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Introduction

Let X(f, ) be a complex valued stochastic process on a complete
probability space (2, F, P),te R', we 2. Suppose throughout that X(¢, )
is measurable Lx F on R'x R, L being the class of Lebesgue measurable
sets on R!. Assume also that X(¢, w) is an L"-process, namely X(¢, )€
L7(Q) for each te R, 1<r< o and that X(¢, w) is 2z-periodic in the sense
that '

0.1) E\X(t+27, w)—X(t, )|=0,

for each teR'. For an L’process X(t, w), (0.1) is equivalent to
E|X(t+2n, w)—X(t, w)|*=0 which, as we easily see, is equivalent also
to the condition that the covariance function p(u,v) of X(¢, w) is 2=n-
periodic with respect to each of w and wv.

Write
0.2) 1X(t, Il =1X(t, @)l =[BIXE, o),
_ B 1 T . 8 1/8
1XC, llr=1Xt @)l =[ o{ [ xct, 2]

The class of X(t, w) for which | X(-, )|, ,.<oo for some 1=r<eco,
1<8< oo is denoted by L*"=L*"(TxQ), T=[—m=, =x].

Write, for a positive integer p, the p-th difference of X(¢, ) with
increment 2 of ¢, by

0.3) A9 X(¢, @) =z”0(—1)r—k( Z >X<t+kh, ®)
k=
and define, for 6>0,
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0.9 M:P(0)=M: (o, X)=31|11§ 42X, Oll.s s
=
0.5) MP@)=MP*©0, X)=Mx?(6)= S:up sup ||4i2 X(¢, )|, .
F14 ts;r

We agree to call (0.5) and (0.4) the mean modulus of continuity of
order p and the mean integrated modulus of continuity of order p
respectively.

It is obvious that M{*)(d) and M (d) are nondecreasing functions of
0>0. The following inequalities are obvious too.

(0.6) M (0)=2° M1 (0) , M»(0)=2"M;"(3) .

For any A>0, we see

0.7) MDA =A+0MEP0), MPO0)=A+N)?MP0) .
This is proved based on the identity

(0.8) 45X, )= Z. Z 4P XE+khA+ - +kh, ), n=1,

(see [4] Problem 1.5. 3. p. 76).

Let +(f) be a nondecreasing continuous function on [0,1] with
4(0)=0. The class of X(¢, w)e L*"(Tx 2) for which M*®()Z(5), 0
0=1, is called Lipschitz class AXP()=ArP(y(8)). A%XP(+) is defined by
AP ().

In §1, we consider the approximation of X(t, w)e L*"(T'xX2) by
trigonometric polynomials of the form

(0.9) P(t, )= =z_ a(@)e™

where a,(w) € L"(2), k=0, +1, +2, ..., +n, and investigate some relation-
ship between the magnitude of approximation error and the continuity
modulus of X(¢, w).

In §3, some basic theorems concerning the membership of a function
to Lipschitz class 4, of order a, 0<a<1 are generalized to the case of
stochastic processes. In §4, we give the results on the relationship
between Lipschitz classes defined above and the magnitude of Fourier
coefficients. This sort of problems for the ordinary Fourier series is
classical (see, f. ex. [6]).

In §6, we give theorems on the almost sure absolute convergence
of Fourier series. In §7 and §8, we consider the mean derivatives of
stochastic processes and give the conditions in terms of such derivatives
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for the almost sure absolute convergence of Fourier series. In §9, we
give the results on sample continuity and sample differentiability of

stochastic processes.
Results in this paper are generalizations of what have been previously

shown for the case s=r and are announced in [10], some corrections,
improvements and additions being made.

§1. Trigonometric approximation and continuity modulus.

We begin with some remarks stating as lemmas. Write throughout
this paper

(1.1 6 =min(s, ) ,
so that 1<6<eo.

LEMMA 1.1. For X(t, w)e L*"(TXQ), 158 0, 15r< o,
1.2) | X, w)e LXT), a.s.

PROOF. Suppose first 1<s<r so that §=s. By the Minkowski ine-
quality, we have

{E[%SZIX(L w)['dt]”'}”’ < {—z-l;r-S;[E’lX(t, DI dt} < oo

which implies

LS | X, w)['dt<eo, a.s.
27 Jn
Suppose next l1=r=<s. The Holder inequality gives us

T .4 r/8

E—|" X, oldts| = 1Xt, o)zt | <o
2w J-= 27 V=

which gives us X(¢, w) € L(T), a.s.

We may now define the Fourier series

(1.8) X(t, @)~ 3 c.(@)e

n=-—oco

where

(1.4) c,,(w)=-21_§" X(t, @)e-"dt , n=0, =1, ---
T ‘
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a.s. The following is shown by the standard method [13].

LEMMA 1.2. L*"(Tx Q) is a Banach space with natural addition and
scaler multiplication endowed with norm || X(-, *)|,.,.

