Tokyo J. Math. Vol. 8, No. 2, 1985

On Logarithmic Canonical Divisors on Threefolds

Hironobu MAEDA

Gakushuin University

Introduction

The aim of this paper is to give a numerical criterion for the logarithmic canonical or the logarithmic anti-canonical divisor on a threefold to be ample. As a corollary we obtain a practical definition of logarithmic Fano threefolds. Let V be a non-singular projective variety over an algebraically closed field of characteristic zero and $D=D_1+\cdots+D_s$ a reduced divisor whose components are smooth and crossing normally on V. We consider here such a pair (V, D), which is called a non-singular pair of dimension $n=\dim V$. Let K_v , or in short K, denote a canonical divisor on V. Then K+D (resp. -K-D) is called the logarithmic canonical divisor (resp. logarithmic anti-canonical divisor) on V (cf. [3, Chap. 11]). We prove the following

THEOREM. Let (V, D) be a non-singular pair of dimension 3. Then (i) under the condition that $\kappa(K+D, V) \ge 0$, K+D is ample if and only if K+D is numerically positive; i.e. $(K+D) \cdot C > 0$ for all curves C on V, (ii) under the condition that $\kappa(-K-D, V) \ge 0$, -K-D is ample if and only if -K-D is numerically positive.

COROLLARY (cf. [4]). Let (V, D) be as in the Theorem. Then (V, D) is a logarithmic Fano threefold if and only if the following two conditions are satisfied.

(a) The linear system |-K-D| is non-empty. (b) -K-D is numerically positive.

PROOF. The if part follows from the Theorem.

Let (V, D) be a logarithmic Fano threefold. Applying Norimatsu Vanishing ([5, Theorem 1]) we deduce

 $H^{\iota}(V, \mathcal{O}_{V}(-K-D)) = 0 \text{ for } i > 0$

Received July 30, 1984

HIRONOBU MAEDA

and therefore

$$\dim H^0(V, \mathscr{O}_V(-K-D)) = \chi(\mathscr{O}_V(-K-D)).$$

In order to calculate $D \cdot c_2(V)$ we consider $\chi(\mathscr{O}_V(-D))$. From Riemann-Roch and Norimatsu Vanishing,

$$\dim H^{0}(V, \mathcal{O}_{V}(-D)) = \chi(\mathcal{O}_{V}(-D))$$

= 1/6(-D)³-1/4(-D)² · K+1/12(-D) · (K²+c₂)_V + $\chi(\mathcal{O}_{V})$.

Since $\chi(\mathcal{O}_v) = 1$ for V ([4, Corollary 2.2]), we obtain

$$D \cdot c_2 = 12 - D \cdot (D + K) \cdot (2D + K)$$

It follows that

$$\chi(\mathcal{O}_V(-K-D)) = 1/2(-K-D)^3 + 1/2(-K-D)^2 \cdot D + 2$$
.

Q.E.D.

Hence dim $H^{\circ}(V, \mathcal{O}_{v}(-K-D)) \geq 3$.

REMARKS. (1) The case D=0 in (i) of the theorem was a result of Wilson ([7, Proposition 2.3]).

(2) For two-dimensional non-singular pair (V, D), we can derive that $\kappa(K+D, V) \ge 0$ (resp. $\kappa(-K-D, V) \ge 0$) from the numerical positivity of K+D (resp. -K-D) by the classification theory of divisors on surfaces ([6, Theorem 2]). Hence, if dim V=2, then the same assertions of the above theorem hold even if we omit the conditions $\kappa(K+D, V) \ge 0$ in (i) and $\kappa(-K-D, V) \ge 0$ in (ii).

 $\S1.$ Proof of (i).

The "only if" part being obvious, we shall prove the "if" part. The proof follows the idea of Wilson ([7]).

Since K+D is numerically effective, we have $(K+D)^2 \cdot S \ge 0$ for all surfaces S (surfaces and curves are always irreducible in this paper). We first show that there is no surface S with $(K+D)^2 \cdot S = 0$.

Suppose that there exists such a surface S on V.

