On Logarithmic Canonical Divisors on Threefolds

Hironobu MAEDA
Gakushuin University

Introduction

The aim of this paper is to give a numerical criterion for the logarithmic canonical or the logarithmic anti-canonical divisor on a threefold to be ample. As a corollary we obtain a practical definition of logarithmic Fano threefolds. Let V be a non-singular projective variety over an algebraically closed field of characteristic zero and $D=D_{1}+\cdots+D_{s}$ a reduced divisor whose components are smooth and crossing normally on V. We consider here such a pair (V, D), which is called a non-singular pair of dimension $n=\operatorname{dim} V$. Let K_{V}, or in short K, denote a canonical divisor on V. Then $K+D$ (resp. $-K-D$) is called the logarithmic canonical divisor (resp. logarithmic anti-canonical divisor) on V (cf. [3, Chap. 11]). We prove the following

Theorem. Let (V, D) be a non-singular pair of dimension 3. Then (i) under the condition that $\kappa(K+D, V) \geqq 0, K+D$ is ample if and only if $K+D$ is numerically positive; i.e. $(K+D) \cdot C>0$ for all curves C on V, (ii) under the condition that $\kappa(-K-D, V) \geqq 0,-K-D$ is ample if and only if $-K-D$ is numerically positive.

Corollary (cf. [4]). Let (V, D) be as in the Theorem. Then (V, D) is a logarithmic Fano threefold if and only if the following two conditions are satisfied.
(a) The linear system $|-K-D|$ is non-empty.
(b) $-K-D$ is numerically positive.

Proof. The if part follows from the Theorem.
Let (V, D) be a logarithmic Fano threefold. Applying Norimatsu Vanishing ([5, Theorem 1]) we deduce

$$
H^{i}\left(V, \mathscr{O}_{V}(-K-D)\right)=0 \quad \text { for } \quad i>0
$$

Received July 30, 1984
and therefore

$$
\operatorname{dim} H^{\circ}\left(V, \mathscr{O}_{V}(-K-D)\right)=\chi\left(\mathscr{O}_{V}(-K-D)\right)
$$

In order to calculate $D \cdot c_{2}(V)$ we consider $\chi\left(\mathcal{O}_{V}(-D)\right)$. From RiemannRoch and Norimatsu Vanishing,

$$
\begin{aligned}
& \operatorname{dim} H^{0}\left(V, \mathscr{O}_{V}(-D)\right)=\chi\left(\mathcal{O}_{V}(-D)\right) \\
& \quad=1 / 6(-D)^{3}-1 / 4(-D)^{2} \cdot K+1 / 12(-D) \cdot\left(K^{2}+c_{2}\right)_{V}+\chi\left(\mathscr{O}_{V}\right)
\end{aligned}
$$

Since $\chi\left(\mathcal{O}_{V}\right)=1$ for $V([4$, Corollary 2.2]), we obtain

$$
D \cdot c_{2}=12-D \cdot(D+K) \cdot(2 D+K)
$$

It follows that

$$
\chi\left(\mathcal{O}_{V}(-K-D)\right)=1 / 2(-K-D)^{3}+1 / 2(-K-D)^{2} \cdot D+2
$$

Hence $\operatorname{dim} H^{0}\left(V, \mathscr{O}_{V}(-K-D)\right) \geqq 3$.
Q.E.D.

Remarks. (1) The case $D=0$ in (i) of the theorem was a result of Wilson ([7, Proposition 2.3]).
(2) For two-dimensional non-singular pair (V, D), we can derive that $\kappa(K+D, V) \geqq 0$ (resp. $\kappa(-K-D, V) \geqq 0$) from the numerical positivity of $K+D$ (resp. $-K-D$) by the classification theory of divisors on surfaces ([6, Theorem 2]). Hence, if $\operatorname{dim} V=2$, then the same assertions of the above theorem hold even if we omit the conditions $\kappa(K+D, V) \geqq 0$ in (i) and $\kappa(-K-D, V) \geqq 0$ in (ii).
§ 1. Proof of (i).
The "only if" part being obvious, we shall prove the "if" part. The proof follows the idea of Wilson ([7]).

Since $K+D$ is numerically effective, we have $(K+D)^{2} \cdot S \geqq 0$ for all surfaces S (surfaces and curves are always irreducible in this paper). We first show that there is no surface S with $(K+D)^{2} \cdot S=0$.

Suppose that there exists such a surface S on V.
Claim 1. S is a fixed component of $|m(K+D)|$, provided that $|m(K+D)| \neq \varnothing$ for $m>0$.