We now consider the approximation of X(¢, w) € L*"(T x 2) by trigono-
metric polynomials of the form (0.9). Write

(1.5) (@) ={ax(®), lk|=n} ,

(1.6) OTRS DA TNOTH

Define

(L.7) er"(X) = inf | X, @) = 3 au@)e™]l.. ,

where the inf is taken over all a(w) with |la(-)|,<eo.

We note here that in [10] we erroneously announced that inf is
actually attained by a trigonometric polynomial.
Now let ¢,(t, ) be the (C,1) mean of the Fourier series of a 2x-

periodic stochastic process of L*"(T'x 2) and form the De la Vallée Poussin
mean

(1.8) To(t, ) =20:,_.,(t, ®)—0..,(, @), nzl.
We then have ([15] p. 115)

(1.9) .(t, co)=—2—§°° X(t+u, o)h(nu)/udu ,
NT J—=
where
1 2 (= ,
(1.10) h(t)=—(cos t—cos 20) , ;S hw)judu=1 .

The following theorem is an analogue of Theorem 13.5 of [15].
THEOREM 1.1. For X, ) e L*"(TxX2),15r<o,158Z 0,
(1.11) lza(ey ) =X, ), =4er7(X) .

The proof is carried out in just a similar way. In fact, in arguing
as in the proof of Theorem 13.5 of [15], we take a trigonometric poly-
nomial P,(t, ) of the form (0.9) such that || X(-, :)—P,(+, )|, .Se""(X)+
1/N, N being arbitrary positive number. We then obtain
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llza(ey ) =Xy s, =4len"(X)+1/N]

from which (1.11) follows.
Let p be a positive integer and » be a multiple of p! and define

(1.12) .t @)=(—1)" §1<—1>p—”(f )m(t, ®)

which is a trigonometric polynomial of order 2n—1.
LEMMA 1.3. For X, w)e L*"(TX2),1=5r<o,1=8=Z o,
(1.13) 1XC, )=y e S22 (X))

PrROOF. We have

X(t, 0)—&.(t, @)=(—1" 3, <—1>”-"<f )[m(t, @)~ X(t, ®)] -

Using Theorem 1.1, we have

IXC, = DlorSZ( 2 JIECL =5 Dl

D

<13, ( 2 Jencn=ag (D )enco

y=1

=4(27 —1Denp(X) .
In what follows, n is not necessarily a multiple of p!.

THEOREM 1.2. Let X(t, w) e L*"(TX2),1=5r<c,1=<8<c and p bea
positive integer. Then there is a positive integer m, depending only on
p such that for n>n,

(1.14) e (X)= 4M;",L”’<-ii> :

PrROOF. Let n,=2p!. Choose a positive integer ¢ such that 2¢p=
n=<2(qg+1)p for any n>n,. We have, writing m=gqp!,

=ES°° AP, X(E, 0)h(w)/udu

T

= Ep:. (=1 (p ) -2—Sw Xt +u/m, o)h(w)/udu
v/ T)w

v=0
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y=0

= i (_l)p—y<f)))tm/v(tr a)) ’

where 7,,(¢, ®) is interpreted to be X(¢, w) when v=0. Thisis legitimate
by (1.10). The last expression is

> (—1>r-”(f )[m(t, 0)—X(t, )] .

Hence

(1.15) I=(—-1)?[X(t, w)—¢.(t, ®)] .
On the other hand

(1.16) I=-72?S:D,(u/m, O)h(w)/udu

where

D,(v, w)=4PX(t, w)—4*)X(t, @) .
Hence

=_2_S°°D,(u, 0)h(w)/w'dy
Tm Jo

2 o 2(k+1)x
=2 5 S Dy(u, @)h(mu)/uidu
™m k=0 J2kr

which is, by periodicity of D,(u, w) and h(u), equal to

LY"D,(u, 0)h(mu) S, (u+2kr)~du .
Tm Jo k=0

The last one is, in absolute value, not greater than

_-4_S2Z|D,(u, )| |h(mw)|/udu .
m Jo

Therefore from (1.15), we have
4
”X(" °)—Em(') .)”t.fé_
m

2z
<2 sup [|40LXC-, ., | hom)ljudu
Tm osuser 0

<AM*®(21/m) .

|, 1D, @)l A fuda
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Since || X(+, ) —¢&n(+, ), =em-(X), we have, for n>n,,
e (X)= e Sepm (X)) S4AMXP Cr/m) <4M} P (2r/gp!)

which is, in view of gp! >n/4, not greater than 4M}*®(8x/n).

We shall now give an analogue of the Bernstein inequality for
trigonometric polynomaials, the proof of which is carried out by a known
argument (see f. ex. [4] 99-100).

THEOREM 1.3. For

(1.17) Pt @)= 3 au(@)e

=—n

the following imequality holds:

(1.18) | & P, |srs @I,

Jor any nonmegative integer j, 1<r< o, 1<s< oo,

§2. Stochastic process of bounded variation.

