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Introduction

In the previous papers [10], [11], [12], we have seen that Fourier
integral operators on a compact manifold have some group theoretical
characters. Indeed, one of the purposes of this series is to show that
the group of all invertible Fourier integral operators of order 0 on a
C= compact riemannian manifold is an infinite dimensional Lie group.
It should, however, be remarked that we have not given in the previous
papers the definition of infinite dimensional Lie groups. It will be
given in this paper, hence one may read this paper without knowing
 anything about the previous papers.

Now, it continues to be a basic question when one may call a group
G an infinite dimensional Lie group. However, taking the basic proper-
ties of finite dimensional Lie groups in mind, we suggest the following
(L1)~(L3) are necessary at least, where

(L1) G is a C~ infinite dimensional manifold and the tangent space
g at the identity has a Lie algebra structure, called the Lie algebra of G.

(2) There exists the exponential mapping exp of g into G such
that {exptu; tc R} is a smooth one parameter subgroup of G for every
uEg.

(LL8) Local group structures of G (i.e., a neighborhood of the identity)
can be determined by its Lie algebra g.

Hilbert or Banach-Lie groups [1], [5] satisfy these conditions and so
do strong ILB- (or strong ILH-) Lie groups defined by Omori [8], [9].
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Note that strong ILB-Lie groups include Banach-Lie groups, hence finite
dimensional Lie groups. In this paper, we shall define a wider concept
of infinite dimensional Lie groups, which will be called regular Fréchet-
Lie groups throughout this series. Roughly speaking, a regular Fréchet-
Lie group is a C* manifold modeled on a locally convex Fréchet space,
having a C* group structure on which product integrals can be well-
defined and have some smoothness properties.

§1. Several remarks on differentiability.

In this paper, we shall use the notion of differentiability defined in
[8]. Let U be an open subset of a Fréchet space E, and F another
Fréchet space, where all Fréchet spaces in this series are assumed to
be locally convex. A mapping f:U—F is a C° mapping, if it is con-
tinuous. f is called to be r-times differentiable at xe U, if f is C™* on
a neighborhood of x and there exists a continuous symmetric »-linear
mapping

D f)(x)y: ExX+++« XxXE—>F

such that
Fw)=f(@+v)— f@)—(Df)@)®)— - - - --;,%—(D*f)(x)(v, ey

satisfies the property that

R(t, v)= {F(t'v)/t' , t#0

0 , t=0

is continuous on a neighborhood of (0, 0). f is called a C* mapping, if
f is r-times differentiable at each € U and the mapping

Df:UXEX-:-+XE—F

is continuous. (Cf. See [2], [13] for the various definitions of the differen-
tiability.)

Let U, V be open subsets of E, F respecitively, and G another
Fréchet space. f:Ux V—G will be called a C* mapping with respect to
the first variable if for each fixed ve V, f:U—G is C* and every D:f
for 0<s8=<r is a continuous mapping of UX VXE X ... XE into G, where
the suffix 1 of D means the derivative with respect to the first variable.
The paritial differentiability for the second variable is defined by the
similar manner and the derivative is denoted by D,, etec..
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The following properties of C™ mappings are used very often in this
series. (For the proof, see [3] and [4]):

(A) A composition fog of C mappings f, g 18 a C* mapping, and
D(fe9)=Df-Dg, more precigely

D(f og)(@)(v) = (D f)(g(@)((Dg)(x)(®)) .

B) If f:U—F is C7, then D*'f:UXEX---XE—F 18 C™* for s,
and D:D*f=D*f, t+s=r.

C) f:UxV—-G 18 C if and only if f is C" with respect to both
first and second variables.

As Fréchet spaces are assumed to be locally convex, there are a lot
of continuous linear functionals. Let A: F—R be one of them. For a C*
mapping f:U—F, h(t)=nf(x+tv) is an R-valued C'-function on [0, 1].
Using the mean value theorem for h, we obtain

(1) fat+o=r@+| OH@+w)wadt .

Thus, using (B) successively, one can get the following Taylor’s expansion
theorem: For a Cr function f,

(2) fle+v)=Ff@+DH@)@)+---+ (r_ll)!(D"‘f)(w)(v, e, )

tA—t)" s
+ SF(F:T)T(D F@+tv)(w, -« -, v)dt

= f(@)+(Df) @) W)+ - +—7_1T(D’f)(x)('v, ceey )

+ S‘Q—_ﬂ_':‘_{(pr @+ tv)— (D)@}, - -, v)dt .
0 (1‘ - 1) !

By this formula, one can get the converse of (B), namely,

B f:U—-F 48 C" if and only if f is C* for some 8(<7r) and
D'f:UXEX---xE—>F is C.

REMARK. The above notion of differentiability coincides with the
usual one if E, F, G are finite dimensional vector spaces. However, if
E, F, G are infinite dimensional Banach spaces, the above notion is weaker
than the usual definition of differentiability. For instance, the above
definition requests only the continuity of D"f:UXEX:--xXxE—F, while
in Banach spaces the continuity D"f:U— Li;n(E, F) is usually requested,
where the last one is the Banach space of symmetric »-linear mappings
of Ex---XE into F with the uniform topology. The continuity of



368 H. OMORI, Y. MAEDA, A. YOSHIOKA AND O. KOBAYASHI

D f:UXEX---xXxE—F ensures only that D"f:U— L.,.(E, F) is locally
bounded, namely for any xz¢ U there is a neighborhood W of z, and a
positive constant C such that

D)@, -+ -, I SClloi] [[0.]]- - - |0, ]

for every ye W, v, ---,v,€E. Thus, by DD 'f=D"f and the mean
value theorem (1), we have

D™= f) (@ +w) — (D7~ f)(@)[| = Cllw]] .

Therefore, if f:U—F i3 C* in the above sense, them f is C™ in the
usual sense in Bamach spaces. Thus, if we concern only C* mappings,
the above two notions of differentiability make no difference.

It should be remarked, however, that above two notions make a
difference for the partial differentiability. In our definition, we request
only the continuity of D;f:Ux VXEX---XxE—G for s<»r. For a fixed
veV, DI f:U—L;L(E, G) is continuous by the above remark, but this
does not mean the continuity of D;'f:U x V- LGL(E, G).

Suppose E, F are Fréchet spaces and U, V are open subsets of E, F
respectively. Let f:U—V be a C* mapping (r=1). We define the
differential map df:UxE— VXF by

(df)(x, v)=(f(2), (Df)(@)(®)) .

Df(x)(v) is denoted sometimes by (df),v, (Tf),v or f «,V- Obviously,
df:UXE—VXF is a C" mapping by (B’). If fisa Cr-diffeomorphism
(i.e., f™* exists and C7), then df is a C*! diffeomorphism.

LEMMA 1.1. If f:U—V s invertible and C* mapping (r=1) and
if £ 18 C' mapping, then ™' is C* mapping.

PROOF. By using the composition rule (4), the derivative of f* at
vy is given by
DfN=Df(@)™*, y=flx)eV.

Therefore, if y, y+we V

DfHNy+w)—(Df)(w)
= —(DfDUDAS(y+w) — (D @)Df (y+w)) .
Hence by the continuity of (Df~")(y)w and the smoothness of f, we see

that (Df~")(y)w is C', and hence f~'is C>. The desired regularity follows
inductively by this manner. : |
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Now, we define the notion of C= Fréchet manifold M modeled on E
as usual, i.e., M admits an admissible atlas which is a collection of pairs
(U, ¢) of local charts with C* coordinate transformations. A tangent
vector X,, at xe€ M, is an equivalence class of triples (U, ¢,, X;) where
(U, ¢;) is an arbitrary chart of M at 2 and X, is a vector of E; two
triples are equivalent if

X;= D(¢J’°¢;1)(¢i(x))Xt .

The representative X;€E of X, in the triple (U, ¢;, X;) plays the same
role as the components in a local coordinate system. The space of vectors
tangent at the point x, together with its natural vector space structure
is the tamgent vector space T,M. It can be easily verified that the set
of vectors tangent to M, TM=U,.» T.M has a structure of a C~
differentiable manifold modeled on EXE by the family of charts
{(U.cx T.M, T¢)} where {(U, ¢)} is an atlas of M modeled on E and T¢
the homeomorphism of U,.y T.M on UXE defined by

To(z, X,)=(g(2), X)

X being the representative of X, in the map (U, ¢). Moreover, the
space T, is given a fibre bundle structure with the natural projection
7: Ty— M of C* mapping and is called the Tangent bundle. Thus, the
CHk< =) vector fields are defined as usual as C* sections of w: Ty— M.
However, we do not define the structure of vector bundle on T, for it
is not easy to define a reasonable topology for GL(E) as a topological
group.