Proof. There are only three possibilities:
(1) $A \cap S=\varnothing$ for some $A \in|m(K+D)|$,
(2) $A \cap S$ is a curve for some $A \in|m(K+D)|$,
(3) $A \supset S$ for all $A \in|m(K+D)|$.

The cases (1) and (2) are impossible by hypothesis.
Q.E.D.

Now we have $|m(K+D)|=|B|+r S$, where B is an effective divisor not containing S. Note $r \geqq 1$ by Claim 1.

Thus $(K+D) \cdot B \cdot S+r(K+D) \cdot S^{2}=m(K+D)^{2} \cdot S=0$ and therefore $(K+D) \cdot S^{2}=-(K+D) \cdot B \cdot S \leqq 0$.

Suppose that $(K+D) \cdot S^{2}<0$. By Riemann-Roch on S, we have

$$
\begin{equation*}
\chi\left(\mathscr{O}_{S}(n(K+D))\right)=1 / 2(n(K+D) \cdot(D-S) \cdot S)_{V}+\chi\left(\mathscr{O}_{S}\right) \tag{*}
\end{equation*}
$$

CLAIM 2. $\quad \chi\left(\mathcal{O}_{s}(n(K+D))\right) \geqq 1$ for sufficiently large n.
Proof. Case (1): $D=0$. In this case, we have

$$
\chi\left(O_{S}(n K)\right)=-1 / 2 \cdot n K \cdot S^{2}+\chi\left(\mathscr{O}_{S}\right)
$$

Since $K \cdot S^{2}<0, \chi\left(\mathcal{O}_{S}(n K)\right)>0$ for sufficiently large n.
Case (2): $D \not \supset S$. In this case, $D \cdot S$ is effective and so $(K+D) \cdot D \cdot S \geqq 0$. By assumption, $(K+D) \cdot S^{2}<0$. Hence by (*), we obtain the result.

Case (3): $D=S$. Since $\left.K_{s} \sim(K+D)\right|_{s}, K_{S}$ is numerically positive. Hence there exists m such that $\left|m K_{s}\right| \neq \varnothing$, and clearly K_{s} is not numerically equivalent to 0 . Thus $\left(K_{S}\right)_{S}^{2}>0$. But this contradicts our assumption to the fact that $\left(K_{S}\right)_{s}=(K+D)^{2} \cdot S=0$.

Case (4): $D=S+D^{\prime}$, where $D^{\prime} \not \supset S$. In this case, (*) can be rewritten as follows:

$$
\chi\left(\mathscr{O}_{s}(n(K+D))\right)=1 / 2 \cdot n(K+D) \cdot D^{\prime} \cdot S+\chi\left(\mathscr{O}_{S}\right)
$$

If $D^{\prime} \cdot S$ is a non-zero 1-cycle, then $(K+D) \cdot D^{\prime} \cdot S>0$. Hence we are through. If $D^{\prime} \cdot S=0$, then $\chi\left(\mathcal{O}_{S}(n(K+D))\right)=\chi\left(\mathscr{O}_{S}\right) \geqq 1$ since S turns out to be a smooth surface of general type in this case.
Q.E.D.

Claim 3. $(K+D) \cdot S^{2}=0$.
Proof. Suppose that $(K+D) \cdot S^{2}<0$. By Serre duality ([2, p. 244]),

$$
h^{2}\left(S,\left.n(K+D)\right|_{s}\right)=h^{0}\left(S,-\left.(n-1)(K+D)\right|_{s}+\left.(S-D)\right|_{s}\right)
$$

Since $\left.(K+D)\right|_{s}$ is numerically positive, it follows that $|-(n-1)(K+D)|_{s}+$ $\left.\left.(S-D)\right|_{s}\right) \mid=\varnothing$ for sufficiently large n. Thus by Claim 2,

$$
h^{0}\left(S,\left.n(K+D)\right|_{s}\right) \geqq \chi\left(\odot_{S}(n(K+D))\right)>0
$$

for sufficiently large n.
Let Γ be a curve defined by a non-zero section of $H^{\circ}\left(S,\left.n(K+D)\right|_{s}\right)$. If $\Gamma \neq 0$, then $(K+D) \cdot \Gamma=n(K+D)^{2} \cdot S=0$. This contradicts the numerical
positivity of $K+D$. If $\Gamma=0$, we have $(K+D) \cdot C=\left(\left.(K+D)\right|_{s} \cdot C\right)_{s}=0$, for any curve C on S, which also contradicts the hypothesis. Q.E.D.