A 27 —periodic L"-process X(t, w), 1<r<, for which
2.1) sup 3} [1X(ts, )= Xty ll, <o

sup being taken over all divisions D: —n<t,<t,<---<t,<m, is called of
bounded variation in L7(2). The class of such processes is denoted by
BV". The quantity of (2.1) is denoted by V,=V.(X). This notion was
used in [7]. For a later use, we prove :

LEMMA 2.1. Let X(t, w)e L*"(TXx 2), 15r<o, 1<8=< oo, be of bounded
variation in L'(Q2). Then, for every positive integer p, we have

2.2) M@ SCIMP @) 5", 6>0,
where C=C, ,V}", C,, being a constant depending only on p and s.

PrROOF. We know [8] that, for 1<r< o,
2.3) | 4w xc, lLatszeinv, .

Now
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M@ =sup| L{" llapxc, N4 xce, e[

Iniss L 27

<sup | sup [|49 X1t -)u:—“'] [LS 49 X2, ->n,dt]”' .
Ihlsal ¢ 27 J-=

This is true also for s=«. Using (2.83) we have
M:::‘P)(a) _S_ [M’(_P)(8)]1—1/02?/8(27r)—1/l V:Iaal/l
which shows (2.2) with C, ,=2?*2x)"".

§ 3. Lipschitz classes and trigonometric approximation.

In the approximation theory the relationship between the membership
of a function to a Lipschitz class 4, and the order of approximation of
the function by trigonometric polynomials provides a fundamental problem.
We shall consider the similar problem for the Lipschitz class 4*{"(5%) and
the approximations of a periodic process in L**. Actually we give ana-
logues of basic Jackson and Bernstein theorems (see [4]). We also show
an analogue of a basic result of Alexits and Kralik on the strong
approximation [1], [2]. More detailed results in approximation and gen-
eralizations on the strong approximation [12], [13] and [16] will be able
to be extended to the case of stochastic processes, but we do not attempt
to do in this paper and we just show the very basic results.

THEOREM 3.1. Let X(t, w)e L""(Tx Q), 1<r< oo, 1<8< oo.
(i) If

3.1) X(t, w) e 4579 ,
for some positive integer p and for some a>0, then
3.2) e (X)=0n", m—oo.

(ii) If (8.2) holds for some a>0, then for anmny positive integer p,
(3.1) holds, when p>a, and when 1=<p<a

(3.3) X(t, w) € 437 (0%) ,
holds. When p=«a, (3.2) implies
(38.4) X(t, w) € AX* (07| log o)) .

This is an analogue of Theorem 2.3.8 or Theorem 2.3.5 of [4].

THEOREM 3.2. Let X(t, w)e L*"(TxQ),1<s, r<oo and let 0<a<l.
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The following four statements (3.5)~(8.8) are equivalent to each other.

(3.5) X, ) e AXP(0%), for some positive integer p,
(3.6) e"(X)=0n"%, as m— oo,

3.7 o lowle, ) =XCy =00, as n—oo,

and "
(3°8) -q].f;,—kiﬂnsk(.! ')'—X(°9 -)H,,,.=O('n‘“), as Mn—oo,

where S,(t, w)=8,&, w; X) and 0,(t, ®)=0,t, w; X) are respectively the
partial sum and the (C, 1) mean of the Fourier series of X(t, w).

REMARK. If 0<a<1 and (8.5) holds for some positive integer p, then
it does for any positive integer p.

This is obvious from Theorem 3.1 (i) and the first part of (ii). The
proof of Theorem 3.2 as well as of the following theorem will be given
in the following section. The equivalence of (3.5), (3.6) and (8.7) is true
also for s=r=1.

THEOREM 3.3. Suppose X, w)e L*"(TxR2), 1<s, r<oc, 18 L*"-
continuous. For 0<a<1, each of four statements in Theorem 3.2 is also
equivalent to '

(3'9) ||02n('9 ')—'O.n('r ')”a,r:O(n_a) y a8 M-—>o0
Note that X(¢, w) is always L""-continuous, since

|XC+h, )= X0, Ol =B5=|" 1X¢+h, 0) - X, 0)dt ,

in which the inner integral is bounded and X(¢, ) is L"(T)-continuous
for a.s. and the dominated convergence theorem is applied.
We shall give the proof of Theorem 3.1.

PROOF OF THROREM 3.1. (i) Suppose X(¢, w) e AX®(5%) for some posi-
tive integer p and some a>0. By Theorem 1.2, there is an 7, such that
for n>mn,,

e "(X)S4MX P Bx/n)=0(n"") .

(ii) is shown by the same way as in the proof of Theorem 2.3.8 or 2.3.5
of [4]. Suppose e;"(X)=0(n"*), 0<a<p. Let 7,(t, ) be the De la Vallee
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Poussin mean of X(¢, w) defined by (1.8). Write

U, w)=12(t, ), U, ®)=1:u(t, ®) —Txm1(t, ®) .
Then for n=2 using Theorem 1.1, we have

(3'10) “ Un('v ')”c,ré”rz"‘(°7 ')—X('! ')”l,r+”r2""1(°9 ')_X('! ')Ill,r
— (el (X)) =0@") .