A subset N of M will be called a C~ Fréchet submanifold, if there
is a closed subspace F of E and for every x€ N there is a C~ local
coordinate system ¢:U—M of M at z such that ¢ maps UNF homeo-
morphically onto the arcwise connected component of x of a neighborhood
of x in N under the relative topology.

A subset 7 of T, will be called a subbundle of T, if the following
conditions are satisfied:

(SB1) 7: 7"— M is surjective, and 7#~*(x)N 7" is a closed linear sub-
space of T,M for every xc M. We denote z7'(2)N7" by F, and call it
the fiber of 7~ at w. '

(SB2) There exists an open neighborhood V, of each ze M, and a
C~ diffeomorphism -, of V,xF, onto z7Y(V,)N 7" C Ty such that 7vy.(y, v)=
y, y€ V,, and 4, is linear with respect to the second variable.

(SB3) If V.N V,#@, then iy, (V.N V,)xF,—(V,N V) XF, is C~.

Given a Fréchet space E and a unit interval I=[0, 1], let C*I, E)
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be the set of all C* mappings from I into E (k=0,1,2, -..). The set
C*(1, E) has the structure of vector space in the obvious way. Consider
the evaluation map

ev:: IXCYI, E)—EX :--- XE
k+1

given by
ev(¢, ¢)=(c(t), (De)(@), - - -, (D¥e)()) .

Putting a Fréchet structure into Ex ... xE, we obtain the uniform
topology of C*(I, E).

Let M be a C~ Fréchet manifold modeled on E and let C*(I, M)
k=0,1,2, ..., be a space of all C* mappings from I into M. Then, we
have the following.

LemMA 1.2. CXI, M) i8 a C° Fréchet manifold modeled on C1, E)
Sfor each £k=0,1,2, --.. For a fized point pe M,

C:I, M)={ce C(I, M); ¢(0)=p}
18 a C* Fréchet submanifold of C*I, M).

PROOF. Let U, V be open subsets of E and let ¢:U—V a C= diffeo-
morphism. Define a mapping f:C°(I, U)—-CI, V) by S ) @) =o(\(2)).
Obviously, the crucial part of the proof is to show that fisof C=. For
that purpose, set

F(1)(8) = $(Ov+ () — $OME)) — (DS M) (pe(E)) — - -
—:—!(Dw)(x(t»m(w, cee, pu(8)

By Taylor’s theorem, we have

P 0= GO D800+ 0010~ Do DNe®), -+, 1t .

Thus, using the uniform continuity of Drg(\(t)+61(t)) we see that

F(su)/sm 80

R(s, #)={ 0 5=0

is continuous on a neighborhood of (0, 0). Since D (@) (e, (8), - -+, p£.(2)
is continuous with respect to xeC%I, U), p,, -- -, #,€C(I, E), for all



REGULAR FRECHET-LIE GROUPS 371

r=0, we have that f: C°(I, U)—C°(I, V) is C" and D" f(\)(ty, * -, #)()=
Drg(M(@))(.(8), - - - 4,.(2)).

To prove the differentiability for k>0, we have only to use
d*6:UXEX -+ XE—VXEX ... XE instead of 4. O

§2. Several remarks on FL-groups.

An FL-group is the combined concept of a topological group and a
C> Fréchet manifold such that the group operations are C*. Therefore,
one may call an FL-group a Fréchet-Lie group. However, we hesitate
to use the name “Lie”, for a general FL-group may not have the pro-
perties (Ll1)~(L3) mentioned in the introduction.

Now, let G be an FL-group. The tangent space g of G at the
identity e is naturally identified with its model space, and hence g is
a Fréchet space. By definition, there is a C~ dlffeomorphlsm & of an
open neighborhood U of 0 in g onto an open neighborhood U of e in G
such that £(0)=e, (d&),=1d. & U—U will be called a local coordinate
system at e. (Usually, & U—U is called a ‘“local coordinate system”.
We use the above definition in accordance with the exponential map of
the group.) As g satisfies the first countability axiom, so also does G,
and hence G has a right-invariant metric (cf [6] p. 34), where a metric
p on G is called a right-invariant metric if p(xa, ya)=p(zx, y) for every
x, Y, a €G.

As G is a topological group, there is an open neighborhood V of 0
in g such & V)ecU, &V)'=&V). Therefore, by the local coordinate
system £ at e, the group operations of G are represented by

N(w, v) =& (¢WEW)) , c(w)=¢(¢w)™).

For every geG there is an open nelghborhood W of 0 in g such
that g&( WygtcU. We set

A (u)=¢£"(ge(w)g™) .

As G is FL-group, 7, ¢ and .71,, are C* on the domain on which they are
defined.

Since 7(u, 0)=u, (0, v)=v, we see (D.))w0=(D)co=1Id (the iden-
tity). Let a(¢), b(t) be C* curves in G such that a(0)=b(0)=e. Then,
a(0), b(0) e g, where d(0)=(d/dt)|,—.a(t). The product c¢(t)=a(t)hd(t) is a C*
curve in G with ¢(0)=he€G. The following is easy to prove.

LEMmMA 2.1.
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Tj{ ‘ _ a(E)hb(8)=dR,6(0) +dL,5(0)

d

7L a(t)'=—a(0) .

t=0

where R,(resp. L,) denotes the right- (resp. left-) translation.
Let G be an FL-group. For every ge @, define the map A, on G
by A,h=ghg™. Then the map A: GXG—G,

(3) Ag, h)=A;h

is C*. We often use the notation A(g)h instead of Ah. Given ueg,
there is a C* curve ¢(f) in G such that ¢(0)=e, and é(0)=wu (for instance,
c(t)=&(tu) satisfies this). Define the adjoint map Ad(g), g€ G on g by

_J_’ -1 =@
(4) Ad(g)u= 7 ,_ge)g ( 7 t=0A,,c(t)> .
The adjoint map Ad(g) can be expressed in terms of the left and right

auxiliary functions. If we denote the left- (resp. right-) translation
by

L,: h—gh (resp. R,:h—hg), g,hecG,

then we get Ad(9)u=(dR,)""(dL,u. Therefore, the definition (4) does
not depend on the choice of the curve ¢(f). Also, we put the following
map of Gxg to g by

Ad(g, w)=Ad(9)u , geG,uecg.

Let T; be the tangent bundle of FL-group G. Since T,G=g-g(=
(dR,).8), g€ G, we see that T, is C~ diffeomorphic to gxG. The differ-
ential map of the product operation on G gives the group structure on
Ty. Namely, under the identification between 7T, and g X G, we obtain
the product * on gx G by -

(5) (u, 9)*(v, B)=(dR,;)(u+ Ad(g)v)(=(u+ Ad(g)v)-gh) .

LEMMA 2.2. By the product * of (5), §XG turns out to be an FL-
group with (0,e) as the identity and can be identified with T¢ as FL-
group. Moreover, gx{e} is a normal abelian subgroup of gxG.

The above FL-group will be denoted by gxG
Let g(t) be a C~ curve in G such that g(0)=e, §(0)=u. We define
the bracket [u, v] on g by
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(6) [, v]=-%| Ad(gt)w, veg.
dt li=o

To obtain that (6) satisfies the properties of the Lie bracket, we give
the other description of (6). Denote for every ueg by u* the right-
invariant C>= vector field on G such that u*(e)=u, i.e.,

(7) w*(g)=u-g(=(dR,).u) .

Then, we have the following by taking a C= curve such that ¢(0)=e,
¢(0)=w:

d

_0° l -
—d'i- t=oAd(g(t))’U = _—6tas ::89(1;)0(3)9@)
=_dd_ {dR, u—dL,,u} (Lemma 2.1)
S 1e=0
a2
— * __ Y
=3,u 555% |- c(8)g(t)
=0,u* —Ti_z? - dR, v
=0,u*—0,v*

where in the above computations, differentials are computed by taking
a local coordinate expression. Though d,u*, 3,v* depend on the choice
of a local coordinate system, 9,u* —0d,0* does not depend on it. More-
over, we see that (d/dt)|,—, Ad(g(t))v does not depend on the choice of
g(t). Hence, we get

(8) [, v]=0,u* —8,v*

Since (d*u*),(v, w)=(d*u*),(w, v), w, v, wE g, the above bracket product
satisfies the Jacobi identity, and hence g is a Lie algebra such that
[,]:axg—g is a continuous bi-linear mapping, i.e., g is a Fréchet-Lie
algebra. g will be called the Lie algebra of G.

