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On Logarithmic Canonical Divisors on Threefolds
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Introduction

The aim of this paper is to give a numerical criterion for the loga-
rithmic canonical or the logarithmic anti-canonical divisor on a threefold
to be ample. As a corollary we obtain a practical definition of logarithmic
Fano threefolds. Let $V$ be a non-singular projective variety over an
algebraically closed field of characteristic zero and $D=D_{1}+\cdots+D_{s}$ a
reduced divisor whose components are smooth and crossing normally on
V. We consider here such a pair (V, $D$), which is called a non-singular
pair of dimension $n=\dim V$. Let $K_{V}$ , or in short $K$, denote a canonical
divisor on $V$. Then $K+D$ (resp. $-K-D$) is called the logarithmic ca-
nonical divisor (resp. logarithmic anti-canonical divisor) on $V$ (cf. [3, Chap.
11]). We prove the following

THEOREM. Let (V, $D$) be a non-singular pair of dimension 3. Then
(i) under the condition that $\kappa(K+D, V)\geqq 0,$ $K+D$ is ample if and only

if $K+D$ is numerically positive; i.e. $(K+D)\cdot C>0$ for all curves $C$ on $V$,
(ii) under the condition that $\kappa(-K-D, V)\geqq 0,$ $-K-D$ is ample if and
only if $-K-D$ is numerically positive.

COROLLARY (cf. [4]). Let (V, $D$) be as in the Theorem. Then (V, $D$)

is a logarithmic Fano threefold if and only if the following two conditions
are satisfied.

(a) The linear system $|-K-D|$ is non-empty.
(b) $-K-D$ is numerically positive.

PROOF. The if part follows from the Theorem.
Let (V, $D$) be a logarithmic Fano threefold. Applying Norimatsu

Vanishing ([5, Theorem 1]) we deduce

$H^{\ell}(V, P_{V}(-K-D))=0$ for $i>0$
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and therefore

dim $H^{0}(V, P_{V}(-K-D))=x(p_{V}(-K-D))$ .
In order to calculate $D\cdot c_{2}(V)$ we consider $\chi(P_{V}(-D))$ . From Riemann,

Roch and Norimatsu Vanishing,

dim $H^{0}(V, P_{V}(-D))=x(p_{\gamma}(-D))$

$=1/6(-D)^{8}-1/4(-D)^{2}\cdot K+1/12(-D)\cdot(K^{2}+c_{2})_{V}+\chi(p_{V})$ .
Since $\chi(P_{V})=1$ for $V$ ( $[4$ , Corollary 2.2]), we obtain

$D\cdot c_{2}=12-D\cdot(D+K)\cdot(2D+K)$ .
It follows that

$\chi(P_{V}(-K-D))=1/2(-K-D)^{3}+1/2(-K-D)^{2}\cdot D+2$ .
Hence dim $H^{0}(V, P_{V}(-K-D))\geqq 3$ . Q.E.D

REMARKS. (1) The case $D=0$ in (i) of the theorem was a $resul\{$

of Wilson ([7, Proposition 2.3]).
(2) For two-dimensional non-singular pair (V, $D$), we can derivt

that $\kappa(K+D, V)\geqq 0$ (resp. $\kappa(-K-D,$ $V)\geqq 0$) from the numerical positivit3
of $K+D$ (resp. $-K-D$) by the classification theory of divisors on surfacef
([6, Theorem 2]). Hence, if dimV$=2$ , then the same assertions of tht
above theorem hold even if we omit the conditions $\kappa(K+D, V)\geqq 0$ in $(i^{\backslash }$.
and $\kappa(-K-D, V)\geqq 0$ in (ii).

\S 1. Proof of (i).

The “only if” part being obvious, we shall prove the “if” part. Tht
proof follows the idea of Wilson ([7]).

Since $K+D$ is numerically effective, we have $(K+D)^{2}\cdot S\geqq 0$ for al
surfaces $S$ (surfaces and curves are always irreducible in this paper). Wt
first show that there is no surface $S$ with $(K+D)^{2}\cdot S=0$ .

