma^{*}(f)=f\circ\gamma$ . It is clear that
$\gamma^{*}$ is isometric. We denote by $\rho$ the restriction mapping of $H^{\infty}$ into
$C(Y)$ , which is norm-decreasing and which maps $H^{\infty}$ onto $C(Y)$ becaust
$\{z_{n}\}$ is interpolating. Define $B_{A}$ and $B_{c}$ to be $\rho^{-1}\circ\gamma^{*}(A)$ and $\rho^{-1}\circ\gamma^{*}(C(\overline{D})\backslash $

,
respectively.

We shall show that these subsets $B_{A}$ and $B_{\sigma}$ are closed subalgebras
satisfying that $A\subsetneqq B_{A}\subsetneqq B_{C}\subsetneqq H^{\infty}$ . Since the mapping $(\gamma^{*})^{-1}\circ\rho$ is norm.
decreasing $f\underline{r}omB_{4}$ (resp. $B_{\sigma}$) onto $A$ (resp. $C(\overline{D})$), the completeness of
$A$ (resp. $C(D)$) implies the completeness of $B_{A}$ (resp. $B_{c}$). The image of
$A$ by the mapping $(\gamma^{*})^{-1}\circ\rho$ is the set of constant functions which is
contained properly in $A$ . Therefore $B_{A}$ contains properly $A$ . The rela.
tion $B_{A}\subsetneqq B_{C}$ follows immediately from $A\subsetneqq C(\overline{D})$ . Since $Y$ is totally
disconnected, $\gamma$ is not injective. Hence $B_{c}\subsetneqq H^{\infty}$ . Thus we obtain two
algebras, closed in $H^{\infty}$ , in which $A$ is contained properly.

Now it has only to show $M(B_{A})=M(B_{c})$ . Let $I$ be the set of all
functions of $H^{\infty}$ which vanish identically on Y. Then $I$ is a closed ideal
of $H^{\infty}$ and at the same time an ideal of $B_{c}$ and of $B_{4}$ . Note that $I$ is
the kernel of the mapping $(\gamma^{*})^{-1}\circ\rho$ . Thus we have two isomorphisms;
$(*)$ $A\cong B_{4}/I$ , $C(\overline{D})\cong B_{\sigma}/I$

For any $\varphi$ in $M(B_{A})$ , either (I) $\varphi^{-1}(0)\supset I$, or $(iI)\varphi^{-1}(0)\not\supset I$. In the
first case, a complex homomorphism $\tilde{\varphi}$ from $A$ into $C$ is well-defined
by $\varphi=\tilde{\varphi}\circ\psi$ , due to $(^{*})$ , where $\psi$ is the canonical mapping of $B_{A}$ onto
$B_{A}/I$. It is well known that $\tilde{\varphi}$ corresponds with a suitable point $\zeta$ of $\overline{D}$ .
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Consequently for any $f$ in $B_{A}$ holds $\varphi(f)=((\gamma^{*})^{-1}\circ\rho(f))(\zeta)$ . In the second
case, there is an element $f$ in $I$ such that $\varphi(f)\neq 0$ . We may assume
$\varphi(f)=1$ and define a mapping $\hat{\varphi}_{f}$ from $H^{\infty}$ into $C$ by $\hat{\varphi}_{f}(g)=\varphi(fg)$ . This
mapping $\hat{\varphi}_{f}$ is well defined because of $H^{\infty}\cdot f\subset I$. Further $\hat{\varphi}_{f}$ is a
complex homomorphism. In fact, for elements $g$ and $h$ of $H^{\infty},\hat{\varphi}_{f}(gh)=$

$\varphi(fgh)=\varphi(f)\cdot\varphi(fgh)=\varphi(fg)\cdot\varphi(fh)=\hat{\varphi}_{f}(g)\cdot\hat{\varphi}_{f}(h)$ . So $\hat{\varphi}_{f}$ is an element
of $M(H^{\infty})$ which is an extension of $\varphi$ of $M(B_{A})$ . Note that $\hat{\varphi}_{f}$ is in
$M(H^{\infty})-Y$.

One can get the same result as above if one changes $B_{A}$ to $B_{C}$ .
To any element $\varphi$ of $M(B_{A})$ , in the case of (i), we correspond an

element $\Phi$ of $M(B_{\sigma})$ defined by $\Phi(g)=((\gamma^{*})^{-1}\circ\rho(g))(\zeta)$ , where $\zeta$ is a point
of $\overline{D}$ induced by $\varphi$ , and in the case of (ii), we correspond an element $\Phi$

defined by $\Phi(g)=\hat{\varphi}_{f}(g)$ . In either case $\Phi$ is always an extension of $\varphi$ .
Hence $M(B_{A})$ is injectively mapped into $M(B_{c})$ . On the other hand, the
restriction mapping of any element $\Phi$ of $M(B_{\sigma})$ to $B_{A}$ , denoted by $\Phi|_{B_{A}}$ ,
is also injective. In fact, for two different elements $\Phi_{1}$ and $\Phi_{2}$ of $M(B_{\sigma})$ ,
there are three cases;

(a) $\Phi_{1}^{-1}(0)\supset I$ and $\Phi_{2}^{-1}(0)\supset I$,
(b) $\Phi_{1}^{-1}(0)\not\supset I$ and $\Phi_{2}^{-1}(0)\supset I$,
(c) $\Phi_{1}^{-1}(0)\not\supset I$ and $\Phi_{2}^{-1}(0)\not\supset I$.

