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On Logarithmic Canonical Divisors on Threefolds
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Introduction

The aim of this paper is to give a numerical criterion for the loga-
rithmic canonical or the logarithmic anti-canonical divisor on a threefold
to be ample. As a corollary we obtain a practical definition of logarithmic
Fano threefolds. Let V be a non-singular projective variety over an
algebraically closed field of characteristic zero and D=D,+---+Ds a
reduced divisor whose components are smooth and crossing normally on
V. We consider here such a pair (V, D), which is called a non-singular
pair of dimension n=dimV. Let K,, or in short K, denote a canonical
divisor on V. Then K+D (resp. —K—D) is called the logarithmic ca-
nonical divisor (resp. logarithmic anti-canonical divisor) on V (ef. [3, Chap.
11]). We prove the following

THEOREM. Let (V, D) be a non-singular pair of dimension 3. Then
(i) under the condition that K(K+D, V)=0, K+D is ample +f and only
if K+D is numerically positive; i.e. (K+D)-C>0 for all curves Con V,
(ii) under the condition that k(—K—D,V)=0, —K—D is ample 1f and
only if —K—D is numerically positive.

COROLLARY (cf. [4]). Let (V, D) be as in the Theorem. Then (V, D)
is a logarithmic Fano threefold if and only if the following two conditions
are satisfied.

(a) The linear system | —K—D| 18 mon-empty.

(b) —K-—D is numerically positive.

PrROOF. The if part follows from the Theorem.
Let (V, D) be a logarithmic Fano threefold. Applying Norimatsu
Vanishing ([6, Theorem 1]) we deduce

HYV, Zy(— K—D))=0 for >0
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and therefore
dim HX(V, &#(— K—D))=X(c7y(— K—D)) .

In order to calculate D-c, (V) we consider X(Zy(—D)). From Riemann-
Roch and Norimatsu Vanishing,

dim H(V, &(—D))=X(—D))
—1/6(— D)*—1/4(— Dy*- K+1/12(— D) -(K*+¢,)y + X(T)

Since X(7y)=1 for V ([4, Corollary 2.2]), we obtain
D.¢,=12—D-(D+K)-(2D+K) .
It follows that
X Z(—K—D))=1/2(—K—D)}*+1/2(— K—D)y*-D+2 .
Hence dim HYV, &(—K—D))=3. Q.E.D.

REMARKS. (1) The case D=0 in (i) of the theorem was a result
of Wilson ([7, Proposition 2.3]).

(2) For two-dimensional non-singular pair (V, D), we can derive
that x#(K+D, V)=0 (resp. &(—K—D, V)=0) from the numerical positivity
of K+D (resp. —K—D) by the classification theory of divisors on surfaces
([6, Theorem 2]). Hence, if dimV =2, then the same assertions of the
above theorem hold even if we omit the conditions x#(K+D, V)=0 in (i)
and x(—K—D, V)=0 in (ii).

§1. Proof of (i).

The “only if” part being obvious, we shall prove the “if” part. The
proof follows the idea of Wilson ([7]).

Since K+ D is numerically effective, we have (K+D)*-S=0 for all
surfaces S (surfaces and curves are always irreducible in this paper). We
first show that there is no surface S with (K+D)*-S=0.

Suppose that there exists such a surface S on V.

CLaiMm 1. S 48 a fixred component of |m(K+D)|, provided that
|m(K+D)|=@ for m>0.

PrROOF. There are only three possibilities:
(1) AnS=g for some Aec|m(K+D)|,

(2) ANS is a curve for some A€ |m(K+D)|,
(8) A>DS for all Ae|m(K+D)|.
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The cases (1) and (2) are impossible by hypothesis. Q.E.D.

Now we have |m(K+D)|=|B|+rS, where B is an effective divisor
not containing S. Note »=1 by Claim 1.

Thus (K+D)-B-S+r(K+D)-S*=m(K+D)*-S=0 and therefore
(K+D)-S*=—(K+D)-B-S<0.

Suppose that (K+D)-S?<0. By Riemann-Roch on S, we have

(%) Xs(n(K+D)))=1/2(n(K+D)-(D—S)-S)y +X(%) .
CLAIM 2. X(Zs(n(K+D)))=1 for sufficiently large n.
PrOOF. Case (1): D=0. In this case, we have

UosnK)=—1/2-nK-8*+X(Zs) .

Since K-S*<0, X(@Zs(nK))>0 for sufficiently large .

Case (2): Dp»S. In this case, D-S is effective and so (K+D)-D-S>y.
By assumption, (K+D)-S*<0. Hence by (x), we obtain the result.

Case (3): D=S. Since K¢y~ (K+D)|,, K; is numerically positive.
Hence there exists m such that |mK |+ @, and clearly K, is not nu-
merically equivalent to 0. Thus (K;)%>0. But this contradicts our as-
sumption to the fact that (Kj)’;=(K+D)*-S=0.

Case (4): D=S+D’, where D’pS. In this case, (x) can be rewritten
as follows:

X(Osm(K+D))=1/2-n(K+D)-D'-S+X(7) .

If D'-S is a non-zero 1l-cycle, then (K+D)-D'-S>0. Hence we are
through. If D’-S=0, then X(Zy(n(K+D))=X(7)=1 since S turns out
to be a smooth surface of general type in this case. Q.E.D.

CrLAamM 3. (K+D)-S?=0.
PROOF. Suppose that (K+D)-S?<0. By Serre duality ([2, p. 244]),
kS, n(K+ D)|s)=h"(S, —(n—1)(K+D)|s+(S—D)ls) .