CLAIM 1. S is a fixed component of |m(K+D)|, provided that $|m(K+D)| \neq \emptyset$ for m > 0.

PROOF. There are only three possibilities:

- (1) $A \cap S = \emptyset$ for some $A \in |m(K+D)|$,
- (2) $A \cap S$ is a curve for some $A \in |m(K+D)|$,
- (3) $A \supset S$ for all $A \in |m(K+D)|$.

456

The cases (1) and (2) are impossible by hypothesis. Q.E.D.

Now we have |m(K+D)| = |B| + rS, where B is an effective divisor not containing S. Note $r \ge 1$ by Claim 1.

Thus $(K+D) \cdot B \cdot S + r(K+D) \cdot S^2 = m(K+D)^2 \cdot S = 0$ and therefore $(K+D) \cdot S^2 = -(K+D) \cdot B \cdot S \leq 0$.

Suppose that $(K+D) \cdot S^2 < 0$. By Riemann-Roch on S, we have

$$(*) \qquad \qquad \chi(\mathscr{O}_{s}(n(K+D))) = 1/2(n(K+D) \cdot (D-S) \cdot S)_{v} + \chi(\mathscr{O}_{s}).$$

CLAIM 2. $\chi(\mathscr{O}_{s}(n(K+D))) \geq 1$ for sufficiently large n.

PROOF. Case (1): D=0. In this case, we have

$$\chi(\mathscr{O}_{s}(nK)) = -1/2 \cdot nK \cdot S^{2} + \chi(\mathscr{O}_{s})$$

Since $K \cdot S^2 < 0$, $\chi(\mathscr{O}_s(nK)) > 0$ for sufficiently large n.

Case (2): $D \not\supset S$. In this case, $D \cdot S$ is effective and so $(K+D) \cdot D \cdot S \ge 0$. By assumption, $(K+D) \cdot S^2 < 0$. Hence by (*), we obtain the result.

Case (3): D=S. Since $K_s \sim (K+D)|_s$, K_s is numerically positive. Hence there exists m such that $|mK_s| \neq \emptyset$, and clearly K_s is not numerically equivalent to 0. Thus $(K_s)^2_s > 0$. But this contradicts our assumption to the fact that $(K_s)^2_s = (K+D)^2 \cdot S = 0$.

Case (4): D=S+D', where $D' \not\supset S$. In this case, (*) can be rewritten as follows:

$$\chi(\mathscr{O}_s(n(K+D))) = 1/2 \cdot n(K+D) \cdot D' \cdot S + \chi(\mathscr{O}_s)$$

If $D' \cdot S$ is a non-zero 1-cycle, then $(K+D) \cdot D' \cdot S > 0$. Hence we are through. If $D' \cdot S = 0$, then $\chi(\mathscr{O}_s(n(K+D))) = \chi(\mathscr{O}_s) \ge 1$ since S turns out to be a smooth surface of general type in this case. Q.E.D.

CLAIM 3. $(K+D) \cdot S^2 = 0$.

PROOF. Suppose that $(K+D) \cdot S^2 < 0$. By Serre duality ([2, p. 244]),

$$h^{2}(S, n(K+D)|_{S}) = h^{0}(S, -(n-1)(K+D)|_{S} + (S-D)|_{S})$$

Since $(K+D)|_s$ is numerically positive, it follows that $|-(n-1)(K+D)|_s + (S-D)|_s)| = \emptyset$ for sufficiently large *n*. Thus by Claim 2,

$$h^{0}(S, n(K+D)|_{s}) \geq \chi(\mathscr{O}_{s}(n(K+D))) > 0$$

for sufficiently large n.

Let Γ be a curve defined by a non-zero section of $H^{0}(S, n(K+D)|_{s})$. If $\Gamma \neq 0$, then $(K+D) \cdot \Gamma = n(K+D)^{2} \cdot S = 0$. This contradicts the numerical

HIRONOBU MAEDA

positivity of K+D. If $\Gamma=0$, we have $(K+D)\cdot C=((K+D)|_s\cdot C)_s=0$, for any curve C on S, which also contradicts the hypothesis. Q.E.D.