Suppose that there exists such a surface $S$ on $V$.
CLAIM 1. $S$ is a fixed component of $|m(K+D)|$ , provided $tha_{(}$.

$|m(K+D)|\neq\emptyset$ for $m>0$ .
PROOF. There are only three possibilities:
(1) $ A\cap S=\emptyset$ for some A $e|m(K+D)|$ ,
(2) $A\cap S$ is a curve for some $A\in|m(K+D)|$ ,
(3) $A\supset S$ for all A $e|m(K+D)|$ .
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The cases (1) and (2) are impossible by hypothesis. Q.E.D.

Now we have $|m(K+D)|=|B|+\gamma S$ , where $B$ is an effective divisor
not containing $S$ . Note $\gamma\geqq 1$ by Claim 1.

Thus $(K+D)\cdot B\cdot S+r(K+D)\cdot S^{2}=m(K+D)^{2}\cdot S=0$ and therefore
$(K+D)\cdot S^{2}=-(K+D)\cdot B\cdot S\leqq 0$ .

Suppose that $(K+D)\cdot S^{2}<0$ . By Riemann-Roch on $S$, we have

$(*)$ $\chi(\theta_{s}(n(K+D)))=1/2(n(K+D)\cdot(D-S)\cdot S)_{V}+\chi(p_{s})$ .
CLAIM 2. $\chi(P_{s}(n(K+D)))\geqq 1$ for sufficiently large $n$ .
PROOF. Case (1): $D=0$ . In this case, we have

$\chi(P_{s}(nK))=-1/2\cdot nK\cdot S^{2}+\chi(p_{s})$ .
Since $K\cdot S^{2}<0,$ $\chi(P_{s}(nK))>0$ for sufficiently large $n$ .

Case (2): $D\not\supset S$ . In this case, $D\cdot S$ is effective and so $(K+D)\cdot D\cdot S\geqq 0$ .
By assumption, $(K+D)\cdot S^{2}<0$ . Hence by $(*)$ , we obtain the result.

Case (3): $D=S$ . Since $K_{s}\sim(K+D)|_{S}$ , $K_{s}$ is numerically positive.
Hence there exists $m$ such that $|mK_{s}|\neq\emptyset$ , and clearly $K_{s}$ is not nu-
merically equivalent to $0$ . Thus $(K_{s})_{s}^{2}>0$ . But this contradicts our as-
sumption to the fact that $(K_{s})_{S}^{2}=(K+D)^{2}\cdot S=0$ .

Case (4): $D=S+D^{\prime}$ , where $D’\not\supset S$ . In this case, $(*)$ can be rewritten
as follows:

$\chi(P_{s}(n(K+D)))=1/2\cdot n(K+D)\cdot D’\cdot S+\chi(p_{s})$ .
If $D’\cdot S$ is a non-zero l-cycle, then $(K+D)\cdot D^{\prime}\cdot S>0$ . Hence we are

through. If $D’\cdot S=0$ , then $\chi(p_{s}(n(K+D)))=x(\theta_{s})\geqq 1$ since $S$ turns out
to be a smooth surface of general type in this case. Q.E.D.

CLAIM 3. $(K+D)\cdot S^{2}=0$ .
PROOF. Suppose that $(K+D)\cdot S^{2}<0$ . By Serre duality ([2, p. 244]),

$h^{2}(S, n(K+D)|_{s})=h^{0}(S, -(n-1)(K+D)|_{s}+(S-D)|_{s})$ .
Since $(K+D)|_{s}$ is numerically positive, it follows that $|-(n-1)(K+D)|_{S}+$
$(S-D)|_{s})|=\emptyset$ for sufficiently large $n$ . Thus by Claim 2,

$h^{0}(S, n(K+D)|_{s})\geqq\chi(\rho_{s}(n(K+D)))>0$

for sufficiently large $n$ .
Let $\Gamma$ be a curve defined by a non-zero section of $H^{0}(S, n(K+D)|_{s})$ .