Let S_{1}, \cdots, S_{r} be all surfaces which satisfy $(K+D)^{2} \cdot S_{i}=0$. In this case, $(K+D) \cdot S_{i}{ }^{2}=0$ by Claim 3. Now we have $|m(K+D)|=\left|D_{m}\right|+\sum_{i=1}^{r} r_{i} S_{i}$, where D_{m} is an effective divisor not containing any S_{i}. Since ($K+D$). $\left(D_{m}+\sum_{i=1}^{r} r_{i} S_{i}\right) \cdot S_{i}=0$ for each i and by the numerical positivity of $K+D$, we have $D_{m} \cap S_{i}=\varnothing$, for any i, and $S_{i} \cap S_{j}=\varnothing$, for any $i \neq j$.

Now recall the following theorem, due to T. Fujita•
Theorem ([1, Theorem 1.10]). Let L be a line bundle on an algebraic scheme V. Suppose that the restriction of L to the base locus of $|L|$ is ample. Then $n L$ is base point free for sufficiently large n.

Claim 4. $B s\left|n D_{m}\right|=\varnothing$ for $n \gg 0$.
Proof. Let B be an irreducible component of the set $B s\left|D_{m}\right|$. We show that $\left.D_{m}\right|_{B}$ is ample.

Case (1): $\operatorname{dim} B=2$. Let C be a curve on B. Since C doesn't meet any S_{i}, we have

$$
\begin{aligned}
\left(\left.D_{m}\right|_{B} \cdot C\right)_{B} & =\left(m\left(K_{V}+D\right)-\sum_{i=1}^{r} r_{i} S_{i}\right) \cdot C \\
& =\left(K_{V}+D\right) \cdot C>0
\end{aligned}
$$

Moreover,

$$
\left(\left.D_{m}\right|_{B}\right)_{B}^{2}=m^{2}(K+D)^{2} \cdot B
$$

This must be positive, since otherwise B must coincide with one of S_{i} 's. This contradicts the choice of D_{m}. Hence, by Nakai's criterion, $\left.D_{m}\right|_{B}$ is ample in this case.

Case (2): $\operatorname{dim} B \leqq 1$. Obvious.
By applying Fujita's theorem, we obtain Claim 4.
Q.E.D.

Taking n and m as Claim 4, we have

$$
n m(K+D) \sim n D_{m}+\sum_{i=1}^{r} n r_{i} S_{i}
$$

This can be also written as $n m(K+D) \sim D_{n m}+\sum_{i=1}^{r} r_{i} S_{i}$.
Claim 5. $n D_{m} \sim D_{n m}$.
Proof. First we show that

$$
H^{0}\left(n D_{m}\right) \cong H^{\circ}\left(n D_{m}+\sum_{j=1}^{r} n r_{j} S_{j}\right)
$$

Let $S^{\prime \prime}$ be an effective divisor with $S^{\prime} \leqq \sum_{j=1}^{r} n r_{j} S_{j}$.
Fix some S_{i}, say S, we have an exact sequence

$$
0 \longrightarrow O_{V}\left(n D_{m}+S^{\prime}\right) \longrightarrow \mathscr{O}_{V}\left(n D_{m}+S^{\prime}+S\right) \longrightarrow \mathscr{O}_{S}\left(n D_{m}+S^{\prime}+S\right) \longrightarrow 0
$$

Since $n D_{m}$ and the S_{j} are all disjoint, we have

$$
\left.\left.\left(n D_{m}+S^{\prime}+S\right)\right|_{s} \sim r^{\prime} S\right|_{s}
$$

for some $r^{\prime}>0$.
Suppose that $\left.r^{\prime} S\right|_{S}$ is linearly equivalent to an effective curve Γ on S. Then we have

$$
0<(K+D) \cdot \Gamma=r^{\prime}(K+D) \cdot S^{2}=0
$$

This is a contradiction.
Suppose next that $\left.r^{\prime} S\right|_{S} \sim 0$. Then for any curve C on S, we have

$$
(K+D) \cdot C=\left(n D_{m}\right) \cdot C=0 .
$$

This contradicts the hypothesis.
Thus, by induction on the number of components, we have

$$
H^{0}\left(n D_{m}\right) \cong H^{0}\left(n D_{m}+\sum_{j=1}^{r} n r_{j} S_{j}\right)
$$

This implies that $|n m(K+D)|=\left|n D_{m}\right|+\sum_{j=1}^{r} n r_{j} S_{j}$. Since $n D_{m}$ doesn't contain any of S_{j} 's, $n D_{m}$ coinsides with $D_{n m}$.