Let S_1, \dots, S_r be all surfaces which satisfy $(K+D)^2 \cdot S_i = 0$. In this case, $(K+D) \cdot S_i^2 = 0$ by Claim 3. Now we have $|m(K+D)| = |D_m| + \sum_{i=1}^r r_i S_i$, where D_m is an effective divisor not containing any S_i . Since $(K+D) \cdot (D_m + \sum_{i=1}^r r_i S_i) \cdot S_i = 0$ for each *i* and by the numerical positivity of K+D, we have $D_m \cap S_i = \emptyset$, for any *i*, and $S_i \cap S_j = \emptyset$, for any $i \neq j$.

Now recall the following theorem, due to T. Fujita.

THEOREM ([1, Theorem 1.10]). Let L be a line bundle on an algebraic scheme V. Suppose that the restriction of L to the base locus of |L| is ample. Then nL is base point free for sufficiently large n.

CLAIM 4. $Bs |nD_m| = \emptyset$ for $n \gg 0$.

PROOF. Let B be an irreducible component of the set $Bs|D_m|$. We show that $D_m|_B$ is ample.

Case (1): dim B=2. Let C be a curve on B. Since C doesn't meet any S_i , we have

$$(D_{\mathbf{m}}|_{B} \cdot C)_{B} = \left(m(K_{\mathbf{v}} + D) - \sum_{i=1}^{r} r_{i} S_{i} \right) \cdot C$$
$$= (K_{\mathbf{v}} + D) \cdot C > 0 .$$

Moreover,

$$(D_m|_B)^2_B = m^2(K+D)^2 \cdot B$$
.

This must be positive, since otherwise B must coincide with one of S_i 's. This contradicts the choice of D_m . Hence, by Nakai's criterion, $D_m|_B$ is ample in this case.

Case (2): dim $B \leq 1$. Obvious.

By applying Fujita's theorem, we obtain Claim 4. Q.E.D.

Taking n and m as Claim 4, we have

$$nm(K+D) \sim nD_m + \sum_{i=1}^r nr_i S_i$$
.

This can be also written as $nm(K+D) \sim D_{nm} + \sum_{i=1}^{r} r'_i S_i$.

CLAIM 5. $nD_m \sim D_{nm}$.

PROOF. First we show that

$$H^{\scriptscriptstyle 0}(nD_{\scriptscriptstyle m})\cong H^{\scriptscriptstyle 0}\!\left(nD_{\scriptscriptstyle m}+\sum\limits_{j=1}^r nr_jS_j\right)$$

Let S' be an effective divisor with $S' \leq \sum_{j=1}^{r} nr_j S_j$.

Fix some S_i , say S, we have an exact sequence

$$0 \longrightarrow \mathcal{O}_{V}(nD_{m}+S') \longrightarrow \mathcal{O}_{V}(nD_{m}+S'+S) \longrightarrow \mathcal{O}_{S}(nD_{m}+S'+S) \longrightarrow 0$$

Since nD_m and the S_j are all disjoint, we have

$$(nD_m+S'+S)|_s \sim r'S|_s$$

for some r' > 0.

Suppose that $r'S|_s$ is linearly equivalent to an effective curve Γ on S. Then we have

$$0 < (K+D) \cdot \Gamma = r'(K+D) \cdot S^2 = 0$$
.

This is a contradiction.

Suppose next that $r'S|_{s} \sim 0$. Then for any curve C on S, we have

 $(K+D) \cdot C = (nD_m) \cdot C = 0$.

This contradicts the hypothesis.

Thus, by induction on the number of components, we have

$$H^{0}(nD_{m})\cong H^{0}\left(nD_{m}+\sum_{j=1}^{r}nr_{j}S_{j}\right).$$

This implies that $|nm(K+D)| = |nD_m| + \sum_{j=1}^r nr_j S_j$. Since nD_m doesn't contain any of S_j 's, nD_m coinsides with D_{nm} . Q.E.D.