Thus 1. U.(t, ®)=7.m(t, ®) converges in L*"(Tx2) to X(¢, w). Then for
any positive integer m,

B.11) 4P X(, ., =lim |3 4P U,(-, -)
n—oco k=2 8,r
<[ 40U, 9| + 3 142Uy s
k=2 8,r k=m+1

=240 U, +)

+ 5 5 (Do +h ..

k=2 8,r k=m+1 y=0
= ZA?)U,,(', ') +2° Z ” Uk(" ')"c,r .
k=2 8,r k=m+1

Since for each h
k h h
4P Uy, “’)=S dups dup_y- -+ S WP+ u+ - - +u,, w)du, ,
0 V] 0

where (p) in the integrand denotes the p-th differentiation, we have

3L 4P U, )

s,r

m 1Al L]l {h|
él‘Z‘, S dupso du,,_l- . -So du||uP (- +uy,+ .- + Uy, .)“m_

=2 JO
which is, because of Theorem 1.3 and (3.10)
(3.12) <3, 2RI U, ol
<O(Jhl> 3, 2425 ) = O(hlr2>~==) ,
k=2
when 0<a<p. Therefore from (3.11), for 0<a<p,

142X (-, .. =O(Rl25-=)+0( 3 2-+)

=m+1

=O(|h|92(p—a)m)+0(2—-ma) .
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Choose m so that 2" '<§'<2™. We then see that
sup || 4P X(-, )ll,,.=0(0") .
lhlss
Suppose next ;" (X)=0(n"%) and a=p. Then from (3.12)

(3.13) } S, 4P U, )

f=0(lhl"m)

and hence with the same choice of m as before,

sup [ 49 X(-, +)ll,.,= 0 m)+0@"7)=0(?| log 3]) .

If a>p, then the right hand side of (8.12) is O(|#|?), from which we
have (8.8). The proof of Theorem 8.1 is thus complete.

§4. Proofs of Theorem 3.2 and Theorem 3.3.

The proof of equivalence of (3.5) and (8.6) in Theorem 3.2 is included
in the proof of Theorem 8.1 (i). Therefore we have only to prove that
(8.6) is equivalent to (8.7) and also to (8.8). Obviously (8.8) implies (3.7)
and (3.7) implies (3.6). Hence in order to show Theorem 3.2, it is sufficient
to prove that (3.6) implies (3.8).

The following proof of this fact is an adaptation of that of Lindler’s
generalization [11] of a theorem of Alexits and Kralik. It will be con-
venient to begin with the following lemma.

LEMMA 4.1. If X¢, w)e L*"(TxQ),1<r, s< =, then for any 2=<¢<
o, 1<7r, 8=q,

(4.1) SIS e SCrllXC, llge, a>m,

where C is a constant independent of m and n.

PRroOF.
n n q
318, MEe=CE 12| X +u, OD@du
k=m k=ml|| 7T Jluls1/n 8,r
+Cc> lS X(- +u, D w)dul’
k=mll T J1/n<lulsn 8,7
=C(I1+Iz) ’

say, where D,,(u)=sin(k+1/2)u/(2 sin %/2) is the Dirichlet kernel.
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“.2) =31 IXC+u, Ol D [

k=ml
= 3 1XC, e[ 2] IDwian |
=Cnl X(-, ). .

Since D,(u)=1/2 cot u/2 sin(ku)+1/2 cos(ku),

I2§_C[ > “EI;SWMSIX(-M, Y cot (u/2) sin (ew)dul|

5,7

o

)
k=mll 277 Ji/n<lulsa

X(-+wu, +)cos (ku)dd

) :|= C[I21 + Izz] ’

say.
Repeated applications of the Minkowski inequality give us

1 r:|q/r } 8/q dt

I;;«s—g” { I:E’l 15 X(t+u, a))——cot sin(kw)du
1/n<lulsn 2
1
S—S_EEL_ | SI/KI“IS,'X(t—I-u, w)._cot-gsm(lcu)dul:l dt

2 J-=
27

which is, by the Hausdorff-Young inequality,

1 r/q’) s/r
< L[ a1 .
27‘[ —x 1/n<lulsx

where ¢-'+¢'~'=1. This is, again by the Minkowski inequality,

X({t+u, a)) cot ]du

R e I R2l 5 cot 2| [Tau}™
< 1\"1L E 1 ot %
- 2 —z{ﬂ,‘ Un<lulsx X+, w)z co 2 du} dt
1 S L
<c [ 1 X+, ligtul-wdu | dt .
—zL 7T J1/n<|ulsSx

Again by an application of the Minkowski inequality, we have

(4.3) Izlécﬂm.«ulsx —2%7:-& X+, 2l lul“’dt] du}

=C(S—1/n<|u|s,|ul—q'du) ”X(" ')”g,r
=Cn| X, .- .