LEMMA 2.8. Let g(t) be a C' curve in G. Then,

—E;Ad(g(t))'v [u(®), Ad(g(t))v] ,

—&-Ad(g(t)"l)v = —Ad(g(®)™)[u(®), ] ,

where u(t)=(dg(t)/dt)-g(t)™ € g.



374 H. OMORI, Y. MAEDA, A. YOSHIOKA AND O. KOBAYASHI

PROOF. Remark at first that Ad(g(t))v is C' with respect to t&. Note
that Ad(g)Ad(h)=Ad(gh) and (dg/dt)-g(t)"*=de(su(t))/ds|,-. We compute
as follows:

L adgeyv=-L| Ad+a)w

s |s
=Tqu"’ Ad(e(su(t) - g(t)w
8 |s=0

=Ed; _Ad(e(eu(e) Ad (9(O))

=[u(t), Ad(g(t))v] .

(Remark that g(su(t)) is C~ w.r.t. s and use (6)). Similarly, by Lemma
2.1 and (6),

L Ad(@@®w=-3| Ad@®)HAdEEu)
t ds 8=0

=Ad(o() 2| _ Ad((ouct) o

= — Ad(g(®)I[ult), v] . .

LEMMA 2.4. Ad(g):g—g i3 an automorphism of the Lie algebra and
Ad: Gxg—g, Ad(g, u)=Ad(g)u, g€ G, ucg, is a C° mapping.

PROOF. As GXG—@G, (g, h)—ghg™ is C~, the second assertion is
obvious by definition. For every ge G, Ad(g): g—g is obviously a linear
isomorphism. Thus, we have only to show Ad(g)[u, v]=[Ad(g9)u, Ad(g)v].
This is given as follows:

Ad(@)lu, v=Ad(@)-L-| _Adewyw

_d
= t=OAd(gc(t))v

_d -1
= t=oAd(gc(t)g YAd(g)v

=[Ad(g)u, Ad(g)v] ,
where ¢(t) is a C~ curve in G such that ¢(0)=e¢ and é(0)=wu. The last
equality follows from (6), for (d/dt)ge(t)g~|.—o= Ad(g)u.

Remark that it is not known whether there is the exponential
mapping exp: g— G on every FL-group. Namely one might not be able
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to solve the equation (d/dt)g(t)=u(t)-g(t). However, one can get the
following uniqueness theorem:

LEMMA 2.5. Let u(t) be a g-valued continuous function on [0, 1].
Then, the uniqueness holds for the equation

Aoy =
Ti_t.g(t)_u(t) g@), g0)=e.

PROOF. Let h(t) be another solution such that h(0)=e. Then, by
—U%t—h(traaw)= — ALy =10 R, u(t) + ALy -1 R, u(t) =0 .

Hence by the mean value theorem (1), we have A(t)'g(t)=e. ]

Let g(t) be a C' curve in G defined on [0,1]. We set u(f)=
(dg(t)/dt)-g(t)~ e g.

LEMMA 2.6. Let w(t) be a g-valued C° function on [0,1]. For the
above u(t), the differential equation

a

it v(8) — [u(®), vO]=w(@) , v(0)=0

has a unique solution Ad(g(t))StAd(g(s)‘l)w(s)ds .

PROOF. By using Lemma 2.8, we see easily that
t
Ade@)| Adg(s)w(s)ds

is a solution. Suppose there is another solution #(t). Then »(t)—v(%)
satisfies (d/dt)(v(t)—v(t))=[u(t), v(t)—v(t)] and ¥(0)—©(0)=0. Compute
(d/dt) Ad(g(t)")(v(t)—7(t)), by using Lemma 2.3, and we see easily that
it is identically 0. Hence by the mean value theorem (1), we have

v(t) =v(¢). O

§ 3. Product integrals and the definition of regular Fréchet-Lie
groups.

Now, we start with considering a division 4:a=t,<t,<:-:<t,=Db,
of a closed interval J=[a, b]. By 4 we indicate also the set of dividing
points {t,, ---, t,}. For a division 4 of [a,b], we denote by |4]| the
maximum of |¢;,,—¢;|.

Let G be an FL-group and g its Lie algebra.
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DEFINITION 3.1. A step function defined on [0, €] X [a, b] is a pair (h, 4)
of a division 4 of [a, b] such that |4|<e and a mapping h: [0, €] X[a, b}] =G
satisfying the following:

(i) h(0, t)y=e for all te[a, b], and h(s, t) is C* in s for each fixed ¢.

(ii) h(s, t)=h(s, t;) for (s, t)e[0, el x[¢t;, t;s1).

EXAMPLE. Let &:U—U be a local coordinate system at e¢ such that
U is a convex neighborhood of 0 in g. Let u:[a, b]—¢g be a mapping
which is piecewise constant. Then h(s, t)=¢&(su(t)) is a step function
defined on [0, €] X[a, b] for an appropriately small ¢.

Denote [a,bd] by J. By .54 ,(G) we denote the space of all step
functions on [0,¢e]xJ, and by S, (@) the space of all mappings
h: [0, e] xJ— G such that (h, 4) is a step function for some 4.

DEFINITION 3.2. A mapping h: [0, ¢] xJ— G will be called a C-hair
at e if

(i) h(0,t)=e for all teJ, and h(s, t) is C' in 8 for each fixed ¢.

(ii) h(s, t) and (0h/os)(s, t) is C° with respect to (s, t) € [0, €] xJ.

If u: J—g is a continuous mapping, then g&(su(t)) is a C'-hair at e
defined on [0, ] xJ for a small e. By H},(G) we denote the space of all
C'-hairs at ¢ defined on [0, €] xJ.

Let o be a right-invariant metric on G mentioned in the previous
section, and d a metric on g by which g is a Fréchet space. Define a
metric 0 on the space of the union of S, ,(G) and H},(G) as follows:

(9) o(h, b')= max o(k(s, t), k'(s, 1)

oh(s, t) 1 OR'(8, t) 1, -1
+maxd(-———as hs, 1), 23 D (s, 1 )

[0,8]1xJ

Given he H!,(G) and a division 4:a=t,<t,<---<t,=b of J, we
define a step function (o,(h), 4) € &~ ;(G) by

(10) o4(h)(8, t)=h(s, t;) for tel[ty, t;.) .

LeMMA 3.3. Let {4,} be a sequence of a division of J such that
lim, . [4,|=0. Then, for any he H; ,(G), lim,_ .04, (h)=h with respect to
0 defined by (9).

PROOF. Since h(s, t) and (dh(s, t)/ds)h(s, t)* are uniformly continuous
in (s, t), we get easily lim,_..0(c,,(h), k)=0. |

Let K be a compact subset of H!,(G). Then it is easy to see that
h and (0h(s, t)/0s)h(s, t)™* are equi-continuous whenever he€ K. Hence we
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have

COROLLARY 3.4. For a fixed sequence of a division 4, of J such
that lim,_.. |4,|=0, lim, ... 0,4, converges uniformly to the identity on every
compact subset K of H},(G).

For a step function (h, 4)€. <% ,(G), we define a product integral
IT: (h, O)(t=s) by

(11) TL (b, 4)=h(E—ts, t)R(At, tes)- - - Wby, t)R(E—3, )

where %, | are the numbers such that ¢e€ [t t...), s € [t;_,, t,) respectively,
and set 4t;=t;—t;_,.

DEFINITION 3.5. An FL-group G will be called a regular Fréchet-
Lie group, if the following condition is satisfied: Let {(&,, 4,)} be any
sequence in 5% ;(@) for some ¢>0 and J=][a, b] such that lim,_.|4,|=0
and lim,_... h,=h e H};(G) with respect to 0. Then, the product integral

t(h,, 4,) converges uniformly in ¢e€ [a, b].

Once such a condition is satisfied, the limit lim,_. IT.(%,, 4,) depends
only on he H!,(G). Hence we denote the limit by IJi(k, dz) and call it
the product integral of h. Since g,(t)=1I.(h,, 4,) are continuous curves
in G such that g,(a)=e, so is the limit g(¢)=T[.(h, d7)=lim,_. g,(t), for
the uniformity of the convergence is assumed. (For the aspects of the
product integral, see [7]. p. 15.)

If d<ec, we define

131 (h, dz)= {1;[ (h, dr)}ﬂ .

With this convention, we always have

LEMMA 3.6. Let G be a regular Fréchet-Lie group and let h be a
C'-hair at e defined on [0, €] xJ. Then,

T1(h, do)=11 (b, dc) 11 (&, d7)

for every a, B, Y€ J.