In the case of (a), to $\Phi_{1}$ and $\Phi_{2}$ , two different points $\zeta_{1}$ and $\zeta_{2}$ in $\overline{D}$ cor-
respond respectively; for any $g$ in $B_{\sigma}$ , we have $\Phi_{i}(g)=((\gamma^{*})^{-1}\circ\rho(g))(\zeta_{i})$ ,
$i=1$ or 2. There is a function $f$ in $A$ such that $f(\zeta_{1})\neq f(\zeta_{2})$ . We can
find a function $\tilde{f}$ in $B_{A}$ with $f=(\gamma^{*})^{-1}\circ\rho(\tilde{f})$ . For this function $\tilde{f}$ holds
$\Phi_{1}(\tilde{f})\neq\Phi_{2}(\tilde{f})$ . Hence $\Phi_{1}|_{B_{A}}\neq\Phi_{2}|_{B_{A}}$ . In the case of (b), there is a function
$f$ in $I$ such that $\Phi_{1}(f)\neq 0$ and $\Phi_{2}(f)=0$ . Because of $IcB_{A}$ , we have
$\Phi_{1}|_{B_{A}}\neq\Phi_{2}|_{B_{A}}$ . In the case of (c), there is a function $f$ in Iwith $\Phi_{1}(f)\neq 0$ .
If $\Phi_{1}(f)\neq\Phi_{2}(f)$ , this case is reduced to (b). Thus we have only to consider
the case where $\Phi_{1}(f)=\Phi_{2}(f)$ . Since $\Phi_{1}\neq\Phi_{2}$ , there is a function $g$ in $B_{c}$

with $\Phi_{1}(g)\neq\Phi_{2}(g)$ . The function $fg$ is in $I$ and satisfies that $\Phi_{1}(fg)\neq\Phi_{2}(fg)$ ,
whence $\Phi_{1}|_{B_{A}}\neq\Phi_{2}|_{B_{A}}$ . Consequently we have $M\langle B_{A}$) $=M(B_{\sigma})$ .

\S 2. Remark.

When we study the properties of subalgebras between $A$ and $H^{\infty}$ ,
the method in \S 1 seems to be useful. The essential parts of this con-
struction is as follows; first, we fix a separable compact Hausdorff space
$X$ and have two different uniform algebras $B_{1}$ and $B_{2}$ on $X$ ready be-
forehand, with some convenient relations or properties. Next we fix an
interpolating sequence $\{z_{n}\}$ in $D$, converging to a $p_{v}oint$ of $T$, and fix a
mapping from the growth, i.e., $Y=\beta N-N$, of the Cech-compactification
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of $\{z_{n}\}$ onto $X$.
Then we can construct two subalgebras $\tilde{B}_{1}$ and $\tilde{B}_{2}$ in the same way

as in \S 1, satisfying with $A\subsetneqq\tilde{B}_{1},\tilde{B}_{2}\subset H^{\infty}$ and that the given relation
between $B_{1}$ and $B_{2}$ are translated into relations between $\tilde{B}_{1}$ and $\tilde{B}_{2}$ . $Il$

\S 1, we take $X$ for the closed unit disc $\overline{D},$ $B_{1}$ for the disc algebra $A$ an $($

$B_{2}$ for $C(\overline{D})$ . By using that $C\subsetneqq A\subsetneqq C(\overline{D})$ and that $M\langle A$) $=M(C(\overline{D}))=\overline{E}$

we obtain the subalgebras $B_{A}$ and $B_{\sigma}$ with $A\subsetneqq B_{A}\subsetneqq B_{C}\subsetneqq H^{\infty}$ and $M(B_{A})=$

$M(B_{c})$ .
If we take $X$ for the unit circle $T,$ $B_{1}$ for the disc algebra 1

restricted to $T$ and $B_{2}$ for $C(T)$ , then, since by the Wermer’s maximality
theorem, there is no proper closed subalgebra between $A$ and $C(T),$ $W^{1}$

can obtain closed subalgebras $B_{A}^{\prime}$ and $B_{c}^{\prime}$ with $A\subsetneqq B_{A}^{\prime}\subsetneqq B_{c}^{\prime}\subsetneqq H^{\infty},$ betwee]

which there is no proper closed algebra.
If we take $X$ for the topological boundary of an open ball or poly

disc, denoted by $O$ , in $C$“, and $B$ for the algebra of all continuous func
tions on $O\cup X$, analytic in $0$ , then we obtain the closed subalgebra $i$

of $H^{\infty}$ containing properly $A$ , for which the corona theorem fails. Thi
fact is due to Scheinberg [4].
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