14

I,, is handled in a simpler way to get

Izz_S_C”X(', ')”g,r .
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(4.2) and (4.3) with this complete the proof of the lemma.

PROOF OF THROREM 3.2. We shall prove that (3.6) implies (3.8). For
n>1, choose m so that 2" '<n<2".

Let z(t, w; X) be the De la Vallee Poussin mean of X(¢, ) in (1.8).
Note that 7, is a trigonometric polynomial of order at most 2n—1.

=W EACIED B CHRNES Sl I SRS B (AR
n k=t N 3=1 k=2i—141
——-% 3 ,, z NeaiaCe, 5 D)= X, )= 8ul, 5 Cuma— Xl
<13 8 jniat, s =X, s
N 7=1 g=2i—141
S DIV [CHCHENSES S
=J1+J2,

say. Using Theorem 1.1 and (3.6) we have

(4.4) J=i3 3 e (X) =1 3, 2-0(2--)
N i=1 p=2ij—1 n i=1

=0(n-12m1-) =0(n"%) .

Take q as in Lemma 4.1 so that ¢>s, r>¢’, ¢=2.

27

E “Sk(.! * sz_z_X)“s,r

k=29—141
=0(25/q')|: i’“ 1Se(e, *3 z'zj—z—X)H;’,,:lw

k=29—"14
which is from Lemma 4.1, Theorem 1.1 and (3.6)
=027)0(27%e2,( X)) =0(2"~?) .
From this we have, as in (4.4),
(4.5) J,=0n"") .

ProOOF OF THROREM 3.3. Obviously (3.7) implies (3.9). Hence it is

sufficient to prove that (3.9) implies (8.6). We note that because of the
L*"-continuity of X(¢, w),

(4.6) o, w)—Xt,w) in L*(Tx2).
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This is easily seen from the property of Fejér integral. Write
V.(t, (D)=0’22(t, ), V.,,(t, w)=0'2"(ty w)—az“"l(t’ ®), n>2,

From (4.6)
S.Vilt, @)=0u(t, )

converges in L*"(Tx 2) to X(t, w). The proof of the first part of (ii) of
Theorem 3.1 with V,(f, w) in place of U,(t, w) applies to have Theorem
3.3.

§5. Lipschitz classes and the magnitude of Fourier coeflicients.

We study the relationship between the membership of X(¢, ) to the
Lipschitz class A4 (¢) and the magnitude of 35, [ICi(.)||¢ for some B
and 7. C,(w) is the Fourier coefficient of X(¢, w). We first indicate the
following analogue of the Hausdorff-Young inequality.

THROREM 5.1. (i) If X(t, ) e L*"(Tx2), 1<s<r<g, s'+s'=1,
then

5.1) (2 1C.0l) " SIXC,

(ii) If 3o IC(@)ls< oo for 1=s=r<s’, then X, w)e L*""(Tx2)
and

5.2) 1XC, eSS NICIE)

By repeated use of the Minkowski inequality and the ordinary
Hausdorff-Young inequality, we have

1/8 1/r

{ 3 1EC @t} s{E] £ cawr ]
{21 e o]}
s{=| [Bxe, oran}”

= ”X(" ')”a,r .

This shows (5.1). The second statement is similarly shown.
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Let +(t) be a continuous nondecreasing function on [0, 1] with 4(0)=0
as in 1. Write as before #=min(s, r), 9-'+6"'=1.

THROREM 5.2. Let 1=r,s=<2. If X(t, w)€ AP () for some positive
integer p, then

(5.3) m% IC(ONF =Cyp?(A/m) ,
where C, is a constant depending only on p.

This was shown in [6] when r=s, 1<r. (The proof in [6] is seen to
be applied to the case r=1.)

PrROOF. We shall prove

(5.4) 2 NG =C M (1) .

IElzn

Suppose first 1<s<r=<2. Since the Fourier coefﬁéient of 4,X(t, w) is
Ci(w)(1—e**)?, we have, by Theorem 5.1, (5.1)

5.5) 142X, Olle2], 3 1C( 12 sin ey |
Hence

Mz mzal | 5 1G] 2sin /2l [ dn
which is, because of the Minkowski inequality,

z2ond 33| | "IC ()l dsin Gey2ypean ]}

Ikl =n

=2 3, (n]"IsinGen2)eam )\ GOl |

lklzn
) o 1/8’
2¢ s GO,

for |
nE:’"l sin (kh/2)|pdh=%§:/” ; sin 2 ’ "duz=C>0,

where C is a constant depending only on p. (5.4) is thus proved.

The above proof was carried out for 1<s<r=<2, but we easily see
that it is adapted also for s=1, '=co.