PROOF. We may prove only for case a<B3=<7. Notice that if we
take a division 4 of J such that g8 is a dividing point of 4, then for
each step function (h, 4) we get
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7 7 8
1k, H=TL(h, HIT (, 4) .
Using the above equality, we get the desired equality. M|

LEMMA 8.7. Let @: JX H},(G)—G be a mapping defined by D(t, h)=
II.(h, d7). Then @ is continuous, where the topology on H ,(G) 18 given
by 0 defined by (9).

PROOF. Suppose that & is discontinuous at (¢, ). Then there is a
sequence (i, h;) such that [t—¢t,|—0, o(h,, h)—0 but there is §>0 such
that o(TT:* (ks d7), I1.(R, d7))=6. Use Corollary 3.4 for the compact subset
K={h, h, k=1,2,3, ---}. Note that if m— o as k— « then (Ou(hy), 4,)’8
are step functions such that lim,..pg(o,(h.), h)=0, where o, is the
abbreviation of o,,. Hence by the hypothesis of regular Fréchet-Lie
groups, [[:(c.(h.), 4,) must converge to [[.(h, dz) uniformly as k— .
This contradicts the assumption if we choose n(k) for each %k so that it
may satisfy o(I1X(0,w), 4.w), T1#(h,, d7))<8/3. O

REMARK. In what follows, we often use the notation ¢, instead of
0,4, for a typographical reason.

Note that the Lie algebra g of G is an abelian FL-group. For
sufficiently small ¢>0, consider a C'-hair A e H!,(g). Then, &o\ is a C'-
hair at e defined on [0, ] xJ. Set

gon (8, t)=E&oNMrs, 1) (0=7r=l).
Then, obviously lim,_,&o)n,=e with respeet to 2.

COROLLARY 3.8. Let G be a regular Fréchet-Lie group. Notations
being as above, lim,_, [T.(&°N,, dT) converges to e uniformly on J.

ProoF. If it does not, there must exist a sequence (¢, r,) such that
te€dJ, lim, .7, =0 but o(II:F(&oN,,, d7), )=6(>0) for some §. Since J is
compact, one may suppose that {¢,} converges to teJ. Hence, this
contradicts the continuity of @ in the above lemma. O

Finally, we shall remark the following:
LEMMA 8.9. Ewery Fréchet space E is a regular Fréchet-Lie group.

ProoF. Let {(h,, 4,)} be a sequence in % ,(E) such that lim, . |4,|=
0 and {k,} converges to ke H:,(E) with respect to §. We set

Ohuis, ty, wis, )=20(s, 1) .
08

v,.(8, t)= s




REGULAR FRECHET-LIE GROUPS 379

Then, by (11)

te dig
0

T (e, 4)=\ 0.6, 20+ 35|00, ta0

\
= Sivn(O, t)dt+ S:~t'°(v,.(0, t) —,(0, t,))d6
+2,

=0

(’0"(0, ti)'—’Un(O, tt))da ’

k-1 S‘“i+1

0

where 4,: a=t,<t,<---<t, =b, t€[t;, t;s,). Note that

n

t
lims v.(0, t)dt=§tfu(0, t)dt .
Now, remark that the topology of E can be given by countably many
semi-norms. Let | |, be any one of them. Then, we have

t

TL (o, 40—\ (0, at

a

=\ 100, )~ (0, DLt
+0b—a) max 10,8, t)—v.(0, t)|. .

004,

Hence, we see lim,_. [[.(h.,, An):Stv(O, t)dt uniformly in te J. O

§4. The first fundamental theorem.
The goal of this section is as follows:

THEOREM 4.1 (First fundamental theorem). Suppose G is a regular
Fréchet-Lie group. For a C-hair h at e on [0, €] XJ, the product integral
g@®)=T11:(h, d7) 18 C* in t and satisfies the equation

900 —ue)g(t), gla)=e,

where u(t)=(0h/0s)(0, t).

REMARK. By Lemma 2.5, [[i(%, dz) depends only on u(t)=(0h/0s)(0, t),
hence [].(h, dz) is denoted often by JI.(1-+u(z))dz.

Now, let 4,: a<a+A/n)b—a)<a+(2/n)(b—a)< - <a+(n/n)b—a)=b,
be a division of J=[a,b]. By (0.(h), 4,) we denote the step function
defined by (10) (see also Remark after Lemma 3.7) for an arbitrarily
fixed he H!,(G). ’

Recall that J[.(k, dz) is continuous in ¢ by Lemma 3.7 and that
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I1:(a.(h), 4,) converges uniformly to II:(h, d7), teJ. Then, we easily
obtain the following:

LEMMA 4.2. For any open meighborhood U of e in G, there are 6>0
and m, such I,ha,t if n=n, then Ili(o.(h), 4,) and IIi(h,d7) are both
contained in U for every teJ,, where J,=[a, a+34].

Now suppose &:U—U is a local coordinate system at ein G. By the
above lemma one may assume that IJ'(c.(h), 4,)€ U, ITi(h, dz)e T, for
large n and te J,=[a, b’'], if we choose b’ such that b’'—a is small.

Let n(u, v)=¢£"'(&(u)é(v)). This map 7 is defined for all pairs u, v in
U such that &u)é(v)e U. For a small ¢>0 and a Cl-hair he HL,(G), set

M8, t)=¢&""oh(s, t) .
We see easily that \(0, t)=0, (9A/33)(0, t)=u(t), Where u(t) =(0h/ds)(0, t).

LEMMA 4.3. Given u(a)€g and any convex meighborhood V of 0 in
8, there is a convex meighborhood V, of 0 which i3 contained in a
coordinate neighborhood U such that

((@n.),—Idu'e V', for w,veV,uwecul@)+V,,
where we set 7,(v)=9, w), u(a)+ V,={u(a)+v,; v,€ V,}.

Proof is easy, because (d7,),=1d and (d7,),u’ is continuous in (w, v, u').

O

By Lemma 4.2, there are 6>0 and =, such that &'-[[i(h, dz) e V,
for ted,, J;=[a,a+6] and that &'-J[!(c.(h), 4.)€ V, for N=n,, tEJ;.
Moreover, since A(s, t) is continuous and (0, £{)=0, one may assume that
Ms, t)e V, for ted,, s€(0, |4, ], |4.,|=(b—a)/n,.

Now, set w.(t)=¢£""II.(0.(h), 4,), w(t)=¢&""T[i(h, dz). For simplicity
we set also t,=(i(b—a)/n)+a. Then we have

W (B)=PN({E— L, ), wa(ts)) , T E [, tirs) »
{wn(ti+1)=v(x’(|dnl9 ti), wn(ti)) ’ Oéiék—l ’

where [4,]=(b—a)/n. Hence we get

(12)

1
W, (t)= (dﬂw,(tk)).m—t,,,t,,)x(t—tlc, tds+w.(ty) , telt, tew),
0

1
wn(ti+1):So(den(ti))sl(M,,l,t,-)x'(lAnl! ti)ds+wn(ti) ’ Oéiék_l .

Therefore, for te|[t,, t...],
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(18) W, =\ (@ e)ercME— b, t)ds
+ 3 @ridason4), t)ds
=Mt~ b, )+ S04, 1)
| (@ )ty — TAIME— s, 8)ds
+ 3 [ 1@ uisgieg —TAN 4, tds

LEMMA 4.4. For a sufficiently large n and for a sufficiently small
0,>0, if ted,, then

1

Mt—t, ) eula)+V,, te[ty, tir)

k

L (4., t)ew@+ V., 0=sisk-1,

|4,

where V, 18 the convex meighborhood given im Lemma 4.3.

PrOOF. Note that lim, (1/s)A(s, t)=u(t). Using the mean value
theorem (1), we see easily that the above convergence is uniform in
teJ,. Hence, there is 6’>0 such that (1/s)\(s, t) € u(t)+(1/2)V, for s<¢’,
where aV,={au'; w' € V,}. As u(t) is continuous, we get the desired
result. ]

Recall that w,(t)=&"'-[[io.(h), 4,) for teJ,, n=n, and A, t)e V,
for (s, t) €0, |4,|1xJ;. It follows from Lemma 4.3 and Lemma 4.4 that

[(de” (tk))sl (t—2tp,tg) —Id]k‘(t - tk} tk) € (t_ tk) VC ldnl V ’
[(dnwn(t,;))al(ld,,,l,ti) _Id]X(IA,J, tt) € ‘An| V.

Since V is convex, we get from (13) that for any teJ,,
k—1
(19) w, ()= ME—t, )+ ZM4, )} € B+DI4V,

where t e[t tiy1)-
Keep in mind that V is an arbitrary convex neighborhood of 0 in g.