Since (K+D)|s is numerically positive, it follows that |—(n—1)(K+D)|s+
(S—D)|s)|= for sufficiently large n. Thus by Claim 2,

RS, n(K+ D)) 2X(Zs(n(K+ D)))>0

for sufficiently large n.
Let I' be a curve defined by a non-zero section of H(S, n(K+ D)l).
If I'+#0, then (K+D)-I'=n(K+D)*-S=0. This contradicts the numerical
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positivity of K+D. If I'=0, we have (K+D)-C=(K+D)|s-C)s=0, for
any curve C on S, which also contradicts the hypothesis. Q.E.D.

Let S, --+, S, be all surfaces which satisfy (K+D)*-S,=0. In this
case, (K+D)-S;?=0 by Claim 3. Now we have |m(K+ D)|=|D, |+, 7S,
where D, is an effective divisor not containing any S,. Since (K+D)-
(D,,+37_,7S,)-S,=0 for each © and by the numerical positivity of K+ D,
we have D,NS,=@, for any ¢, and S;NS;=@, for any ©+j.

Now recall the following theorem, due to T. Fujita

THEOREM ([1, Theorem 1.10]). Let L be a line bundle on an algebraic
scheme V. Suppose that the restriction of L to the base locus of |L| is
ample. Then nL is base point free for sufficiently large n.

CLAIM 4. Bs|nD,|=@ for n>0.

PrROOF. Let B be an irreducible component of the set Bs|D,|. We
show that D,|; is ample.

Case (1): dim B=2. Let C be a curve on B, Since C doesn’t meet
any S,, we have

(Dals-Crs=(m(Ky+D)—33 7.5,)-C
=(Ky+D)-C>0 .
Moreover,
(Dals)s=m*(K+D)*-B .

This must be positive, since otherwise B must coincide with one of S,’s.
This contradicts the choice of D,. Hence, by Nakai’'s criterion, D, |, is
ample in this case.

Case (2): dim B=1l. Obvious.

By applying Fujita’s theorem, we obtain Claim 4. ' Q.E.D.

Taking » and m as Claim 4, we have
nm(K +D)~nD,,,+i§:,1nr,S¢ .
This can be also written as nm(K+D)~D,, + 3.7, riS..
CruAmwm 5. »nD,~D,,.

- PrROOF. First we show that
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H"(nD,,,)EH"(an +3 n’r,-S,-) .

Let S’ be an effective divisor with S'<>;., nr;S;.
Fix some S,, say S, we have an exact sequence

0— 7,(nD,+S")— Z,(nD, +S’ +8)— Zs(nD, +S" +S)—0 .
Since nD, and the S; are all disjoint, we have |
(nD,, +8" +8)|s~7'S|s

for some »'>0.
Suppose that »’S|s is linearly equivalent to an effective curve I' on
S. Then we have '

0<(K+D)-I'=r"(K+D)-8*=0.

This is a contradiction. -
Suppose next that »’S|s~0. Then for any curve C on S, we have

(K+D)-C=(nD,)-C=0 .

This contradicts the hypothesis.
Thus, by induction on the number of components, we have

H°(an)zH°(an+§ nr,.s,.) .

" This implies that |nm(K+ D)|=|nD,|+ -, nr;S;. Since nD, doesn’t
contain any of S;’s, nD,, coinsides with D,,. Q.E.D.

Now we may assume that Bs|D,|=@ and the m-th logarithmic
canonical mapping (cf. [3, 11.6])

D+ V—W

is a morphism, which we denote by «. It is clear that ¢ contracts the
surfaces S, to points on W. '

Note that W is a threefold; otherwise we have a curve I' lying on
a fiber of +, which meets neither D,=+*L, L being a hyperplane section
of W, nor any S,. This implies that m(K+D)-I"=D, I+, rS;-I'=0,
a contradiction. »

Take a general hyperplane section H on V. We know that H is a
non-singular surface, U=+(H) is a surface and +|z: H—U, contracts the
reducible curves H-S, to points on U. Hence, by [3, Theorem 8.5],
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(H-S,)’y=H-S?<0. However, H-S, are reducible curves and
m(K+D)-H-s,—_-D,,.-H-s,+§‘, r;H-8;-S,=rH-82>0,
=1

which contradicts the above inequality.

Thus we have shown that (K+D)*-S>0 for all surfaces S on V.
Since X(K+D, V)=0, this gives also that (K+D)»*>0. Hence K+D is
ample by Nakai’s criterion.

This completes the proof.

§2. Proof of (ii).

The proof in this case is quite similar to that in §1. We have
only to replace K+D by —K—D. But the proof of Claim 2 is slightly
different.

Let V and D be as in the theorem and — K—D satisfy the conditions
of (ii) of the theorem. Let S be a surface (if exists) with (—K—D)»?.S=0.
Then we have

CLAIM 2. X(Zs(n(—K—D)))=1 for sufficiently large n.
PROOF. By the similar calculation as in Claim 2, we have
X(Ts(n(— K—D)))=1/2+(n(— K—D)|s-(D—8)|s)s+ X(T) .

Assume that (—K—D)-$?<0. In the case where D=0 or DpS, the
proof of the above statement is easy. But in the case where D=S, we
have to show that X(<7)>0. Since — Ky=(— K— D)), is numerically positive,
we have k(—Kjg, S)=0 (see Remark (2) in Introduction). This implies that
(—K;)’s>0 and therefore — K, is ample. Hence S is a del Pezzo surface
and therefore X(<7s)=1. The rest of the proof is easy so we omit this.

Q.E.D.
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