Suppose, second, 1<r=<s. By successive use of the Holder inequality,
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the oridinary Hausdorff-Young inequality and the Minkowski inequality,
we see that

149X, o2 o=|” B4 xct, oyt [
2 J-=

=E[-él7t-§;|dg”X(t, w)rdt]"'

z{g] 3 1cu@ri—emre [}
kh "p} et

2sin —
2
This corresponds to (56.5), from which we have, as before, (5.4). We also
see that the proof also goes on for =1, "=, and the proof of Theorem
5.2 is complete.
The converse of Theorem 5.2 is true in the following form.

z{ 3 [EC@IT"

THROREM 5.8. Let 1=r,852. If
(5.6) Slap’(h)h‘”?“dhgC«/r"’(t)t‘“ , 0<t<1
t

holds for some positive integer p and some constant C independent of t,
then

1/0
.7) [ s e ] scw(L)
lkizn n
implies X(t, w) € A3 (4r), C, being a constant independent of n, and 67+

0'*=1.

PrROOF. Suppose, first, 1<s<r=<2. The convergence of the series in
(56.7) assures, by Theorem 5.1 (ii), that X(¢, w) e L*'*'(Tx 2). Here we note
that »'<s’. (5.2) with 4 X(t, w) in place of X(t, w) gives us

142X, o= 3 (BICU@)I 12 8inCERDI 1}

k=—oco
- {,,i A2 sin(kh/2)|"} .
=1
where
A =ICe(Ol +HC_e(OIIs- -

Now we have
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149 XC, Ol ws] S) AuzsinGer+_ 5y 24, ]

k=[1+|hl]+1
[1/1R13 1/8 1/8
she[ 3 an "], s 4]
=K,+K,,
say. From (5.7)
(5.9) K,=2°Cy(1/[1/IR]]4+1) = Cy((h]) ,

where C is a constant which may differ on each occurrence in what
follows.

Writing R, =3... 4., we have
[1/1Rk1] .
Ki=[h" 5, B"(Ry— Ris)
[1/1k1]
= |h|?* kzz'i (k?*—(k—1)* )R, — |h[*[1/|B[]** Ry a1y -
Since R,=C*y*(1/k), we have
KISCh™ Sy k=pe(1 k)
=1

gcrhlp'[«/»'uwS;lt-l—"w%t)dt]
<Clh|?* Sllhlt“”"q/r’(t)dt§Cn/r'(llil) .

Inserting this and (5.9) into (5.8), we have
142X, e, ZCy(IR]) ,

which shows the theorem.
Second, suppose 1=r=<s<2. A similar arguement gives us

r

142 XC, o< (3, Bul2 singih/2))”

where B,=||C,()|I7.+||C_.(+)||7. From this we can, in the same way as
above, get X(t, w)e A4%*?). Thus the proof of the theorem is complete.

§6. Almost sure absolute convergence of Fourier series.

Let ¢(t) be a nondecreasing continuous function on [0, 1] such that
either ¢(0)=0 and ¢(¢)/t is nonincreasing on (0, 1], or ¢(¢) is identically 1
on [0.1].
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THEOREM 6.1. Let X(t,, w)e L (Tx2),1=sr,8=s2. If
6.1) S, n gL ) MAP (L) < oo
n=1 .
for some monmegative integer k and some positive integer p, then

(62) S P/ ImD]Cu@)| < oo

almost surely.

This is a generalization of Theorem 3.1 in [7] in which r=s.

PROOF.

S= 2 n*[¢(n )] E|C.()|

o 2ontl

=2, 3 Js(IITE|C/w)|

N=1 =By

= 2@ 3 101,
=$ 2o @ 3 16K,

on+1

=S 2 SNl ez
n=1 J=2T+1
<23, 5 meoipaml] 3 cin [

which is, from (5.4) and #(tA)=ng(t) for 0<A<1,

- SCEmpUm) M (Um)< oo

The same is true for S'=3;i . |n|*[¢(1/|n|)]E|C,.(w)]. From these we

have that (6.2) holds almost surely.

Theorem 3.1 suggests that the same conclusion in Theorem 6.1 holds
with the condition (6.1) with e;"(X), z2"=|lo.(-, -)—X(+, .., or tx"(X)=
nt S 1Se(Cey o3 X)—X(+, )lls,r» in place of M}®(1/n). We now show

that actually it is.
Since

(6.3) ex"(X) =z (X)=tw"(X) ,

it is sufficient for our purpose to prove the following theorem.
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THEOREM 6.2. Let X(t, w)e L*"(TxQ),1=r,s=2. If
(6.4 S, (1 )] e < oo

for some monmegative integer k, then (6.2) holds_almost surely.