LEMMA 4.5. A(t—t, t) + zan(4,], t) e t—a)ula) + (B +1)]|4,]V,, te
[tk) tk+1)-

Proor. By Lemma 4.4, we see for te€ [t ti.i.),
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ME—t,, t) € E—t)(u(a) + V) C(t—t)ula) +|4, V, ,
M4, ) € |4, (u(a@) + V)

Thus we get the desired one by using the convexity of V,. O
Using Lemma 4.5 and (14), we obtain that
wa(t) € (t—a)u(a)+(k+1)|4,| Vi +(E+1)|4,|V, te d,, .
Note that te[¢, ¢...), hence k|4,|<t—a<(k+1)|4,]. Thus,
wL(t) € (t—a)(w(a)+ Vi+ V)+|4,|(V,+ V).

Hence recalling w(t)=lim,_. w,(t), we get

lim —1
twa+ [—Q@

w(t) € w(a)+(V,+ V)™,

where (V,+ V)~ is the closure of V,+ V. Remark that V and V, can be
chosen arbitrarily small. Therefore, the above result shows that

lim —L () =u(a) .
twet t—a

Namely,
lim — g~ T[(h, dr)=2€"M)0 g)=9% o g).
r 08 08

t-at+ t—@q
This means that w(¢) is differentiable at a from the right hand side.
Since [Ii(k, dz)-TI:(h, dz)=T11.(h, dz), the above result shows also that
w(t)=¢'oII.(h, dr) is differentiable from the right hand side at every
te[a, a+9,] and the derivative D*w(t) is given by

Drw(t)= (@7 ey)ou(t) «

As w(t2 and u(¢) are continuous in te€[a, a+d,], so is (d7.u)u(t). Set
w(t)= So(dm(.,)ou(s)ds. Then w(t) is C* and D*(w(t) —w(t)) =0, w(a) —w(a)=0.

LEMMA 4.6. Let v(t) be a continuous mapping from [a, a+8,] into
g such that v(t) is differentiable from the right hand side and D*v=0
on [a, a+0d,). Suppose v(a)=0. Then v=0.

PrOOF. This fact is well-known for R-valued functions. Let x:g—
R be an arbitrary continuous linear mapping. Then we have kv(a)=0
and D*kv(t)=koD*v(t)=0. Thus, xv=0 for every x. It follows v»=0
because g is assumed to be locally convex. |
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PrROOF OF THEOREM 4.1. The above lemma shows that w({)=
gt [i(h, dz) is C* for te[a, a+0], where ¢ is sufficiently small, and
(d/dt)w(t)=(dN,w)ou(t). This implies that

L1k, dy=utt)- 1L (b, de) ,  t€a, a+3].

Recall again that II:(h, dz)-I1i(h, dz)=TI.(h, d7). This relation gives us
that TIi(h,d7) is C* for all te[a, b] and satisfies the above equation.
Theorem 4.1 is thereby proved. | O

§5. The second fundamental theorem.

Suppose G is a regular Fréchet-Lie group with the Lie algebra g.
As G is a C* Fréchet manifold, there is a C> local coordinate system
g:U—U at e such that £(0)=e. Let u be a continuous mapping of the
closed interval I=[0, 1] into g. If we set h(s, t)=£(su(t)) for a sufficiently
small s, then it is clear that he H:,(G) for some €>0. By Theorem 4.1
g()=TIih, dz) satisfies the equation

L gy=ut)o(t), 9(0)=e.

t

Hence by the uniqueness theorem (cf. Lemma 2.5) we denote this product
integral by TIi(1+u(z))dz, for it depends only on wu(f).

Let C°(I, g) be the linear space of all C° mappings of I into g. C%Z, g)
is a Fréchet-Lie group (Lemma 3.9). We denote by Ci(I, G) the totality
of C* mappings ¢: I—G such that ¢(0)=e. C!(, G) is a group under the
pointwise group-operations, and a topological group under the C* uniform
topology. Moreover, by Lemma 1.2 Ci(I, G) is a C* Fréchet manifold.
The goal of this section is as follows:

THEOREM 5.1 (Second fundamental theorem). Notations and assump-
tions being as above Ci(I, @) is an FL-group, and the mapping -~ : C(1, g)—
CiI, @) defined by Z(u)(t)=TII:1+u(t))dr is a C>-diffeomorphism.

First of all, we shall remark the following:

LEMMA 5.2. Suppose G is an FL-group. Then Ci(I,G) is an FL-
group with the Lie algebra Ci(I, g) which i8 the totality of C' mappings
w: I—¢g such that w(0)=0.

PrROOF. It is easy to see that Ci(I, g) is a Fréchet space under the
C* uniform topology (cf. Lemma 1.2). Let &U—U be a local coordinate
system at ¢ of G. We set
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I={ueCil, g); wt)e U for all tel}
S={ceCY,G); ct)ye U for all tel}.

Peﬁpe £: 353 by Ewt)=&u(t). We set H(u, v)=EE@)E®)), i(u)=
E7'(&(w)™). These are well-defined if %, v are contained in a small
neighborhood of 0, and these are C because #H(u, v)(t)= n(u(t), v(t)),
{(w))=c(u(t)) and 7, ¢ are C (cf. the proof of Lemma 1.2.). For every
g€ Ci, @), we set

A, (w)=E"(gé(u)g™) .

Then, ﬁ,(u)(t)=$“(g(t)e(u(t))g(t)“), and hence it is C* on a neighborhood
of 0 in C}(I,g). Thus, CYI, g) is an FL-group. O

REMARK. It will be proved in the next paper that if G is a regular
Fréchet-Lie group, then Ci(Z, G) is a regular Fréchet-Lie group.

First we remark that the mapping .#: C°(Z, g)— C}(I, G) is bijective.
In fact, .7 is injective by the uniqueness theorem (Lemma 2.5). Also,
# is invertible since the inverse mapping .~ can be written as

(15) f~1(g><t>=%§--g<t>-l , 9eCI, @) .

LEMMA 5.3. Let G be a regular Fréchet-Lie group. Then the mapping
FZ:C(1, g)—>CiI, G) is continuous.

ProoF. For every uc C°(I, g), define o(u)(s, t)==~(su(t)) for small s.
Then, o(uw)e H},(G) for a sufficiently small ¢é>0. Note that there is a
neighborhood W of w such that o(u’) € H},(G) for any v’ € W. It is obvious
that o: W— H,,,(G) is continuous, and hence by Lemma 8.7, _#: C°(J, g)—
Ci1I, @) is continuous.

Remark that _“(u)(¥) is C' in ¢ and (d/dt) 7 (w)(t)=u(t) -~ (u(?)),
hence (d/dt).# () depends continuously on . Thus, _#: C°(I, g)—C(I, @)
is continuous. |

Now, let G be an FL-group. Then the tangent bundle 7, is a
C> Fréchet manifold modeled on gPg. By Lemma 2.2, T, can be re-
garded as an FL-group g+*G. Let C°(I, T;) be the space of all con-
tinuous mappings of I into 7,;. By Lemma 1.2, C(I, T,;) is a C*
Frechet manifold. Let d: C: (I, G)—>C(I, T;) be a mapping defined by
d(g)(t)= (dg/dt)(t) € Ty, for ge C:I, G). It is not hard to see that d is a
C>-mapping. '
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LEMMA 5.4. Suppose G is a regular Fréchet-Lie group. Then, the
mapping -~ C:, G)— C°, g) 18 C.

PrOOF. Let 7: T,—G be the projection. For every we C°(I, Ty),
there is a C° mapping v: I—® such that w(t)=v()-7w(t). By this manner
C°(I, Ty) is C=-diffeomorphic to C°(Z, gxG). We denote this diffeomorphism
by 4. Note that gxG=gxG as Fréchet manifolds. Hence C°(I, g*G)=
C(I,g)xC(I,G). Let v be the projection of C°(I, g) xC°(I, G) to the
first component. Remark that _# ~*(g)(¢t)=(dg/dt)(t)-g(t)* and hence # =
voyrod. Since v, 4, d are C we get the desired result. O

Combining Lemma 5.3 and Lemma 5.4, we get

COROLLARY 5.5. Let G be a regular Fréchet-Lie group. Then the
mapping & :CI, g)—CiI, G) is a homeomorphism.

To prove Theorem 5.1 we must study about the differentiability of
.~ Let geC!(I,3) and w an element of the tangent space T,Ci(I, G) of
CYI, G) at g.  is a C* mapping of I into T, such that ww(t)=g() and
w(0)=0. Put v@®)=w(t)-g(¢)*. Then, v is a C* mapping of I into g such
that »(0)=0.