If $\Gamma\neq 0$ , then $(K+D)\cdot\Gamma=n(K+D)^{2}\cdot S=0$ . This contradicts the numerical
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positivity of $K+D$ . If $\Gamma=0$ , we have $(K+D)\cdot C=((K+D)|_{s}\cdot C)_{S}=0,$ $fol$

any curve $C$ on $S$ , which also contradicts the hypothesis. Q.E. $D$

Let $S_{1},$
$\cdots,$

$S_{r}$ be all surfaces which satisfy $(K+D)^{2}\cdot S=0$ . In thif
case, $(K+D)\cdot S_{i}^{2}=0$ by Claim 3. Now we have $|m(K+D)|=|D_{n}|+\sum_{c=1}^{r}r_{i}S_{i}$

where $D_{n}$. is an effective divisor not containing any $S$ . Since $(K+D)$
$(D_{\hslash}+\sum_{=1}^{r}r_{i}S_{i})\cdot S=0$ for each $i$ and by the numerical positivity of $K+D$
we have $ D_{n}\cap S_{i}=\emptyset$ , for any $i$ , and $ S_{i}\cap S_{j}=\emptyset$ , for any $i\neq j$ .

Now recall the following theorem, due to T. Fujita $\cdot$

THEOREM ([1, Theorem 1.10]). Let $L$ be a line bundle on an $algeb\gamma ai_{t}$

scheme V. Suppose that the restriction of $L$ to the base locus of $|L|i/$

ample. Then $nL$ is base point free for sufficienuy large $n$ .
CLAIM 4. $ Bs|nD_{n}|=\emptyset$ for $n\gg O$ .
PROOF. Let $B$ be an irreducible component of the set $Bs|D_{n}|$ . $W\langle$

show that $D_{n}|_{B}$ is ample.
Case (1): dim $B=2$ . Let $C$ be a curve on $B$ . Since $C$ doesn’t $mee$

.

any $S_{i}$ , we have

$(D_{n}|_{B}\cdot C)_{B}=(m(K_{V}+D)-\sum_{=1}^{r}r_{i}S_{i})\cdot C$

$=(K_{V}+D)\cdot C>0$ .
Moreover,

$(D_{n}|_{B})_{B}^{2}=m^{2}(K+D)^{2}\cdot B$ .
This must be positive, since otherwise $B$ must coincide with one of $S_{i}’ s$

This contradicts the choice of $D_{n}$ . Hence, by Nakai’s criterion, $D,.|_{B}i_{1}$

ample in this case.
Case (2): dim $B\leqq 1$ . Obvious.
By applying Fujita’s theorem, we obtain Claim 4. Q.E. $D$

Taking $n$ and $m$ as Claim 4, we have

$nm(K+D)\sim nD_{n}+\sum_{i=1}^{r}nrS_{i}$ .
This can be also written as $nm(K+D)\sim D_{nn}+\sum_{i=1}^{r}r_{i}^{\prime}S_{i}$ .

CLAIM 5. $nD_{n}\sim D_{nn}$ .
PROOF. First we show that
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$H^{0}(nD_{m})\cong H^{0}(nD_{m}+\sum_{\dot{g}=1}^{r}n\gamma_{j}S_{j})$ .

Let $S$’ be an effective divisor with $S^{\prime}\leqq\sum_{j=1}^{r}nr_{j}S_{j}$ .
Fix some $S_{i}$ , say $S$ , we have an exact sequence

$0\rightarrow\rho_{V}(nD_{m}+S’)\rightarrow\rho_{V}(nD_{m}+S’+S)\rightarrow\rho_{s}(nD_{m}+S’+S)\rightarrow 0$ .
Since $nD$. and the $S_{j}$ are all disjoint, we have

$(nD_{m}+S^{\prime}+S)|_{s}\sim r^{\prime}S|_{s}$

for some $r’>0$ .
Suppose that $r’ S|_{S}$ is linearly equivalent to an effective curve $\Gamma$ on

$S$ . Then we have

$0<(K+D)\cdot\Gamma=r^{\prime}(K+D)\cdot S^{2}=0$ .
This is a contradiction.