PrOOF. Define, as in the proof of Theorem 3.1 U,(t, w)=1:2(t, ®),
U.(t, ®)=Tm(t, ®)—Tm1(t; ), n=2, where 7, @) is the De la Vallee
Poussin mean. As is easily seen from (6.4) and the fact that ey;”—0
monotonously as n— o, we see that

3. Ut 0)=Tiat, )

converges to X(¢, w) in L*"(T'X Q) as n—> oo,
Now let m be a positive integer.

|4 XC-, e, ,-—hmn

= ZA"’U( , ) +1im Z

y=2 8,r N—oo ||ly=m-+1
N
+E< )hm S
y=2 N—oo |iy=m+1

=L,(h) + Ly(h),
say.
L=$, () i e 3, )= eunC- 4,

L
M

I

/
. > lim ||7.'2N(', ')‘_fzm(" °)”a,f
g N—vo0

p
1

=27 }Viﬂllsz('; ) —X(-, ')”s,r+”z-2"'(" ) —X(-, ')”a,'rj] .

Since from Theorem 1.1 |lz,v(+, +)—X(-, *)|l,,,=4el¥ which converges to
zero as N—c from (6.4), we have

L,(h)=2"" e

2

and hence choosing m so that 2" '<n<2", we obtain for a given n

(6.5) sup L,(h)S27*%em =27 e, .

lRlS1lin

On the other hand
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LS 3 149U, .0
which is, from (8.12),
=3, 27l UC, s

égzuplhlp[”z-”(.’ ) —X(-, ')”a,r+||7:2”—1(" ) —X(-, .)”"’]

<2hl> 3\ ey 20+
y=2
and hence
(6.6) Ifgpl L,(h)=Cn~? Z 2vvel”

Therefore we have, from (6.5) and (6.6)

MxP(A/m)<C(n 3 27er +eir)

y=1

and
3, nA [ (L )] ME (Lm)

< C S e [p(1m))] ™ 3, 276+ C 3, g1 /)] ey
(6.7) =CL,,+CL,,,
say.

By (6.4), L,, is finite.

L,=3 3 w-‘/"'-ﬂ"[qs(l/p)]-‘zzwe,, :

n=1 #_gn—1+1

where 2™ '<u<2™,

é 2n(k—1/0'—p+1) [¢(1/2n)]—1 i" 2vpe;‘,'r

2vpen "’ Z 2n(l¢—1/0'—p+1)[¢(1/2n)]—1 .

n=y

Since [¢(1/2")]‘1§2"‘”[¢(1/2”)]“, the last one is

||M8 iM

SZ e. 1'2vp—v[¢(1/2u)]—1 ﬁ"‘ 2n(k—1/0’—p+1)+n .

n=y
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Taking p=k-+3 we have
Lo, S 3, 200 (1 /2] ey
y=1

<C3 3 W p(t/m)es”

y=1 ooy —

<C 3 (g1 n)] e

Therefore from (6.6), we have
>, 0 (1 /m)] MR (1) < oo
n=1

for some positive integer p. Then we obtain Theorem 6.2 from Theorem

6.1. .
We remark that, because of Theorem 1.2 and the proof of Theorem

6.2, Theorems 6.1 and 6.2 are substantially equivalent.
THEOREM 6.3. Let 1=r=<2,1<s<2. Suppose X, w)e L*"(Tx ) 1is
of bounded wvariation in L7(2). If
(6.8) 3, nE g ()] P U m)P < oo
n=1
Jor some monmegative integer k and some positive integer p, then (6.2)
holds almost surely.

Proor. Using Lemma 2.1 and (6.8), we have
>, mE 0 [S(1 )] MEP (L)

<C 3, n* (g1 m)] P [MP A/m) "0 < oo
n=1
Hence Theorem 6.3 follows from Theorem 6.1. N
We remark that if s=1, then (6.8) never holds.

§7. Mean derivative and the absolute convergence Fourier series.

Let X(t, w) be of L*"(TxR),15r<o,1<8< . If there exists an
Xu(t, w) e L*"(Tx Q) such that

(7.1) /WX +k, )—X(-, O]—Xa(-, O, —0,

as h—0, we say that X(¢, ) has the mean derivative X;(¢, ) in
L (Tx Q).
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If X.(t, ) has the mean derivative Xy(t, ) in L*"(Tx2), then
X(t, w) is said to have the second mean derivative X/ (¢, ) in L*"(T'x Q).
In a similar way, we successively define the k-th mean derivative X{(¢, »).
For s=r, these were defined in [8]. The following lemmas are generaliza-
tions of the correspondings with »—=s and the proofs are carried out
without any sustantial change.

LeMMA 7.1. If X@¢, w)e L (Tx2),15r<oo,1<850 and Xu(t, w)
exists in L*"(Tx 2), then as h—0,

(7.2) “(l/h)S:HX(u, ydu— X, )

=0(h) .

LEMMA 7.2. If X(t, w) e L*"(Tx2),1=r<o,1Z8< o, has the mean
derivative Xy(t, ®) in L*"(TxQ), then

(7.3) X(t+h, @) — X, @)= S:“X;,(u, w)du

almost everywhere in TX R for each h.
Now we shall prove

THEOREM 7.1. If X(t, w)e L*"(TxQ),1=r<,1<8<c has the p-th
mean derivative XF'(t, w) tm L*"(TxR2), p being a positive integer, then

(7.4) Mm@ =2 X, .07, 9>0.