Lemma 5.6. Notations and assumptions being as above. The deriva-
tive (dF”"),0, we T,Ci(I, G), is given by

(dF),0) <t>=-§-lt-v<t>—[u<t>, v(®)],

where v(t)=w(t)-g(t)™" and u(t) is defined by (dg/dt)(t)=u(t)g(t).

ProoF. Let 2&:U—U be a local coordinate system of G at e. Then,
we see that

(@F,0)O=—| (- e6®)e) oty e

0 0 .
(Zeeoene®)o@®+-2| _u)-&sv(e)

S |ls

Il

9
0s
0
08 ls=0
0 0

=30 oGO+ 5] E(a0(E) - OUE) — D™ ()

=0(t) 4+ 0uy¥* () — 0, U™ ()

where u*(t), v*(t) are right-invariant vector field on G such that w*(¢)(g)=
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w(t)-g, v*(t)(g)=v(t)-g respectively. Remark that (4,.,v* (@) 9@ =
0.wv*(t). Hence by (8) in §2 we have the desired equality. O

Now, we consider the differential equation
(16) L o)~ [u®), vt =w(t), 20)=0,

for an arbitrarily given we C%Z,g). By Lemma 2.6, we see that (16)
has the unique solution

o(®)=Ad(®) | Ade(e)Hw(e)ds .

LEMMA 5.7. Notations and assumptions being as above, the derivative
@7, T,CiI, G)—C°(1,8) 8 a continuous linear isomorphism and
@F)™"C, G)xC(, 9)—>Tsue (the tangent bundle) defined by
(dF )9, w)=(dF");'w i8 continuous with respect to (g, w).

ProoF. Using Lemma 5.6 and the uniqueness of the solution (16), we
t

have easily the first statement. Remark that Ad(g(t))§ Ad(g(s)™MHw(s)ds
1]

and its derivative in ¢ is continuous with respect to (g, w). This implies
the desired continuity. O

We globalize Lemma 1.1 and easily obtain the following from Lemma
5.4 and Corollary 5.5.

LEMMA 5.8. Suppose for a while that #:C(I, 8)—CXI, G) is dif-
Sferentiable at every point. Then, .# 18 C= diffeomorphism.

By the above lemma, we have only to show the differentiability of
# for the proof of Theorem 5.1.

For a sufficiently small ¢>0, let A€ H!,(g). Then, h(s, t)=¢;o\(s, t) €
H! (G). What we shall prove at first is the following:

PROPOSITION 5.9. Notations being as above, set h,(s, t)=h(rs, t)
(0<r<1). Then the function G(r, \) defined by

1. 1 (o
G(r, N)(t)={_';e I)I(h" dr) So 08 0, 7)dz, r+0

0, r=0,
18 continuous on a meighborhood of (0, \) € R x H},(g).

PrOOF. Remark at first j,hat g toTTi(ho, dz)=0. Hence for every fixed
A, there is a neighborhood W of A\ in H},(g) such that goxe H},(G) for



REGULAR FRECHET-LIE GROUPS 387

all pe W, and there is 6>0 such that &'o[[i(got,, d7), &.(8, t)=p(rs, 1)
(ef. Corollary 3.8), is well-defined for all pe W, r<€[0, 6] and te L

Let {4,} be a sequence of division I such that lim,.. |4,]=0 and
|4,|]<e for all n. Recall that T[i(¢op,, dr)=lim, . TIé(o. (e, 4,). By
the same computation as in (12) and (13), we have the following, by
setting w, (&) =& II5(0.(¢°1t,), 4.):

W, (8) = (U=}, 1)+ 3, (At )T, 8
TN (C/AP WS ¢ (AT AL
IS AN (CZMIPR WIS . P (CLICRAL Y
where t€ [t tir), b=ty —t,. Remark that
(@7 = 1A= (dn) u—(dn)u=| (@80 oty W)z -
We have the following by setting
L= (A=), 8) 5 = p((4E)7, )

W, (1) = S:%‘si(so'(t— t.), t)ds- (E—t)r
+k-181_@£‘_(8'r(dti+l), t)ds- (dt,)7
=0Jo 08

1=0
11
S NG I A LY.L
k—1¢1¢1
+ 501 A it Pt 8D -
Thus, putting w,(t)=lim, .. w,,.(¢), we have that

Ly ('3 8 o
Loo, =20, e+ @it e, (350, ), w(@))dvde
Therefore, if »#0, then

t(1
= k723
6, 0= ] @2 gy (L0, D), 0, (2) )iz
Recall that w,(t)=¢"'IIi(h,, d7), and that lim,_, w,(t)=0 by Corollary
3.8. Thus, we get that G(r, ) is continuous on a neighborhood of
0, »). 1
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COROLLARY 5.10. _#:C(I, 8)—CiI, G) i3 differentiable at 0.
PRrROOF. Apply the above result to u(s, t)=su(f). Then, we see that

T e
6, wy=| 7 MA+ru@Nr—{u@iz, r=0,

0, r=0,

is continuous on a neighborhood of (0,0) in R*xC°(, g), where R+=
{r=0}. This implies that _# is differentiable at «=0 and ((d_#)u)(t)=

S:u(z')dz'. O
To prove the differentiability at u e C°(Z, g), we set
£(8(u(t) +v())) = &(5(s, 1)&(su(t)) ,
for a sufficiently small s, say 0<8<e. Denote
h(s, t)=¢°9(s, 1), h(s, t)=&(su(t)), hh(s, t)=5(5(s, t)e(su(t)) .

Let {4,} be a sequence of division of I such that |4,|<e for all n. Then
putting A(g, h)=ghg™, we have for tec [t t...),

SN ) (CXOOWN
=h(t—t, tIR(E—ts, tR(At, e R(dty, t,_,)- - -B(dE,, ER(LE, &)
=h(t—t,, t,,)A(ka(a,,(h), 4., R(dty, tu))x -
XA (li[(a,,(h), 1), K(dyy ti)) x -+
- x A (T1@uB), 4, (4t 1) xT1@(R), 4,) .
Consider a step function %, by

h(s, t) , t' € [, ters)

h.(s, t)= ¢ ~ , .

@0 -{A (T, 40, e, 0) s eltesy t), 1Sisk
24

defined on [0, ] x[0, ¢]. Then, obviously,

[(@.(kh), 4)=TI(k, 4)T1(0.(h), 4, .

0 0

The following lemma is easy to prove.
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LEMMA 5.11. {h,} converges to a C'-hair h € H:, (G) with respect to
0, where

K, ¢)=A(T1(h, do), hGs, ©) )= A(TI(h, do), A(TL(, d2), hGs, 1))

~]?’ROOF oF THEOREM 5.1. Suppose s is sufficiently small. Then fi(s, t)=
&'oh(s, t) is well-defined, and

(18) %f_(o, t’)=Ad<1§[(h, dz')) Ad(fo'[(h, dz)~ )%f—(o, )
= Ad(g(¢))Ad(g(t)Hv(t)) ,
where g(t)=T1Ii(h, dz)=T1;(1+u(z))dz. Remark that

(19) ]j[(l—l—u(z')-l—v(z')) dz'{]_iI(l—i-u(z'))dz'} 1=1§[(ﬁ, dr) .

So, set
Er(sy T)‘—:Ay(t)Ag(f)“lﬁ('rs; T)(=A,(t)Ag(,)—1$(?’)\(’l‘8, t))) ’
and define G(r, v) by |

L. i _ ¢ »
o, v)(t)%—;e 1., d0)—Ad®) | 'AdG@@)@de , 720,

0’ r=0.

By (18) and Proposition 5.9, we see that G(r, v) is continuous on a
neighborhood of (0,0). Using (19) we see that .#:C(I, g9)—C:(, G) is
differentiable at we C'(J, g) and ((df)uv)(t)=Ad(g(t))S:Ad(g(t)‘l)v(t)dt.
By Lemma 5.8, we obtain that _# is a C> diffeomorphism. |

Now, let G be a regular Fréchet-Lie group with the Lie algebra
g. The following is an immediate conclusion from Theorem 5.1:

COROLLARY 5.12. There is a C° mapping exp:3— G such that for
each ueg {exptu},.r 18 a C* one parameter subgroup of G.