Suppose next that $r’ S|_{s}\sim 0$ . Then for any curve $C$ on $S$ , we have

$(K+D)\cdot C=(nD.)\cdot C=0$ .
This contradicts the hypothesis.

Thus, by induction on the number of components, we have

$H^{0}(nD_{m})\cong H^{0}(nD_{m}+\sum_{j=1}^{r}nr_{j}S_{j})$ .

This implies that $|nm(K+D)|=|nD_{m}|+\sum_{j=1}^{r}nr_{j}S_{j}$ . Since $nD_{n}$ doesn’t
contain any of $S_{j}’ s,$ $nD_{m}$ coinsides with $D_{nm}$ . Q.E.D.

Now we may assume that $ Bs|D_{m}|=\emptyset$ and the m-th logarithmic
canonical mapping (cf. [3, 11.6])

$\Phi_{|n(K+D)|}$ : $V\rightarrow W$

is a morphism, which we denote by $\psi$ . It is clear that $\psi$ contracts the
surfaces $S_{i}$ to points on $W$.

Note that $W$ is a threefold; otherwise we have a curve $\Gamma$ lying on
a fiber of $\psi$ , which meets neither $D_{m}=\psi^{*}L,$ $L$ being a hyperplane section
of $W$, nor any $S_{i}$ . This implies that $m(K+D)\cdot\Gamma=D_{m}\Gamma+\sum_{i\overline{-\sim}1}^{r}r_{i}S_{i}\cdot\Gamma=0$ ,

a contradiction.
Take a general hyperplane section $H$ on $V$. We know that $H$ is a

non-singular surface, $U=\psi(H)$ is a surface and $\psi|_{H}:H\rightarrow U$, contracts the
reducible curves $H$ . S. to points on $U$. Hence, by [3, Theorem 8.5],
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\langle $H\cdot S_{\ell})_{H}^{2}=H\cdot S_{i}^{2}<0$ . However, $H\cdot S_{i}$ are reducible curves and

$m(K+D)\cdot H\cdot S_{i}=D_{n}\cdot H\cdot S+\sum_{j=1}^{r}r_{j}H\cdot S_{j}\cdot S_{i}=rH\cdot S^{2}>0$ ,

which contradicts the above inequality.
Thus we have shown that $(K+D)^{2}\cdot S>0$ for all surfaces $S$ on $V_{r}$

Since $\chi(K+D, V)\geqq 0$ , this gives also that $(K+D)^{8}>0$ . Hence $K+D$ is
ample by Nakai’s criterion.

This completes the proof.

\S 2. Proof of (ii).

The proof in this case is quite similar to that in \S 1. We have
only to replace $K+D$ by $-K-D$ . But the proof of Claim 2 is slightly
different.

Let $V$ and $D$ be as in the theorem and $-K-D$ satisfy the conditions
of (ii) of the theorem. Let $S$ be a surface (if exists) with $(-K-D)^{2}\cdot S=0$ .
Then we have

CLAIM 2’. $\chi(P_{s}(n(-K-D)))\geqq 1$ for sufficienuy large $n$ .
PROOF. By the similar calculation as in Claim 2, we have

$\chi(\rho_{s}(n(-K-D)))=1/2\cdot(n(-K-D)|_{s}\cdot(D-S)|_{s})_{s}+\chi(p_{s})$ .
Assume that $(-K-D)\cdot S^{2}<0$ . In the case where $D=0$ or $D\not\supset S$, the
proof of the above statement is easy. But in the case where $D=S$, we
have to show that $\chi(d_{s})>0$ . $Since-K_{s}=(-K-D)|_{s}$ is numerically positive,
we have $\kappa(-K_{s}, S)\geqq 0$ (see Remark (2) in Introduction). This implies that
$(-K_{s})_{S}^{2}>0$ and therefore $-K_{s}$ is ample. Hence $S$ is a del Pezzo surface
and therefore $\chi(P_{s})=1$ . The rest of the proof is easy so we omit this.

Q.E.D.
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