The proof goes through just as in that of Theorem 1 of [8]. In fact,
writing

%+h tp—1th
Vi =\ dtysn- | 1XPC it ,
. p—1
we have, for h>0 and 1=<s<<c, by Lemma 7.2,
t+h tp—1+h .
(7.5) lapxce, D= | at-- " 1x, lat, |
P—1

< h?® I)St ' Y (t )dt
E— ¢ p_l 1 1)
from which we have

(7.6) 142X, lsheeo @iy L
T

Yp—l (tl)dtl

< h,,u_m)(2],’)1»/1:_1__&,t Y, (¢,)dt :lm
s 27c x P 4
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= 2p/lhp“lep)(, ’ 'V)Ha,r

which proves (7.4). The similar is true for <0 and Theorem 7.1 is
proved for 1<s< oo, ‘

If s=oo, then (7.4) is easily obtained from (7.5).

We now give a theorem which assures the almost sure validity of
(6.2) for a stochastic process which has the mean derivative.

THEOREM 7.2. Suppose X(t, w)€ L*"(TxX2), 1<r<oo, 15850, has
the k+1-st mean derivative XF+(t, w) in L*"(T x Q) for some nonnegative
wnteger k. If

then (6.2) holds almost surely.

This theorem immediately follows from Theorem 6.1 and 7.1. The
following corollary is also immediate with ¢(t)=t* 0=a<1.

COROLLARY 7.1. If X, w)e L*"(Tx2) has the mean derivative
XEH(E, @) in L*"(TX Q) for some nonnegative integer k and

(7.8) <a<l—67',
then
(7.9) 3 ImeCu(@)] < o0

almost surely.

Theorem 7.2 and Corollary 7.1 with r=s were shown in [8]. If s<7,
the conditions (7.7) and (7.8) are stronger than the corresponding ones
with »r=s. However the class of X(t, w) is broader. -

§8 Sample properties.

Once the theorems on the absolute convergence of Fourier series of
stochastic processes as in the foregoing section are obtained, we can
derive, from them, the results which give the conditions for the sample
continuity or sample differentiability by the argument same as in [7]
Theorem 6.1.

We throughout this section assume that a 2rw-periodic LT-process
X(t, w) is stochastically continuous, that is, for every ¢ '
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8.1) P(X(t+h, w)—X(t, w)|>e)—0,

as h—0, for every ¢>0. In this case (8.1) holds uniformly and the (C, 1)
mean og,(t, w) of the Fourier series of X(t, w) converges uniformly in
probability to X(¢, w). [7]

Let ¢(t) be a function considered in 7. A, denotes the ordinary
Lipschitz class {f(t); sup, a<; [ f(E+h) —f(t)|=0(¢4(8))} of 2x-periodic functions
and when ¢(t)=1, denotes the class of continuous functions.

We have the following theorems from Theorems 6.1, 6.2, 2.8, 7.2 and
Corollary 7.1. We do not think that we have to repeat their proofs.

THEOREM 8.1. If X(t, w)e L*"(Tx2), 1=r, s<2 satisfies the condition
(6.1) in Theorem 6.1 for some nonnegative integer k and some positive
integer p, then there is a modification Xy(t, w) of X(t, w) with the property
that X\(t, ) has almost surely the k-th derivative which belongs to A,.

THEOREM 8.2 If X(t, w)e L*"(Tx2), 1<, 8=<2 satisfies the condition
(6.4) in Theorem 6.2 for some nonnegative integer k, them the conclusion
of Theorem 8.1 is walid.

THEOREM 8.3. If X(t, w)e L*"(Tx ), 1=r=2,1<8=<2, 138 of bounded
variation in L7(2) and satisfies the condition (6.8) im Theorem 6.3 for
some monnegative integer k and some. positive imteger p, them the conclu-
sion of Theorem 8.1 18 valid.

THEOREM 8.4. If X(t, w)e L*"(Tx 2), 1<r< 0o, 1<8=Z oo, has the mean
derivative XF0(t, w) in L*"(Tx2) for some nonnegative integer k and
the condition (7.7) in Theorem 7.2 is satisfied, then the comclusion of
Theorem 8.1 is valid.

THEOREM 8.5. Let X(t, w)€ L*"(Tx2), 1<r< o, 1=8=<c, have the
mean derivative XF*V(t, w) in L*"(Tx ) for some nonnegative integer k.
If a number a satisfies (7.8) in Corollary 7.1, then there is a modification
Xi(t, w) of X(t, w) with the property that X(t, @) has almost surely the
k-th derivative which belongs to A,.

Finally the author is very grateful to the refree who pointed out
misprints and an erroneous argument involved in the original manuseript,
according to which improvements have been made in Section 1.
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