PROOF. For ueg, we define exptu by I[Ii(1+wu)dr. Then, g(t)=
exp tu satisfies the equation (dg/dt)(t)=u-g(t), g(0)=e. Since exp tu-expsu,
exp(t+8)u satisfy the same differential equation, we see that exptu-expsu=
exp(t+8)u by using Lemma 2.5. Hence exptw is a one parameter sub-
group of G. As ((d/dt)exp tu)(exp —tu)=u, we see that exptu is C~ with
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respect to t. By the second fundamental theorem, exp u depends smoothly
on u. [

REMARK. In the next paper, we shall prove that regular Fréchet-
Lie group have the properties (L1)~(L3) mentioned in the introduction.

§6. Strong ILB-Lie groups are regular Fréchet-Lie groups.

In this section, we shall show that strong ILB-Lie groups defined
in [8] or [9] are regular Fréchet-Lie groups. By this result, we have a
lot of concrete examples of regular Fréchet-Lie groups. Roughly speaking,
a strong ILB-Lie group is a Lie group, which is modeled on a system
{E, E*, ke N(d)} called an ILB-chain instead of a single vector space.

DEFINITION 6.1. A system {E, E* ke N(d)} is called an ILB-chain
if the following are satisfied:

(i) N(d) is the set of integers such that k=d.

(ii) E* is a Banach space such that E**'c E*. The inclusion is
continuous and has a dense image.

(iii) E= N E* with the inverse limit topology.

If all E*s are Hilbert spaces, then we call {E, E*, ke N(d)} an ILH-
chain.

DEFINITION 6.2. A group G will be called a strong ILB-Lie group
modeled on an ILB-chain {E, E* ke N(d)}, if the following conditions
(N, 1)~ (N, 7) are satisfied:

(N,1) There are an open convex neighborhood U of 0 in E¢ and a
bijective mapping & of UNE onto a subset I of G such that £(0)=e.

(N, 2) There is an open convex neighborhood V of 0 in E° such that

SVNEyYcgUNE), &VNE)'c&UNE).

(N, 3) Set n(u, v)=2&"'(t(w)é@)) for u,ve VNE. Then 7: VNEX VN
E—-UNE can be extended to a continuous mapping of VNE*x VN E*
into UN E* for every k< N(d). (The extended mapping will be denoted
by the same notation.)

(N, 4) Set n,(w)=7n(u,v) for ve VNE*. Then 7,: VNE*-UNE* is
a C~ mapping.

(N, 5) Set 9(w, u, v)=(d7n,).w. For every integer 1=0, ke N(d), 6 can
be extended to a C'-mapping of E*"'x(VNE*)x(VNE* into E*.

(N, 6) Define :VNE—UNE by ¢(u)=¢£"((u)™*). Then ¢ can be ex-
tended to a continuous mapping of VN E* into UN E* for every k< N(d).

(N, 7) For every ge @G, there is a neighborhood W of 0 in E¢ such
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that g ¢(WNE)gc&(UNE), and the mapping u—&*(g7'¢(u)g) can be
extended to a C* mapping of WN E* into UN E* for every ke N(d).

REMARK 1. The above conditions are little weaker than those in [8]
in the statement. However, it is not hard to see that those are in fact
the same conditions. (See [9], pp. 52-59.)

REMARK 2. If the model space {E, E*, k<€ N(d)} is an ILH-chain, we
call G a strong ILH-Lie group. If E=..-.=FE*=...=F% and E° is a
Banach (resp. Hilbert) space, then G will be called a Banach (resp. Hilbert)
Lie group. Of course, if dim E¢< «, then G is a usual Lie group.

Now, we summarize several properties of strong ILB-Lie groups
which will be used later.

LEMMA 6.3. Let N* be a basis of neighborhoods of 0 in E* such that
Wc VN E*® for every WeRt. Then (8(WNE); We N*} satisfies the axioms
of meitghborhoods of the identity e of a topological group. Hence G turns
out to be a topological group under this topology, which will be denoted
by (G, N*). (See [9] 1.2 Proposition, or [8] 1.2.4 Lemma.)

Let G* be the completion of (G, N*) by the right-uniform structure.
In general, G* is only a topological semi-group. However, in our case
the property (N, 6) ensures that G* is a topological group.

THEOREM 6.4. Notations being as above, {G*, k€ N(d)} has the follow-
1ng properties:

(@G,1) Each G* is a C* Banach manifold modeled on E*.

(G, 2) G**'cG*. The inclusion map 18 a C* homomorphism having
a dense image.

(G,8) G=nNG*. (Thus, G i3 a topological group under the inverse
limit topology.)

(G,4) The product GXxG—G, (g, h)—g-h, can be extended to a C'-
mapping of G**'xXG* into G* for any 1=0, k€ N(d).

(G, 5) The inversion G—G, g—g~, can be extended to a C'-mapping
of G**' into G* for any 1=0, k€ N(d).

(G, 6) For any ge< G*, the right-translation R,: G*—G* 18 C=.

(G,7) Define dR(w, 9)=dR,u. Then dR: Tg+XG*—Te 48 a C'-
mapping for every =0, ke N(d).

(G, 8 &VNE—G can be extended to a C diffeomorphism of VN E*
onto a neighborhood VNG* of e in G*, where V=&V N E%).

REMARK. We call a system {G, G*, k€ N(d)} of topological groups an
ILB-Lie group, if it satifies above (G, 1)~(G, 7). It is not hard to see
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that if an ILB-Lie group {G, G* k€ N(d)} satisfies (G,8), then G is a
strong ILB-group.

By the above definition and the above theorem, we see that every
strong ILB-Lie group is an F'L-group.

Suppose we have a strong ILB-Lie group G modeled on an ILB-
chain {E, E*, ke N(d)}. Notations being as in Theorem 6.4, let g* be
the tangent space of G* at the identity e, and let g=nNg*-g can be
naturally identified with the model space E. Note that

2VNE*XVNE*'—UNnE*?

is a C' mapping by virtue of (G, 4) in Theorem 6.4. Set 7.(v)=7(u, v).
Then (d7%.),: E¥'— E** is a bounded linear mapping, which is continuous
with respect to u, v such that ue VNE* ve VN E*.

LEMMA 6.5. For an arbitrarily fixed ke N(d), there are a o-neigh-
borhood W* of 0 in g*¢(0<0<1), and a constant C, satisfying the following:

(a) W*c VNE"

() [[@7.).wlle, =Ci|lwlle—y for every u,ve Wk

(¢) [|6(w, u, V)|li_;=Cillwlli-(7=0, 1) for every u,ve W* weg.

) (@) o @Nera S C o[V’ esllwle for every u,ve W*, o' eg* and
w € g*, where d,0 18 the partial derivative with respect to the third variable.

Proor. Note that (d7:),0=0, 6(0, 0, 0)=0, (a)~(c) follow immediately
by the continuity of d7., and 4. Remark that

0: gkx Vn gkx Vn gk—l igk_l

is C'(cf. (N, 5) in Definition 6.2). Hence d,0 makes sense, and (ds0) ., (")
defines a continuous bilinear mapping of g*xg** into g*~! for every fixed
u, v. Note that (d.0),,,(0)=0. Then (d) follows from the continuity of
d.0. 1

Let {(h,, 4,)} be a sequence of step functions in G defined on [0, €] x
J, J=|a, b], such that lim,_.|4,/=0, and {h,} converges to a C'-hair he
H!,(G) with respect to g (ef. (6)). For an arbitrarily fixed ke N(d), we
choose W* as in Lemma 6.5. Since h(0, t)=e, we see that if s is suf-
ficiently close to 0, say s<¢&’, then h(s, t) € &(W*Ng) for every teJ. Thus,
one may assume without loss of generality that ¢’=¢. Moreover, as {h,}
converges uniformly to k, one may assume that 2,(s, t)e&(W*ng) for
all n and (s, t) € [0, €] xJ.

Now, we set \,(8, t)=¢&'oh,(s, t), N(8, t)=¢&'oh(s, t). Obviously, {\,}
converges uniformly to A with their partial derivatives {ox,/ds}.
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LEMMA 6.6. Notations and assumptions being as above there is a
constant K, such that ||\, (8, t)|.=<K;s for all n and (s, t) €[0, ] xJ.

PROOF. Note that (s, t)=§’(ax,,/as)(a, #)do. Since {9n,/ds} conver-

ges uniformly to o)\/os, there isoKk such that |[(o\./08)(s, t)|,< K, for
all n, and (s,t)€[0,¢]xJ. Thus, using 0<e<1l, we get the desired
one. |

LEMMA 6.7. Notations and assumptions being as above, if t—a<
0/C,K;, them TIi(h,, 4,)€e(W*Nng) for a sufficiently large m. More
precisely,

g T1(h, 4

ké C.K,(t—a) .