Now we may assume that $Bs|D_m| = \emptyset$ and the *m*-th logarithmic canonical mapping (cf. [3, 11.6])

$$\Phi_{|_{m(K+D)}|}:V\longrightarrow W$$

is a morphism, which we denote by ψ . It is clear that ψ contracts the surfaces S_i to points on W.

Note that W is a threefold; otherwise we have a curve Γ lying on a fiber of ψ , which meets neither $D_m = \psi^* L$, L being a hyperplane section of W, nor any S_i . This implies that $m(K+D) \cdot \Gamma = D_m \Gamma + \sum_{i=1}^r r_i S_i \cdot \Gamma = 0$, a contradiction.

Take a general hyperplane section H on V. We know that H is a non-singular surface, $U=\psi(H)$ is a surface and $\psi|_{H}: H \rightarrow U$, contracts the reducible curves $H \cdot S_{i}$ to points on U. Hence, by [3, Theorem 8.5],

HIRONOBU MAEDA

 $(H \cdot S_i)_{H}^{2} = H \cdot S_i^{2} < 0.$ However, $H \cdot S_i$ are reducible curves and

$$m(K+D) \cdot H \cdot S_i = D_m \cdot H \cdot S_i + \sum_{j=1}^r r_j H \cdot S_j \cdot S_i = r_i H \cdot S_i^2 > 0$$
,

which contradicts the above inequality.

Thus we have shown that $(K+D)^2 \cdot S > 0$ for all surfaces S on V. Since $\chi(K+D, V) \ge 0$, this gives also that $(K+D)^3 > 0$. Hence K+D is ample by Nakai's criterion.

This completes the proof.

§2. Proof of (ii).

The proof in this case is quite similar to that in §1. We have only to replace K+D by -K-D. But the proof of Claim 2 is slightly different.

Let V and D be as in the theorem and -K-D satisfy the conditions of (ii) of the theorem. Let S be a surface (if exists) with $(-K-D)^2 \cdot S = 0$. Then we have

CLAIM 2'.
$$\chi(\mathscr{O}_s(n(-K-D))) \geq 1$$
 for sufficiently large n.

PROOF. By the similar calculation as in Claim 2, we have

$$\chi(\mathscr{O}_{s}(n(-K-D)))=1/2\cdot(n(-K-D)|_{s}\cdot(D-S)|_{s})_{s}+\chi(\mathscr{O}_{s}).$$

Assume that $(-K-D) \cdot S^2 < 0$. In the case where D=0 or $D \not\supset S$, the proof of the above statement is easy. But in the case where D=S, we have to show that $\chi(\mathscr{O}_s) > 0$. Since $-K_s = (-K-D)|_s$ is numerically positive, we have $\kappa(-K_s, S) \ge 0$ (see Remark (2) in Introduction). This implies that $(-K_s)^2 > 0$ and therefore $-K_s$ is ample. Hence S is a del Pezzo surface and therefore $\chi(\mathscr{O}_s)=1$. The rest of the proof is easy so we omit this.

Q.E.D.

References

- [1] T. FUJITA, Semi-positive line bundles, J. Fac. Sci. Univ. Tokyo, 30 (1983), 353-378.
- [2] R. HARTSHORNE, Algebraic Geometry, GTM. 52, Springer, Berlin-Heidelberg-New York, 1977.
- [3] S. IITAKA, Algebraic Geometry, An Introduction to Birational Geometry of Algebraic Varieties, GTM. 76, Springer, Berlin-Heidelberg-New York, 1980.
- [4] H. MAEDA, Classification of logarithmic Fano threefolds, 1983, preprint.
- [5] Y. NORIMATSU, Kodaira vanishing theorem and Chern classes for ∂-manifolds, Proc. Japan Acad., 54 (1978), 107-108.
- [6] F. SAKAI, D-dimensions of algebraic surfaces and numerically effective divisors, Compositio Math. 48 (1983), 101-118.

460

DIVISORS ON THREEFOLDS

 [7] P. M. H. WILSON, On complex algebraic varieties of general type, Symposia Math., XXIV (1981), 65-73.

> Present Address: Department of Mathematics Faculty of Science Gakushuin University Mejiro, Toshima-ku Tokyo 171