Now we may assume that $B s\left|D_{m}\right|=\varnothing$ and the m-th logarithmic canonical mapping (cf. [3, 11.6])

$$
\Phi_{|m(K+D)|}: V \longrightarrow W
$$

is a morphism, which we denote by ψ. It is clear that ψ contracts the surfaces S_{i} to points on W.

Note that W is a threefold; otherwise we have a curve Γ lying on a fiber of ψ, which meets neither $D_{m}=\psi^{*} L, L$ being a hyperplane section. of W, nor any S_{i}. This implies that $m(K+D) \cdot \Gamma=D_{m} \Gamma+\sum_{i=1}^{r} r_{i} S_{i} \cdot \Gamma=0$, a contradiction.

Take a general hyperplane section H on V. We know that H is a non-singular surface, $U=\psi(H)$ is a surface and $\left.\psi\right|_{H}: H \rightarrow U$, contracts the reducible curves $H \cdot S_{i}$ to points on U. Hence, by [3, Theorem 8.5],
$\left(H \cdot S_{i}\right)_{H}^{2}=H \cdot S_{i}{ }^{2}<0$. However, $H \cdot S_{i}$ are reducible curves and

$$
m(K+D) \cdot H \cdot S_{i}=D_{m} \cdot H \cdot S_{i}+\sum_{j=1}^{r} r_{j} H \cdot S_{j} \cdot S_{i}=r_{i} H \cdot S_{i}^{2}>0
$$

which contradicts the above inequality.
Thus we have shown that $(K+D)^{2} \cdot S>0$ for all surfaces S on V. Since $\chi(K+D, V) \geqq 0$, this gives also that $(K+D)^{3}>0$. Hence $K+D$ is ample by Nakai's criterion.

This completes the proof.

§ 2. Proof of (ii).

The proof in this case is quite similar to that in §1. We have only to replace $K+D$ by $-K-D$. But the proof of Claim 2 is slightly different.

Let V and D be as in the theorem and $-K-D$ satisfy the conditions of (ii) of the theorem. Let S be a surface (if exists) with $(-K-D)^{2} \cdot S=0$. Then we have

Claim 2'. $\quad \chi\left(O_{s}(n(-K-D))\right) \geqq 1$ for sufficiently large n.
Proof. By the similar calculation as in Claim 2, we have

$$
\chi\left(\mathcal{O}_{s}(n(-K-D))\right)=1 / 2 \cdot\left(\left.\left.n(-K-D)\right|_{s} \cdot(D-S)\right|_{s}\right)_{s}+\chi\left(\mathcal{O}_{s}\right) .
$$

Assume that $(-K-D) \cdot S^{2}<0$. In the case where $D=0$ or $D \not D S$, the proof of the above statement is easy. But in the case where $D=S$, we have to show that $\chi\left(\mathcal{O}_{s}\right)>0$. Since $-K_{s}=\left.(-K-D)\right|_{s}$ is numerically positive, we have $\kappa\left(-K_{s}, S\right) \geqq 0$ (see Remark (2) in Introduction). This implies that $\left(-K_{S}\right)_{s}{ }_{s}>0$ and therefore $-K_{s}$ is ample. Hence S is a del Pezzo surface and therefore $\chi\left(O_{s}\right)=1$. The rest of the proof is easy so we omit this. Q.E.D.

References

[1] T. Fujita, Semi-positive line bundles, J. Fac. Sci. Univ. Tokyo, 30 (1983), 353-378.
[2] R. Hartshorne, Algebraic Geometry, GTM. 52, Springer, Berlin-Heidelberg-New York, 1977.
[3] S. IItaka, Algebraic Geometry, An Introduction to Birational Geometry of Algebraic Varieties, GTM. 76, Springer, Berlin-Heidelberg-New York, 1980.
[4] H. Maeda, Classification of logarithmic Fano threefolds, 1983, preprint.
[5] Y. Norimatsu, Kodaira vanishing theorem and Chern classes for ∂-manifolds, Proc. Japan Acad., 54 (1978), 107-108.
[6] F. Sakai, D-dimensions of algebraic surfaces and numerically effective divisors, Compositio Math. 48 (1983), 101-118.
[7] P. M. H. Wilson, On complex algebraic varieties of general type, Symposia Math., XXIV (1981), 65-73.

Present Address:
Department of Mathematics
Faculty of Science
Gakushuin University
Mejiro, Toshima-ku Tokyo 171