PROOF. Let 4,={t, t, ---,t,,}, and let I be the integer such that
telt, t;1,). Note that one may assume C,=1 without loss of generality.
If te(t, t.], then &7*o[Ti(h,, 4,)=N.(t—1, t), and hence [|&7*-T[i(A,, )=
C.K.(t—a) by the above lemma. Suppose that desired inequality holds
for te (¢, t;] and suppose te (¢, £,.,]. Then

t-

& o(T1(hny 40)=1(Mnlt—ts, 1), €1T1 (e, 4)) .

We get therefore

g7 TL(ha, 4

1 t]
<[ (vt —t, 1), onue—t, 00, £eT1h, 40)| do
k 0 a k
+C,,Kk(t;-—a) .
Apply inequality (¢) in Lemma 6.5, and use Lemma 6.6. Then,

. = Celna(t—1, )|+ CKi(t—a)
<C.K,(t—a)<3d . O

&t TTha, 4

LEMMA 6.8. Notations being as above, let 4, be a subdivision of 4.,.
Then (h,, 4,) € %, ;(G) and

=0

k—1

lim | ¢TIk, 4 —&*T1Cha, 4

untformly on the interval a<t=<a-+4/(C.K,).

ProoF. Let 4,={¢,¢t, ---,¢,,}, and let I be the integer such that
telt, tiy,). By the same proof as in Lemma 6.7, we see that w,(7)=
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gt [Ik+1(h,, 4,), @, (1)=¢&7"I1}, (h,, 4;) are well-defined, and TI:(k,, 4,)=
&w,D))t(w,(l—-1))---&(w,(0)) is contained in g(W*Ng) for every t such
that t—a=<0/C.K,. We set

t . ¢ ,
a,(i)= e—1°].;I(hm 4,) y Ba.(D)= E“‘°ItI(hn, 4;) .
Then using the telescope equality
@0y " " U —byb, - - 'b,,,“—"i 1°° 'b:‘—l(a‘i_bj)aj+1' .2 )
J=1

we obtain that

§oT1 (e, 4)— 711 (R, 42)

I

?3, [7(8(5 +1), N1 —1s £5), @ (D)) — (BT +1), N@,(3), a.(5)))]

where we use the convention t=t,,,. Since B,(J), a.(9) € W* by Lemma
6.7, we can apply the following inequality

17(8, 7w, &) —1(B, Ny O)|leer=17:(0(0;, @) —N5(P(Vzy Q))|[=s
éCk”ﬂ('vu o) _77(”2, a)“k-—lécl.f“v1—”2”k—1 .

Therefore, we have

Set A,,;(8)=\.(8, t;), and let t;=7,<7,<---<7,=t;;, be the points in 4,
contained in [¢j, t;4,]. Then,

t t l
301 (AR § (WAL Lo N MOREURP RN O Mg

o(5) = Ty — Tpos), eH‘(h 4)

1 Tp—1 Tp—1
=S 0().».1‘(7'-1:—71’—1): 0'7\,,‘,5(2','—1',,_1), $—1°H (hm A:,))dO' +€—1°H (hn; A:z)
) 70

]
| o

11 Tzt
S O, #(Tit1—T)y O, (Tis1— T, £ 11 (R, 47))do
7o

L~ -,
1o
- O
- O

SOS r‘ﬂ_t‘a(’vn(s, t:')y 0’7\:,.,:'(T¢+1 - Tt), 5_1 ° ﬂ(hm A:.))dst' !
)

i= 0

o

where v,(8, t;)=(0N,/08)(s, t;). Thus, we get



REGULAR FRECHET-LIE GROUPS 395
7\'n(t5+1 —t;, tj) —w,(9)

Pl ri+177e , o ’
=ZS g [Vn(s_l'z-l, tj)—ﬁ(?)n(s, tj), 0'7\.,,,5(2't+1—‘l'i), 5— OH(hny A"))]dsda ,
70

=0 J0JO

where 7;=7,—t;. Note that
(v, u, a)=v+ Sl(daﬂ) w2y XAN
0

Using this, we have

k'n,(t:l'-*’l - t.’i, t.’l) - wn(j)
p—1 Sr¢+1-r¢

=2

i=1

[v.(8+7i, t;)—v.(8, t;)]ds

0

P=1(Cilfrg41—7(1 T3 ,
+35 |17 () e Tk, 2)dNds do

i=0 J0JO )

where (*)= (v,(8, t;), OU, ;(Tiys—7:), M o [1:i(R,, 47)). Remark that
Ao [IHh,, 4,) e WENg for every ane[0,1]. Thus, applying inequality
(d) in Lemma 6.5, we obtain

leeT1 e, 4) =711 R, 42

k-1

L eifre+1—re ,
=G> [ES lva (8474, ) —Va(8, T))|lr_d8

7=o0_i=0Jo

4 p—1 Sl S T{4+1— 74 S ICk
1]

i=0 JoJoO

gl (hoy 40 _ll0u(s, tllidrds do | .

70 -1
Note that ||v.(s, t,)||.= K, and note that there is a constant C; such that
|2ll—:=C:||2]|, for every zeg*. Hence, using Lemma 6.7, we get that
the above quantity is not larger than

1
Ciga

p—-1 ST‘+1—T‘
2

||vn(8 + T;; ta) - vn(s! t.‘i) ”k-—lds

i=

o

0
—1

O(Kka)ZCl:(TtH —7)|4,| .

8

L
+C§Z_o

-,
I

Remark {v,} is equi-continuous on [0, ¢] xJ, that is, for every 9,>0,
there is §,>0 such that if |s—s'|+|t—t'|<d,, then ||v,(s, t)—v,(8', t)]|;-1<0:.
For sufficiently large n, we have |4,|]<d, and hence 7;<d,. Therefore

”vn(s + T;; t;)—v.(s, t;) Hk—l <0,

and hence for a sufficiently large »



396 H. OMORI, Y. MAEDA, A. YOSHIOKA AND O. KOBAYASHI

t t
e 11k, 4 =TT oy )|
=Ci(t—a)o,+ K;CiCi(t—a)l4,) .
Thus, we get the desired result. |

THEOREM 6.9. Ewery strong ILB-Lie group is a regular Fréchet-Lie
group.

PrROOF. Notations and assumptions being as above, we shall show
at first that {I[u(h,, 4,)} converges in G** uniformly on [a, a+(6/C.K})].
To prove this, we have only to show that {¢#7'cI]!(h,, 4,)} is a uniform
Cauchy sequence in W* for ¢, a<t<a+(#/C.K,). Thus, we consider
67 o TTe(Rny 4,) — & o T1o( Py dw)llk—r. Assume n=m and let 4, be a common
subdivision of 4,, 4,. By the above lemma we have only to show that

lim ¢ 7o [L(ha, 40) =g~ T[(ha, 40} =0

m—oo

uniformly in ¢. Let 4,={t,t, ¢, -+, ¢, }, and set
ty t
A, (D)=E&"oI(ha, 42) » Bu(d)= I1(ha, 42) (€ WNg) .
e i
Using telescope equality

(231 (CRPARTS | (A

S DB+, Dnltsnn—t £, 4,
_v(ﬁm(j_*_l), v()"m(tj+l _tif t:')’ an(j)))”k—l
SO Malbsi—ti, 1) —Mallssa— 1, 1)

IA

Ci 3,

=0 Jo

“'U,,(s, t,-)—'v,,,(s, ti)”k—lds ’

1 Stj.,.l—t,'

where v,=0\,/08, v,,=0\,/08. Since {v,} converges uniformly, for every
6,>0, there is m, such that if n=m=mn, then |[v.(s, t)—v.(s, t)|;_, <O
Therefore, if n=m=n, then the above quantity is less than

C: _El_lo(t,-+1—t,-)31=0'§(t—a)31 .

Thus, we have that {&¢'-I[i(h,, 4,)} converges in g‘' uniformly on
[a, a+0/C,K,]. It follows immediately that {[]:(k., 4,)} converges uni-
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formly in G*! on the same interval.

Remark that C,, K, depends only on W* and he H/,(G). Hence the
above argument shows also that if a'eJ, then {II. (k. 4,)} converges
uniformly in G** on the interval [a’, a’+0/C.K.]. Hence by using
ik, 4,)=115k,, 4,)-T15Ch,, 4,), we see that {[Ii(k,, 4.)} converges in
G*-! uniformly on the interval J=[a, b]. As k is arbitrary, the above
result shows that {[[i(h., 4,)} converges in G uniformly on J. This
completes the proof of Theorem 6.9. [l
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